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LEARNING THE
STRUCTURE OF
EVENT SEQUENCES

Axel Cleeremans
James L. McClelland

Department of Psychology
Carnegie Mellon University

ABSTRACT

How is complex sequential material acquired, processed,
and represented when there is no intention to learn ? Recent
research (Lewicki, Hill & Bizot, 1988) has demonstrated that
subjects placed in a choice reaction time task progressively
become sensitive to the sequential structure of the stimulus
material despite their unawareness of its existence. This
paper aims to provide a detailed information-processing
model of this phenomenon in an experimental situation
involving complex and probabilistic temporal contingencies.
We report on two experiments exploring a 6-choice serial
reaction time task. Unbeknownst to subjects, successive
stimuli followed a sequence derived from “noisy” finite-state
grammars. After considerable practice (60,000 exposures),
subjects acquired a body of procedural knowledge about
the sequential structure of the material, although they were
unaware of the manipulation, and displayed little or no
verbalizable knowledge about it. Experiment 2 attempted to
identify limits on subjects’ ability to encode the temporal
context by using more distant contingencies that spanned
irrelevant material. Taken together, the results indicate that
subjects become progressively more sensitive to the
temporal context set by previous elements of the sequence,
up to three elements. Responses are also affected by carry-
over effects from recent trials. A PDP model that
incorporates sensitivity to the sequential structure and
carry-over effects is shown to capture key aspects of both
acquisition and processing of the material.

INTRODUCTION

In many situations, learning does not proceed in the
explicit and goal-directed way characteristic of
traditional models of cognition (Newell & Simon,
1972). Rather, it appears that some of our knowledge
and skills are acquired in an incidental and
unintentional manner. Indeed, many studies (see
Reber, 1989; for a review) have documented
dissociations between task performance and
reportable knowledge. The classic result in these
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experimental situations is that “subjects are able to
acquire specific procedural knowledge (i.e. processing
rules) not only without being able to articulate what
they have learned, but even without being aware that
they had learned anything” (Lewicki, Czyzewska &
Hoffman, 1987).

Although controversy still pervades the field, at
least two different implicit learning paradigms have
yielded consistent and robust results : artificial
language learning (Reber, 1967, 1989), and
sequential pattern acquisition (Nissen & Bullemer,
1987; Lewicki, Czyzewska & Hoffman, 1987; Lewicki,
Hill & Bizot, 1988; Willingham, Nissen & Bullemer,
1989; Cohen, Ivry & Keele, 1990). Related research
with neurologically impaired patients also provides
strong evidence for the existence of learning
processes that do not entail or require awareness of
the results or of the learning experience itself (see
Schacter, 1987, for a review).

Despite this wealth of evidence documenting
implicit learning phenomena, few models of the
mechanisms involved have been proposed. This lack
of formalization can doubtless be attributed to the
difficulty of assessing subject’'s knowledge when it
does not lend itself easily to verbalization.

Nevertheless, an important first step in the direction
of understanding the relationship between
awareness, attention and learning consists of
attempting to identify mechanisms that account for
subjects’s performance in implicit learning situations. In
the present paper, we report on a series of
experiments inspired by Lewicki, Hill & Bizot's (1988)
paradigm, and propose a detailed information
processing model of the task. These experiments
placed subjects in a choice reaction time task, and
manipulated the sequential contingencies of the
material in a novel way that allows detailed data about
subject’s representations of the temporal structure to
be obtained.

The main results of our experiments indicate that
subjects unintentionally acquire a complex body of
knowledge about the temporal structure of the
material. We describe a PDP model that implements a
proposed mechanism to account for performance in
this task. The model -- trained in exactly the same
conditions as subjects -- captures key aspects of both
acquisition and performance in this task. Its core
mechanism implements the hypothesis that sequential
structure gets induced as a direct result of an
encoding of events together with an internal
representation of the temporal context.

EXPERIMENT 1

Subjects were exposed to a six-choice reaction
time task. The entire experiment was divided in 20
sessions. Each session consisted of 20 blocks of 150
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trials. On any of the 60,000 trials, a stimulus could
appear at one of six positions arranged in a horizontal
line on a computer screen. The task consisted of
pressing as fast and as accurately as possible on one
of six corresponding keys. Unbeknownst to subjects,
the sequential structure of the stimulus material was
manipulated. Stimuli were generated using a small
finite-state grammar that defined legal transitions
between successive trials. Some of the stimuli,
however, were not “grammatical” . Indeed, on each
trial, there was a 15% chance of substituting a random
stimulus to the one prescribed by the grammar. This
“noise” served two purposes. First, it ensured that
subjects could not simply memorize the sequence of
stimuli, and hindered their ability of detecting
regularities in an explicit way. Second, since each
stimulus was possible on every trial (if only ina small
proportion of the trials), we could obtain detailed
information about what stimuli subjects did or did not
expect at each step.

If subjects become increasingly sensitive to the
sequential structure of the material over training, one
would thus predict an increasingly large difference in
the reaction times elicited by predictable and
unpredictable stimuli. Further, detailed analyses of the
RTs to particular stimuli in different temporal contexts
should reveal differences that reflect subject's
encoding of the sequential structure of the material.

Method

Subjects. Six subjects (CMU staff and students)
aged 17-42 participated in the experiment. Each subject was
paid $100 for his participation in the 20 sessions of the
experiment, and received a bonus of up to $50 based on
speed and accuracy.

Apparatus and display. The experiment was run on
a Macintosh Il computer. The display consisted of six dots
arranged in a horizontal line on the computer's screen. Each
screen position was paired with a key on the computer's
keyboard, also arranged in a line (‘Z', ‘X', ‘C', 'B’, ‘N’, ‘M").
The stimulus was a small black circle that appeared
immediately below one of the six dots. The timer was started
at the onset of the stimulus and stopped by the subject's
response. The RS| was 120 msec.

Procedure. Subjects received detailed instructions
during the first meeting. They were told that the purpose of
the experiment was to “learn more about the effect of
practice on motor performance”. Both speed and accuracy
were stressed as being important. After receiving the
instructions, subjects were given 3 practice blocks of 15
random trials each at the task. A schedule for the 20
experimental sessions was then elaborated. Most subjects
followed a regular schedule of two sessions a day.

Stimulus Material. Stimuli were generated on the
basis of the small finite-state grammar shown in Figure 1.
Finite-State grammars consist of nodes connected by
labeled arcs. Expressions of the language are generated by
starting at node #0, choosing an arc, recording its label, and
repeating this process with the next node. The vocabulary
associated with the grammar we used consists of six letters
(T, 'S', ‘X', 'V, 'P’, and ‘Q"), each represented twice on
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different arcs of the grammar (as denoted by the subscript
of each letter). This results in highly context-dependent
transitions, as identical letters can be followed by different
sets of successors as a function of their position in the
grammar (For instance, 'S¢’ can only be followed by 'Q’, but
'Sy’ can be followed by either ‘V' or ‘P'). The grammar was
constructed so as to avoid direct repetitions of a particular
letter, since it is known (Hyman, 1953; Bertelson, 1961) that
repeated stimuli elicit shorter reaction times independently
of their probability of presentation. Finally, note that the
grammar loops onto itself: the first and last nodes, both
denoted by the digit 0, are actually the same.

Figure 1 : The Finite State Grammar used to
generate the stimulus sequence in Experiment 1.

Stimulus generation proceeded as follows. On each ftrial,
three steps were executed in sequence. First, an arc was
selected at random among the possible arcs coming out of
the current node, and its corresponding letter recorded. The
current node was set to be node #0 on the very first trial of
any block, and was updated on each trial to be the node
pointed to by the selected arc. Second, in 15 % of the
cases, another letter was substituted to the letter recorded
at step 1 by choosing it at random among the five remaining
letters in the grammar. Third, the selected letter was used to
determine the screen position at which the stimulus would
appear. A 6 x 6 Latin Square design was used, so that each
letter corresponded to each screen position for exactly one
of the six subjects.

Design. The experiment consisted of 20 sessions of
20 blocks of 155 trials each. Each block was initiated by a
"Get ready” message and a warning beep. After a short
delay, 155 trials were presented to the subject. The first five
trials of each block were entirely random so as to eliminate
initial variability in the responses. These data points were
not recorded. The next 150 trials were generated according
to the procedure described above. After each block, the
computer paused for approximately 30 seconds. The
message “Rest Break" was displayed on the screen, along
with information about subjects's performance (mean RT and
accuracy for the last block, and amount earned).

Results & Discussion

Figure 2 shows the average RTs on correct
responses for each of the 20 experimental sessions,
plotted separately for predictable and unpredictable
trials. A general practice effect is readily apparent, as
well as an increasingly large difference between
predictable and unpredictable ftrials. A two-way
ANOVA with repeated measures on both factors
(practice [20 levels] X trial type [grammatical vs.



ungrammatical]) revealed significant main effects of
practice, F(19,95) = 9.491, p < .001; and of trial type,
F(1,5) = 105.293, p < .001; as well as a significant
interaction, F(19,95) = 3.022, p < .001. It appears that
subjects become increasingly sensitive to the
sequential structure of the material. Yet, when
interviewed after the task, all subjects reported feeling
that the sequence was random, and failed to report
noticing any pattern in the data but small alternations
(e.g. the loops on nodes #2 and #4).

E3888KL¢E§8
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Figure 2 : Mean RTs for grammatical and ungrammatical
trials for each of the 20 sessions of Experiment 1.

Accuracy averaged 98.12% over all trials. The small
difference between accuracy on predictable (98.35%)
and unpredictable (96.68%) trials was not significant.

One mechanism that would account for the
progressive differentiation between predictable and
unpredictable trials consists of assuming that subjects,
in attempting to optimize their reaction times,
progressively come to anticipate successive events on
the basis of an increasingly large temporal context set
by previous elements of the sequence. In the grammar
we used, most elements can be perfectly anticipated
on the basis of two elements of temporal context, but
some of them require three or even four elements of
temporal context to be maximally disambiguated. For
instance, the path '‘SQ’ (leading to node #2) occurs
only once in the grammar and can only be legally
followed by ‘S’ or by ‘X". In contrast, the path ‘'TVX' can
lead to either node #5 or node #6, and is therefore not
sufficient to perfectly distinguish between stimuli that
occur only at node #5 ('S’ or ‘Q’) and stimuli that occur
only at node #6 (‘'T' or ‘P'). One would assume that
subjects initially respond to the predictions entailed by
the shortest paths, and progressively become
sensitive to the higher-order contingencies as they
encode more and more temporal context.

A simple analysis that would reveal whether or not
subjects are indeed basing their performance on an
encoding of an increasingly large temporal context was
conducted. Its general principle consists of comparing
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the data with the probability of occurrence of the
stimuli given different amounts of temporal context.
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Figure 3 : Correspondence between the human
responses and CPs after paths of length 1-4 during
successive blocks of four simulated sessions.

First, we estimated the conditional probabilities
(CPs) of observing each letter as the successor of
every grammatical path of length 1, 2, 3 and 4
respectively. Next, the average RT for each successor
to paths of length 4 were computed, separately for
successive blocks of four experimental sessions.
Finally, 20 separate regression analyses were
conducted, using each of the four sets of CPs as
predictor, and each of the five sets of mean RTs as
dependent variable. If subjects are encoding
increasingly large amounts of temporal context, we
would expect the variance in the distribution of their
responses at successive points in training to be better
explained by CPs of increasingly higher statistical
orders.

Figure 3 illustrates the results of these analyses.
Each point on the figure represents the r-squared
coefficient of a specific regression analysis. Points
corresponding to analyses conducted with the same
amount of temporal context (1 - 4 elements) are linked
together. Although the overall fit is rather low (Note
that the verlical axis only extends to 0.5), the figure
nevertheless reveals that subjects become
increasingly sensitive to the temporal context set by
previous elements of the sequence. One can see that
the correspondence with the first-order CPs tends to
level off below the fits for the second, third and fourth
orders. The fits to the second, third and fourth order
paths are highly similar in part because their associated
CPs are themselves highly similar.

In order to assess more directly whether subjects
are able to encade three or four letters of temporal
context, several analyses on specific successors of
specific paths were conducied. One such analysis
involved several paths of length 3. These paths were
the same in their last two elements, but differed in their
first element as well as in their legal successors. For



example, we compared ‘XTV' versus ‘PTV' and ‘QTV’,
and examined RTs for the letters ‘S’ (legal only after
‘XTV') and ‘T’ (legal only after ‘PTV' or ‘QTV’). If
subjects are sensitive to three letters of context, their
response to an ‘S’ should be relatively faster after ‘XTV'
than in the other cases, and their response to a ‘T’
should be relatively faster after ‘PTV’ or ‘QTV’ than
after ‘XTV'. Averaging over all candidate contexts of
this type, we found that a slight advantage for the legal
successors emerged in sessions 8-12 and remained
present over sessions 13-16 and 17-20 (p <.05). Thus
there appears to be evidence of sensitivity to at least
three elements of temporal context. However, no
sensitivity to the first element of otherwise identical
paths of length 4 (e.g. ‘XTVX' vs. ‘PTVX and ‘QTVX’)
was found, even during sessions 17-20.

EXPERIMENT 2

Experiment 1 demonstrated that subjects
progressively become sensitive to the sequential
structure of the material and seem to be able to
maintain information about the temporal context for up
to three steps. The temporal contingencies
characterizing this grammar were relatively simple,
however, since in most cases, only two elements of
temporal context are needed to disambiguate the next
event perfectly.

#0 (Start)

Figure 4 : The Finite State Grammar used to generate
the stimulus sequence in Experiment 2.

Further, contrasting long-distance dependencies
were not controlled for their overall frequency. In
Experiment 2, a more complex grammar (Figure 4) was
used in an attempt to identify limits on subjects’ ability
to maintain information about more distant elements of
the sequence. In this grammar, the last element (‘A’ or
‘X’) is contingent on the first one (also ‘A’ or X).
Information about the first element, however, has to be
maintained across either of the two embeddings in the
grammar, and is totally irrelevant for predicting the
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elements of the embeddings. Further, the two
embeddings are identical. Thus, in order to accurately
predict the last element at nodes #11 or #12, one
needs to maintain information across a minimum of
three intervening steps. Accurate expectations about
the nature of the last element would be revealed by a
difference in the RT elicited by the letters ‘A’ and ‘X’ at
nodes #11 and #12 (‘A’ should be faster than ‘X’ at
node #11, and vice-versa). Naturally, there was again a
15% chance of substituting another letter to the one
prescribed by the grammar. Further, in order to avoid
direct repetitions between the letters that precede and
follow node #13, a small loop was inserted at node
#13. One random letter was always presented at this
point; after which there was a 40% chance of staying in
the loop on subsequent steps.

Method

Six new subjects (CMU undergraduates and graduates,
aged 19-35) participated in Experiment 2. The design of
Experiment 2 was otherwise identical to that of Experiment
1s

Results & Discussion

Figure 5 shows the main results of Experiment 2.
They closely replicate the general results of
Experiment 1, although subjects were a little bit faster
overall in Experiment 2. A two-way ANOVA with
repeated measures on both factors (practice [20
levels] X trial type [grammatical vs. ungrammatical])
again revealed significant main effects of practice,
F(19,95) = 32.011, p < .001; and of trial type, F(1,5) =
253.813, p < .001; as well as a significant interaction,
F(19,95) = 4.670, p < .001.

Accuracy was 97.00% over all trials. The difference
between grammatical (97.60%) and ungrammatical
(95.40%) was significant; t(5) = 2.294, p < 0.5.

Of greater interest are the results of analyses
conducted on the responses elicited by the
successors of the four shortest paths starting at node
#0 and leading to either node #11 or node #12
(‘AJCM’, ‘AMLYJ’, ‘XJCM’ & XMLJ’). Among those
paths, those beginning with ‘A’ predict ‘A’ as their only
possible successor, and vice-versa for paths starting
with 'X’. This only holds, though, if all four letters of
each path are encoded. Indeed, the sub-paths ‘JCM’
and ‘MLJ’ undifferentially predict ‘A’ or ‘X’ as their
possible successors. The RTs on legal successors of
each of these four paths (i.e. ‘A’ for ‘AJCM’ and ‘AMLJ’;
and ‘X’ for ‘XJCM' and ‘XMLJ’) were averaged together
and compared to the average RT on their illegal
successors (i.e. ‘X' for ‘AJCM’ and ‘AMLJ’; and ‘A’ for
‘XJCM' and ‘XMLJ’), thus yielding two scores. Any
significant difference between these two scores would
mean that subjects are discriminating between legal
and illegal successors of these four paths, thereby



suggesting that they have been able to maintain
information about the first letter of each path over
three irrelevant steps. The mean RT on legal
successors over the last four sessions of the
experiment was 384.896, and the corresponding
score for illegal successors was 387.847. A paired t-
test on this difference failed to reach significance (1(5)
=0.571, p > 0.05).
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Figure 5 : Mean RTs for grammatical and ungrammatical
trials for each of the 20 sessions of Experiment 2.

To sum up, subjects do not appear to be able to
encode long-distance dependencies when they span
3 items of embedded independent material; at least,
they cannot do so in the amount of practice used here.
However, there is clear evidence of sensitivity to at
least the previous two elements of temporal context.

SIMPLE RECURRENT NETWORKS

Early models of sequence processing (e.g. Estes’
“statistical learning theory”) have typically assumed
that subjects somehow compute the conditional
probabilities for all relevant statistical orders, but failed
to show how subjects might come to represent or
compute them. In the following, we present a model of
sequence processing that comes to elaborate its own
internal representations of the temporal context
despite very limited processing resources. The model
consists of a Simple Recurrent back-propagation
Network (‘SRN’', see Elman, 1988; Cleeremans,
Servan-Schreiber & McClelland, 1989).

In the SRN (Figure 6), the hidden unit layer is
allowed to feed back on itself, so that the intermediate
results of processing at time t-1 can influence the
intermediate results of processing at time t. In practice,
the SRN is implemented by copying the pattern of
activation on the hidden units onto a set of “context
units” which feed into the hidden layer, along with the
input units. All the forward-going connections in this
architecture are modified by back-propagation. The
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recurrent connections from the hidden layer to the
context layer implement a simple copy operation and
are not subject to training.

As reported elsewhere (Cleeremans, Servan-
Schreiber & McClelland, 1989), we have shown that an
SRN trained to predict the successor of each element
of a sequence presented one element at a time can
learn to perform this “prediction task” perfectly on
simple finite-state grammars like the one used in
Experiment 1. Following training, the network
produces the conditional probabilities of presentation
of all possible successors of the sequence. Since all
letters of the grammar were inherently ambiguous (i.e.
predicting them requires more than the immediate
predecessor to be encoded), the network must have
developed representations of entire subsequences of
events. Note that the network is never presented with
more than one element of the sequence at a time.
Thus, it has to elaborate its own internal
representations of as much temporal context as is
needed to achieve optimal predictions.

OUTPUT UNITS : Element t+1

HIDDEN UNITS

CcO

CONTEXT UNITS

INPUT UNITS : Element t "

Figure 6 : The simple recurrent network.

A complete analysis of the learning process is too
long to be presented here (a full account is given in
Servan-Schreiber, Cleeremans & McClelland, 1988),
but the key points are as follows : As the initial papers
about back-propagation (e.g. Rumelhart, Hinton &
Williams, 1986) pointed out, the hidden unit patterns
of activation represent an “encoding” of the features
of the input patterns that are relevant to the task. In the
SRN, the hidden layer is presented with information
about the current letter, but also -- on the context layer
-- with an encoding of the relevant features of the
previous letter. Thus, a given hidden layer pattern can
come to encode information about the relevant
features of two consecutive letters. When this pattern
is fed back on the context layer, the new pattern of
activation over the hidden units can come to encode
information about three consecutive letters, and so
on. In this manner, the context layer patterns can allow
the network to learn to maintain prediction-relevant
features of an entire sequence.

To model our experimental situation, we used an



SRN with 15 hidden units and local representations on
both the input and output pools (i.e. each unit
corresponded to one of the 6 stimuli). The network
was trained to predict each element of a continuous
sequence of stimuli generated in exactly the same
conditions as for the human subjects. On each step, a
letter was generated from the grammar as described
above, and presented to the network by setting the
activation of the corresponding input unit to 1.0.
Activation was then allowed to spread to the other
units of the network, and the error between its
response and the actual successor of the current
stimulus was then used to modify the weights.

During training, the activation of each output unit
was recorded on every trial and transformed into Luce
ratios to normalize the responses. For the purpose of
comparing the model’s and the subject’'s responses,
we assumed 1) that the normalized activations of the
output units represent response tendencies, and 2)
that there is a linear reduction in RT proportional to the
relative strength of the unit corresponding to the
correct response2.
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Figure 7 : Correspondence between the SRN's

responses and CPs after paths of length 1-4 during
successive blocks of four simulated sessions.

This data was first analyzed in the same way as for
Experiment 1 subjects, and compared to the CPs of
increasingly higher statistical orders in 20 separate
regression analyses. The results are illustrated in
Figure 7. In stark contrast with the human data (Figure
3, note the scale difference), the variability in the
model’s responses appears to be very strongly
determined by the probabilities of particular successor
letters given the temporal context. The figure also
reveals that the model’s behavior is dominated by the
first-order CPs for most of the training, but that it
becomes progressively more sensitive to the second
and higher order CPs. If training was to be continued
beyond 60,000 exposures, the model’s responses

2 Naturally, the second assumption is a simplification. We
are currently in the process of exploring more realistic
versions of this assumotion.
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would come to approximate increasingly higher CPs.

Figure 8 illustrates a more direct comparison
between the model's responses at successive points
in training with the corresponding human data. First,
we computed the average RT of each letter at each
node of the grammar. This yields a set of 42 data
points (Due to noise, each of the six letters may occur
at any of the seven different nodes). This analysis was
conducted on RTs averaged over blocks of four
successive experimental sessions, thus yielding five
different sets of data. Next, a similar analysis was
conducted on the model's responses. Finally, we
conducted 25 separate regression analyses on these
data. Each point in Figure 8 represents the r-squared
coefficient of a regression analysis using the model’s
responses at a particular point in training as predictor
and the human data as dependent variable. One
would expect the model’s early performance to be a
better predictor of the subjects’s early behavior, and
vice-versa for later points in training.
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Figure B : Correspondence between the SRN's

responses and the corresponding human data
during successive blocks of four sessions of training.

It is obvious that the model is not very good at
capturing subjects’'s behavior : the overall fit is
relatively low (note that the vertical axis only goes up to
0.5), and reflects only weakly the expected
progressions. Basically, too much of the variance in
the model’'s performance is accounted for by
sensitivity to the temporal context.

However, exploratory examination of the data
revealed that performance in this task depends on
three other factors (in addition to the conditional
probability of appearance of a stimulus) :

First of all, it appears that a response that is actually
executed remains primed for a number of subsequent
trials (Remington, 1969). If it follows itself immediately,
there is about 60 to 90 msec of facilitation, depending
on other factors. If it follows after a single intervening
response (as in ‘VT-V’, for example), there is about 25
msec of facilitation if the letter is grammatical at the
second occurrence, and 45 msec if it is ungrammatical.



The second factor may be related: responses that
are grammatical at trial t but do not actually occur
remain primed at trial t+1; the effect is somewhat
weaker, averaging about 30 msec. The first two factors
may be summarized by assuming that activations at
time t decay gradually over subsequent trials, and
responses that are actually executed become fully
aclivated, while those that are not executed are only
partially primed.

The third factor is a priming, not of a particular
response, but of a particular sequential pairing of
responses. This can best be illustrated by a
contrasting example, in which the response to the
second ‘X' is compared in ‘QXQ-X' and 'VXQ-X'. The
response fo the second X tends to be about 10 msec
faster in cases like ‘QXQ-X', where the ‘X’ follows the
same predecessor twice in a row, than it is in cases like
‘VXQ-X', in which the first ‘X’ follows one letter and the
second follows a different letter.

This third factor can perhaps be accounted for in
several ways. We have explored the possibility that it
results from a rapidly decaying component to the
increment to the connection weights mediating the
associative activation of a letter by its predecessor.
Such “fast” weights have been proposed by a number
of investigators (McClelland & Rumelhart, 1985;
Hinton & Plaut, 1987). The idea is that when ‘X’ follows
‘Q, the connection weights underlying the prediction
that ‘X’ will follow *Q’ receives an increment which has a
short-term component in addition to the standard
long-term component. This short-term increment is still
present in sufficient force to influence the response to
a subsequent ‘X' that follows a immediately
subsequent 'Q’.

In light of these analyses, one possibility for the
relative failure of the original model to account for the
data is that the SRN is partially correct, but that human
responses are also affected by rapidly decaying
activations and adjustments to connection weights
from preceding trials. To test this idea, we incorporated
both kinds of mechanisms into a second model.

This new simulation model was exactly the same as
before, except for the following two changes :

First, it was assumed that pre-activation of a
particular response was based, not only on activation
coming from the network but also on a decaying trace
of the previous activation:

respact{i](t) = act{i](t) + (1 - act[i](t)) * k * respact[i](t - 1)

where act(t) is the activation of the unit based on the
network at time t, and respact(t) is a kind of non-linear
running average that remains bounded between 0 and
1. When a particular response is executed, the
corresponding respact is set to 1.0. The constant K is
set to 0.5, so that the half-life of a response activation
is one time step.

The second change is simply to assume that when
weights are changed by the back-propagation learning
procedure, there are two components, one of which is
a small (epsilon = 0.15) but effectively permanent
change (i.e., a decay rate slow enough to ignore for
present purposes) and the other of which is a larger
(epsilon = 0.2 ) change that has a half-life of a single
time-step.

With these changes in place, we observed that, of
course, the proportion of the variance in the model
accounted for by predictions based on one to four
letters of temporal context is dramatically reduced
(Figure 8). More interestingly, the pattern of change in
these measures, as well as the overall fit, is now quite
similar to that seen in the data (Figure 3).
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Figure 9 : Correspondence between the augmented
SRN's responses and CPs after paths of length 1-4
during successive blocks of four simulated sessions.

Indeed, there is a similar progressive increase in the
correspondence with the higher-order CPs, with the
curve for the first-order CPs leveling off relatively early,
as in the human data.

o8

08

=D SRMNO104
—M—  SRN 0508
08 F |—0— SRNO03-I12
= SANI121E
e SAM 1720

proportion of variance axplﬂlnnd

r.IA ng g.:z |3.I‘B I?fzu
Experimental Sesslons

Figure 10 : Correspondence between the augmented

SRN's responses and the corresponding human data

during successive blocks of four sessions of training.

A more direct indication of the good fit provided by
the current version of the model is given by the fact



that it now correlates extremely well with the
performance of the subjects (Figure 10; compare with
the same analysis illustrated in Figure 8). Late in
training, the model explains about 86% of the variance
of the corresponding human data. Close inspection of
the figure also reveals, that, as expected, the SRN's
early distribution of responses is a better predictor of
the corresponding early human data. This
correspondence gets inverted later on, thereby
suggesting that the model now captures key aspects
of acquisition as well. Indeed, at every point, the best
prediction of the human data is the simulation of the
corresponding point in training.

GENERAL DISCUSSION

In Experiment 1, subjects were exposed to a 6-
choice serial reaction time task for 60,000 trials. The
sequential structure of the material was manipulated by
generating successive stimuli on the basis of a small
finite-state grammar. On some of the trials, random
stimuli were substituted to those prescribed by the
grammar. The results clearly support the idea that
subjects become increasingly sensitive to the
sequential structure of the material. Indeed, the
smooth differentiation between predictable and
unpredictable trials can only be explained by assuming
that the temporal context set by previous elements of
the sequence facilitates or interferes with the
processing of the current event. Experiment 2
showed that subjects were relatively unable to
maintain information about long-distance
contingencies that span irrelevant material.

Taken together, these results suggest that in this
task, subjects gradually acquire a complex body of
procedural knowledge about the sequential structure
of the material. They are clearly sensitive to more than
just the immediate predecessor of the letter; indeed,
there is evidence of sensitivity to differential
predictions based on two and even three elements of
context. However, sensitivity to temporal context is
clearly limited: even after 60,000 trials of practice,
there is no evidence of sensitivity to fourth-order
temporal context. Of course, it remains possible that
the subjects would eventually discover the fourth-
order structure, just as the model can do.

The augmented SRN model provides a detailed,
mechanistic , and fairly good account of the data. At
this point it is difficult to be certain whether the model
is capable of offering a complete account of all of the
structure in the data. First, we have not explored the
parameter space very extensively to discover whether
it is possible to improve on the existing fit; and second,
it is not clear just how much more systematic (as
opposed to random) variance there is in the data to be
accounted for.
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It is often claimed that learning can proceed
without explicit awareness (e.g. Reber, 1989,
Willingham, Nissen & Bullemer, 1989). In our case, it
appears that subjects do become aware of the
alternations that occur in the grammar (e.g ‘SQSQ’ and
‘VTVT in Experiment 1), but have little reportable
knowledge of any other contingencies. Given the fairly
close correspondence of the augmented SRN with
the subjects's performance, this class of model would
appear to offer a viable framework for modeling this
type of implicit learning.
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