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ABSTRACT OF THE THESIS

Statistical Analysis and Predictive Modeling in Basketball: Unveiling Key Variables for

Championship Success

by

Garvyn Jay Chua

Master of Applied Statistics & Data Science

University of California, Los Angeles, 2023

Professor Frederic R. Paik Schoenberg, Chair

The game of basketball has witnessed constant evolution, necessitating the use of statistical

data for predicting winners. While the odds of winning a championship are traditionally 1 in

30 each year, strategic positioning in various statistical categories can surpass this baseline,

regardless of a team’s annual ranking. By analyzing data and identifying crucial variables,

it becomes evident that basketball outcomes are not predetermined. This study employs

modern data science methods to make predictions for future years or generations, emphasiz-

ing the importance of selecting accurate via cross-validation for the machine learning (ML)

techniques. All data used in this study is sourced from Basketball-Reference. This study

debunks the fallacy that a team solely relying on prominent three-point shooters guarantees

championship success. It underscores the significance of other factors and variables in deter-

mining outcomes. The analysis emphasizes the importance of relying on objective statistical

analysis rather than subjective perceptions. Factors like overtime play and defensive prowess

in blocks significantly impact a team’s likelihood of becoming an NBA champion, reinforcing

the need for data-driven insights and accurate predictions.
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CHAPTER 1

Introduction

1.1 Background

The game of basketball has always been a continuously evolving sport, leading to the uti-

lization of various statistical data to potentially predict the winner. In reality, each year

there is a 1 in 30 chance of winning the championship. However, if teams strategically po-

sition themselves in multiple statistical categories, their odds of success could surpass the

baseline of 1 in 30, irrespective of their ranking in a given year. By analyzing statistical

data and exploring key variables that o↵er the best odds, it becomes apparent that the

outcome is not predetermined. Upon examining the data, it becomes necessary to employ

modern “Data Science” methods to make predictions for future years or generations. The

selection of the most accurate machine learning (ML) method by way of cross-validation,

becomes crucial in this decision-making process. All data used in this study was obtained

from Basketball-Reference.

Among the numerous changes in the game, one particular change stood out—the intro-

duction of the “three-point” shot [?]. Stephen Curry of the Golden State Warriors played a

pivotal role in revolutionizing the game by significantly increasing the average points scored

per game since its implementation in the late 1970s. This revolution encompassed several

rule changes throughout the game’s recent history [?]. These changes included providing

more space for shooters and a shift away from physicality, as the game moved from the rim

to the extended three-point line. Machine Learning is predominantly employed in sports for
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tasks like determining draft picks and projecting players’ productivity and salaries. There-

fore, the models used in this study were inspired by a previous research conducted at Bryant

University [?].

1.2 Purpose

Simply stated, the motivation behind this report stems from a deep passion for both the

game of basketball and my favorite academic subject. Combining these two interests has

prompted me to delve into the realm of basketball statistics, ranging from basic metrics like

points, rebounds, and assists to more advanced indicators such as win-shares and player

e�ciency rating. As an ardent fan, exploring these statistics has been truly captivating. It

is worth noting that the statistical data used in this study aligns with commonly known

categories, which should be considered common knowledge.

Interestingly, the results of this study may come as a surprise to some. Upon closely

observing the game of basketball, it became apparent that the factors I initially believed

would determine the championship winner might not be as decisive as expected. It cannot

be predetermined that teams must excel in numerous statistical categories (which will be

specified in the concluding section of the report).

The study that served as my inspiration was a 2012 research conducted at Carnegie

Mellon titled “Predicting NBA Championship by Learning from Historical Data” by Jackie

B. Yand and Ching-Heng Lu [?]. Since the study was more than a decade old, I aimed to

add my own unique contributions while incorporating modern statistical methods used in

Data Science today. This study involved performing advanced statistical analysis on well-

known data, and through the implementation of Cross-Validation, achieved an accuracy rate

of approximately 86.75%. My goal was to develop models that could surpass or reach the

90% threshold.

2



CHAPTER 2

Methodology

The data utilized in this study was gathered and extracted from Basketball-Reference.com.

The entire study was conducted using the R programming language, employing tools and

techniques taught within the Statistics Department at the University of California, Los

Angeles (UCLA). With over 30 available variables for analysis, the focus was on exploring

the general patterns and narratives that highlight the evolving nature of the game and the

crucial characteristics of NBA champions. The selection of the best model at the conclusion

of the study was based on achieving the highest accuracy and is recommended for future

investigations.

The Exploratory Data Analysis phase of this case study involved the use of histograms,

box plots, and scatter plots to visualize the variations within the data. The goal was to

determine whether the data exhibited a “normal” distribution or any other type of variation.

Ideally, a normal distribution is preferred for generating random outcomes in the Machine

Learning section of the study. Assumptions were made regarding scoring and defensive

categories to facilitate the prediction aspect of the study.

The prediction phase of the study employed six Machine Learning techniques: Logis-

tic Regression, Random Forests, XGBoost, Principal Component Analysis (PCA), Support

Vector Machines (SVM), and Neural Network. Most of these techniques were classification

methods used to further infer the key characteristics of a future championship team. It

is important to note that the statistics analyzed in this experiment primarily focused on

team data rather than individual player data. For the supervised learning methods, cross-
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validation was used to avoid over-fitting and to create the partitioned data sets per model for

the most robust results. An outlier analysis was conducted to strengthen the understanding

of the factors necessary for achieving the highest level in this sport.
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CHAPTER 3

Exploratory Data Analysis (EDA)

A commonly held assumption regarding the determinants of a successful season, and particu-

larly a championship, is the analysis of a team’s average points per game. Since the primary

objective in each game is to outscore the opposing team, it is pertinent to examine the fre-

quency distribution of average points. Figure 3.1 illustrates a fairly normal distribution of

average points dating back to the year 2000.

In Figure 3.2, the histogram displays a right-skewed distribution of three-pointers made,

indicating that teams tend to average around 7 successful three-point shots per game. How-

ever, this can be considered an anomaly in today’s game, as individual players can often

attempt 7 three-pointers on their own.

Moving on to Figure 3.3, free throws exhibit a more normal distribution, with the majority

falling within the range of 15 to 20 made free throws. This variation may be influenced by

factors such as the frequency of foul calls made by referees over the years, whether there are

excessive or insu�cient calls. All three of these variables exhibit a rather normal distribution

from an Anderson-Darling test with P-Values all less than 0.05.
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Figure 3.1: Histogram of PTS Figure 3.2: Histogram of 3PTS

Figure 3.3: Histogram of FT

Delving further into o↵ensive categories commonly believed to define the characteristics of

a championship team, namely Average Points, Average Three-Pointers Made, and Average

Free Throws Made, an analysis was conducted across NBA seasons in the 21st century.

Figure 3.4 presents a scatter plot with a trend line depicting the average points scored over

the past 23 years. Similarly, Figure 3.5 illustrates the trend of three-pointers made during

6



Figure 3.4: Scatterplot of Yr vs. PTS Figure 3.5: Scatterplot of Yr vs. 3PT

the same period. Both graphs exhibit a positive trend, indicating that as time progresses,

average points and three-pointers are on an upward trajectory, potentially contributing to a

team’s success in reaching the pinnacle of achievement.

Conversely, Figure 3.6 demonstrates a decline in free throws, solidifying the notion that

the game is shifting towards a perimeter-centric style of play, with less emphasis on contact

generated from three-point attempts and overall points derived from them. The scatter-

plots all have a ‘LOWESS’ or ‘a ‘Locally Weighted curved line Scatter plot Smoothing

relationship”, which is a type of regression analysis that identifies the trends within the data

non-linearly. In Figure 3.6, depicts a steep decline from 2008 - 2018 in free throws made

and a steady increase seems to appear; largely due to rule changes to shooter’s space and no

”hand-checking” on an opponent.

Conducting a thorough analysis, we begin by assessing the relationship between o↵ensive

metrics and the likelihood of winning a championship. For this purpose, a binary classifica-

tion was employed, assigning ‘0’ to teams that did not win a championship and ‘1’ to those

that emerged victorious. In Figures 3.7, 3.8, and 3.9, we present the corresponding box plots

for selected o↵ensive metrics.
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Figure 3.6: Scatterplot of Yr vs. FT

Figure 3.7 highlights the disparity in points scored, with the box plot revealing that

championship-winning teams tend to average over 100 points per game throughout an entire

season. On the other hand, Figure 3.8 demonstrates that the upper quartile of champi-

onship teams typically make more than 10 three-pointers, while their non-championship

counterparts generally have an average of fewer than 10 three-pointers made. It suggests

that three-point shooting proficiency plays a significant role in determining a team’s cham-

pionship potential.

Figure 3.9, however, presents an inconclusive box plot concerning free throws made,

indicating that there isn’t a substantial di↵erence between non-championship contenders

and actual winners in this category. It suggests that teams may rely on other o↵ensive or

possibly defensive aspects to secure their championship victories.

Overall, these box plots provide initial insights into the o↵ensive metrics associated with

championship success, emphasizing the importance of scoring high points and excelling in

three-point shooting, while indicating that the impact of free throws may be less significant.
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Figure 3.7: Boxplot of Win vs PTS Figure 3.8: Boxplot of Win vs 3PTS

Figure 3.9: Boxplot of Win vs FTs
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CHAPTER 4

Machine Learning Methods and Models

4.1 Applications of Logistic Regression in NBA Data

In Logistic Regression, we use the following equation below:

P (Y = 1|X) =
1

1 + e�(�0+�1X1+�2X2+...+�nXn)

The equation provided encompasses several components. Firstly, P (Y = 1|X) represents

the probability of the dependent variable Y being equal to 1, considering the values of the

independent variables X1, X2, . . . , Xn. Secondly, the coe�cients or parameters �0, �1, . . . , �n

are estimated by the logistic regression model and contribute to the calculation of this

probability. Lastly, X1, X2, . . . , Xn refer to the independent variables or features included

in the equation. It is important to note that this equation specifically pertains to binary

logistic regression, where the dependent variable Y takes on two potential values, such as

0 and 1. In cases involving multinomial logistic regression or other variations, the equation

may need to be modified to suit the specific context and requirements of the model.

In Table 4.1 below, the initial model is presented, featuring some variables commonly used

to assess a team’s performance in the present day. The response variable is the championship

outcome, while the remaining variables were selected based on their ability to be easily un-

derstood and interpreted by a broader audience from the available pool of 28 variables. Half

of the variables fall under the scoring category, while others reflect various characteristics of

the game itself, such as minutes played, playo↵ participation (0/1), turnovers, and defensive

10



aspects like steals and blocks. This initial logistic regression model serves as a starting point

for further refining the final model.

Variable Estimate Std. Error z value Pr(z)

(Intercept) 134.40 1058.0 0.13 0.90

Playo↵s 17.67 1055.00 0.02 0.99

FT -0.11 0.15 -0.72 0.47

Minutes -0.68 0.34 -2.00 0.0453*

FG 0.66 4.79 0.14 0.89

ThreeP -0.69 4.79 -0.15 0.89

TwoP -0.64 4.78 -0.13 0.89

TRB 0.11 0.15 0.74 0.46

AST 0.09 0.16 0.56 0.57

STL -0.01 0.30 -0.02 0.99

BLK 0.63 0.30 2.07 0.0381*

TOV 0.09 0.29 0.32 0.75

Table 4.1: Table of Initial Logistic Regression Model Output

Table 4.2 presents a refined version of the model depicted in Table 4.1. The final lo-

gistic regression model includes only two variables, in addition to the constant response

variable (Championship (0/1)). As observed in the previous table, this iteration reignites

the discussion surrounding the correlation between scoring and a team’s ability to win a

championship. Notably, both minutes and blocks exhibit an ↵ value of 0.5, which surpasses

the designated significance level (P-values). This phenomenon will be further explored and

utilized in subsequent analyses and machine learning models within the report.

Given that the response variable is binary, it is essential to examine various metrics to

evaluate the logistic regression model’s performance. Two important metrics to consider

11



Variable Estimate Std. Error z value Pr(z)

(Intercept) 146.92 72.89 2.02 0.04

Minutes -0.64 0.30 -2.12 0.03

BLK 0.88 0.27 3.23 0.00

Table 4.2: Table of Final Logistic Regression Model Output

are sensitivity and specificity. Sensitivity represents the probability of the model accurately

predicting a positive outcome, while specificity measures the probability of correctly pre-

dicting a negative outcome. To assess both of these metrics simultaneously, the AUC (Area

Under the Curve) is introduced. A higher AUC value, ranging from 0 to 1, indicates better

predictive performance.

In Figure 4.1, a reliable predictor for distinguishing true positive and true negative out-

comes is depicted. The ROC (Receiver Operating Characteristic) curve serves as one of

many metrics available for evaluating binary classification in logistic regression techniques.

Figure 4.1: Logistic Regression (AUC)

12



4.2 Implementing Random Forests for Prediction

In Random Forest, we have the following equation below:

F (X) =
1

N

NX

i=1

f(X,⇥i)

In the given scenario, we are working with a Random Forest model that consists of

several key components. The function F (X) represents the prediction produced by the

Random Forest when provided with a specific input X. The variable N indicates the total

number of trees within the forest. Moreover, f(X,⇥i) denotes the prediction generated by

the ith tree in the forest, with ⇥i representing the parameters associated with that particular

tree. These elements collectively contribute to the prediction process of the Random Forest

model. By aggregating predictions from multiple trees, the model can yield robust and

accurate outcomes.

Table 4.3 provides insights from multiple runs, indicating that the optimal number of

trees is 114. Initially, with N = 500, the lowest Mean Squared Error (MSE) was achieved at

a value of three. Mean Squared Error[?] is the average of the squared di↵erences between the

predicted values and the actual values. Minimizing this error helps reduce risk and enhances

the reliability of our prediction models. The Root Mean Square Error (RMSE), which is the

square root of the MSE, is at a value of 0.18. Furthermore, the 27 random predictors represent

the optimal number of predictors required to achieve the optimal RMSE, as illustrated later

in the report.

Model Trees Number of Trees MSE RMSE Random Predictors

Random Forest 114 3 0.18 27

Table 4.3: Table of Optimal Values for Random Forests

Figure 4.2 provides a clear illustration of the optimization process. Initially, the model is

13



set with N = 500, but the graph demonstrates that the optimal performance can be achieved

with N = 114. At the beginning, the graph exhibits significant variability, but as the model

progresses, it begins to stabilize. Although running the model for a longer duration may

result in even lower errors, it is advisable to stop at N = 114 to balance computational time

and e�ciency.

Figure 4.2: Random Forests: ’N’ Trees

Figure 4.3 presents the variable importance graph obtained from an R[?] package. This

graph is based on a conditional approach for Random Forests (RF) and highlights the impor-

tance of variables derived from the logistic regression binary classification model. The graph

indicates that the variable ”Minutes” falls within the range of two to three, while ”Blocks”

falls within the range of five to six. The variable importance graph emphasizes that among

the small group of predictors, ”Blocks,” which represents a defensive statistic, holds greater

importance than ”Minutes,” which measures playing time.

In Figure 4.4, the RF graph illustrates the Out-Of-Bag (OOB) error on the y-axis, which

represents the prediction error of the Random Forests model. The x-axis, labeled as ’m-try,’

corresponds to the number of nodes. In this particular model, the lowest OOB error or the

14



Figure 4.3: Variable importance for RF

highest predictive power is observed at 27 nodes. This finding demonstrates that Random

Forests (RF) is a highly e↵ective approach for predicting a team’s chances of winning the

championship, surpassing the performance of the logistic regression model.

Figure 4.4: Optimal Number of Nodes for RF
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4.3 Utilizing XGBoost for further Exploration

In Extreme Gradient Boosting, we have the following mathematical notation:

ŷi =
KX

k=1

fk(xi) = ŷi,(t�1) +
KX

k=1

fk(xi), fk 2 F

In the context of Extreme Gradient Boosting (XGBoost), which is an ensemble learning

method that combines multiple weak learners (decision trees) to create a highly accurate

predictive model, several key elements are defined. The predicted value for the ith instance

is represented as ŷi. The term fk denotes the kth weak learner within the ensemble, where

k ranges from 1 to K to indicate the total number of weak learners. xi corresponds to the

ith instance in the dataset. Additionally, ŷi,(t�1) signifies the prediction obtained from the

previous iteration. The symbol F encompasses the space that includes all possible weak

learners. It is important to note that the provided formula demonstrates the additive nature

of XGBoost, where the prediction for each instance is obtained by summing the predictions

from the previous iteration (ŷi,(t�1)) and the predictions made by the weak learners in the

current iteration (fk). Through this iterative process, the model progressively refines its

predictions, thereby enhancing its predictive capabilities.

In Table 4.4, XGBoost incorporates multiple metrics to assess its accuracy beyond cal-

culating the simple accuracy score (which will be discussed later). Both the Mean Squared

Error (MSE) and the Mean Absolute Error (MAE) have the same value of 0.5192. MAE is

the sum of non-negative errors between the predictions and actual values, while MSE can

amplify larger residuals due to the squaring operation, potentially giving more weight to

larger errors. In this case, since both errors have the same value, we cannot determine which

one is a better predictor. After an initial 80 rounds of boosting or iterations, the optimal

Root Mean Squared Error (RMSE) was achieved at 62 rounds.

In Figure 4.5, the XGBoost plot illustrates the decision splits for each node. This su-

pervised learning method, which involves using a training and test set, presents the scores

16



Model Mean Sq. Error Mean Abs. Error RMSE Number of Rounds

XGBoost 0.5192 0.5192 0.7206 62

Table 4.4: Table of Values for XGBoost

and associated conditional statements. When a value satisfies a given condition, it proceeds

to the corresponding node and eventually reaches the leaf section of the graph. This plot

takes into account the complexity of the di↵erent trees, and higher values indicate greater

importance and better performance. In this particular case, the combination of FG% - TOV

- STL has the highest positive value, indicating its strong predictive power, while the com-

bination of FG% - STL - 3PT% has the lowest value, which is negative and suggests weaker

predictive capability.

Figure 4.5: XGBoost Tree Plot
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4.4 Principal Component Analysis on NBA Data

In the Principal Component Analysis Model, the mathematical derivation and notation is

as follows:

PCA(X) = XW

The given equation defines the components of Principal Component Analysis (PCA) as

follows: - X represents the input data matrix with dimensions m⇥ n, where m signifies the

number of samples and n represents the number of features. - W denotes the transformation

matrix, also known as the eigenvectors or loadings, with dimensions n⇥k, where k indicates

the desired number of principal components. - PCA(X) represents the transformed data

matrix with dimensions m ⇥ k, where each row corresponds to a sample, and each column

corresponds to a principal component.

It is important to note that the provided PCA formula assumes a preprocessing step

in which the mean of each feature has been subtracted from the data. This processed data

matrix is denoted as X̃. Therefore, the complete formula for PCA, including mean centering,

can be expressed as:

PCA(X) = X̃W

In Table 4.5, regarding PCA, after running the descriptive statistics in R, we observe a

very small standard deviation, indicating a low variance in the data. The component number

associated with these optimal and low values is 18, accounting for 100% of the cumulative

proportion of the data.

Model Std. Dev Prop of Variance Component Number Cumulative Prop

PCA 4.655766e-04 6.537468e-08 18 1

Table 4.5: Table of Values for Principal Component Analysis
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In Figure 4.6, we can observe the correlation matrix for the PCA. This matrix plays a

crucial role in identifying the relationships between components and variables, aside from

their direct 1:1 correlations. The diagonal of the matrix represents the correlation of each

variable with itself, which is always equal to 1. The color scheme used in the matrix highlights

the strength of the relationships: red indicates a potentially high correlation, while blue

represents a weaker correlation. It is worth noting that there is a significant correlation

observed in the bottom left corner of the matrix. This correlation is expected since field

goals (FG) are directly influenced by attempts, as well as the number of two-point and

three-point shots made and attempted.

Figure 4.6: Correlation Matrix for PCA

The Scree plot, depicted in Figure 4.7, illustrates the variance explained by each of the

ten principal components. The y-axis represents the percentage of variance explained. The

plot reveals a distinct ”elbow” point, indicating a significant drop in the variance explained

19



after the second component. This suggests that for further analysis and interpretation, it is

su�cient to retain only the first two components.

Figure 4.7: Scree Plot of PCA

In Figure 4.8, the Cosine Squared Pareto Chart for Principal Component Analysis is

presented. This chart provides a visual representation of the variables ranked from highest

to lowest importance for a given observation. The order of the variable vectors reveals

that three-pointers made and attempted are the two most influential factors in winning a

championship. This observation aligns with the dominance of the Golden State Warriors

in recent years, as they have consistently excelled in three-point shooting, thanks to the

exceptional performances of players like Stephen Curry and Klay Thompson.

Figure 4.9 showcases the components from the perspective of championship-winning

teams. This graph employs a color gradient, with black representing higher importance

and a stronger relationship.
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Figure 4.8: Cosine Sq. Pareto Chart

Figure 4.9: Quality of Representation for PCA
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4.5 Support Vector Machines for Classification

The Support Vector Machine (SVM) classifier is designed to discover a hyperplane that can

e↵ectively divide the training data into two distinct classes. The decision function of SVM

can be expressed as follows:

f(x) = sign

 
NX

i=1

↵iyiK(xi, x) + b

!

In the context of binary classification, several components are defined as follows:

- f(x) represents the predicted class label for a new input sample x. - ↵i denotes the

Lagrange multiplier associated with the i-th training sample. - yi corresponds to the class

label of the i-th training sample. - K(xi, x) is the kernel function used to calculate the

similarity between the training sample xi and the new sample x. - b represents the bias

term.

The choice of the kernel function K(xi, x) depends on the specific problem being ad-

dressed. Common options include the linear kernel, polynomial kernel, Gaussian (RBF)

kernel, and sigmoid kernel. It is important to note that the presented formulation assumes

a binary classification problem. For multi-class classification, techniques like one-vs-one or

one-vs-rest can be employed to e↵ectively handle the task.

In Table 4.6, after performing the support vector machine analysis, we obtained a re-

markably high accuracy of 96.64%. As mentioned in the report, each of the di↵erent models

presented in the analysis has an accuracy value, except for PCA, as it is not inherently a

classification method. The high confidence interval, with the lower bound at 0.9474 and

the upper bound at 0.98, indicates a significantly low p-value. Since SVM is a supervised

learning technique, cross validation was used to determine the test set for the recording of

the accuracy.

The following plots demonstrate di↵erent relationships between championship character-
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Model Accuracy Confidence Interval P-Value

SVM 0.9664 (0.9474, 0.98) 6.151e-05

Table 4.6: Table of Values for Support Vector Machines

istics and various x and y variables. The x variables remain consistent across all four plots,

representing the years.

In Figure 4.10, we observe a positive linear relationship between field goals and champi-

onship outcomes. The red ’X’ marks represent teams that won the championship, and they

tend to fall in the middle or upper range of the field goals distribution. Similarly, Figure

4.11 shows a positive linear relationship between championship success and three-pointers

made. Teams that won the championship tend to have higher values in this category as well.

Figure 4.12 focuses on the distribution of minutes played. Although it was a major

component in previous machine learning models, it is not a strong predictor of championship

success. The distribution of minutes for teams predicted to win the championship appears

to be highly random.

Moving on to Figure 4.13, we shift our attention to a defensive category: Blocks. Blocks

prove to be a significant predictor, as teams aiming for championship success need to be in

at least the upper quartile of the blocks distribution. This defensive statistic plays a crucial

role in achieving the highest level of success in basketball: winning the championship.
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Figure 4.10: SVM plot of FG + Yr Figure 4.11: SVM plot of 3s + Yr

Figure 4.12: SVM plot of Mins + Yr Figure 4.13: SVM plot of BLKs + Yr
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4.6 Deep Learning: Neural Networks

In a neural network, we can identify several layers: the input layer, one or more hidden

layers, and the output layer. Each of these layers consists of multiple neurons, also known

as nodes. The calculation involved in determining the output of a neuron within the neural

network can be described using the following formula:

alj = �(
nX

k=1

wl
jka

l�1
k + blj)

In the context of a neural network, we define several components as follows:

- alj represents the activation or output of neuron j within layer l. - wl
jk denotes the

weight associated with the connection between neuron k in the previous layer (l � 1) and

neuron j in the current layer l. - al�1
k signifies the activation of neuron k in the preceding

layer (l � 1). - blj indicates the bias term specific to neuron j in layer l. - � denotes the

activation function applied to the weighted sum of inputs and biases.

Neural networks can employ various activation functions, such as the sigmoid function

(�(x) = 1
1+e�x ), the hyperbolic tangent function (�(x) = tanh(x)), or the rectified linear unit

(ReLU) function (�(x) = max(0, x)).

This formula allows us to describe the computation that takes place within an individual

neuron in a neural network. To describe the entire network, this formula is applied to each

neuron in each layer, enabling the propagation of inputs forward through the network until

the output layer is reached.

In Table 4.7, two separate runs with di↵erent variables are displayed. Model 1, using four

variables, achieves an error rate of 15.55, takes 35,420 steps, and achieves a high accuracy

of 94.41%. The accuracy comes from cross validation, in which there are partitioned data

coming from the training and test sets. On the other hand, Model 2, with just two carefully

selected variables (Minutes and Blocks), has a lower error rate of 14.57, a smaller number
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of steps at 18, and achieves the same accuracy of 94.41%. This suggests that the simpler

Model 2 is more optimal, yielding lower error and complexity. Figure 4.14 illustrates the

performance of the four-variable model, while Figure 4.15 showcases the optimal model for

analysis.

Model Number of Variables Error Steps Accuracy

Model 1 4 15.55 35420 94.41

Model 2 2 14.57 18 94.41

Table 4.7: Table of Values for Neural Network

Figure 4.14: Plot of NN Model 1
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Figure 4.15: Plot of NN Model 2
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CHAPTER 5

The Results and Analysis

We have conducted six di↵erent machine learning models and recorded their analyses. Table

5.1 presents the accuracies obtained for each of the models and their corresponding values. To

avoid overfitting for the cases of the several of supervised learning techniques used in this case

study such as: Logistic Regression, SVM, and Random Forests we have used partitioned data

for both the training and testing to evaluate the accuracies. (Principal Component Analysis

(PCA) is excluded from this classification analysis since it is not a classification method.

PCA was used in this study to assess the significance of variables and their consistency

across other models. Interestingly, the study confirmed the initial hypothesis that three-

pointers made is an important variable. Additionally, through random generation and data

splitting for all other machine learning models, it was found that minutes and blocks are

the most influential variables. Consequently, it was crucial to maintain consistency in the

number and selection of variables in order to draw robust conclusions from the data.

What was truly remarkable is that our initial model exhibited the best predictive per-

formance. This aligns with the notion that simplicity often outperforms complexity, as

evidenced by its impressive accuracy of 0.973 in this case study. On the other hand, Ex-

treme Gradient Boosting or XGBoost had the lowest accuracy value of 0.878, although it

still performed reasonably well. This discrepancy may arise from the diminishing impact of

weaker learners on the model’s predictive capabilities. While XGBoost is widely recognized

and utilized for prediction tasks, it did not yield optimal results in this specific case study.

Logistic Regression binary classification, on the other hand, demonstrated the highest
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Model Accuracy

Logistic Regression 0.973

Random Forests 0.965

XGBoost 0.878

SVM 0.966

PCA N/A

Neural Network 0.944

Table 5.1: Table of Accuracies

accuracy. To further enhance the model’s fidelity, incorporating additional widely used

variables such as attempts and other advanced statistical categories could potentially yield

even better results. However, for the time being, the current model is deemed su�cient.
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CHAPTER 6

Conclusion

It appears that minutes and blocks are the key variables in this study when it comes to

predicting the success of a team in the National Basketball Association (NBA) and their

chances of winning the championship. Whether using a simpler machine learning model

like Logistic Regression or a more complex one like Neural Network, these variables play a

significant role in shaping the predictions and telling a comprehensive story. It is a fallacy to

assume that the rise of prominent three-point shooters alone can guarantee a championship-

caliber team, as this study reveals the importance of other factors.

By employing theoretical frameworks and mathematical notations, the iterative nature

of all the models becomes apparent. Utilizing the R programming language for both Ex-

ploratory Data Analysis (EDA) and Machine Learning allowed for real-time fine-tuning of

functions to achieve optimal results. To further enrich the study, incorporating more ad-

vanced statistics and applying these models to other sports would be valuable. The National

Hockey League (NHL) could serve as an interesting comparison due to similarities in sched-

ules, o↵ensive/defensive statistics, and pace of play.
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Figure 6.1: Plot of NN Model 2

To enhance the accuracy of the data and develop more robust machine learning models,

it would have been beneficial to explore the concept of measuring the ”Cook’s Distance” to

identify influential points. Figure 6.1 displays the outliers or influential points, and their

presence may have biased the analysis in various ways. A clear limitation would be to

eliminate these outliers and re-run the analysis. It is intriguing to observe the abundance

of outliers; however, it is important to note that this model relies solely on the logistic

regression model, and outliers can vary between di↵erent models. Alternatively, these values

could be substituted with either the mean or median values if they are not chosen to be

removed altogether.
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Number Team Name + Year

12 Denver Nuggets* 2023

61 Milwaukee Bucks* 2021

94 Los Angeles Clippers* 2020

128 Toronto Raptors* 2019

151 Golden State Warriors* 2018

181 Golden State Warriors* 2017

218 Cleveland Cavaliers* 2016

241 Golden State Warriors* 2015

276 San Antonio Spurs* 2014

303 Oklahoma City Thunder* 2013

305 Miami Heat* 2013

333 Oklahoma City Thunder* 2012

337 Miami Heat* 2012

371 Dallas Mavericks* 2011

423 Los Angeles Lakers* 2009

461 Boston Celtics* 2008

494 San Antonio Spurs* 2007

516 Miami Heat* 2006

594 Detroit Pistons* 2004

611 San Antonio Spurs* 2003

631 Los Angeles Lakers* 2002

646 Detroit Pistons* 2002

660 Los Angeles Lakers* 2001

692 Los Angeles Lakers* 2000

Table 6.1: Table of Outliers for Analysis

32



The outliers in this analysis comprised exceptional teams, with approximately 19 out of

the 24 outliers being NBA Champions, as indicated in Table 6.1. This suggests that, in

terms of statistics, it is crucial to excel in one or more categories in order to have a high

chance of becoming a champion. The study revealed that teams that played more games in

the regular season and had defensive leaders in blocks had a greater likelihood of emerging

as victors compared to other teams in the league.

It is important to acknowledge that relying solely on raw statistics and subjective per-

ceptions can often lead to divergent conclusions. Factors such as playing more overtime

games or having defensive leaders in blocks can significantly influence the probability of

winning an NBA championship. Therefore, it is essential to rely on objective statistical

analysis for accurate predictions and valuable insights. Through exploratory data analysis,

predictive modeling, and concluding with an outlier analysis, it is truly remarkable to un-

cover the factors that a Data Science team for an NBA organization should consider in their

decision-making process.
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