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Abstract
An engineering perspective views cells as complex circuits that process inputs – drugs,

environmental cues – to create complex outcomes – disease, growth, death – and this

perspective has immense potential for drug development. Logical rules can describe the

features of cells and reductionist approaches have exploited these rules for drug develop-

ment. In contrast, the reductionist approach serially characterizes cellular components and

develops a deep understanding of each component’s specific role. This approach under-

utilizes the full system of biomolecules relevant to disease pathology and drug effects. An

engineering perspective provides the tools to understand and leverage the full extent of

biological systems; applying both reverse and forward engineering, a strength of the engi-

neering approach has demonstrated progress in advancing understanding of disease and

drug mechanisms. Drug development lacks sufficient engineering specifications, or empir-

ical models, of drug pharmacodynamic effects and future efforts to derive empirical models

of drug effects will streamline this development. At this stage of progress, the scientist

engineer is uniquely poised to solve problems in therapeutics related to modulating multiple diseases with a single or multiple

therapeutic agents and identifying pharmacodynamics biomarkers with knowledge of drug pathways. This article underscores the

value of these principles in an age where drug development costs are soaring and finding efficacious therapies is challenging.
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development
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A landscape ripe for the scientist engineer

Drug development is costly and inefficient with less than
10% of drugs reaching the market.1 Limited efficacy or intol-
erable safety prevents these therapies from reaching patients.
Therapeutic discovery has employed many paradigms for
development. Some high-level themes include mechanism-
agnostic drug selection by phenotypic outcome, optimized
target binding with and without genetic evidence, and lim-
ited systems modeling for selecting nonobvious targets.
Indeed, targets with genetic evidence are more successful
overall,2,3 hinting at the importance of understanding at
least some, biological mechanism. As the relatively ‘obvious’
or straightforward approaches fail to continually yield new

therapies, the field will require alternative approaches. The
emphasis of this article is the scientist engineer approach.
The article begins with basic principles of this approach
and highlights emerging impact of the scientist engineer
approach in therapeutic development.

Logical rules can describe biology, but single
rules are insufficient

At first, understanding that molecules give rise to pheno-
types caused an increase in single-component associations,
especially in Mendelian diseases; individual molecules
were the main component of interest in a disease system.
For instance, genetic changes to the hemoglobin protein

Impact statement
Many untreated diseases are not mono-

genic and are instead caused by multiple

genetic defects. Because of this complex-

ity, computational, logical, and systems

understanding will be essential to discov-

ering novel therapies. The scientist engi-

neer is uniquely disposed to use this type

of understanding to advance therapeutic

discovery. This work highlights benefits of

the scientist engineer perspective and

underscores the potential impact of these

approaches for future therapeutic devel-

opment. By framing the scientist engi-

neer’s tool set and increasing awareness

about this approach, this article stands to

impact future therapeutic development

efforts in an age of rising development

costs and high drug attrition.
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caused sickle cell anemia,4,5 and BRCA1 mutational status
was associated with poor prognosis.6,7 These discoveries
advanced the field of molecular medicine and created
many successful therapies. Yuri Lazebnik8 highlights the
resulting relationship between biologists and the pharma-
ceutical industry in the quote ‘give me a target!.’ The quote
reflects the role of biologists for studying, dissecting, and
characterizing the disease process and then passing off the
vulnerable molecular component to the pharmaceutical
community to develop a therapeutic compound for this
component. However, clean associations with single mole-
cules and disease have not led to therapies for all diseases.
For example, the classification, triple negative breast cancer,
reflects that these cancers do not depend on the three, suc-
cessfully drugged, components of other breast cancers.

Since that time, we have come to appreciate that many
molecular components – genes, proteins, metabolites – con-
tribute to complex biological phenotypes and that individ-
ual molecular medicine is insufficient for all diseases. This
phenomenon has motivated a move to pathways-oriented
discovery. In an engineering analogy, biologists have
moved from single- to multi-component rules to explain
disease. Sydney Brenner pursued the first wiring diagram
of Caenorhabditis elegans, attempting to map out all relation-
ships among the organism’s neurons. While an elegant
idea, some have criticized the ‘connectome’ wiring diagram
claiming that creation of the neuronal map has not
improved understanding of the worm’s function and
behavior. However, his analogy to electrical engineering
wiring diagrams is a useful one and this analogy helps to
organize the molecular components in biology.

The postgenomic era has shifted emphasis from discov-
ering relevant cellular components to characterizing their
emergent behaviors from their concerted interactions.9 The
evolution in understanding and technology has influenced
the fields of systems biology, systems pharmacology, sys-
tems bioengineering,10 and quantitative systems pharma-
cology (QSP).9 A central theme across these disciplines is
that engineering can describe biology using logical abstrac-
tions, and that these abstractions can further understanding
for therapeutic discovery.

Yuri Lazebnik described the ebb and flow of biological
research through the analogy of fixing a radio: hype generates
understanding of some new biological process, leading to the
creation of new wiring diagrams, the pursuit for a magical
cure, and eventual frustration at discovered contradictions in
the diagrams and the failure of the potential miracle cure. An
interpretation is that biological phenotypes are complicated,
and it is unclear if biologists have the tools to decipher com-
plex disease. Molecular biomedical research has amassed a
tremendous amount of knowledge of the individual radio
components, and many fields are now positioned to exploit
these siloed discoveries at a systems level to understand their
contribution to the full, disease, radio system.

Tuning biology is difficult when the wiring
diagrams are wrong

George E.P. Box said, ‘all models are wrong, some are
useful,’ and in the age of big data, the possible parts list

for building biological models is increasing. This challenges
biologists to broadly consider their disease system of inter-
est when assembling parts of the model, but practicality
still constrains the number of components that can be care-
fully tuned and manipulated. In a systems-wide study
of resistance to tyrosine kinase inhibitors, Wilson et al.11

demonstrated that exogenous growth factors could confer
drug resistance to cancers treated with targeted antigrowth
therapies. For instance, addition of neuregulin (NRG1)
to human epidermal growth factor receptor 2 (HER2)-
amplified cancers caused resistance to the anti-HER2
therapy, lapatinib, or addition of hepatocyte growth factor
(HGF) to epidermal growth factor receptor (EGFR)-
mutated cancers caused resistance to the anti-EGFR
therapy, erlotinib. In these contexts, discovering driver
components was sufficient for an initial therapeutic discov-
ery, but incomplete for a complete remission of disease.
To a biologist, this finding suggests that growth factors
are redundant in function; to an engineer, this suggests
that the wiring diagrams of growth factor pathways
are incomplete.

In other engineering contexts, engineers pick parts to
match a specification. If you are building a smartphone,
you need a material that can withstand heat, protect
the hardware, and ideally survive an occasional bath in
sunscreen or pool water. When selecting a therapeutic com-
pound, scientists and engineers can specify the require-
ments, but it is difficult to select the compound to do the
job. Janes et al.10 captured this idea when explaining the
systems biologists approach to biology. Compared to creat-
ing a nose cone for an airplane, an aerospace engineer uses
Fourier’s laws to describe how a material will behave in a
certain environment. A biological engineer does not always
have the same rules to describe how a drug will affect a
patient. Rather, the biological engineer often tweaks,
adapts, and applies existing paradigms in a mutual learn-
ing and application process – somewhere between forward
and reverse engineering.10 Achieving useful biological
specifications will require iterative improvements to cur-
rent wiring diagrams.

Reductionist scientists and scientist engineers approach
creation of biological wiring diagrams with different
approaches. Reductionist scientists serially drill into a
disease. They characterize single components using low-
dimensional data and develop a deep sense of the compo-
nent’s role in disease. Complexity is added to the system as
each component is rigorously investigated (Figure 1(a)).
The scientist engineer begins with larger cohorts of data,
often at multiple time points, doses, and treatment scales,
and constructs an initial abstraction of their model system.
Later, dedicated experiments refine the model and inform
therapeutic development (Figure 1(b)). The scientist engi-
neer applies current knowledge while maintaining a
healthy skepticism of its completeness. It is not sufficient
to build upon the existing components; one must also
explore and expand that component list in the process of
building representative systems. Both perspectives will
continue to inform therapeutic discovery as we update
our understanding of the disease radio.
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Combined forward and reverse engineering
advances understanding of disease and
therapeutic mechanisms

Using an engineering approach, Fey et al.12 discovered that
c-Jun N-Terminal kinase (JNK) activation, or response to
stress, could distinguish between neuroblastoma patients
with poor or good prognosis. To discover the relationship
between prognosis and cellular ability to activate JNK
response, they first assembled the cellular signaling com-
ponents of this pathway, incorporated patient expression
data, and then investigated weaknesses in this pathway
associated with prognosis. The approach highlighted a
harmony between forward and reverse engineering
approaches: by initially reverse engineering the neuroblas-
toma signaling network, they were later able to forward
engineer the model to discover that cancers prevent the
stress response.

Hass et al.13 also used an engineering approach to attrib-
ute receptor dimerization patterns to explain drug resis-
tance and sensitivity. The group first experimentally
measured cellular proliferation in response to various
ligands and then employed a signaling model combined
with bagged decision tree analysis to discern which signal-
ing features distinguished proliferation between cell lines.
In this reverse engineering phase, the group learned that
receptor hetero- and homo- dimerization patterns were the
most responsible for differences in proliferation between
cancer cell lines. They further applied their model in a for-
ward engineering context and incorporated cancer patient
receptor expression data to confirm that these signaling
features are correlated with antigrowth factor receptor ther-
apies. For instance, their model confirmed that non-small
cell lung carcinoma (NSCLC) is dependent on EGFR

signaling and that these patients are responsive to anti-
EGFR inhibitors. The model predicted that NSCLC cells
are only weakly dependent on HGF signaling; the group
hypothesized that NSCLC patients were showing weak
response to therapies that block the HGF receptor,
Met, because of the weak dependency of NSCLC on
HGF signaling.13

Where serial, reductionist approaches are insufficient,
an engineer’s perspective has advanced cancer biology
using cell signaling. Traditional biomarker and over-
expression analyses have not found molecular liabilities
for malignant melanoma and triple-negative breast
cancer. Instead, Miller et al. investigated the signaling
dynamics of a cancer cell in the presence of mitogen-
activated protein kinase kinase 1 (MEK) inhibitors. The
group discovered that MEK inhibition decreased shedding
of the cell surface proteins MET proto-oncogene, receptor
tyrosine kinase, Erb-B2 Receptor Tyrosine Kinase 2 (HER2),
and AXL receptor tyrosine kinase. Increased surface levels
of these proteins enabled bypass signaling and continued
growth in the presence of targeted therapy.14 Updating the
‘wiring diagrams’ for cancer signaling gave the authors a
novel perspective on this system.

Gianchandani et al.15 applied the rules of linear pro-
gramming for understanding the regulatory network in
Escherichia coli. They extended previous work in regulatory
matrices that used matrix representations to describe cellu-
lar responses to environmental stimuli. In this extended
work, the authors demonstrated that these regulatory
matrices could accommodate genome-scale models of
E. coli and subsequently describe the complex, gene regu-
latory behaviors of E. coli. These results emphasized that a
broad range of engineering tools have utility for advancing
biological understanding.

Figure 1. A scientist engineer and reductionist biologist make different contributions to biological understanding. (a) The reductionist approach: a reductionist

scientist serially perturbs a system and evolves a system schematic by characterizing individual component. At each phase, the reductionist scientist studies each

component in greater depth. (b) The scientist engineer approach: a scientist engineer embraces the complexity of the system and starts with ‘omics’ level meas-

urements to first derive a low-resolution map. At this early stage, the scientist engineer has many modeling techniques at their disposal including machine learning,

statistical, and differential equations modeling. Later modeling tests the map and dedicated experiments refine relationships in the map. The scientist engineer first

embraces complexity and then investigates single components in depth as needed. Iterative cycles of dedicated experiments update model assumptions and lead to

new discoveries; only one cycle is depicted. In both examples, gray triangles indicate the relative magnitude of data scale, depth, and breadth of knowledge.
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This idea was more thoroughly detailed in a white
paper, where Sorger et al.9 discussed the importance of
QSP as an academic discipline that better informs future
translational decisions. The authors explained the potential
for quantitative and systems pharmacology to identify
‘on-target’ toxicities and validate the idea that drug
perturbations can influence many disease and physiologi-
cal phenotypes. Thus far, many of the examples provided
embody the themes of QSP and validate the utility of this
approach. These approaches have uncovered a set of best
practices – or engineering specifications – for therapeutic
development, opened avenues for new perspectives on
development, and identified possibilities for further inter-
disciplinary work.

Engineering specifications for therapeutic
development

Empirical models and product specifications are key tools
for making design choices in other engineering disciplines.
Stress–strain curves describe material elasticity under loads
and when designing a product, material scientists can con-
sult these empirical models to select a material with desired
performance. These principles are applicable to drug dis-
covery; disposition science has characterized how the body
modifies a drug and these specifications have influenced
therapeutic design parameters such as the type of drug,
dosing, and route of administration. However, we lack
sufficient empirical models for drug pharmacodynamics
or how the drug modifies the body. Industry has relied
on ‘indirect’ response models for many years, such as
observing a desired phenotypic endpoint (e.g. lower
blood pressure, reduced blood glucose) to develop effec-
tive, if not optimal, therapies. Mitigating disease pheno-
types is necessary but often these effects come at the cost
of undesirable side effects. This target-agnostic approach
does not allow for consideration or prioritization of target
molecules. QSP models can integrate all available informa-
tion and bring mechanistic insights into target selection
and characterization. For instance, adverse event (AE) char-
acterization is one opportunity where QSP models could
improve target selection: learning empirical models of
adverse outcomes would enable future development
efforts to prioritize drug targets with roles in disease path-
ways and deprioritize targets involved in AE pathways.
Further development of these empirical models could
enable patient-forward design where engineers consider
the specific necessities of a particular patient – both single
and multiple diseases – and design compounds to these
patient needs. These models will be continuously evolving,
but without a scientist engineer perspective, it will
be intractable to decipher the interplay of these systems
for optimal therapeutic design. Here we reinforce the
importance of absorption, distribution, metabolism, excre-
tion, and toxicity (ADMET) principles and highlight four
trends that will influence future decisions about therapeu-
tic compounds. Figure 2 summarizes this approach.

ADMET science characterizes drug pharmacokinetics

ADMET science has established routine tests and knowl-
edge about how the body processes and affects drugs.16

These fundamentals are essential to any new development
pipeline and still constrain the selection of lead com-
pounds. However, the scientist engineer approach could
augment how these models are applied. For instance, phar-
macokinetic models currently aid in projection of the antic-
ipated human dose and researchers use these models
before transitioning to clinical trials. Though, in many bio-
logical settings, partial or incomplete target engagement
can be sufficient for altering a disease phenotype. For
instance, therapeutically targeting the serotonin system is
promising for mitigating movement deficit in Parkinson’s
patients.17 The therapy, buspirone, is only a partial agonist
of the serotonin system and demonstrates efficacy in miti-
gating movement deficit.17 In these contexts, as we reverse
engineer the model and parameters, we can expand
ADMET science to better represent the pharmacodynamics
of altering disease biology.

Genetic evidence improves therapeutic efficacy

Rational therapeutic design, grounded in understanding of
disease etiology has markedly improved drug discovery
and will continue to influence successful therapeutics.2

Drugs with genetic evidence supporting the intended
target represent �2% of all drugs in early discovery and
represent �8% in drugs that are eventually approved.2

PCSK9 inhibitors are one such success story where detailed
understanding of cholesterol metabolism and identification
of functional variants that conferred bonus health to certain
patients yielded a breakthrough therapy with improved
efficacy over existing treatments. Routine testing of genetic
evidence supporting disease target selection will improve
drug efficacy.3

Biomarkers are associated with improved
overall efficacy

The term ‘biomarkers’ is an umbrella term covering a range
of biomolecules used to influence clinical decision
making.18 These biomarkers can influence therapeutic
selection and dosing, among other clinical decisions. As
of 2016, a meta-analysis of clinical development success
rates for 2005–2015 found that drugs with biomarkers had
a 25.9% likelihood of reaching the market whereas drugs
without biomarkers had an 8.4% likelihood.1 An earlier
investigation found that the proportion of early stage
(i.e. phase I or phase II) clinical trials with biomarkers
was less than 15% and the proportion of late stage (i.e.
phase III and phase IV) clinical studies with biomarkers
was less than 10%.19 Drug biomarkers are associated with
overall success but are not yet mainstream.

Side effect profiles will preclude targets from
development

Pathways analysis has greatly improved identification and
characterization of disease targets. Cancer therapies are a
salient example where knowledge of dysregulated growth
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pathways led to therapeutic innovations to alter these
growth outcomes. Similarly, pathways-level investigations
of AE pathways will characterize drug targets for their role
in unintended side effects. Already, multiple approaches
studying drug-induced peripheral neuropathy,20 rhabdo-
myolysis,21 and Stevens–Johnson syndrome22 demonstrat-
ed that certain protein targets are more liable to induce
undesirable effects.

The culmination of these engineering specifications
informs the scientist engineer approach (Figure 2). In this
approach, the scientist engineer uses a blend of dedicated
modeling and experimental techniques to gain systems
understanding (Discover). The scientist engineer uses
data-driven fields, such as chemoinformatics, physiologi-
cally based pharmacokinetic (PBPK), and electronic
health record (EHR) data to inform and often, revise,
their systems models (Inform). The culmination of this
approach is developing therapeutic decisions using knowl-
edge of the relevant engineering specifications (Decide).
In practice, this process is less definitive and the Discover
and Inform phases can be iterated or blended depending on
the biological problem. The scientist engineer approach is

motivated by the pursuit of mechanistic understanding of
the fundamental biological principles governing a system.
Depending on the biological system and the data available,
the tools of the scientist engineer overlap with data scien-
tists, statisticians, and computer scientists. The scientist
engineer can be conversant in machine learning, big data,
and simulations as needed to understand their system.

Multicomponent and multidisease
manipulation will improve future therapeutics

Small molecules throw another wrench into the therapeutic
development process. It turns out that biology contains a
fair bit of redundancy and even if properly optimized, a
small molecule will bind many proteins beyond the origi-
nal intended target. Recent estimates predict that drugs
bind an average of 329 proteins (or a median of 38),23

making the idea of optimizing a small molecule for a cen-
tral disease component unachievable; the drug will
bind the disease protein and many other proteins in the
cell. As example of the consequences of this binding pro-
miscuity, Tatonetti et al.24,25 show that a combination of

Figure 2. The scientist engineer approach to therapeutic discovery. The approach leverages quantitative modeling and employs forward and reverse engineering

principles to derive understanding of the disease system (top). Informatics approaches, such as chemoinformatics or EHR studies, and PBPK models inform the

druggability, tunability (the extent to which a target can be modulated), or relevance of a drug target (middle). Final decisions aggregate these data and assess desired

specifications when selecting a lead compound (bottom). EHR: electronic health record; PBPK: physiologically based pharmacokinetic.
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paroxetine and pravastatin interacts to increase blood
glucose. Paroxetine is an antidepressant and pravastatin
is a therapy for reducing blood pressure; neither of these
compounds is marketed for metabolic disease but alters
metabolic processes when used together. If we view the
drug combination simply as an example of engaging
more protein binding partners, we learn that multiprotein
engagement can have profound outcomes on biology.26 In
this example, patients experienced effects on depression,
blood pressure, and blood glucose. This is further sup-
ported by work from Molecular Health and from the FDA
Adverse Event Reporting System. FDA scientists used
Molecular Health’s software to extract and identify drug
targets associated with AEs such as Stevens–Johnson
Syndrome.27 The AEs associated with molecular targets
further emphasize the multifaceted outcomes of perturbing
these biological components. Another interpretation of
high binding promiscuity is the possibility that small mol-
ecules can be leveraged for multiple disease indications
simultaneously.

Chemoinformatics approaches and high-throughput
experimentation will improve our understanding of
small molecules’ multicomponent effects, and systems
biology will interpret the effects of multiprotein binding.
One such chemoinformatic approach, the pocketFEATURE
algorithm identified similar binding pockets to predict
ligand off-target binding.28 Application of the
pocketFEATURE algorithm predicted novel protein bind-
ing partners responsible for drug side effects. Using a
ligand-based approach, Keiser et al.29 developed an
approach to functionally link proteins based on the similar-
ity of their ligands. They later applied this method to
predicting off-target protein binding of FDA-approved
drugs using ligand similarity profiles to identify the new
targets.30 High-throughput screens remain a workhorse for
early discovery16 of protein to drug binding. These screens
are complemented with quantitative analyses of relation-
ships between chemical structure and activity for making
decisions about the disposition of a drug within the body.16

These techniques lay the foundation for understanding the
full phenome affected by small molecule interventions.

Off-label drug use supports the idea that drugs influence
multiple diseases. Drugs tested and approved for one dis-
ease indication often end up used for another disease.31

Bioinformatics methods can extract these off-label uses
from EHRs32 and in silico methods can predict where mar-
keted drugs may affect additional diseases.33 These data
sources improve our understanding of drug action and
provide an opportunity to learn how therapeutics affect
multiple diseases and how to apply these principles to
drug repurposing efforts. Repeated evidence has shown
that patients and diseases are not one-dimensional and
that drugs are not one-dimensional; this presents an oppor-
tunity to develop drugs aware of their multidimensional
effects instead of for single-disease effects. In this multidi-
sease paradigm of drug action, one can imagine specifying
a compound that mitigates diabetes, does not affect choles-
terol, and improves depression.

Novel experimental systems will be essential to test mul-
ticomponent and multidisease therapeutic strategies

predicted by engineering approaches. Cokol et al.34

designed and validated the diagonal measurement of
n-way drug combinations (DiaMOND) method to look
for tuberculosis combination treatments. The group real-
ized that testing n-way combinations was expensive and
inefficient. They designed a testing methodology using a
limited set of doses and combinations to determine syner-
gy, additivity, or antagonism between n-way drug combi-
nations and discovered novel two-, three-, and four-way
treatments for tuberculosis.34 Interestingly, they also dis-
covered that pairwise interactions are only partially predic-
tive of n-way combinations. The fact that higher order
combinations are not entirely predicted by their subcompo-
nents further necessitates a scientist engineer approach to
manage and interpret these complex drug interactions.

Pathways analysis can inform drug
pharmacodynamics and biomarker selection

Drug effects extend beyond the target of interest and thus,
discovering pathways models is an important feature of
understanding drug effects. Guney et al. performed an
in silico screening approach to identify drug repurposing
opportunities. In developing this method, they related the
drug-binding proteins of approved drugs to genes associ-
ated with the disease the drug intended to treat.33 In this
process, they discovered that drug targets are not always
directly or closely associated with the genes of the
intended-to-treat disease. This suggests one or both of
two outcomes – the drug binds alternative, unknown pro-
teins or the effects of drug binding are long range and are
propagated by signaling pathways. The scientist engineer
approach is particularly well suited for discovering long-
range interactions and will complement work to identify
additional drug-binding proteins.

A pathways perspective could identify gene variants
that predispose a patient to a poor or enhanced drug
outcome for pharmacogenomics research. Genotyping for
warfarin dosing is an iconic example of pharmacogenomics
where CYP2C9, VKORC1, CYP4F2, and rs12777823
status affect the prescribed warfarin dose.35 To date, these
associations are largely discovered through large GWAS
studies followed by dedicated experimental validation,
and indeed there is a great need for more studies investi-
gating the genetic dependencies of therapeutic com-
pounds.36 However, because pathways contain the
molecular components of drug and disease pathways,
these pathway components may also become a source of
pharmacogenomic genes.

Conclusions

Approaching biological problems from a scientist engineer
perspective will improve future drug development endeav-
ors. The QSP field embraces the contributions of the scien-
tist engineer and has already demonstrated impact on
understanding of disease systems and mechanisms of
drug action. The contribution and skills of the scientist
engineer are poorly defined and evolving. Addressing the
evolving definition of systems biology, Janes et al. define
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systems bioengineering as a discipline using engineering
design in combination with dedicated experiments for
understanding biological systems. They eloquently high-
light the forward and reverse engineering theme related
to the scientist engineer approach: ‘those driven by technol-
ogy [. . .] favor induction to generate hypotheses after
collecting and analyzing large sets of observations.’10 In
the context of this review, a systems biologist is just one
of many specific subdisciplines that embody the principles
of the scientist engineer. We have highlighted the impor-
tance of the combined forward and reverse perspectives as
fundamental to the scientist engineer and posited two areas
in which this approach will be uniquely successful: consid-
ering therapeutics as tools for managing multiple condi-
tions and identifying drug and patient biomarkers.

To successfully consider new therapeutics, the scientist
engineer will need to be conversant in many of the compu-
tational and biological subdisciplines. Innovation will
require tools from systems biology, computational biology,
bioinformatics, statistics, and engineering if we are to
change the nature of therapeutic development.
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