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The paper presents the main steps in the development
of the strongly nonlinear wave dynamics of discrete
systems. The initial motivation was prompted by
the challenges in the design of barriers to mitigate
high-amplitude compression pulses caused by impact
or explosion. But this area poses a fundamental
mathematical and physical problem and should be
considered as a natural step in developing strongly
nonlinear wave dynamics. Strong nonlinearity results
in a highly tunable behaviour and allows design
of systems with properties ranging from a weakly
nonlinear regime, similar to the classical case of the
Fermi–Pasta–Ulam lattice, or to a non-classical case
of sonic vacuum. Strongly nonlinear systems support
periodic waves and one of the fascinating results was
a discovery of a strongly nonlinear solitary wave in
sonic vacuum (a limiting case of a periodic wave) with
properties very different from the Korteweg de Vries
solitary wave. Shock-like oscillating and monotonous
stationary stress waves can also be supported if
the system is dissipative. The paper discusses the
main theoretical and experimental results, focusing on
travelling waves and possible future developments in
the area of strongly nonlinear metamaterials.

This article is part of the theme issue ‘Nonlinear
energy transfer in dynamical and acoustical systems’.

1. Introduction
A motivation to study strongly nonlinear dynamics of
discrete systems came from the practical problem related
to development of mitigating media (e.g. bed of iron
shots) to reduce effects of potentially dangerous high-
amplitude compression pulses on structures (e.g. wall
of blast chambers) generated by explosion [1–3]. This
technical problem has the following major parameters
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(scales): (i) pressure of detonation products being in order of 100 kbar generates compression
pulse with high amplitude, thus nonlinear interaction between iron shots (spheres) was expected;
(ii) duration of the incoming pulse was very short, 10–100 µs, thus the problem must be considered
as a wave propagation problem, and (iii) the granular bed should have the capability to mitigate
multiple impacts, thus the behaviour of spheres should be close to linearly elastic.

The natural attempt in 1980 was to consider weakly nonlinear one-dimensional chain of elastic
spheres arriving to the equations for an anharmonic chain and in continuum approximation to the
corresponding Korteweg–de Vries (KdV) equation [1–3]. However, this approach has a problem
when the amplitude of the disturbance is much larger than the initial precompression, resulting
in losing one small parameter; the latter is absolutely necessary for the reduction of the equations
for a discrete system to the KdV equation. It should be mentioned that even if a compression pulse
propagating in a granular bed (diameter of iron shots is about 3 mm) originates from motion of a
heavy plate at the top (initial velocity 1–10 m s−1, mass 1000 kg, area 1 m2), it should be considered
as strongly nonlinear. Simple estimates of the static precompression on an imaginary single force
chain in the granular bed is of the order 0.1 N and characteristic dynamic force between grains
corresponding to these conditions is of the order of 100 N. Thus instead of a weakly nonlinear
KdV type of equation, a more complex strongly nonlinear wave equation was introduced [1–3].

At that time I had an intuitive (not proved in any way) belief that solitary waves are a result
of balance of dispersion and nonlinearity and the latter does not require the word ‘weakly’. No
mathematical proof existed to support such a belief. Moreover, the KdV solitary wave (excellent
review of the discovery of this solitary wave in experiments by Russel [4,5] and following
theoretical developments can be found in [6]) solution ‘exploded’ in the limiting case of zero
precompression of a chain composed of spherical particles interacting by the nonlinearizable
Hertz Law [7]. This case corresponds to the state of ‘sonic vacuum’, the term being coined in my
1992 short paper [8] is commonly used now. It took some time to find a simple analytical solution
corresponding to the strongly nonlinear solitary wave propagating in a sonic vacuum, which
was qualitatively different from the solitary wave supported by the KdV equation [1–3]. Now
this solitary wave is commonly called the Nesterenko solitary wave (soliton and compacton), the
term was coined by Coste, Falcon and Fauve in 1997 [9]. The analytical solution corresponding
to the Nesterenko solitary wave was supported by numerical analysis of the discrete chain.
Later it was discovered in experiments by different teams of independent researchers [9–15]. It is
interesting that first presentation of theoretical and experimental results on wave propagation in a
strongly nonlinear granular chain to a group of theoreticians in 1982 [16] did not attract significant
attention. Only later this area became an active domain of theoretical and experimental research.
During the last few decades multiple papers focused on strongly nonlinear wave dynamics (total
number is close to 500), reviews [15,17–26], books [2,3,27,28] and even popular articles [29,30]
were published.

Research in wave dynamics of strongly nonlinear discrete systems is a relatively new area and
it is fascinating that Albert Einstein clearly anticipated a specific property of strongly nonlinear
systems. In a well-known letter to Max Born (4 December 1926) [31], where he discussed doubts
in quantum mechanics, Albert Einstein wrote ‘Waves in three-dimensional space whose velocity
is regulated by potential energy (for example, rubber bands) . . . ’. It is clear that he had in mind
a strongly nonlinear wave equation, because, in the linear case, velocity of sound c0 (or similar
pulse in another media) is not regulated by potential energy; it is simply constant. Rubber bands
are mentioned probably as an example of a strongly nonlinear system experiencing large strains
and strongly nonlinear behaviour. We know now that the wave speed of the strongly nonlinear
Nesterenko solitary wave Vs,N is indeed strongly regulated by potential energy U. For example,
c0 is equal to zero in the state of ‘sonic vacuum’ and for the specific case of a strongly nonlinear
Hertzian chain Vs,N ∼ U1/10. It is interesting that Einstein did not connect strong nonlinearity
with possible failure of the continuum approach (or I failed to find it), which he mentioned in his
1954 letter to Michelangelo Besso [32]. We know that, in the case of ‘sonic vacuum’, a continuum
approximation predicts a solitary wave width equal to five particle sizes for the power interaction
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Figure 1. Contact deformation in pulse propagating in weakly precompressed chains of spherical beads (a), and in a chain
of cylinders with O-rings responsible for strongly nonlinear double power-law interaction between cylinders (b) and non-
compressed chain of spheres and tungsten cylinders with embedded gauges inside cylinders impacted by a striker (c).

law with exponent 3/2 (Hertz Law) or even close to the particle size at larger exponents [3,8,17,33–
36]. This certainly raises a question of validity of the ‘continuous structures’ [32], which will be
discussed later.

This article is not a comprehensive review of the rapidly developing area. It is focused
mostly on travelling waves excited by impact, outlining suggestions for a future research and
applications.

2. Discrete systems, continuum approximation
Examples of strongly nonlinear discrete systems are presented in figure 1. The one-dimensional
chain of particles (spheres/cylinders) with initial distances between them being 2R or a,
correspondingly, can be precompressed by a static force F0, resulting in static displacements
between particles centres δ0 (figure 1a) or x0 (figure 1b). The crosses in figure 1a correspond to
the initial positions of the particle centres in the precompressed chain, the black circles are their
positions in the pulse moving from left to right, and the open circles represent positions of centres
in the uncompressed chain. Waves are commonly excited by strikers of different masses (as shown
in figure 1c).

The chain schematically presented in figure 1a was the first strongly nonlinear system with
Hertz’s interaction law where Nesterenko solitary waves were discovered [1,10–12].

A periodic arrangement of cylinders and O-rings (figure 1b) has a stronger than Hertzian
nonlinearity (double power law [37]), resulting in a higher level of tunability by static force [21,37–
40]. The Buna-N rubber O-ring recovered its shape after a high-energy impact with a duration
close to 10 ms (striker mass 14.4 kg, velocity 1 m s−1), absorbing energy of about 7 J [41]. O-rings
can be used to design systems with a broad range of nonlinear interaction forces [21,37].

The chain presented in figure 1c allows changes in the mass of cylinders (e.g. assembling
system with two masses in the cell) without changing the contact interaction or variations of
elastic moduli of the elements without changes of their masses [3,12,42,43]. The systems presented
in figure 1(b,c) can be beneficial for embedding resonators inside cylinders or piezo elements for
pulse detection or harvesting mechanical energy of waves. Two- and three-dimensional ordered
packing of spherical particles [44–47] may behave in a similar way to one-dimensional systems
[1–3].

Novel strongly nonlinear systems were proposed: origami-based metamaterials [48], woodpile
periodic structures [49], tensegrity metamaterials [50], locally resonant granular crystals [51,52],
dense colloidal monolayers [53] and nanoscale (buckyballs) systems [54].
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The Newton equations (equation (2.1)) for particles (spheres/cylinders) with a mass m
interacting by general force f depending only on their relative displacements is presented as
follows:

müi = fi,i−1(ui−1 − ui) − fi+1,i(ui − ui+1), N ≥ i ≥ 2, (2.1)

where m is the mass of the particles, fi,i−1(ui−1 − ui) is the force acting on the ith particle from
(i − 1)th particle, ui is the displacement of the ith particle from the initial equilibrium position,
which may include some initial displacements causing static deformation of the system, and N
is the number of particles in the system. Equations for the first and the last particles should be
written separately. Equation (2.1) is based on a few physically important assumptions—particles
are considered as point masses and the interaction law is elastic. Validity of application of static
laws between particles (e.g. Hertz Law in the case of elastic spheres) for dynamic conditions
requires appropriate scaling of characteristic times related to wave propagation in the chain
and wave propagation inside particles [1–3]. Its application for granular material acoustics was
experimentally validated in [55].

Continuum approximations (equations (2.2) and (2.3)) for the general interaction law were
presented in [3,19,56]:

ρξtt =
{

f + a2

24
[2f ′ξxx + f ′′ξ2

x ]

}
xx

. (2.2)

A regularized wave equation, equation (2.3), [3] is presented below:

ρξtt =
{

f + a2

24
[2ρξtt − f ′′ξ2

x ]

}
xx

, (2.3)

where a is a lattice period, ρ is a linear density (m/a) and the prime denotes differentiation of the
function f (aξ ) with respect to strain ξ = (−ux) > 0. They were helpful to proving the existence
of a qualitatively new wave motion, introducing unique scaling and deriving exact solutions
connecting main properties of waves with their amplitudes and material parameters, facilitating
subsequent numerical analysis and experiments.

The introduction of these complex long wave approximations for a strongly nonlinear system
was attempted with the hope that new wave solutions might be supported by a granular chain,
which are qualitatively different from solutions of a weakly nonlinear equation. Technical details
of the derivation of equations (2.2) and (2.3) can be found in [3,56].

The convective derivative in equations (2.2) and (2.3) was neglected, which is a correct
assumption if the phase speed of a propagating disturbance is much larger than the particle
velocities in the wave. For example, the wave speed of the Nesterenko solitary wave in the chain
of steel spheres with a diameter of a few millimeters at a particle velocity of about 1 m s−1 is of the
order of magnitude 103 m s−1. The corresponding estimates for the validity of this assumption in
the general case of sonic vacuum can be found in [3].

Continuum approximations of discrete systems apparently have natural space and time-scale
limitations. It should not be expected to be accurate in the range where assumptions used in the
derivation of this equation are not valid. For example, equations (2.2) and (2.3), if applied for
a chain of beads, cannot be expected to have a physical sense on the space scale smaller than
the distance between particle centres or at a time scale much smaller than the characteristic time
of wave propagation inside particles or at wave amplitudes resulting in plastic flow at particle
contacts. Unfortunately, it is rather common, especially in some pure mathematical publications,
to assume that long wave approximation for a discrete system must be applicable at any space
and time scales, which is an unrealistic expectation from the physical point of view.

Equation (2.2) supports strongly nonlinear periodic waves in discrete systems with general
strongly nonlinear interaction force. Their speed depends on the interaction law and at minimum
and maximum values of strain [3,19]. Modulation stability of periodic solution in sonic vacuum
with Hertzian interaction between elements was proved in [57].

A limiting case of periodic solution of equation (2.2) is a stationary compression solitary wave
in the case of ‘normal’ behaviour (elastic hardening) of the law of interaction (f ′′ (aξ ) > 0). The
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speed of this supersonic compression solitary wave Vs,c is related to initial (ξ0) and maximum
(ξm) strains:

V2
s,c = f (aξm) − f (aξ0)

ρ(ξm − ξ0)
+ a2f ′(aξm)ξxx(ξm)

12ρ(ξm − ξ0)
. (2.4)

The convex behaviour of function f (elastic softening, f ′′ (aξ ) < 0) is a condition for the existence
of the rarefaction-type supersonic solitary solution with a speed Vs,r [3,19]:

V2
s,r = f (aξmin) − f (aξ0)

ρ(ξmin − ξ0)
+ a2f ′(aξmin)ξxx(ξmin)

12ρ(ξmin − ξ0)
. (2.5)

Equations (2.4) and (2.5) demonstrate that solitary waves are expected in periodic chains with
general strongly nonlinear interaction laws between discrete elements.

Power-law interaction (fi−1,i = B(ui−1 − ui)n) with values of exponents n > 1 [3,8,18] allows
propagation of stationary compression waves (special case n = 3 related to transverse vibrations
of linear elastic unstressed fibre was first considered in [33]) and for n < 1 rarefaction waves are
possible [3,18,58,59].

In the case n > 1, the speed of sound in precompressed chain c0 (equation (2.6)) and of
Nesterenko solitary wave Vs,N in sonic vacuum related to maximum strain (ξm) and particle
velocity (υm), correspondingly (c0 = 0, equation (2.7)) are given by the following formulas, where
c2

n = (B/m)an+1:
c0 = cn

√
nξ

(n−1)/2
0 , (2.6)

Vs,N = cn

√
2

n + 1
ξ

(n−1)/2
m =

(
2c2

n
n + 1

)1/(n+1)

υ
(n−1)/(n+1)
m . (2.7)

The length of the solitary wave Ln with a speed Vs,N is represented by the following equation:

Ln = πa
n − 1

√
n(n + 1)

6
. (2.8)

The characteristic length of the Nesterenko solitary wave (Ln) is independent of its amplitude
(even in case of general strongly nonlinear interaction law [3], unlike the KdV solitary wave) and
this wave is probably the shortest travelling wave, which can be supported by a discrete system.

In the vicinity of n = 1, stationary rarefaction of compression solitary waves cannot propagate
depending on values of n being larger or less than 1. At n → 1 the speed of the solitary wave
(equation (2.7)) in weakly precompressed sonic vacuum does not approach a constant value c0
(equation (2.6)) and it has a characteristic space scale Ln (equation (2.8)) increasing with n → 1.
This behaviour was called a ‘sonic catastrophe’ [58].

The chain of elastic particles (spheres or spheres and cylinders) interacting by the Hertz Law
(n = 3/2) is a special case investigated in great details in analytical, numerical approaches and in
experiments. The solitary wave speed without restrictions on its amplitude in the precompressed
chain can be expressed by the following equation, which follows directly from equation (2.2)
[3,19]:

Vs = c
(ξm − ξ0)

{
2
5

[3ξ
5/2
0 + 2ξ

5/2
m − 5ξ

3/2
0 ξm]

}1/2
. (2.9)

The constant c (equation (2.10)) depends on elastic properties of the beads (Young modulus E,
Poisson ratio ν and density ρ0 of particles’ material):

c2 = 2E
πρ0(1 − ν2)

. (2.10)

In the case ξm → ξ0, equation (2.9) results in the sound of speed in precompressed chain c0
(equation (2.11)):

c0 = c
(

3
2

)1/2
ξ

1/4
0 . (2.11)

In the next approximation, equation (2.9) is reduced to a speed of a weakly nonlinear
solitary wave (with strain amplitude ξm = ξ0 + �ξm) corresponding to the KdV approximation,
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equation (2.12):

Vs,KdV = c0 + c0�ξm

12ξ0
. (2.12)

In the opposite case of very small initial precompression approaching zero (ξm � ξ0 and
maximum particle velocity υm) the speed of the Nesterenko solitary wave Vs,N in sonic vacuum
with Hertzian interaction between particles is represented by equation (2.13) (it follows from
equation (2.7) at n = 3/2):

Vs,N =
(

4
5

)1/2
cξ1/4

m =
(

16
25

)1/5
c4/5υ

1/5
m . (2.13)

The shape of this solitary wave in sonic vacuum is described by one hump of the following
periodic function with characteristic length equal to 5a:

ξ =
(

5V2
s,N

4c2

)2

cos4

(√
10

5a
x

)
. (2.14)

The Nesterenko solitary wave in sonic vacuum was introduced as one hump of the periodic
function (equation (2.14)) using effective potential energy for precompressed chain with
infinitesimally small initial strain ξ0 > 0 [1–3]. It was assumed that a solitary wave propagating in
sonic vacuum (ξ0 = 0) will be almost identical to the solitary wave shape at infinitesimally small,
but still finite, precompression ξ0 � ξm. Precompression ξ0 was necessary in the derivation of long
wave continuum equation. This approach was verified in numerical calculations by comparison
of solitary wave propagating in a discrete chain with very small precompression with one hump
of periodic solution (equation (2.14)) [3].

Chatterjee argued [60] that taking ξ (x) to be given by the function described by equation
(2.14) for x inside interval −5πa/2

√
10 < x < 5πa/2

√
10, and setting ξ (x) ≡ 0 outside that interval,

provides a function ξ (x) that is three times differentiable as required, satisfies equation (2.2)
everywhere (provided ξ (x) ≡ 0 is accepted as a valid solution), and satisfies the basic conditions
on the travelling wave solution except for the strict inequality ξ (t) > 0.

It should be emphasized that strongly nonlinear Nesterenko solitary waves (compression
or rarefaction) as a stationary solution of strongly nonlinear wave equation (equation (2.2)),
qualitatively different than KdV solitary wave, exist for a broad range of strongly nonlinear
interaction (their speeds are expressed by equations (2.4) and (2.5)). A strongly nonlinear
Nesterenko solitary wave in the particular chain of particles interacting by the Hertz Law was
just a first example of this amazing wave.

Different approaches to the continuum description of discrete systems with various power-law
interaction exponents n were presented in [35] based on expansion of differences. This approach
results in a travelling wave equation similar to the K(n,n) equation formally introduced in [61].
For a Hertzian interaction both approaches demonstrated a similar shape of solitary waves with
increased deviations at larger exponent n. The limits of validity of continuum approximation for
strongly nonlinear discrete systems is still an open mathematical problem.

Introduction of dissipation in equation (2.2) results in stationary compression (normal elastic
behaviour) or rarefaction shock-like stress waves for discrete systems with abnormal elastic
interaction [3,19,62,63]. For general interaction laws the speed of the corresponding shock-like
stress wave is larger than the speed of the solitary wave, if the steady strains behind the
compression (rarefaction) shock-like wave and in the compression (rarefaction) soliton crest are
equal [3,19].

In the chain with Hertzian interaction (n = 3/2) the relation between wave speed Vsh and
particle velocity υ f (or strain ξ f ) behind a shock-like stress wave in sonic vacuum is represented
by the following equation:

Vsh = c4/5υ
1/5
f = cξ1/4

f . (2.15)

This speed is larger than the speed of the Nesterenko solitary wave Vs,N if ξm = ξ f , reflecting a
relation for a general interaction law emphasized above. This shock-like stationary stress wave in
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the case of very weak dissipation is oscillatory [62,63] with the ratio of maximum strain (particle
velocity) in the leading peak to the corresponding values behind a shock being equal (5/4)2 [3].
This ratio can be exceeded on the initial non-stationary stage of wave propagation.

As mentioned above in the case of the small wave amplitude in comparison with static
precompression, equation (2.2) can be reduced to the KdV equation [3], which corresponds to the
Fermi–Pasta–Ulam (FPU) problem [64]. The celebrated weakly nonlinear FPU problem explored
a long-standing paradigm expressed by D. Bernoulli’s remark in 1741: ‘for the elongation will not
be proportional to the extending force . . . and everything must be irregular’ [65]. This paradigm
was dominant in physics until the middle of the twentieth century. Its validity was first explored
in numerical calculations by FPU using the first computers developed for the purposes of the
Manhatten project. It is clearly expressed by citations from the FPU paper [64]: ‘This report is
intended to be the first one of a series dealing with the behaviour of certain nonlinear physical
systems where the nonlinearity is introduced as a perturbation to a primary linear problem’. Thus
FPU considered that due to weak nonlinearity, added to a primary linear problem, the periodic
linear solution for the string might assume more and more complicated shapes; in other words
‘everything must be irregular’, as D. Bernoulli suggested. It is clear that FPU explored if weak
nonlinearity can be a probable source of phonon thermalization.

The FPU paper did not pose a strongly nonlinear or fully nonlinear physical problem,
being focused on a weakly nonlinear case. On the other hand, the Hertzian granular chain is
characterized by the ‘nonlinearizable’ interaction law in the case of zero precompression and
basic excitations are not phonons, which are replaced by Nesterenko solitary waves.

Nonlinearity in the sonic vacuum case cannot be introduced as a perturbation to a primary
linear problem. However, if a granular chain is precompressed and amplitudes of dynamic
displacements are small in comparison with static displacements caused by precompression, the
sonic vacuum problem is transformed into a weakly nonlinear (FPU) problem. Thus the weakly
nonlinear FPU problem is a partial case of the granular chain when amplitude of the dynamic
strain is much smaller than the initial precompression.

3. Periodic waves in discrete chain and in continuum
A periodic wave can be supported by strongly nonlinear discrete systems and corresponding
solutions of equation (2.2) were compared with numerical calculations of quasi-periodic waves for
granular chains with Hertzian contact. It was observed that the periodic waves in the numerical
calculations are very close to results from the long-wave approximation [66]. Envelope soliton
solutions in precompressed granular chains are considered in [67].

Non-dissipative strongly nonlinear two-mass chains (dimer systems consisting of alternatively
arranged particles, e.g. spheres and cylinders with two different masses presented in figure 1c)
demonstrate a qualitatively new behaviour (frequency band gaps) in comparison with uniform
chains. It is important that the band gaps in these systems can be tuned by external static force.
A corresponding quasi-harmonic nonlinear and strongly nonlinear excitations can be effectively
mitigated after propagation only through four to eight cells as was demonstrated in numerical
calculations and in experiments. Systems which are able to transform nonlinear and strongly
nonlinear waves at short distances are important for practical applications such as attenuation of
high-amplitude pulses. The frequencies of a band gap in strongly nonlinear two-mass systems are
close to predicted for the linear elastic interaction and they can be tuned into the audible range
[68,69].

4. Solitons in discrete one-dimensional chain versus waves in continuum
Wave equation (2.2) predicted stationary strongly nonlinear periodic waves, solitary waves and
shock-like stress waves (if dissipation was included), and helped to identify their properties,
equations (2.4, 2.5, 2.6–2.15) [3]. Dimensionless analysis of equations for the discrete chain of
identical particles at zero precompression [1,3] demonstrated that spatial size of the assumed
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stationary solitary wave does not depend on its amplitude, and similar dependence of solitary
speed on its amplitude found in strongly nonlinear long-wave approximation.

The mathematical proof of the existence of a solitary wave in a discrete chain [70] was
published after discovery of a solitary wave using long-wave approximation for power-law
chains in numerical calculations and experiments with the Hertzian chain [1,2,8,10,11–13,15,17].
The condition for the existence of strongly nonlinear solitary waves in continuum (f ′′(aξ ) > 0)
for compression solitary wave) [3,19] is identical to the conditions of solitary wave existence
in discrete chains [70]. But the latter proof did not provide specific properties of the solitary
waves and it did not allow one to conclude if a solitary wave in a strongly nonlinear system is
qualitatively different from the KdV solitary wave. A precompressed discrete chain does support
the KdV solitary wave at a relatively small amplitude of the wave and the formal proof in effect
could be interpreted as the proof of the existence of the wave close to a well-known KdV solitary
wave.

Non-stationary behaviour of strongly nonlinear discrete systems was investigated in
numerical simulations. Nesterenko solitary waves being a stationary solution of the wave
equation (equation (2.2)) and solitary waves emerging from the striker impact on the
system of discrete particles (equation (2.1)) in the Hertzian chain are close to each other
[1–3,34,35,71]. They have the same characteristic space and temporal width, and similar
dependence of phase speed on maximum velocity and strain.

In addition to confirmation of the existence of a qualitatively new solitary wave found initially
as a stationary solution of long-wave approximation (equation (2.2)), numerical simulations
provided insight which was not possible in the analysis of the stationary solutions. For example
it was found that

(a) Nesterenko solitary waves can be formed very close to the impacted end. This
observation was crucial for the design of the experimental set-up and experimental
confirmation of theoretical and numerical results soon after the publication of the first
paper [1,10–12];

(b) solitary waves re-emerge after their interaction with phase shift. Very small amplitude
additional solitary waves were observed after collision, leading to specific equilibrium in
the system without phonons explored by Sen et al. [22];

(c) the number of solitary waves was dependent on the mass of the striker [1–3,10–12];
(d) introduction of weak randomness of particle radii did not completely destroy a localized

wave obtained in a perfectly periodic system, but caused its decay due to generation of
the oscillation left behind a propagating wave [1–3];

(e) particle velocity behind a wave in a random, non-dissipative chain did not demonstrate
equilibration to the velocity of the piston [1–3].

The series solution for a stationary Nesterenko solitary wave in a discrete Hertzian chain, more
accurate than equation (2.14), is presented in [22]. An asymptotic description of the tail of the
soliton in a discrete chain and a new asymptotic solution for the full solitary wave was first
developed in [60]. Very detailed and accurate description of properties of Nesterenko solitary
waves for Hertzian interaction can be found in [71–73] and comparative discussions of most of
the theoretical approaches in the literature can be found in [26].

The comparison of the speed of a Nesterenko solitary wave propagating in sonic vacuum
with power-law interaction between particles found in continuum approximation (equation
(2.7)) with its speed determined in numerical calculations and using the binary collision model
demonstrated that equation (2.7) gives quantitatively accurate results for the pulse velocity for
relatively soft potentials, 1 < n ≤ 2.5 [34]. The binary collision model is quantitatively correct for
relatively hard potentials, n ≥ 2.5. For very large values of the power exponent (n ∼ 100) equation
(2.7) gives values of speed which are approaching 0.883 of the value obtained in numerical
calculations. It is truly amazing and unexpected that even at these values of exponent n, where
the characteristic length of the solitary wave is close to the lattice period a (equation (2.8)), the
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long-wave approximation gives a correct order of magnitude estimate of the pulse speed and
even correctly predicts the qualitative change of speed behaviour with increase of exponent n [34].

The solitary waves propagating in weakly precompressed granular chains with power-law
interaction with the exponents n being in the interval 1 < k < 3.5 can be approximated by
Nesterenko’s compacton in sonic vacuum, if the ratio of the initial strain to the peak strain is less
than 4%. The shapes of solitary waves in a weakly precompressed chain are noticeably different
from that of the Nesterenko’s compacton in sonic vacuum if the speed ratio between them exceeds
10% [36].

It should be mentioned that theoretical and numerical approaches focused on the research of
a new type of solitary wave in non-dissipative systems are physically relevant only because the
distance of their formation from the impacted end is rather short (obviously, this condition was
not in the formal mathematical proofs of existence and it was not predicted based on stationary
solution of long wave equation 2.2). If formation of strongly nonlinear solitary waves would
require very long distances of propagation (e.g. a few thousands of particles), then even at weak
dissipation, typical for Hertzian contacts of steel spheres, these waves would not be observable
and become irrelevant for experimental research and applications.

Limits of continuum descriptions of a discrete system are very fascinating and important
subject especially due to rapid development of metamaterials, which in many cases are
macro/mesoscopically discrete systems. It is interesting that Albert Einstein was rather
pessimistic about the ability of the continuum approach. He wrote in a 1954 (1 year before his
death on 18 April 1955) in a letter to his friend Michelangelo Besso: ‘I consider it quite possible that
physics cannot be based on the field concept, i.e. on continuous structures. In that case nothing
remains of my entire castle in the air, gravitation theory included, and of the rest of modern
physics’ [32].

This pessimism is quite appropriate especially for strongly nonlinear systems, where a
continuum wave equation results in the spatial size of stationary solutions comparable to the
characteristic size of the system, e.g. five-particle sizes for a discrete system with Hertzian
interaction and even in less spatial sizes for power-law interaction with larger exponents [3,34,35].
But results for a strongly nonlinear discrete system based on the continuum approach are
relevant even at characteristic sizes of waves comparable to the distance between particles!
It is reasonable to conclude that Einstein was probably too pessimistic about the validity of
‘continuous structures’.

It was shown in [59] that a strongly nonlinear stationary solution corresponding to a solitary
rarefaction wave in continuum approximation for materials with elastic softening (f ′′ (aξ ) < 0) has
a shape and similar characteristic spatial scale to a stationary wave in a discrete system. The width
of this wave is scaled with the diameter of the particle and weakly depends on the force exponent
(unlike the case with a strongly nonlinear compression wave).

A system of particles (e.g. cylinders) where O-rings are strongly nonlinear elements allows
one to design discrete systems with almost any interaction law between masses, including
combination of normal and abnormal elastic behaviour. The latter case results in a kinked
solitary wave [21]. This is unusual because ‘abnormal’ systems alone do not support stationary
compression solitary waves.

5. Train of solitary waves
Striker impact with significantly larger mass than the mass of particles in a granular chain excites a
train of solitary waves [1–3,10–12]. Figure 2 presents a train of Nesterenko solitary waves reflected
from the steel wall excited in the chain of 40 steel spheres with diameter 4.75 mm by striker impact
with a mass equal 5 m and velocity 0.5 m s−1 (m is a mass of the steel sphere).

There are a few attempts to predict amplitudes of these waves based on conservation laws
without solving numerically equations for dynamics of granular chains. One approach to predict
amplitudes of solitary waves at large distances from the impacted end is based on imaginary
steps in the transformation of linear momentum and energy of the striker to the solitary waves
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Figure 2. Train of Nesterenko solitary waves reflected from a steel wall. The time scale is 50 µs per large horizontal division,
vertical scale 18.3 N between large divisions.

considered as imaginary quasi-particles being initially at rest with an effective mass equal to 1.4 m
[24,43]. It is similar to that used in [74] to predict relative amplitudes in the train of solitary waves
generated at the interface of two sonic vacua. This imaginary path conserves linear momentum
and energy of the system, predicting approximate amplitudes of the solitary wave but it is not
unique. Based on this approach, the corresponding equation for the momenta of the nth solitary
wave is

Pn = 2P0(B − 1)n−1

(B + 1)n , (5.1)

where P0 is the initial linear momentum of the striker, and n = 1,2,3 . . . , are numbers of solitary
waves, number 1 corresponds to the leading solitary wave, and B = Mimp/meff. Because the
effective mass of the solitary wave, considered a quasi-particle, depends on the interaction law,
amplitudes of solitary waves in the train depend on the interaction law between particles in the
system.

Another approach to find properties of solitary waves generated by impulse forces acting on a
granular chain was recently introduced in [73].

Discrete periodic materials with an abnormal normal power-law relationship between force
and displacement (n < 1) support rarefaction solitary waves [3,18,58,59]. A fascinating property
of such systems is that a striker initially generates a non-steady compression pulse which
disintegrates into a leading rarefaction wave and oscillatory tail with decaying amplitude. This
creates a possibility of development of the ultimate protection shield without even using energy
dissipation mechanisms or an additional source of impact mitigation [48,50,59]. However, unlike
sonic vacuum the discrete systems with abnormal behaviour require a large number of cells for
effective transformation of incoming pulses. It is necessary to develop configurations of these
systems which are effective with practically acceptable numbers of unit cells.

6. Interfaces
Strongly nonlinear materials in a sonic vacuum state have zero acoustic impedance (product
of density and speed of sound). In classical acoustics this parameter determines the outcome
of incident wave interactions with interfaces. Thus a new approach to wave interaction with
interfaces of sonic vacua must be developed especially taking into account that, in this case, the
breakdown of the continuum approach may result in non-classical behaviour [74,75].

The nature of transmitted and reflected pulses is dramatically different depending on the
direction of its propagation with respect to the interface between ‘light’ and ‘heavy’ sonic vacua
[76]. It allows the confinement of an impulse in a particular region of the shielding granular
medium [77–79].
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An energy- and linear-momentum-conserving approach can predict the amplitudes of the
transmitted solitary waves generated when an incident solitary-wavefront, parallel to the
interface, moves from a ‘heavy’ to a ‘light’ granular system [74]. When incident wave approaches
interface at an oblique angle, the angles of refraction and reflection are captured by a granular
analogue of Snell’s Law in which the solitary-wave speed is replacing the speed of sound [74].

A strong sensitivity of the reflected and transmitted energy from the interface of two granular
systems to the initial precompression was called the ‘acoustic diode’ effect [75]. It can be applied to
manipulate the signals’ delay and reflection at will, and decompositions/scrambling of security-
related information. The interface between a solid conical rod and precompressed granular chain
demonstrated strong non-reciprocal acoustic propagation without change of the frequency of the
incident wave in a weakly nonlinear regime [80].

7. Shock-like stress waves in strongly nonlinear discrete systems
A shock-like, non-stationary wave with an expanding leading oscillatory part was observed
in the numerical calculations of a non-dissipative piston problem [1–3]. The amplitude of the
particle velocity at the leading stationary solitary wave, established at a distance of about 100
particles from the impacted end, was twice the piston velocity. The speed of this non-dissipative
non-stationary wave Vnst with an established stationary leading solitary wave can be derived
(equation (7.1)) using the equation for Nesterenko solitary waves (equation (2.13)) with maximum
particle velocity υm equal to 2υ f , where υ f is a velocity of the piston:

Vnst =
(

16
25

)1/5
c4/5(2υf )1/5. (7.1)

It is clear that speed Vnst of the non-dissipative, non-stationary wave is not equal to the speed of
stationary shock-like stress wave Vsh (equation (2.15)) despite the fact that, in both cases, the final
particle velocity υ f is the same. Also the shock-like stationary stress wave, predicted in continuum
approximation at weak dissipation, has the ratio of particle velocity in the leading peak to υ f
equal to (5/4)2, being less than 2. Detailed analysis of the structure of a stationary shock-like
stress wave in sonic vacuum in a discrete system in comparison with the continuum approach in
case of viscous dissipation and the criterion for the transition from oscillatory to the monotonous
wave profiles are presented in [62,63].

Dissipation in some strongly nonlinear metamaterials may be neglected because the discrete
nature of metamaterials and strong nonlinearity dominate when waves travel relatively short
distances. At the same time decay of waves can be essential due to viscoplastic deformation
between particles (spheres or cylinders) [81,82], friction between particles and the holder,
expulsion of fluid between interacting particles [63] or energy leaking from the main pulse due to
disorder [1–3]. Several dissipation models were compared in [26].

A significant dissipation may change the shape of shock from oscillatory to monotonous
[62,63]. The oscillatory shock-like stress wave was observed in the chain of steel spheres with
mainly elastic behaviour (figure 3a), but a monotonous stress wave was propagated in the chain
of plastically deformed lead spheres with similar sizes (figure 3b) impacted by the same striker
[3,11,18].

Plastic deformation of contacts for lead spheres resulted not only in the qualitatively different
stress wave structure, but also caused the essential decrease of force amplitude acting on the wall
(17 times), and an increase of shock rise time (40 times) (figure 3).

A dissipation may facilitate an unusual two-wave structure when a system is excited by the δ

function force [42,43,83,84], and prevent generation of multiple solitary waves by the striker with
a mass significantly larger than mass of particles in the chain [38–40].

Moreover, dissipation may bring new mechanisms contributing to strong nonlinearity.
Recently metamaterials using O-rings as strongly nonlinear elements (e.g. Nitrile rubber O-ring)
were investigated [38–40]. Unlike the Hertz contact law between spherical grains, toroidal O-rings
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(a) (b)

Figure 3. Oscillatory ‘shock’ wave in the chain of steel spheres (a) and monotonous ‘shock’ (b) in the chain of lead spheres
reflected from a steel wall. Number of spheres in both chains 20, striker mass 30 m, wherem is themass of steel sphere, velocity
1 m s−1. Diameter of spheres in both cases was 4.75 mm. Time scale: (a) 50 µs, (b) 200 µs per large horizontal division, vertical
scale 92N (a) and 18.5N (b) between large vertical divisions. (Online version in colour.)

obey a more complicated force–displacement interaction law–double power law under static
compression [85]. At relatively large deformation (when the second term with exponent n = 6
provides a significant contribution to the compression force) this relationship ensures significantly
stronger nonlinearity than the Hertz Law. These double power-law metamaterials are a few times
more tunable at higher preload than granular chains of linear elastic spherical particles and
their acoustic impedance can be increased by a factor of three to four at very moderate static
precompression [38].

O-rings also demonstrated a complex dynamic behaviour under impact with dramatically
increased elastic modulus in comparison with the static response [38]. In the paper [41], the
dissipative model for dynamic deformation of O-rings was introduced with strongly nonlinear
dependence on the precompression and linear dependence on the relative velocity. Strong
dissipation in a discrete system with O-rings can facilitate propagation of simple waves instead
of solitary waves. Simple waves in highly dissipative Hertzian chains were considered in [86].

Amazing behaviour of stress pulses in strongly nonlinear non-dissipative dimer chains excited
by δ-force was observed numerically in [87,88] and confirmed experimentally in [81]. A true
solitary wave similar to the Nesterenko solitary wave was observed only at certain discrete mass
ratios of light to heavy spheres (e.g. 0.3428, 0.1548 and 0.0901). There is an optimal mass ratio
which results in the most effective pulse mitigation in this non-dissipative system. However, a
certain level of dissipation may dramatically change the behaviour of the two-mass chain [42,43].
Viscous damping (at the damping ratio 6 kg s−1 characteristic for investigated system) eliminates
the process of gap openings and corresponding time scales (gap opening divided by particle
velocity) characteristic for non-dissipative chains. As a result, mitigation properties of uniform
chains in comparison with the two-mass chain may be better with damping coefficient in the
interval 10–100 kg s−1. At the higher level of viscous dissipation the pulses in both systems are of
similar width, resulting in a similar decay of pulses travelling the same number of contacts [42,43].

Highly dissipative, strongly nonlinear metamaterials can be instrumental for fast
transformation/attenuation of wave shape generated by impact or contact explosion. For
example, layers of granular materials and foams with relatively large thickness (at small thickness
they can amplify the amplitude of the reflected pulse) are successfully used to attenuate blast
loading precisely due to their ability to transform an incoming high-amplitude short duration
pulse into a longer ramped pulse with significantly smaller amplitude [2,3,89].

8. Breathers in strongly nonlinear granular chains
The previous discussion was mostly focused on travelling strongly nonlinear waves excited by
impact. Recently, the different types of solutions—breathers, supported by the strongly nonlinear
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granular chains with Hertzian interaction, were reported [52,90,91]. Non-existence of breathers
for an uncompressed chain of beads interacting via Hertz’s contact forces was proved in [90]. An
additional on-site potential allows the existence of breathers in such systems.

Two types of configurations were observed in an analytical approach and in numerical
calculations in a locally resonant granular system with harmonic internal resonators: (a) small-
amplitude periodic travelling waves and (b) dark breather solutions [91]. It is important to
emphasize that the latter were observed in the case of complete absence of precompression in
the system. Authors also observed that, at sufficiently large mass ratio and suitable initial data,
the system supports long-lived bright breather solutions which eventually disintegrate.

The existence of discrete breathers in a one-dimensional, mass-in-mass chain with linear
intersite coupling and nonlinear, precompressed Hertzian local resonators was theoretically
proved in [90]. Numerical calculations were used to compute a family of breathers.

9. Mass with mass strongly nonlinear granular chains
Dynamics of significantly modified classical granular chains—mass-with-mass strongly nonlinear
granular chains, were recently analysed [92–94]. The dynamic response of a granular chain of
beads in a state of sonic vacuum in which a mass-with-mass single defect (one of the beads has an
attached linear resonator) is present was studied numerically and analytically in [92]. This set-up
allows one to control the transmitted and reflected energy of a mechanical pulse by changing the
ratio between the harmonic resonator mass and the bead mass. If the defect-to-bead mass ratio is
small, the incident Nesterenko solitary wave remains essentially unaltered with small parts of its
energy being reflected and trapped in the form of localized oscillation. In the case of very large
mass ratio, the reflection is more significant than the transmission and a considerable amount
of trapping occurs. An interesting phenomenon was discovered in numerical simulations—the
energy trapped in the mass-with-mass defect shows a non-monotonic dependence on the mass
ratio.

Wave propagation in a chain of spherical elements containing an internal resonator in linear
and nonlinear regimes was investigated theoretically and in experiments demonstrating a wide
band gap in the audible regime [93]. This allows filtering of mechanical waves between 3 and
8.5 kHz and above 17 kHz, and this frequency range can be tuned by approximately 1 kHz using
a static precompression.

A theoretical and numerical analysis of mass with mass granular chains was conducted in [94].
The authors demonstrated that under suitable ‘anti-resonance’ conditions bell-shaped travelling-
wave solutions similar to Nesterenko solitary waves in the standard granular chain with elastic
Hertzian contacts are supported by this more complex system. It is interesting that if these
conditions are violated, then non-monotonic waves bearing non-vanishing tails may exist [94].

10. Strongly nonlinear waves in three-dimensional granular beds
Three-dimensional granular beds are very efficient mitigators of high-amplitude compression
pulses caused by the impact of contact explosion. Granular beds made of cast iron shots were
proposed as supporting structures for explosive welding of complex shapes, such as blades of
hydroturbines (with a size of the order 15–20 m2) helping to minimize residual strains in cladded
products and attain high-quality welding [95]. They were successfully used as supporting
structures for explosive working in blast chambers as schematically illustrated in figure 4.
Granular beds not only effectively mitigate high-amplitude shock waves caused by contact
explosions. It is also practically important that they did not create dust particles because metal
spheres (iron shots) were ductile, unlike sand particles. Iron shots are relatively cheap, being a
waste of metallurgical plants, and subjects placed on them practically stayed in place after an
explosive event.

The main mechanism of the effectiveness of the granular beds made from iron shots, in
addition to their shock mitigation capability due to ‘friction between iron beads’, was explained
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Figure 4. Blast chamber with a granular bed made from iron shots as a supporting barrier.

by assuming that ‘the material of the shot have physico-mechanical properties substantially close
to those of the workpiece being clad’ and a granular bed was ‘practically incompressible’ [95]. It
was also argued in [95] that the effectiveness of granular beds made from iron shots is facilitated
by close values of acoustic impedances of the explosively cladded metal plates and acoustic
impedance of iron shots. In fact an acoustic impedance of the granular bed, considered as a
continuum, is much smaller than the acoustic impedance of the beads’ material—solid iron. In
case of zero precompression it is equal to zero (emphasized by the term sonic vacuum) or very
small at weak precompression as was explained above. The exact mechanism of the effectiveness
of granular beds and how to optimize their performance are still unclear, and are very interesting
and practically important subjects of research.

Granular beds incorporate one-dimensional elements—‘force’ chains. Nonlinear force
propagation into a granular bed caused by the striker’s impact was experimentally studied
in [96], and the results were explained using nonlinear grain-scale force relation similar to
one-dimensional structures.

Attenuating high-amplitude pulses resulting in elasto-plastic deformation of beads in ordered
two-dimensional square and hexagonal packing were investigated in experiments and in a
molecular dynamics simulation [47,82]. In numerical simulations it was found that even small
amounts of disorder in a two-dimensional packing significantly affect both wave transit time and
peak force.

The highly heterogeneous, random mesostructure of ‘force’ chains determines dynamic force
transmission even under loading by contact explosion, as in blast chambers (figure 4). In the
experimental set-up, a cover steel plate with a thickness of 10 mm was placed between an
explosive charge (density 1 g cm−3, detonation speed 4 km s−1) and a granular bed made from
iron shots (diameter of spheres about 3 mm) with heights of 50 and 100 mm. The estimated initial
velocity of the cover steel plate was 10 m s−1. A broad spectrum of indentation diameters on the
lead plate placed at the bottom of the granular bed on the supporting massive plate is shown in
figure 5.

It is estimated, using an approach similar to that applied in the Brinell hardness test, that
the ratio of corresponding contact forces, resulted in indentation diameters of 0.5 and 3 mm, is
about 20, suggesting a strong heterogeneity of force transmission inside the granular bed in these
experiments.

Some indentations are about 6 mm apart corresponding to the distance between spheres’
centres. It is clear that distances between other indentations are significantly larger. Thus figure 5
demonstrates that not all spheres being in contact with the lead plate are participating in force
transmission and the number of active force chains is reduced with reduction of pulse amplitude.

One-dimensional chains of spheres are a reasonable approach to model dynamic behaviour
of ordered three-dimensional packing. But three-dimensional disordered granular beds made
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20 mm

(a) (b)

Figure 5. Indentations on the lead plate at the bottom of the granular bed made from iron shots at different distances from
contact explosion: 50 mm (a) and 100 mm (b). (Online version in colour.)

from spherical particles of different sizes demonstrate significantly different behaviour [3]. For
example, the reflected pressure profiles from the rigid wall in cast iron shots with diameters of
spheres 3–4 mm and its one-dimensional model at analogous conditions of loading (the same
velocity of the piston and its mass per unit surface) are qualitatively different. The time of force
increase in the case of a one-dimensional chain in numerical calculations was 6 to 10 times
less than that obtained in experiments with cast iron shots. This almost an order of magnitude
difference in front width cannot be explained in the frame of the one-dimensional approach even
taking into account the random size of iron shots. This indicates that three-dimensional granular
beds have essentially different dynamic behaviour in comparison with the one-dimensional
chains. It can be associated with the transition time for configuration change in the packing
from one state to another, depending on the applied pressure and its time dependence. The more
dispersed character of shock impulses in granular beds can be explained by additional dispersion
due to friction processes between spherical particles. It is also possible that energy is dissipated as
a result of excitation of the rotational degree of particle movement. The simplest way to describe
such behaviour might be an introduction of artificial ‘viscosity’ [3].

11. Conclusion
Discrete strongly nonlinear systems (e.g. granular materials, systems with strongly nonlinear
elements (O-rings, tensegrity structures) represent a new class of metamaterials being a natural
extension from classical weakly nonlinear behaviour to the strongly nonlinear case. The
corresponding theoretical approach should be considered as the natural step in developing
strongly nonlinear wave dynamics. Low-dimensional or highly ordered three-dimensional
weakly dissipative structures support Nesterenko solitary waves, which are compact with space
scale independent of amplitude and dictated by mesostructured and interaction law. Unlike linear
and weakly nonlinear systems they exhibit highly tunable behaviour, sensitive to low amplitude
of an external mechanical force. They are the only known systems that can be tuned from a
strongly nonlinear regime (nonlinearizable case of ‘sonic vacuum’ at zero precompression) to
weakly nonlinear and linear regimes by application of moderate external static force with small
changes of overall dimensions. Multiscale systems based on the tensegrity concept even allow
tuning from strongly nonlinear elastically stiffening behaviour to the elastically softening regime.
Discrete systems combining hardening (normal) and softening (abnormal) behaviours at different
strains can be realized in experiments, but it is a mathematically challenging problem to describe
them in long-wave approximation. A very important task is to identify the similar phenomena in
different mechanical and electromagnetic metamaterials.

Wave interactions with interfaces of strongly nonlinear discrete systems or with interfaces
between them and linear elastic materials result in a new phenomenon, e.g. breakdown of the
continuum approximation, and in the ‘acoustic diode’ behaviour. Interaction of the wave with the
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interface of two sonic vacua dramatically depends on the incident direction and applied external
precompression, which can be used for targeted energy transfer.

Recent theoretical and experimental development directed towards a strongly nonlinear mass
in a mass system and to the analysis of breathers is very promising and opens new opportunities
in vibration control and impact mitigation.

Disordered three-dimensional granular beds are highly nonlinear according to a few
physically different reasons including strong nonlinearity of the Hertz Law and structural
rearrangements under applied dynamic loads. Dissipation caused by contact viscoelastic
deformation of polymer elements (e.g., O-rings) is a challenging and important problem for
design of dissipative metamaterials for mitigation of high-amplitude pulses. The synthesis of
all components of highly nonlinear behaviour is a very exciting area for future research, which
has a strong potential for designing metamaterials with highly nonlinear properties desirable for
various applications.
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