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Current morphometric methods that comprehensively measure shape cannot compare
the disparate leaf shapes found in seed plants and are sensitive to processing
artifacts. We explore the use of persistent homology, a topological method applied
as a filtration across simplicial complexes (or more simply, a method to measure
topological features of spaces across different spatial resolutions), to overcome these
limitations. The described method isolates subsets of shape features and measures
the spatial relationship of neighboring pixel densities in a shape. We apply the method
to the analysis of 182,707 leaves, both published and unpublished, representing 141
plant families collected from 75 sites throughout the world. By measuring leaves
from throughout the seed plants using persistent homology, a defined morphospace
comparing all leaves is demarcated. Clear differences in shape between major
phylogenetic groups are detected and estimates of leaf shape diversity within plant
families are made. The approach predicts plant family above chance. The application
of a persistent homology method, using topological features, to measure leaf shape
allows for a unified morphometric framework to measure plant form, including shapes,
textures, patterns, and branching architectures.

Keywords: leaf shape, leaves, morphology, shape, topology, topological data analysis, persistent homology,
morphometrics
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INTRODUCTION

Leaves are three-dimensional structures that grow through time,
but flattened laminae provide a unique opportunity to reduce
leaf morphology to a two-dimensional shape. Local features
(such as serrations and lobes) and general shape attributes (like
length-to-width ratio) can be measured, but other methods also
exist to measure leaf shape more globally and comprehensively.
A popular method to quantify leaf shape is to place (x, y)
coordinates, known as landmarks, on homologous features
that are related by descent from a common ancestor on
every sample (Bookstein, 1997). The set of landmarks from
each leaf can be superimposed by translation, rotation, and
scaling using a Generalized Procrustes Analysis (Gower, 1975).
Once superimposed, the Procrustes-adjusted coordinates of each
shape can be used directly for statistical analyses. Landmark
analysis excels in its interpretability, because each landmark
is an identifiable feature with biological meaning imparted
by the shared homology between samples. Because landmarks
are homologous features, their use often reveals genetic and
developmental patterns in shape variation (Chitwood et al.,
2016a).

Not all leaves have obvious homologous features that can
be used as landmarks. Further, when comparing leaves with
disparate morphologies (e.g., simple vs. compound leaves), there
may not be identifiable homologous points. Nearly all leaves have
homologous landmarks at the tip and base, but if there are no
other identifiable landmarks, an equal number of equidistant
points on each sample between the landmarks can be placed
(Langlade et al., 2005). The denser and more numerous such
pseudo-landmarks are, the closer they come to approximating the
contour itself.

Another method, the use of Elliptical Fourier Descriptors
(EFDs), measures shape as a continuous closed contour, and can
also be used when homologous features are absent. EFD analysis
begins with a lossless data compression method called chaincode,
in which the up, down, left, right, and diagonal relationship
of each successive pixel to the next is recorded as a chain of
numbers, 0–7, so that from this chain the closed contour can
be faithfully reproduced (Freeman, 1974). The chain code is
decomposed by a Fourier analysis into a harmonic series that
is used to quantify an approximate reconstruction of the shape
(Kuhl and Giardina, 1982).

Both pseudo-landmarks and EFDs measure leaf shapes for
which homologous features that can be used as landmarks are
lacking (Bensmihen et al., 2008; Chitwood and Otoni, 2017b).
Still, when comparing disparate leaf shapes, unless major sources
of shape variance in the data (such as the number of lobes
or leaflets) are present in every sample, individual pseudo-
landmarks or harmonic coefficients will not correspond between
samples in a comparable way useful for analysis. For example, an
EFD analysis of the abstract Monstera leaf shapes from La Gerbe
(a work from Henri Matisse’s cut out period) demonstrates this
problem: the leaves are similar in shape, but the differing numbers
of lobes on each leaf creates a circumstance where the harmonic
coefficients do not correspond to comparable features, creating
a nonsense morphospace, and preventing statistical analyses

(Supplementary Figure S1). The differing number of lobes also
inherently prevent landmark-based approaches, as the lobes do
not correspond with each other.

Recently, a computer vision method coupled with machine
learning was used to classify leaves, with diverse vascular patterns
and leaf shapes, into plant families and orders (Wilf et al., 2016).
This method uses a visual descriptor to train a classifier. Since
cleared leaves are used, this method relies on both internal
features like branch points in the vasculature as well as features
on the leaf margin. These internal features provide a rich
set of information which the authors use to classify 7,597
cleared leaves from up to 29 families and 19 orders up to an
accuracy of 72.14%. Computer vision circumvents the problems
associated with traditional morphometric methods, above, that
used defined features for analysis (either landmarks or harmonics
from Fourier-based approaches) that prevent a broad comparison
across diverse leaf shapes, and the venation patterns of cleared
leaves provide abundant information for these methods to classify
leaves.

Cleared leaves, though, are time consuming to prepare
compared to simply scanning leaves and analyzing their outlines.
It is much easier to sample the immense amount of leaf shape
diversity using scans and photographs than preparing cleared
leaves. Fossil leaves, too, may have shape information associated
with a closed contour, and their venation pattern may not
be available for analysis. There needs to be a morphometric
method that can accommodate the closed contours of the diverse
leaf shapes found in nature, and although outlines contain
less information than the vasculature of cleared leaves, they
potentially provide broader sampling of leaf shape diversity
across plants.

To develop a morphometric method that (1) comprehensively
measures shape features in leaves, both locally and globally,
(2) can compare disparate leaves shapes, (3) is robust against
noise commonly found in leaf shape data (e.g., internal holes
because of overlapping leaflets or small defects introduced during
imaging and thresholding), and (4) can be extrapolated to
other plant phenotyping needs (e.g., measuring the branching
architectures of roots and trees, the spatial distributions of
plants in ecosystems, or the texture of different pollen types;
Mander et al., 2013, 2017; Li et al., 2017) we used a persistent
homology approach. Persistent homology is a topological data
analysis method. Topology is the field of mathematics concerned
with properties of space (“homology groups”) preserved under
deformations (e.g., bending) but not tearing or re-attaching (we
stress that “homology” refers to unrelated concepts in biology and
topology and that “persistent homology” does not refer in any
way to “homology” in the biological sense of the word). Persistent
homology measures topological features as a filtration across
simplicial complexes (or more simply, a method to measure
topological features of spaces across different spatial resolutions;
Edelsbrunner and Harer, 2008; Weinberger, 2011; Li et al., 2017).

Here, we present a morphometric technique based on
topology, using a persistent homology framework, to measure
the outlines of leaves and classify them by plant family. We
analyze 182,707 leaves (freely available to download; Chitwood,
2017a), from both published studies and shapes analyzed for
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the first time, from 141 plant families and 75 sites throughout
the world. We first compare the diverse shapes represented
in a common morphospace using persistent homology, which
captures traditional shape descriptors in varying combinations
and novel morphological features, as well. Major phylogenetic
groups of plants occupy distinct regions of the morphospace
and we estimate plant families that have the most and least
diverse leaf shapes. Using persistent homology, we then use a
linear discriminant analysis (LDA) to classify leaves by plant
family. Persistent homology predicts family at a rate above
chance and 2.7 times the rate of traditional shape descriptors.
Persistent homology, by measuring topological features, can be
generally applied to branching architectures found in plants,
providing a shared framework to quantify the plant form
comprehensively.

RESULTS

Dataset and a Morphospace Defined
Using Traditional Shape Descriptors
To broadly analyze seed plant leaf shape diversity collected
from sites throughout the world, we used both published
and unpublished data. In total, 182,707 leaves were analyzed
(Table 1). Many of these datasets address specific genetic and
developmental questions, focusing on genetic variability within
a group or closely related species. Leaves were analyzed from
the following groups of plants: Alstroemeria (2,392 leaves), apple
(9,619 leaves), Arabidopsis (5,101 leaves), Brassica (1,832 leaves),
Capsicum (3,277 leaves), Coleus (34,607 leaves), cotton (2,885
leaves), grapevine and wild relatives (20,121 leaves), Hedera
(common ivy, 865 leaves), Passiflora (3,301 leaves), Poaceae (866
leaves), wild and cultivated potato (1,840 leaves), tomato and
wild relatives (82,034 leaves), and Viburnum (2,422 leaves) (please
see Table 1 for references and AUTHOR CONTRIBUTIONS
for unpublished data). We also analyzed two datasets that
sample broadly across seed plants and from sites throughout
the world. The Leafsnap dataset, with 5,733 leaves, represents
mostly tree species of the Northeastern United States, but
other groups of plants as well (Kumar et al., 2012). The
Climate dataset, with 5,812 leaves total, analyzes the relationship
between leaf shape and present climates as indicators of
paleoclimate (Huff et al., 2003; Royer et al., 2005; Peppe et al.,
2011).

We analyzed all leaves using the traditional shape descriptors
circularity, aspect ratio, and solidity (Figure 1). These shape
descriptors are simple in the sense that they each measure a
very specific aspect of shape, but they are powerful in that
they can be applied to any shape, which is not necessarily true
of other methods that measure shape more comprehensively
(such as landmarks, pseudo-landmarks, and EFDs). Circularity
is a ratio of area to perimeter (true perimeter, excluding holes
in the middle of the object) measured as 4π ∗

(
area

perimeter2

)
and is sensitive to undulations (like serrations, lobes, and
leaflets) along the leaf perimeter, but is also influenced by
elongated shapes (like grass leaves) when comparing leaves

with such different shapes, as in this analysis. Aspect ratio is
measured as (major axis/minor axis) of a fitted ellipse, and it
is a robust metric of overall length-to-width ratio of a leaf.
Solidity is measured as area

convex hull where the convex hull bounds
the leaf shape as a polygon. Leaves with a large discrepancy
between area and convex hull (such as compound leaves with
leaflets, leaves with deep lobes, or leaves with a distinct petiole)
can be distinguished from leaves lacking such features using
solidity.

Differences between groups were visualized as scatterplots
and density diagrams (Figure 1), using transformed values
of aspect ratio

(
1/(aspect ratio

)) and solidity (solidity8) to
create more normal distributions that allow the separation
between groups to be better visualized. The linear leaves of
grasses (Poaceae, in Figure 1, lavender) are perhaps the most
distinct group of leaf shapes. The Brassicaceae (light green) are
bimodal in their distribution, reflecting entire vs. highly lobed
and compound leaves, as well as differences in petiole length.
Passiflora (dark orange), Solanaceae (purple), and Viburnum
(brown) exhibit broad, continuous distributions, which like the
Brassicaceae reflect the diversity of leaf shapes in these groups.
Alstroemeria (light blue), apple (light orange), Coleus (pink),
cotton (dark green), grapevine (red), and common ivy (dark
blue) all have more localized distributions in the morphospace,
indicating that shape variation is expressed within a smaller
range, relative to other groups, as measured using traditional
shape descriptors.

Persistent Homology and Non-linear
Relationships With Traditional Shape
Descriptors
Although traditional shape descriptors can describe important
shape features across diverse leaves, they do not measure

TABLE 1 | Leaf counts, references, and AUTHOR CONTRIBUTIONS for each
dataset.

Leaf type Count References and authors

Alstroemeria 2392 Chitwood et al., 2012c

Apple 9619 Migicovsky et al., 2018

Arabidopsis 5101 AB, RA, CB, ER, BZ

Brassica 1832 HA, SG, JP

Capsicum 3277 TH, AVD

Climate 5812 Huff et al., 2003; Royer et al., 2005; Peppe et al., 2011

Coleus 34607 VC, MF, ML

Cotton 2885 Andres et al., 2017

Grapevine 20121 Chitwood et al., 2014, 2016a,b; VC, MF, LK, JL, AM

Hedera 865 Martinez et al., 2016

LeafSnap 5733 Kumar et al., 2012

Passiflora 3301 Chitwood and Otoni, 2017a,b

Poaceae 866 LC, TG, PK

Potato 1840 DF, SJ

Tomato 82034 Chitwood et al., 2012a,b, 2013

Viburnum 2422 Schmerler et al., 2012; MD, EE, SS, ES

Total 182707 NA

Frontiers in Plant Science | www.frontiersin.org 3 April 2018 | Volume 9 | Article 553

https://www.frontiersin.org/journals/plant-science/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-09-00553 April 23, 2018 Time: 15:0 # 4

Li et al. Persistent Homology and Leaf Shape

FIGURE 1 | Traditional shape descriptors delimit leaves from different taxonomic groups. (A) Circularity vs. 1/Aspect Ratio, (B) Solidity8 vs. 1/Aspect Ratio, and
(C) Circularity vs. Solidity8. (Left) Scatter plots of 182,707 leaves analyzed, from 141 plant families from 75 sites throughout the world. (Right) For select taxonomic
groups, density plots showing ability of traditional shape descriptors to delimit different leaf shapes and distributions of different groups. Solidity and Aspect Ratio
values have been transformed to yield more even distributions. Taxonomic groups are indicated by color and silhouettes of representative leaves close to the overall
mean of descriptor values provided.

shape comprehensively like landmarks, pseudo-landmarks, and
EFDs. Comprehensive morphometric methods, however, cannot
be applied across diverse shapes, only between leaves with
similar shapes, as in natural variation studies. We crafted a
persistent homology method to quantify the features of leaves.
Persistent homology is a Topological Data Analysis method
that examines (1) topological features as a (2) filtration across
a simplicial complex (Munch, 2017). In the specific case we
have devised to measure leaf shape, the topological features

are simply “blobs,” contiguous non-touching islands that are
“born” and “die” across the filtration. The filtration is a function
projected onto the shape. In this case, the filtration is a density
function indicating the concentration of pixels. As the filtration
passes from high to low density values, “blobs” are “born” and
“die” and these features are monitored in the form of a Euler
characteristic curve. The details of how persistent homology are
implemented here to measure leaf shapes are described in detail,
below.
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We begin by conceptualizing shape as a two-dimensional
point cloud of an outline defined by pixels (Li et al., unpublished;
Migicovsky et al., 2018). A Gaussian density estimator, assigning
each pixel a value that indicates the density of neighboring
pixels, is calculated (Figure 2). In leaves, high density pixels
with lots of neighbors tend to reside in the sinuses of serrations
or lobes or at points of intersection, such as the attachment
points of leaflets to the rachis of a compound leaf. Using a
Gaussian density estimator, rather than focusing on continuity of
a closed contour (as in pseudo-landmarks and EFDs), minimizes
the impact of internal or non-continuous features, such as
holes or occlusions made by the overlap of leaflets and lobes
(see the bottom palmately shaped leaf in Figure 2). Sixteen
annuli (or, ring structures) emanating from the centroid of the
shape (Figure 2A) serve to partition the leaf into subsets of
features, increasing the ability to distinguish between shapes.
An annulus kernel for each ring (Figure 2C) is multiplied by
the density estimator (Figure 2B) to isolate density features
that intersect with the annulus (Figures 2D,E). The resulting
density function from each annulus is the function across which
topological space is measured. As shown in Figure 2F, beginning
with the highest density level (that is, those pixels with the
highest value of the Gaussian density estimator, as shown by
the plane intersecting the red in the graphs below the curves in
Figure 2F, the plane intersecting lower density levels depicted
in blue going from Left to Right), the number of connected

features with densities above that level is recorded. Counting
the number of connected components minus the number of
holes (which is a topological feature, known as the Euler
characteristic) continues across the function, proceeding to lower
density levels. The value of the curve (y axis in Figure 2F) at
each density level (x axis in Figure 2F) records the topological
structure across the values of the function, the crux of persistent
homology. A curve is recorded for each annulus, so that using
our method, the shape of a single leaf is represented by 16
curves.

To analyze the persistent homology output, we discretize each
Euler characteristic curve into 500 values (Figure 2F) and then
concatenate these values over the 16 annuli, representing each
leaf shape as 8,000 values. A principal component analysis (PCA)
performed using the 8,000 values creates a leaf morphospace
defined by persistent homology (Figure 3). To interpret
this morphospace, we colored data using traditional shape
descriptor values. Although clear patterns among aspect ratio
(Figure 3A), circularity (Figure 3B), and solidity (Figure 3C)
with persistent homology data are evident, the relationships
are non-linear compared to the orthogonal PC axes. Aspect
ratio, circularity, and solidity are similarly correlated with PC1
(ρ-values of −0.72, 0.70, and 0.61, respectively) demonstrating
that persistent homology PCs can capture distinct attributes of
shape simultaneously (Figure 3D). The correlations between
traditional shape descriptors and persistent homology PCs

FIGURE 2 | Persistent homology and leaf shape. (A) Contours of a simple leaf (Top), compound pinnate leaf (Middle), and compound palmate leaf with a hole and
overlap in leaflets (Bottom). 16 annuli used to isolate pixel density are shown, with annulus 10 shown in subsequent panels indicated in green. (B) Colormap of a
Gaussian density estimator that is robust to noise. Red indicates a larger density of neighboring pixels and blue less density. (C) An annulus kernel is used to localize
and smoothen data. (D) Multiplication of the annulus kernel with the density estimator isolates density features of the leaf contour. (E) Side view of the annulus
kernel-isolated density features of the leaf. The high peaks in red indicate higher pixel density. (F) A plane traverses the density function from the highest to lowest
densities (x axis). As the plane traverses the function, the topological space is recorded as the number of connected components minus the number of holes above
the plane at any given point, the Euler characteristic (y axis). Three pink dotted lines correspond to the plane at three points along the density function, which are
visualized below the graphs. Together, similar curves from the 16 annuli comprise the persistent homology description of leaf shape.
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FIGURE 3 | Principal component analysis (PCA) of persistent homology results. Principal Component 2 (PC2) vs. PC1 based on persistent homology results for
182,707 leaves colored by (A) 1/Aspect Ratio, (B) Circularity, and (C) Solidity8. Aspect Ratio and Solidity values have been transformed to yield more even
distributions. Note non-linear relationships between traditional shape descriptors and persistent homology PCs. (D) Correlations between aspect ratio, circularity,
and solidity and PCs 1–69 (representing 90% of variation). Positive and negative Spearman’s ρ-values are indicated as blue and yellow, respectively. (E) Density plots
show distributions of selected taxonomic groups in persistent homology PCA and (F) Climate and Leafsnap datasets, representing 141 plant families from 75 sites
throughout the world, are superimposed as black dots. Taxonomic groups are indicated by color and silhouettes of representative leaves close to the overall mean of
descriptor values provided.

rapidly diminish among high order PCs (Figure 3D). The non-
linear relationship between traditional shape descriptors and
persistent homology PCs indicates that persistent homology
captures differing combinations of traditional shape descriptors
(and novel features) in different ways among the represented
leaf shapes. Such non-linear relationships are influenced by the
different groups represented in the dataset (Figure 3E). If the
Leafsnap and Climate datasets—representing 141 plant families
and 75 sites from throughout the world—are superimposed
as points on top of the independent dataset representing
natural variation within a limited number of different groups

(Figure 3F), then the overall shape of the persistent homology
space defined by specific groups is recapitulated, suggesting
that the overall shape and density of the persistent homology
morphospace is partially saturated. This does not mean that
there is no other significant leaf shape variation to be explored,
only that some archetypal leaf shapes are well represented
in our dataset. The boundaries of the persistent homology
morphospace allow for speculation. Likely the morphospace is (1)
bimodal, defined by elongated leaf shapes found in some Poaceae
and Gymnosperms (specifically Pinophyta in the Leafsnap and
Climate datasets) compared to other leaf shapes and (2) is
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defined by variation spanning entire to deeply lobed (or even
compound) leaf shapes, as represented by Passiflora, Solanaceae,
and Viburnum across PC1. Of course, other leaf shape variation
exists (and is even visually apparent in the plots of PC2 vs.
PC1) and other PCs in this dataset remain to be explored.
The dataset does not come near to sampling all existing leaf
shapes.

Differences in Leaf Shape Between
Phylogenetic Groups and the Most
Diverse Plant Families
We were interested in detecting difference in leaf shape
between phylogenetic groups and performed a PCA for just
the Leafsnap and Climate datasets (Table 1), which together
represent 141 plant families, but without the over-representation
from specific taxonomic groups presented earlier. Visualizing
gymnosperms, magnoliids, rosids I, rosids II, asterids I, and
asterids II across PCs 1–10 (representing 73% of shape
variance) clear differences in persistent homology shape space
can be detected (Figure 4). Differences in shape are most
easily detected for the earliest diverging lineages. For example,
gymnosperms occupy a distinct region of morphospace defined
by PCs 1–6 (Figures 4A–C) compared to angiosperms. Subtler
differences between recently diverging groups can also be seen.
Asterids II, for example, are excluded from some regions of
morphospace occupied by rosids I/II and asterids I for PCs 1–4
(Figures 4A,B).

Differences in occupied morphospace between phylogenetic
groups prompted us to ask: are plant families diverse across
all PCs or just some, and what are the most and least
morphologically diverse families? To answer the first question,
we calculated variance across PCs 1–179 (representing >95%
of all shape variance) for each plant family and then ranked
families from most to least variable for each PC (Figure 5A).
Visualizing the ranked variability of families across PCs (where
PCs are color coded from the most variable, yellow, to the least,
black; Figure 5A), it is apparent that the most diverse families
tend be the most diverse across all PCs. Increased variability
in persistent homology PCs, though, might simply be due to
more leaves in some families compared to others. Indeed, the
most diverse plant families are also the most represented in
our dataset, as seen when families are arranged by abundance
(Figure 5A, see bar graph of counts on the Right side). Because
highly variable families tend to be variable across PCs, we
took the median rank of variance across PCs as a measure of
overall family leaf shape diversity. The relationship between –
median rank variance and log10(count) is linear (Supplementary
Figure S2). Using linear regression, we took the residuals from
the model as an estimate of plant family leaf shape diversity,
corrected for differences in sample size (Figure 5B). A wilcoxon
signed rank test on residuals indicates that asterids I are
marginally significant (p = 0.08) for lacking diversity (two
sided, µ = 0) but other groups (gymnosperms, p = 0.25;
magnoliids, p = 0.20; rosids I, p = 0.97; rosids II, p = 0.63;
asterids II, p = 0.63) show no detectable biases in diversity. The
overall results indicate that, for the current dataset, leaf shape

diversity within major phylogenetic plant groups is equivalent,
but specific families have higher estimated leaf shape diversity
than others.

Persistent Homology Predicts Plant
Family and Outperforms Traditional
Shape Descriptors
The separation of different groups in the traditional shape
descriptor (Figure 1) and persistent homology (Figures 3, 4)
morphospaces suggests the ability to predict the phylogenetic
identity of a leaf based on its shape. Previous computer vision
approaches coupled with machine learning have successfully
predicted plant family and order using vein patterning and
margin features (Wilf et al., 2016). Can the same be done using
a persistent homology analysis of the outline alone? Using the
Leafsnap and Climate datasets (Table 1) that together represent
141 plant families, we used a LDA on PCs 1–179, representing
>95% of the persistent homology morphospace variation, to
create a classifier scheme. Leaves were then reassigned to the
linear discriminant space using a cross-validated “leave one
out” approach (Venables and Ripley, 2002) and the results
visualized as a confusion matrix (Figure 6), plotting the actual
family identity of leaves as a function of the proportion
of their predicted family identity. Family was used as the
taxonomic level of prediction because it was the most specific
level of identification common to all leaves. Using persistent
homology, there was a 27.3% correct plant family assignment
rate of leaves. Using a bootstrapping approach permuting plant
family identity against leaf shape information, a 27.3% correct
reclassification rate or higher was never achieved in 1,000
bootstrapped simulations, indicating that assignment is above
chance. This outperforms traditional shape descriptor prediction
(at a rate of 10.2%) by 2.7 times (Table 2), and including both
persistent homology and traditional shape descriptor data only
marginally increases the prediction rate (to 29.1%) over that
of persistent homology alone (27.3%), indicating that persistent
homology largely captures the same shape features as traditional
descriptors, but provides additional information as well. If order
is used as the taxonomic level of prediction, prediction rates
are almost identical to those for family (27.3% for persistent
homology, 9.2% for traditional shape descriptors, and 29.1% for
both).

DISCUSSION

We have presented a new morphometric method using persistent
homology, a topological approach, that can comprehensively
measure leaf shape. Other methods measure leaf shape
comprehensively, including traditional landmarks, pseudo-
landmarks, and EFDs. However, no method comparatively
analyzes the diverse shapes of leaves in seed plants (simple
leaves, deeply lobed leaves, compound leaves of different shapes,
leaves with differing numbers of leaflets or lobes, or large
variation in petiole length and shape), only naturally varying
leaves among related plant species (Supplementary Figure S1).
Other morphometric methods that only analyze the external
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FIGURE 4 | Differences in leaf shape between phylogenetic groups. Gymnosperm, magnoliid, rosid I, rosid II, asterid I, and asterid II leaves (Left–Right) are each
plotted in blue against all samples (gray) for (A) PC2 vs. PC1, (B) PC4 vs. PC3, (C) PC6 vs. PC5, (D) PC8 vs. PC9, and (E) PC10 vs. PC9. Percent variance
explained by each PC is indicated.

contour of shapes are sensitive to artifacts, such as internal
holes made by the overlap of leaflets or lobes, or small errors
during thresholding and isolation. Finally, although appropriate
for plant organs that can be represented by discrete shapes—
like leaves, petals, seeds, or other lateral organs—current
morphometric techniques fail to capture other attributes of plant

architecture, like the branching patterns of roots, shoots, and
inflorescences. A framework that can not only measure shape, but
other features that are important to the plant form, is currently
lacking.

By converting shapes into a topological space, as defined
by a function that isolates subsets of the shape and describes
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FIGURE 5 | Highly variable plant families are variable across Principal Components (PCs) and estimates of leaf shape diversity by family. (A) Variance was measured
for each plant family and then ranked from most variable (yellow) to least variable (black) for each PC. Plant families are ordered by abundance, as seen in the bar
graph (Right) indicating count number in the dataset. The most abundant plant families in the dataset tend to be the most variable. (B) Linear regression was used
to model the -median variance ranking for each plant family as a function of log10(count). The residuals are estimates of plant family leaf shape diversity, as corrected
for representation in the dataset. Higher residual values indicate higher estimated leaf shape diversity. Gymnosperms, orange; magnoliids, yellow; rosids I, light blue;
rosids II, dark blue; asterids I, light green; asterids II, dark green; other groups, gray.

it in terms of neighboring pixel density (Figure 2), the
described persistent homology approach can compare disparate
leaf shapes across seed plants, allowing for the approximation
of the overall leaf morphospace (Figure 3). By estimating pixel

density, the method accommodates internal features (such as
holes caused by leaflet overlap) or small processing artifacts,
that do not unduly influence the output compared to the
absence of such imperfections. The ability to compare shapes
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FIGURE 6 | Predicting plant family using persistent homology. Using persistent homology data from the Climate and Leafsnap datasets, a linear discriminant analysis
(LDA) was used as a classifier to predict plant family, cross-validated using a jackknifed “leave one out” approach. The vertical axis indicates actual plant family and
the horizontal axis predicted plant family. Color indicates proportion of leaves from each actual plant family assigned to each predicted family, such that proportions
across the horizontal axis sum to 1. Black indicates no assignment. A phylogeny indicating key taxonomic groups is provided.

broadly and be robust against processing artifacts will enable
large scale data analyses in the future, such as the analysis of
digitized herbarium vouchers, ecological studies, or genetic and
developmental insights into complex morphologies, for which

current morphometric approaches are not designed. We detected
clear differences in leaf shape between major phylogenetic
groups (Figure 4) and estimated leaf shape diversity across plant
families (Figure 5), demonstrating that a persistent homology

Frontiers in Plant Science | www.frontiersin.org 10 April 2018 | Volume 9 | Article 553

https://www.frontiersin.org/journals/plant-science/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-09-00553 April 23, 2018 Time: 15:0 # 11

Li et al. Persistent Homology and Leaf Shape

TABLE 2 | Overall prediction rates of plant family using different morphometric
methods.

Method Correct

Persistent homology 27.3%

Traditional descriptors 10.2%

Both methods 29.1%

approach is relevant for large-scale morphometric studies
across plant evolution. The ability to comprehensively measure
shapes permits alternative statistical approaches, moving beyond
descriptive statistics used with traditional shape descriptors
(Figure 1) and allowing for classifier and prediction approaches
(Figures 6, 7 and Table 2). Although the overall prediction rate of
27.3% for plant family is relatively low (Table 2), it is important
to remember that it is above the level of chance (determined
by bootstrapping, 1,000 simulations) and that the rates are not
evenly distributed across family. Plant family prediction rates
vary from 0 to 100% (Figure 7). The variability in rates is not
overly influenced by sampling depth or variation within a group.
For example, prediction rate of plant family and abundance are
correlated at ρ = 0.37, and the correlation with median rank
PC variance is ρ = −0.24. It is also important to keep in mind
that plants are usually identified using floral structures, and leaf
morphology is not the most discriminating morphological factor
between species. Additionally, our prediction is distributed over
141 plant families, whereas previous studies were predicting over
fewer, which decreases the correct assignment rate. Although
comprehensive, our dataset does not begin to encompass the
total shape variation present in a plant family and there are
undoubtedly collection biases in the data influencing prediction.
Other factors than diversity within a group or the degree to
which it is sampled, though, likely influence prediction rate
too.

Theoretically, a unifying morphometric framework that can
accommodate not only shapes but the branching architectures
of plants, is lacking. Topology is a field of study concerned
with features that are invariant under deformations, such as
bending or stretching. Traditional morphometric methods (like
landmarks and EFDs) work superbly with shapes that have
either homologous features for landmarks or features that allow
pseudo-landmarks and harmonic coefficients to correspond
(some types of leaves, seeds, petals, etc.). Computer vision,
machine learning, and deep learning approaches work especially
well with two-dimensional gray-scale and color image data
for prediction and identification (Joly et al., 2016; Wilf et al.,
2016).

But the plant form is not a shape or a two-dimensional
color image. Plants are branching architectures that develop
through time. The connectedness of branches—irrespective
of deformation or bending—is topology, and it is useful for
describing variation in plant architecture (Li et al., 2017).
Describing branching patterns is relevant to describing
phylogenetic trees, too, to which Topological Data Analysis
approaches have been applied (Munch and Stefanou, 2018).
We converted shape into a topological feature space to

comprehensively describe leaf shape diversity where other
methods have failed. But separate from this use (for shapes)
persistent homology is a promising technique to describe
diverse plant structures, including root architecture (Li et al.,
unpublished), serrations and branching patterns, and venation
architecture in novel ways, quantifying complex morphological
features relevant to botany and taxonomy that previously
have only been described qualitatively. Topological Data
Analysis and persistent homology approaches can also be
applied in n-dimensional space. Plant development occurs
in 4D: 3D, over time. Rather than describing development
as a time series, plant morphology can be quantified as it
truly is—a single, four dimensional shape. There is a place
for measuring plant morphology in terms of topological
features, and this space has not been thoroughly explored
yet, and can potentially drive a more comprehensive
analysis of plant architecture across diverse cells, tissues,
organs (pollen textures; Mander et al., 2013), organismal
forms, or biomes (satellite images of the savannah; Mander
et al., 2017), as we have used it here for leaves. The
morphometric approach described here is compatible with
similar persistent homology methods, creating a shared
framework in which the plant form can be measured (Li et al.,
unpublished).

MATERIALS AND METHODS

Leaf Shapes
The 182,707 leaf outlines from 141 plant families from
75 sites throughout the world used in this manuscript are
available to download (Chitwood, 2017a). This file directory
includes x,y coordinates that form the outlines of the leaves.
Separate folders contain text files with x,y coordinates for
the leaves from each of the indicated groups in Table 1.
Within each folder, original x,y coordinates and scaled
coordinates are provided. This dataset contains leaves from
both published and unpublished sources (see Table 1 for
details).

Persistent Homology
The MATLAB code necessary to recapitulate the persistent
homology analysis in this manuscript can be found in the
following GitHub repository (Li, 2017)1.

Persistent homology is a flexible method to quantify branching
structures (Edelsbrunner and Harer, 2008; Weinberger, 2011;
Li et al., 2017), point clouds (Ghrist, 2008), two-dimensional
and three-dimensional shapes (Gamble and Heo, 2010), and
textures (Mander et al., 2013, 2017). Each of these different
phenotypes can be described by a multidimensional vector
(e.g., Euler characteristic curve), integrating how homology (e.g.,
path-connected components) persists across the filtration of a
simplicial complex.

Leaf contours are represented as two-dimensional point
clouds extracted from binary images (Figure 2A). We

1https://github.com/maoli0923/Persistent-Homology-All-Leaf
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FIGURE 7 | Prediction rates using persistent homology data across plant families. Proportion of leaves from each family correctly assigned. Red line indicates overall
correct prediction rate of plant family of 27.3%. Phylogeny and major taxonomic groups are indicated.

use a Gaussian density estimator, which can be directly
derived from the point cloud and is also robust to noise,
to estimate the neighborhood density of each pixel.
Denser point regions, such as serrations, lobes, or the
attachment points of leaflets, have higher function values
(Figure 2B). Formally, the Gaussian density estimator is
defined as

φ (x) : =
1
n

n∑
i=1

1
√

2π
e−

1
2

(
x−yi

h

)2

,

where y1, ..., yn are the data points and h is a bandwidth
parameter. Because a set of local and regional topologies may
often be more effective to represent shapes, we use a local
persistent homology technique to subset the density estimator
into 16 concentric annuli centered around the centroid of
the leaf (Figures 2A,D). To achieve this, we multiply this
function by a “bump” function K which highlights an annulus,
defined as

Kσ,t,y (x) : = e−
(d (x,y)− tσ)2

2σ2 ,

where y is the center of the annulus, tσ determines its
radius, and the parameter σ is its width (Figure 2C). Each
local function emphasizes the density function falling in the
annulus. Given a threshold and a local function, the points
whose function values are greater than this threshold form a
subset (superlevel set). Changing this threshold value from the
maximum function value to its minimum value, we can get
an expanding sequence of subsets, or a superlevel set filtration.
Figure 2E shows the shapes above a plane, an example of
a superlevel set filtration. For each subset, we calculate the
Euler characteristic, which equals the number of connected
components minus the number of holes. Thus, for a sequence
of subsets, we get a sequence of numbers (a multidimensional
vector). All 16 annuli derive 16 multidimensional vectors which
are concatenated into an overall vector used for analysis. PCA
was performed in MATLAB on the vectors and PC scores

and percent variance explained by each PC used in subsequent
analyses.

Statistical Analysis and Visualization
The R code (R Core Team, 2017) and data necessary to
recapitulate the statistical analyses and figures in this manuscript
can be found as a zipped folder directory on figshare (Chitwood,
2017b)2.

Unless otherwise specified, all graphs were visualized using
ggplot2 (Wickham, 2016). Scatterplots were visualized using the
geom_point() function, density plots were visualized with the
geom_density2d() function, heatmaps were visualized using the
geom_tile() function, and colors were selected from ColorBrewer
(Harrower and Brewer, 2003) and viridis (Garnier, 2017). Other
visualization functions used and specific parameters that can
be found in the code used to generate the figures (Chitwood,
2017b).

Variance was calculated for each plant family for each
principal component using var() and families ranked for each
principal component using rank() (Figure 5). Linear regression
was performed using lm() and residuals retrieved to estimate
leaf shape diversity for each plant family (Supplementary
Figure S2). The Wilcoxon signed rank test was performed
using wilcox.test() to test for higher or lower than expected
phylogenetic diversity using a two-sided test with µ = 0.
LDA was performed using the lda() function in the package
MASS (Venables and Ripley, 2002). LDA was performed using
the number of principal components that contributed at least
95% of all variance (PCs 1–179 for phylogenetic prediction).
Prediction using the discriminant space was performed using
CV = TRUE for a “leave one out” cross-validated jack-
knifed approach and the priors set equal across factor levels.
Prediction rates were bootstrapped over 1,000 simulations.
A for loop was used, permuting family against leaf identity,
performing an LDA on the permuted data, and recording

2https://figshare.com/articles/LeafMorphospace/4985561/1
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the correct prediction rate for each permuted simulation.
A permuted correct prediction rate (out of 1,000 simulations)
higher than the actual correct prediction rate was never detected.
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