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ABSTRACT OF THE DISSERTATION

Refining understanding of human decision making by testing integrated neurocognitive
models of EEG, choice and reaction time

By

Michael Dawson Nunez

Doctor of Philosophy in Psychology

University of California, Irvine, 2017

Professor Ramesh Srinivasan, Chair

The cognitive process and time course of quick human decision making was evaluated using

reaction time, choice distributions, and human electrophysiology as recorded by EEG. These

data were used to evaluate drift-diffusion models, a class of decision-making models that

assume a stochastic accumulation of evidence on each trial, within hierarchical Bayesian

frameworks. The first goal was to elucidate the effect of visual attention on decision making.

To this aim two studies were performed. In the first study it was found that individual

differences in evidence accumulation rates and non-decision time (preprocessing and motor

response times) can be explained by attentional differences as measured by steady-state visual

evoked potential (SSVEP) responses to the flicker frequency of signal and noise components

of the visual stimulus. Participants who were able to suppress their SSVEP response to

visual noise in high frequency bands were able to accumulate correct evidence faster and had

shorter non-decision times, leading to more accurate responses and faster response times. In

the second study it was found that measures of attention obtained from simultaneous EEG

recordings can explain per-trial evidence accumulation rates and perceptual preprocessing

times during a visual decision making task. That is, single-trial evoked EEG responses,

P200s to the onsets of visual noise and N200s to the onsets of visual signal, explain single-

trial evidence accumulation and preprocessing times. The second goal was obtain inference

xix



about the time course of quick decision making. A method of estimating and verifying

individuals’ visual encoding time is proposed using traditional event-related potential (ERP)

measures. The possibility of using single-trial N200 and trial-averaged N200 ERP latencies as

estimates of human visual encoding time is explored using both simple linear regression and

complex hierarchical Bayesian modeling. Posterior distributions of linear-effect parameters

suggest that EEG responses to the onset of visual stimuli reflect stimulus encoding times.

The possibility of using a verifiable EEG measure of the time course of motor preparation

is also explored. Finally, a theoretical cognitive framework for quick decision making is

proposed which assumes differential mechanisms of visual encoding, drift-diffusion evidence

accumulation, and motor response.
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Chapter 1

In search of a simple explanation of

human decision making

1.1 The prevalence of quick decision-making

You will make many quick decisions tomorrow. You could make a decision to buy an apple

or a piece of chocolate at the convenience store, make a decision to walk right or left when

approaching a tree in your path, make a decision to hug someone you love or to kiss them,

or even make a decision to either jump out of the way of a vehicle moving towards you or

stand in the same spot and hope that the vehicle veers away. Human beings make many

types of these decisions every day, and quick decisions are diverse. Some decisions are more

important to us than others, some our integral to our survival, some quick decisions are made

faster and more accurate by certain people, sometimes it takes awhile for us to recognize

that a decision needs to be made.

This type of speeded decision making that occurs within approximately two seconds is the

topic of this dissertation. The goal of my thesis is to illuminate the decision-making process
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with a simple explanation (e.g a quantitative mathematical“model”) of both the time course

and attentional process of decision-making. This model explains observations we make about

human behavior and the human brain, presented in terms of what is thought to occur within

the human mind (i.e. the “cognition” of the mind).

1.1.1 A guiding example of quick decision-making

There are many situations on the road when the driver of a vehicle must decide to stop or

accelerate through an intersection by observing a traffic light. The presence of a green arrow

for an adjacent lane (i.e. the distractor or “noise”) can be distracting for the driver whose

light is red (i.e. the “signal”). The presence of the distractor affects the reaction time and

choice of the driver. However the driver can suppress their attention to the green arrow

and/or attend to the correct red light in their lane. The decision to stop or accelerate is an

example of a perceptual decision. Perceptual decision making is the process of making quick

decisions based on objects’ features observed with the senses. As shown in the stoplight

example, attention is highly influential in the perceptual decision making process. When

distracting objects exist in visual space, one must attend only to the relevant objects and

actively ignore distracting objects. Each time an individual reaches a stop light, they will

be more likely to make a safer decision if they suppress distracting visual input and enhance

relevant visual input. The effect of visual attention on the decision-making process will

be discussed in Chapters 2 and 3. How individual differences in humans’ visual attention

processing explain individual differences in decision making will be explored in Chapter 2.

How short-term, within-person changes in visual attention processing affect decision making

ability will be explored in Chapter 3.

To make a decision to stop or accelerate, the driver must first recognize that a decision

must be made by recognizing the visual input (the traffic light). The amount of time this
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visual preprocessing (i.e. visual “encoding”) takes depends on factors such as the amount of

distracting stimuli and the arousal of the driver. The driver must then make a decision by

accumulating evidence, the amount of time depending upon the visual attention and ability

of the driver. Finally the driver must make a motor response, and the amount of motor

preparation required and physical action (e.g. depressing the brake pedal) all take time.

While all cognitive processing will happen in a matter of milliseconds, those milliseconds are

important for the safety of the driver. The chronometry (i.e. the estimation of timing) of

decision making will be discussed in Chapters 4 and 5. Chapter 4 will cover the possibility

of tracking the within-person timing of visual encoding with evoked brain activity. Chapter

5 will explore the possibility of tracking within-person motor preparation time with evoked

brain activity.

1.2 Background

1.2.1 Electroencephalography (EEG)

Electroencephalography (EEG) is the measurement of the electric potentials on the scalp

surface generated (in part) by neural activity originating from the brain. EEG is sensitive

to changes in brain activity on a millisecond time scale and is thus an convenient tool

when studying quick decision making. This is a major advantage of EEG over other brain

imaging modalities such as functional magnetic resonance imaging (fMRI) or near-infrared

spectroscopy (NIRS) that operate on time scales in the seconds to minutes range. Over the

past 100 years, neuroscientists and clinical neurologists have made use of EEG to obtain

insight into cognitive or clinical disease state by applying a variety of signal processing and

statistical analyses to EEG time series (for an extended introduction to EEG for a general

audience see Nunez et al., 2016). In this thesis, I make use of EEG to directly measure
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potentials from the human cortex in order to draw inference about cognitive events. In

particular this thesis will be focused on evoked EEG. That is, EEG time-locked to certain

events or visual stimuli.

1.2.2 Behavioral models of decision making

Drift-diffusion models are a widely-used class of models used to jointly predict humans’

choices and reaction times (RT) during two-choice decision making (Link and Heath, 1975;

Ratcliff, 1978; Ratcliff and McKoon, 2008). This family of models has been useful in explain-

ing between- and within-participant variability in simple decision making experiments (Van-

dekerckhove and Tuerlinckx, 2008; Vandekerckhove et al., 2011). “Neural” drift-diffusion

models have also successfully incorporated functional magnetic resonance imaging (fMRI)

and EEG recordings into hierarchical models of choice-RT (e.g. Mulder et al., 2014; Turner

et al., 2015; Nunez et al., 2015, 2017; van Ravenzwaaij et al., 2017). While other similar

models of choice-RT have successfully predicted behavior during visual decision making, such

as the simpler linear ballistic accumulator model (Brown and Heathcote, 2008) or a more

complicated drift-diffusion model that intrinsically accounts for trial-to-trial variability of

cognitive parameters (Ratcliff, 1978; Ratcliff and McKoon, 2008), in this work a diffusion

model was chosen that allows for tests of specific predictions from models of attention (i.e.

Smith and Ratcliff, 2009; Lu and Dosher, 1998) and specific cognitive interpretations of

evoked-EEG measures, while being simple-enough to fit with reasonable computational de-

mands given hierarchical forms of the model (discussed below).

Diffusion models add to the analyses of humans’ behavior by assuming underlying cognitive

processes which have some empirical validation (Voss et al., 2004). In the drift-diffusion

model it is assumed that humans accumulate evidence for one choice over another (usually

modeled as a correct versus incorrect choice, as in this work, without loss of generality) in a
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random walk evidence accumulation process with an infinitesimal time step until sufficient

evidence is accumulated to exceed the threshold for one of the two choices. That is, evidence

Et accumulates following a Wiener process (i.e. Brownian motion) with drift rate δ and

instantaneous variance ς2 (Ross, 2014) such that

dEt
dt
∼ N (δ, ς2) (1.1)

Thus the drift rate δ describes mean rate of evidence accumulation within a trial and the

diffusion coefficient ς influences the variance of evidence accumulation within one trial, with

the true variance of the current evidence at any particular time t being ς2t. This process stops

once α relative evidence is accumulated for one choice over another. While neural coding

may be more sequential in nature, the infinitesimal approximation should hold true for small

time steps. Graphical representations of the diffusion model are provided in Figure 1.1 and

Figure 4.7.

A few additional parameters describe the simple diffusion model of speeded choice and reac-

tion time that is discussed in this work. The boundary separation α is equal to the amount

of relative evidence required to make choice A over choice B (or make a correct decision

over an incorrect decision). The boundary separation has been shown to be manipulated

by speed vs. accuracy strategy trade-offs (Ratcliff et al., 2001; Voss et al., 2004). The non-

decision time τ is equal to the amount of time within the reaction time of each trial that is

not dedicated to the decision making process. Typically non-decision time is assumed to be

equal to the sum of preprocessing time (“encoding” time) before the evidence accumulation

process and motor response time after a decision has been reached. The relative contribution

of these two non-decision times is not identifiable from behavior alone and therefore rarely

explicitly modeled. However their identification with EEG is discussed in Chapters 4 and
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5. A parameter β reflects the starting position of evidence, i.e. the bias towards one choice

over another. However the bias parameter is often assumed to be equal to .5 reflecting no

bias when modeling correct versus incorrect choices, as in this work.

All three of the parameters related to evidence accumulation are not identifiable with be-

havioral data alone (i.e. drift rate δ, the diffusion coefficient ς, and the boundary separation

α). Only two of the three parameters can be assumed to vary across subjects and trials

(e.g. multiplying ς by two and dividing both α and δ by two would result in the same fit

of choice-RT) (Ratcliff and McKoon, 2008; Wabersich and Vandekerckhove, 2014). Previous

studies have typically chosen to fix the diffusion coefficient ς to 1 or 0.1 (Vandekerckhove

et al., 2011; Wabersich and Vandekerckhove, 2014). However due to the predictions made

by Dosher and Lu (2000b), in that internal noise is suppressed by attention to the signal, we

choose to leave ς to vary. In studies covered in Chapters 2 and 3, the boundary separation α

was fixed at 1 for all trials and subjects. In Chapter 2, individual-differences in internal noise

as measured by ς was explicitly explored and therefore α was fixed to 1. In Chapter 3, our

primary analysis focused on the trial-to-trial variability in the evidence accumulation process

due to fluctuations in attention from trial-to-trial within individuals. Although trial-to-trial

speed-accuracy trade-offs can be experimentally introduced to find neural correlates of the

boundary separation (e.g. van Maanen et al., 2011) or may exist due to per-trial performance

feedback (Dutilh et al., 2012), we have no reason to believe that the boundary separation

will vary considerably from trial-to-trial within a subject due to changes in attention. In

Chapters 3 and 4, the majority of analyses fixed ς to 1 and explored condition-level and

individual differences in α, δ, and τ .
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Figure 1.1: A visual representation of the diffusion model. The orange line represents the
participant’s stochastic evidence accumulation process during one trial. When a participant
accumulates enough evidence over time for a correct or incorrect response (graphically rep-
resented by the top and bottom boundaries at 0 and α respectively) a decision is made.
The drift rate δ is the mean rate of evidence accumulation (evidence units per second) dur-
ing the participant’s decision time on one trial. The bias parameter β represents a bias of
the participant towards one choice or the other (set to 1

2
when the model parameters are

expressed in terms of correct over incorrect evidence instead of choice A over choice B evi-
dence). The non-decision time τ is the portion of the participant’s reaction time (RT) during
the trial not associated with decision making, equal to the sum of encoding/preprocessing
time τ (a) and motor response time τ (b), which are not separable with behavioral data alone.
The boundary separation parameter α represents the amount of relative evidence needed
to make a decision. Another parameter is the variability in the evidence accumulation pro-
cess, the diffusion coefficient ς. A larger ς indicates that a participant would have closer to
chance performance (i.e., accuracy of β) and more variable reaction time distributions. In
this trial the diffusion coefficient is large in comparison to a smaller diffusion coefficient as
shown by the light blue dashed line. The teal shaded areas represent the correct (top) and
incorrect (bottom) reaction time distributions. In this example the systematic component
of the decision making process is positive δ > 0 indicating a mean trend towards correct
responses. However, incorrect responses can still be reached due to the random component
of the evidence accumulation process.



1.2.3 Hierarchical Bayesian Models

Discovering the relationship of EEG data and cognitive parameters in models of human

behavior yields EEG measurements that are psychologically interpretable. EEG data can also

provide new and additional information about the cognitive process that cannot be discerned

with just behavior alone. Thus a flexible framework is needed for building and testing

theoretical models of the relationship of electrical observations from the human cortex (EEG),

human cognition, and human behavior. The hierarchical Bayesian modeling framework is

ideally suited for this joint analysis of multiple modes of data (Lee, 2011; Turner et al.,

2013). Bayesian inference refers to underlying probability theory and methods used to obtain

conclusions about data (for an entertaining introduction to Bayesian inference see Etz and

Vandekerckhove, 2017).

Hierarchical modeling refers to the mathematical procedure of assuming statistical rela-

tionships between multiple levels of data description, and recent advances in mathemati-

cal psychology have introduced hierarchical Bayesian versions of cognitive models (Rouder

et al., 2005; Vandekerckhove et al., 2011; Lee and Wagenmakers, 2014). Hierarchical mod-

eling often yields better estimates of parameters due to shrinkage, a phenomenon whereby

parameters are better estimated (and data are better described) because hierarchical rela-

tionships enforce similarity across similar parameters. For instance, the condition-level mean

accuracies in an experimental task could statistically describe observed subject-level mean

task accuracies though a normal distribution, and yield more predictive estimates of future

subject-level ability. Hierarchical Bayesian modeling also allows discovering complex rela-

tionships between multiple data types within cognitive neuroscience (see Turner et al., 2016)

by allowing simultaneous estimation of posterior distributions of multiple parameters. Fit-

ting procedures produce samples from probability distributions that display knowledge (i.e.

“uncertainty”) about parameter estimates and thus certainty about the effects of cognition

or EEG data in specific theoretical models. While relating neural data to human behavior
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can be performed in multiple ways, with multiple steps of analysis (see Turner et al., 2017,

for a review of these methods), the method used predominantly in the EEG domain so far

has been the joint modeling approach. The joint modeling approach relates cognitive pa-

rameters of behavioral models to either summary measures of EEG or cognitive parameters

derived from EEG measures.

1.3 Combining EEG and modeling techniques to dis-

cern human cognition

1.3.1 Single-trial analysis

Single-trial cognitive parameter estimation is often not possible when summarizing cognitive

parameters from behavioral data distributions over many experimental trials, such as in

drift-diffusion models. But task related cortical activity as measured by EEG have been

used in hierarchical Bayesian modeling to find estimates of cognitive parameters on single-

trials and to draw inference about the function of the electrocortical activity itself (e.g. Frank

et al., 2015; Nunez et al., 2017). Single-trial estimates of evidence threshold in quick decision

making tasks can be found by using theta-band power (4 to 8 Hz) of the prefrontal cortex,

thought to be a measure of strategic control (Cavanagh et al., 2011; Frank et al., 2015). On

trials when theta-band power of the frontal cortex is increased, it is expected that those

trials contain longer decision-making times due to a willingness by the subject to be less

fast but more accurate. This is thought to be a marker of a top-down cognitive control of

strategy during decision making. Corroborating evidence of frontal-lobe decision strategy

control was found by (Herz et al., 2017). Herz et al. (2017) found that theta-band (2-8 Hz)

local field oscillations in the subthalamic nucleus (STN; coupled to theta-band activity in

the frontal EEG electrode Fz) also explained trial-to-trial differences in decision strategy. It
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is expected that future work will yield trial-to-trial estimates of the decision strategy (e.g.

boundary separation α) parameter as assumed by drift-diffusion models of decision making

by obtaining trial-to-trial power estimates of the frontal theta-band.

Single-trial estimates of evidence accumulation rate during quick decision making and non-

decision time (time in milliseconds of a human reaction time not related to a decision) can

also be obtained using hierarchical Bayesian modeling with event-related potentials (ERP)

estimates on single trials, time-locked to the onset of visual stimuli. Such work is described

in Chapter 3. It was found that ERP measures described trial-to-trial differences in visual

encoding time (a component of non-decision time during reaction time) and trial-to-trial

differences in evidence accumulation rate, as described by trial-level estimates of the drift

parameter. However stronger EEG correlates of cognitive parameters should be found in

order to better describe variation in reaction times across trials. A growing body of work

indicates that rising amplitudes over parietal cortex during speeded decision-making may

describe the evidence accumulation process itself (e.g. O’Connell et al., 2012; Twomey et al.,

2015; van Ravenzwaaij et al., 2017; Pisauro et al., 2017). Therefore single-trial estimates of

such amplitudes (such as single-trial estimates of P300 ERP potentials) would be beneficial

for understanding how cognitive processing on particular trials operates within a subject

during decision-making.

1.3.2 Subject-level analysis

Sometimes there is reason to believe that certain EEG measures are strong correlates of a

particular cognitive process. These EEG measures can inform the cognitive model. EEG

correlates of additional cognitive processes, such as visual attention, add inference about

the overall human cognitive process when used in combination of behavioral modeling. For

example, steady-state visual evoked potentials (SSVEPs) are the product of a frequency-
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tagging paradigm where EEG amplitude is measured at the temporal frequency of a flick-

ering visual stimulus, such that SSVEPs can be used to measure visual attention. Nunez

et al. (2015, ; Chapter 2) found that individual differences in SSVEPs predicted individual

differences in drift rates and diffusion coefficients (a measure of within-trial evidence accu-

mulation variance) across subjects which in turn explained individual differences in reaction

time distributions and accuracy measures. That is, in Chapter 2 it is found that differ-

ences in experimental participants attention (both visual noise suppression and visual signal

enhancement) as measured by SSVEPs related to some specific differences in participants

cognition during decision-making.

Another approach to combining EEG measures is the direct input approach as described by

(Turner et al., 2017). The direct input approach would replace a cognitive parameter in a

Bayesian model directly with an observed EEG measure. While no published material was

found using this technique with EEG and hierarchical Bayesian methods, single-neuron data

has been embedded in models of perceptual decision making to estimate the evidence accu-

mulation process (e.g. Palmeri et al., 2015). The extension to EEG and hierarchical Bayesian

methods is a simple extension and may be expanded in the future if solid theoretical ground

exists for its use. O’Connell et al. (2012) discovered a parietal EEG measure time-locked to

the response, thought to track the evidence accumulation process during perceptual decision

making. If verified, this EEG measure could be used to discern the rate of evidence accu-

mulation per subject, freeing estimation of the evidence boundary and within-trial variance

parameter often ignored in the literature (by fixing the parameter to a certain value). In

addition, initial work in Chapter 4 suggests that visual encoding time may be separable from

decision and motor preparation time, traditionally unidentifiable with behavior alone, using

fixed relationships between early evoked potentials time-locked to visual stimuli and visual

encoding time.
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1.3.3 Words of caution

Caveats to the approach of embedding EEG in hierarchical Bayesian models are given by

Hawkins et al. (2017). Theoretically informed modeling remains important because the

cognitive correlates in observed EEG measures are often not clear. EEG measures must have

low measurement noise variance, otherwise many trials are needed to differentiate cognitive

models. EEG is also very prone to muscle artifact influence in certain frequency bands,

so optimal artifact correction is important before inputting EEG measures into hierarchical

Bayesian models (see Section 7 of Nunez et al., 2016). Finally, theoretical generative models

of EEG must be developed in the future to learn useful combined generative models of

observed cortical dynamics, cognition, and human behavior.

1.3.4 Publicly available software

Modern software allows hierarchical Bayesian models to be easily created, built, and tested

with both behavioral and EEG data using multiple types of Markov Chain Monte Carlo

sampling techniques. Although still being developed and improved, JAGS (Plummer, 2003),

Stan (Carpenter et al., 2016), and PyMC3 (Salvatier et al., 2016) are all recommended tools

for these steps. A more specific toolbox is HDDM: a Python software package that can per-

form linear regression between calculated EEG signals on single-trials (and on the condition-

and subject-levels) and parameters of drift-diffusion models of accuracy and reaction time

data (Wiecki et al., 2013). Hawkins et al. (2017) created R code and examples for sampling

from hierarchical drift-diffusion models (HDDM) with neural inputs and single-trial neural

regressors, located here: https://osf.io/ws3fn. MATLAB and JAGS example code per-

forming some hierarchical drift-diffusion model analyses with single-trial neural inputs can

be found at https://github.com/mdnunez/mcntoolbox/ (Nunez et al., 2017). While the

current literature and software are biased towards models of quick decision-making. The
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tools needed to extend these methods to models of other types of human cognition combined

with EEG is readily available.
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Chapter 2

Individual differences in attention

influence decision making

2.1 Introduction

The joint analysis of physiological and behavioral data has been a topic of recent interest. In

a string of publications, a number of research groups (Cassey et al., 2014; Forstmann et al.,

2010; Turner et al., 2013) have presented work in which neurophysiological data are linked to

parameters of cognitive or behavioral process models (see also Palmeri et al., 2017). The goal

of these modeling exercises is not only to evaluate the predictive power of brain activity for

behavior, but also to elucidate the nature of this prediction. The use of cognitive models with

neural data and cognitive parameters permits more psychologically interpretable labeling of

the neurophysiological measurements, providing links between brain activity, cognition, and

behavior.

In the present paper, we apply a cognitive model constrained by EEG data to fit accuracy

and response times of multiple individuals from a perceptual decision making task. The
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goal of the model fit is twofold: 1) to demonstrate the superior generalizability of such a

model as compared to model variants without neural input components and 2) to evaluate

the hypothesis that individual differences in enhancement or suppression of visual attention,

as measured by EEG, contribute to individual differences in cognition and thus to individual

differences in accuracy and/or reaction time in the task.

In order to show out-of-sample generalizability, we first fit the model to a training set of

participants and obtain the requisite (population-level) linking parameters, and then make

predictions about the behavior of a new participant to which the model was not trained.

In the sections that follow, we will describe 1) the cognitive process model that we have

chosen, 2) the task to which it is applied and the EEG data that we collected, 3) a series

of three models of increasing complexity, of which the model with external attentional EEG

covariates is the most complex, 4) the results of the generalization exercise and 5) evaluation

of the hypothesis.

2.1.1 Steady-state visual evoked potentials as a measure of atten-

tion

In this study, we will demonstrate how attentional mechanisms can explain individual dif-

ferences in perceptual decision making as estimated by a cognitive model. In a typical

visual attention experiment, the signal stimulus is attended and preferentially processed

while competing stimuli (i.e., visual noise) are not further processed. A number of studies

have demonstrated that a measure of the deployment of attention can be obtained by using

flickering stimuli and electroencephalographic (EEG) recordings of the (frequency tagged)

steady-state visual evoked potentials (SSVEPs) (Morgan et al., 1996; Müller et al., 1998;

Ding et al., 2006; Bridwell and Srinivasan, 2012; Garcia et al., 2013). SSVEPs are narrow

band responses at the visual flicker frequencies and flicker harmonics of a stimulus (Regan,
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1977). When a stimulus is attended, the SSVEP is enhanced, and when a stimulus is not at-

tended or suppressed, the SSVEP is diminished. This approach has been used to investigate

individual differences in attention strategy in detection and discrimination tasks. Bridwell

et al. (2013) found that only a subset of participants could deploy the optimal attention

strategy and modify their strategy by the task demands. An SSVEP approach has also been

used to show that individuals are trained by their own experiences. Individuals with atten-

tional training due to a history of fast-action video gaming have been found to preferentially

suppress noise rather than enhance the signal, and those individuals performed better at

vigilance tasks (Krishnan et al., 2013).

2.1.2 The case for hierarchical Bayesian models

The hierarchical Bayesian process modeling framework is ideally suited for the joint analysis

of multiple modes of data—Turner et al. (2013) describe three such joint modeling strate-

gies and Vandekerckhove (2014) describes a fourth. One strategy afforded by hierarchical

Bayesian models involves constraining the estimation of cognitive process models by intro-

ducing the brain data as (fixed) covariate information. This strategy carries the disadvantage

that it does not by default allow for measurement variance on the neurophysiological side,

but has the advantage of being relatively straightforward to implement in a computationally

efficient fashion. By conditioning the estimation of the cognitive parameters on brain data (or

other external covariates), it is expected that unexplained variability between participants

can be reduced, and consequently that such a model should perform better in generalization

tests.

Interindividual variability (i.e. variability in the participant-level cognitive parameters;

changes over subscript j) in diffusion models has been previously analyzed by fitting a

diffusion model to each participant individually then comparing parameters across model
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fits. The individual differences were then gauged by statistical analyses on the models’ re-

sulting maximum likelihood parameter estimates (Ratcliff et al., 2001; Wagenmakers et al.,

2008). Some limitations to this technique are that large sample sizes are needed for diffu-

sion model parameter estimation, that shared condition-level differences across individuals

cannot be easily evaluated (Wagenmakers, 2009; Vandekerckhove et al., 2011), and that sta-

tistical uncertainty is not propagated across stages of the analysis. Hierarchical Bayesian

methods along with Monte Carlo sampling techniques allow for the estimation of complex

models. These methods have been used to explain individual differences in the diffusion

model and other cognitive models without the need for large sample sizes (Lee, 2008; Lee

and Newell, 2011; Vandekerckhove et al., 2011). Additionally, the hierarchical framework

allows for between-participant variability to be explained when each participant’s diffusion

model parameters are functionally related to known exogenous data (e.g., physiological data).

2.1.3 Constraining model parameters with EEG data

We assume that brain activity compels cognition, which in turn drives participant behavior.

Assuming attention constrains one or more of the cognitive processes in perceptual decision

making, then as a consequence of attentional mechanisms we expect SSVEPs to help explain

between-participant variability in the parameters of the diffusion model and thus between-

participant variability in RT and accuracy. In one study, an occipital SSVEP amplitude

was shown to track visual sensory evidence over the time course of a trial, suggesting that

SSVEPs can reflect the evidence accumulation process itself (O’Connell et al., 2012). The

experimental stimulus used in this study involves a flickering signal overlayed on time-varying

visual noise, designed to evoke separate SSVEP responses to the signal and the visual noise,

which we expect will explain individual differences in the model parameters and behavior.

We hypothesize increased within-trial evidence accumulation rates, reflected by increased
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drift rates, for those subjects who suppressed attention to the visual noise. We further hy-

pothesize that another benefit of attention for RT and accuracy is a result of reduced within-

trial variability in the accumulation of evidence. Thus, we predict an across-individuals

relationship between enhanced attention to the signal and decreased diffusion coefficients.

As mentioned above, one of the parameters of the diffusion model must be fixed rather than

estimated (either diffusion coefficient ς, drift rate δ, or boundary separation α). For the

present study a variable boundary separation across conditions is not a valid interpretation

of the data since the changes between conditions occur unannounced, leaving the participant

with no opportunity to adapt strategies (e.g., switch between a speed or accuracy strategy)

in response to stimulus changes. In our parameterization, we leave the diffusion coefficient

ς free to vary, set α to one evidence unit, and assume no bias (β = 1
2
) towards correct

responses. The joint density f of RT t and accuracy w of this simplified diffusion model

is given in Equation 2.1. The density is derived from the limiting approximation given by

Ratcliff (1978) where α = 1 and z = 0.5.


f(t, w = 0 | ς2, τ, δ) = πς2e

− 1
2

[
δ
ς2

+ δ2

ς2
(t−τ)

]∑+∞
k=1

[
k sin

(
1
2
πk
)
e−

1
2
k2π2ς2(t−τ)

]

f(t, w = 1 | ς2, τ, δ) = f(t, w = 0 | ς2, τ,−δ)

(2.1)

In what follows, we will use the effect of attention, as measured by SSVEPs, to constrain

diffusion model parameter estimates (in our case δj, ςj, and τj). In particular, we assume

that, on each trial, a participant’s attention is reflected in phase locking (i.e. SSVEPs) to

the attended visual signal and decreased phase locking to the unattended visual noise.

We will demonstrate that the hierarchical Bayesian SSVEP-driven diffusion model has pre-
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dictive ability as well as descriptive ability—more specifically, that our ability to predict

each participant’s accuracy and RT behavior is improved by including the SSVEP measures

of attention processes.

2.2 Material & Methods

2.2.1 Participants

The following study was approved by the University of California, Irvine Institutional Review

Board and was performed in accordance with APA standards. Informed consent was obtained

from each of the seventeen participants (8 females and 9 males) who took part in the study.

The mean age of sixteen of the participants was 25 with an age range of 21 to 30. Another

participant was over 45 years of age. Sixteen participants self identified as being right handed

while another identified as being left or ambidextrous. All participants had at least 20/30

vision or corrected vision as measured by a visual acuity chart available on the internet

(Olitsky et al., 2013). No participants reported any history of neurological disorder. Each

participant completed the experiment in one session within 2.5 hours.

2.2.2 Experimental Stimulus

The participants were given a two-alternative forced-choice perceptual decision making task

in which they were asked to differentiate the mean rotation of bars within a circular field

of bars that deviated randomly from mean rotation. One half of the trials had a mean bar

rotation of 45◦ while the other half had a mean rotation of 135◦. The bar field was flickered

against a time-varying noise pattern.

The participants viewed each trial of the experimental stimulus on a monitor in a dark room.
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Figure 2.1: The time course of one trial of the experimental stimulus. The participant first
fixated on a black cross for 750 ms indicating the beginning of a trial. The participant then
observed visual contrast noise changing at 8 Hz for 750 ms while maintaining fixation. A
circular field of small oriented bars flickering at 15 Hz overlaid on the changing visual noise
was then shown to the participant for 1000 to 2000 ms. The task was to indicate during this
response interval whether the bars were on average oriented towards the “top-right” (45◦

from the horizontal line; as in this example) or “top-left” (135◦) corners. It was assumed
that the participant’s decision making process began at the start of the response interval.
After the response interval, the fixation cross was shown in isolation for 250 ms to alert the
participant that the trial was over and to collect remaining responses.



The time course of one trial is shown in Figure 2.1. Participants were positioned such that

the entire circular field of small oriented bars had a visual angle of 9.5◦. Within each trial

the participant first saw a black cross for 750 ms in the middle of the screen on which they

were instructed to maintain fixation throughout the trial. The participant then observed

visual contrast noise changing at 8 Hz for 750 ms; this time period of the trial will be

referred to later in this paper as the noise interval. The participant then observed a circular

field of small oriented bars flickering at 15 Hz overlaid on the square field of visual noise

pattern changing at 8 Hz and responded during this time frame, henceforth referred to as

the response interval. The visual noise and bar field are modulated at constant rates (8 and

15 Hz respectively) to evoke frequency-tagged signal and noise responses in the cortex which

we measured as steady-state visual evoked potentials (SSVEPs). The SSVEP responses at

the signal frequencies (15 Hz and its harmonics) and at the contrast noise frequencies (8 Hz

and its harmonics) were used to measure the effect of attention to the signal stimulus and

noise stimulus. The display time of the response interval was sampled between 1000 and

2000 ms from a uniform distribution. After this display period the black fixation cross was

shown in isolation for 250 ms to alert the participant the trial was over and to collect any

delayed responses.

Three levels of variance of bar rotation and three levels of contrast noise were used to

modulate the task difficulty. In the first level of bar rotation variance, each bar was drawn

from a uniform U(−30◦, 30◦) distribution centered on the mean angle. In the two other levels,

the rotations of each bar were drawn from U(−35◦, 35◦) and U(−40◦, 40◦) respectively. The

three levels of contrast noise were 30% contrast noise, 45% contrast noise and 60% contrast

noise. The 30% contrast noise condition was obtained by the addition of a random draw

from a U(−15%, 15%) distribution to the luminance of each pixel in a square field. Baseline

luminance was 50%. The other contrast noise conditions were obtained similarly. Each

participant was shown 90 trials from each bar rotation-noise condition combination.
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The bar rotation (BR) variance manipulation was hypothesized to modulate each partic-

ipant’s diffusion coefficient since the participant would have more variable information in

harder trials. Considering each bar’s rotation as a unit of information contributing to a ‘left’

or ‘right’ response, information would be more variable in trials that sampled the bar rota-

tions from wider uniform distributions. It was thought that contrast noise would degrade

the amount of information each bar gave to the decision process thus leading to smaller drift

rates in trials with higher noise contrast.

2.2.3 Behavior and EEG Collection

Participants first completed a training session of 36 trials each. Participants were asked to

complete a second training set if their percentage accuracy was subjectively judged by the

experimenter to not converge to a stable value. Each participant completed 6 blocks of 90

trials each for a total of 540 trials with breaks between each block of variable time. Each

trial lasted randomly (uniformly) from 2.75 to 3.75 seconds. Participants were asked to

respond during the 1 to 2 second response interval as accurately as possible, with no-answer

trials considered as incorrect. To maintain participant performance, auditory feedback was

given after the response interval to the alert the participant if they were correct or incorrect.

Performance feedback was also provided between blocks by displaying on the screen the

percentage of trials answered correctly in that block. The behavioral data consists of each

participant’s accuracy and reaction time during each trial.

High-density electroencephalography (EEG) was collected using Electrical Geodesics, Inc.’s

128-channel Geodesic Sensor Net and Advanced Neuro Technology’s amplifier with electrodes

sitting on the participant’s scalp throughout the duration of the experiment. Electrical

activity from the scalp was recorded at a sampling rate of 1024 samples per second with

an online average reference using Advanced Neuro Technology’s digitization software. The
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EEG data was then imported into MATLAB for offline analysis.

Linear trends were removed from the EEG data. As we were only interested in 1 to 50 Hz

EEG, the following filters were applied to each channel: 1) A high pass Butterworth filter

with a 1 Hz pass band with 1 dB ripple and 0.25 Hz stop band with 10 dB attenuation,

2) a stopband Butterworth filter with 59 and 61 Hz pass bands with 1 dB ripple and 59.9

to 60.1 Hz stop band with 10 dB attenuation (to remove power-line noise), and 3) a low

pass Butterworth filter with a 50 Hz pass band with 1 dB ripple and 60 Hz stop band

with 10 dB attenuation. Artifactual data thought to be generated by phenomena outside

of the cortex were removed from the EEG data using a paradigm involving Independent

Component Analysis (ICA): First, any trials or channels were rejected that had time-courses

unusual for cortical activity and/or had properties that ICA is deemed to not extract well,

such as trials with high frequency activity indicative of muscle activity, trials or channels

with high 60 Hz amplitude indicative of power-line noise suggesting poor electrode-to-skin

connection, or trials with sudden high amplitude peaks that cannot be generated by cortical

activity (Delorme et al., 2007). Second, ICA was used to remove linear mixtures of channel

time-courses that did not subjectively correspond to EEG data in spatial map on the scalp, in

power spectrum, and/or in event-related potential (ERP). Typical artifactual components

include: those components with spatial maps of highly weighted electrodes near the eyes

suggestive of eye movements, those components with high amplitudes at high frequencies

and low amplitudes at low frequencies suggestive of muscle activity, and spatial maps of

highly weighted singular electrodes suggestive of poor electrode-scalp connectivity. A final

cleaning step was performed by rejecting any trials that had high amplitudes not typical of

cortical electrical activity.

For each participant, steady-state visual evoked potentials (SSVEPs) to the visual noise and

signal (the circular bar field) were found at each electrode. In this experiment a steady-

state response was defined by the consistency in phase at the frequencies of the stimulus
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(8 and 15 Hz) and the harmonic frequencies of the stimulus (16, 24, 32, 40, 48, 30 and 45

Hz). The uniformity of phase across trials was measured by the Phase Locking Index (PLI)

across trials. The PLI is a statistical characterization of phase synchronization resulting

from an experimental stimulus and has been shown to be successful in characterizing cortical

signals (Rosenblum et al., 1996; Sazonov et al., 2009). The phase locking index ignores signal

amplitude and ranges from 0 (all trials out-of-phase) to 1 (all trials in-phase) (Tallon-Baudry

et al., 1996). The equation used for PLI is provided in Equation 2.2. PLI is the average

of ≈ 540 trials of amplitude normalized Fourier coefficients of the time interval. For each

electrode e and participant j, PLI is defined as a function of frequency f .

PLIej(f) =

∣∣∣∣∣ 1

540

540∑
i=1

Fiej(f)∣∣Fiej(f)
∣∣
∣∣∣∣∣ (2.2)

The steady-state responses to the visual noise were analyzed based on both the 750 ms noise

interval and the first 1000 ms of the response interval while the steady-state responses to the

signal were analyzed based only on the first 1000 ms of the response interval. Because steady-

state responses located in parietal electrodes have been successfully related to attentional

mechanisms in past studies (Ding et al., 2006; Bridwell and Srinivasan, 2012), electrical

activity at parietal electrodes was hypothesized to be most descriptive of cognitive processes

in the visual decision making task. The subject mean PLI at all frequencies averaged over

parietal channels is shown in Figure 2.2. Topographic maps of the distribution of the PLI

are shown at the fundamental and first two harmonics for signal and noise frequencies. It is

clear that the SSVEP is broadly distributed over frontal, parietal, and occipital networks, as

has been found in other studies (Ding et al., 2006; Bridwell and Srinivasan, 2012; Krishnan

et al., 2013). The mean PLIs over prefrontal, frontal, central, parietal, and occipital electrode

groups for each of the evoked frequencies were used as predictors in the model.
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Figure 2.2: The subject mean parietal channel PLI at all frequencies in the noise interval
(top panel) and the response interval (bottom). The resolution of the the PLI spectra in
the top plot is approximately 1.3 Hz due to the PLI being a function of Fourier transforms
of 750 ms epochs. The resolution of the PLI spectra in the bottom plot is 1 Hz as the
Fourier transforms are of 1000 ms epochs. The 15 and 16 steady-state responses during the
response interval are separable when using 1000 ms epochs. Also shown are subject mean
PLI topographies (at 8, 16, and 24 Hz during the noise interval and 15, 30, and 45 Hz during
the response interval, each on a standardized scale) indicating where the maximum subject
mean PLI is located on the scalp in relation to the parietal electrodes (highlighted green).
It is clear from these topographies that using only parietal electrodes will not capture all of
steady-state response information. An index of electrode locations is also provided in the
top right. Prefrontal, frontal, central, parietal, and occipital electrode groups are colored
light blue, teal, orange, green, and blue respectively.



We expect the evoked cortical networks to change dependent upon the flicker frequencies of

the stimulus (Ding et al., 2006; Bridwell and Srinivasan, 2012), as shown by the stimulus

response in Figure 2.2 where the spatial distributions of the fundamental and harmonic

responses are quite different. However we do not expect the behavior of these harmonics to

be uncorrelated. To avoid multicollinearity, we performed two principal components analyses

(PCAs; on the noise and signal frequencies separately) to obtain a smaller number of PLI

measures from uncorrelated cortical networks. The first PCA reduced 60 PLI variables

(5 cortical locations by 6 noise harmonics in both the noise and response intervals) to 16

principal components. The second PCA transformed 15 PLI variables (5 cortical locations by

3 signal harmonics) to 15 principal components. Our criteria for which principal components

to include in the hierarchical Bayesian models were 1) based upon the improvement of in-

sample predictive power as we increased the number of principal components, resulting in

candidate principal components and 2) then based upon the out-of-sample predictive power

of the candidate principal components.

2.2.4 Hierarchical Bayesian models

All trials from every participant were used for model fitting except those trials in which

there was deemed to be EEG artifact and those trials during which the participant made no

response or responded more than once. Since our models do not account for non-decision

making trials, exceedingly fast trials (faster than 250 ms) were excluded as well.

The marginal likelihood for the model—that is, the predicted distribution of the data con-

ditional on all parameters—is the first passage time distribution of a Wiener process with

constant drift. We call this probability density function the Wiener distribution. For each

trial i, subject j, and condition k, the observed accuracy wijk and reaction time tijk were

combined in a two-element vector yijk. These values were then assumed to be drawn from a
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joint distribution:

yijk ∼ W(δijk, ςijk, τijk). (2.3)

We applied a sequence of three models—each adding a new feature—to the data.

2.2.5 Model 1: No individual differences

We assumed in Model 1 that all three diffusion model parameters were constant across

participants (i.e., that all participants were identical), and depended only on the experi-

mental condition k. The diffusion model was fit to the reaction time and accuracy data of

all 17 participants under the assumption that all participants had the same drift rate δk,

diffusion coefficient ςk, and non-decision time τk that were variable across condition k but

not variable across participant j. Here k denotes both the particular bar rotation condition

and the particular contrast noise condition-level, k = 1, . . . , 9. A graphical representation of

Model 1 is provided in Figure 2.3(a).

The assumptions of the model, together with the prior distributions for the parameters,

appear below. The priors for the drift rate δk and non-decision time τk were truncated

normal distributions due to the knowledge of the natural constraints of the diffusion model

and prior knowledge of acceptable values for similar tasks. Note that the second parameter

of the normal distributions below represent the variance.

δjk = δk, δk ∼ N (0.0, 5) ∈ (−9, 9)

ςjk = ςk , ςk ∼ N (0.5, 4)

τjk = τk, τk ∼ N (0.3, 4) ∈ (0, 1)
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Figure 2.3: A graphical representation of Model 1 (a) and Model 2 (b). In Model 1,
drift rates δk, diffusion coefficients ςk, and non-decision times τk were assumed to vary over
conditions k but remain invariant across participants j and trials i. There were three bar
rotation conditions and three contrast noise conditions. Here k denotes each bar rotation
and contrast noise pair. In Model 2, drift rates δjk, diffusion coefficients ςjk, and non-
decision times τjk were assumed to vary over both conditions and participants. Each of
these parameters are in turn assumed to be drawn from normal distributions with means
that varied over conditions k and with variances that did not vary across conditions.



2.2.6 Model 2: Individual differences

In Model 2 we assumed that participants differ but are draws from a single superordinate

population (i.e., participants are exchangeable). Consequently, the drift rate δjk, diffusion

coefficient ςjk, and non-decision time τjk varied by both subject j and condition k. Subject-

level parameters were assumed to be drawn from normal distributions with means that were

variable over condition only. Variances were assumed to be invariant across conditions to

maintain model simplicity (i.e., the model assumes homoskedasticity in the parameters). The

prior distributions of the parameters are listed below.

(δjk | νk, η) ∼ N (νk, η) ∈ (−9, 9), νk ∼ N (0.0, 5), η ∼ Γ(6, 0.10)

(ςjk | µk, ψ) ∼ N (µk, ψ) , µk ∼ N (0.5, 4), ψ ∼ Γ(4, 0.05)

(τjk | θk, χ) ∼ N (θk, χ) ∈ (0, 1) , θk ∼ N (0.3, 4), χ ∼ Γ(5, 0.01)

A graphical representation of Model 2 is provided in Figure 2.3(b).

2.2.7 Model 3: Individual differences with neural correlates

With Model 3, we will attempt to explain any individual differences in cognitive parameters

by introducing the neural data as explanatory variables. The model is similar to Model 2,

but additionally includes a regression structure to explain variability in subject-level model

parameters with steady-state PLI values.

In order to avoid multicollinearity, PLIs were first subjected to a principal component analysis

(PCA), and the resultant independent components were used as predictors. The PCA was

performed on the noise and signal frequencies separately. The first PCA reduced 60 PLI

variables to 16 principal components and the second PCA transformed 15 PLI variables

into 15 components. The criterion used to determine which principal components to include

was the out-of-sample predictive power of each model. Predictive power was measured as
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R2
pred, a measure of the percentage of total between-subject variance explained, in this case

of the correct-RT medians of each condition. The equation used for R2
pred is provided in the

appendix.

Subject-level drift rates δjk, diffusion coefficients ςjk, and non-decision times τjk were assumed

to be drawn from normal distributions with means of the form αk+xᵀ
jγ where αk is condition

k’s effect on the subject-level cognitive parameter, xj is a vector of principal components,

and γ is a vector of regression coefficients (i.e., the effect of each principal component on the

cognitive parameter). The graphical representation of the model is provided in Figure 2.4.

The priors of the variance parameters are the same as in Model 2. Weakly informative

prior distributions of N (0.0, 10) were given to the weight variables that make up the vectors

γ(δ), γ(ς), and γ(τ). The other hyperpriors and priors were:

(
δjk | α(δ)k,γ(δ), η

)
∼ N

(
α(δ)k + xᵀ

jγ(δ), η
)
∈ (−9, 9), α(δ)k ∼ N (0.0, 5)(

ςjk | α(ς)k,γ(ς), ψ
)
∼ N

(
α(ς)k + xᵀ

jγ(ς), ψ
)

, α(ς)k ∼ N (0.5, 4)(
τjk | α(τ)k,γ(τ), χ

)
∼ N

(
α(τ)k + xᵀ

jγ(τ), χ
)
∈ (0, 1) , α(τ)k ∼ N (0.3, 4)

2.2.8 Posterior sampling

We used the JAGS software (Plummer, 2003) to analyze the data by drawing samples from

the joint posterior distribution of the parameters of the hierarchical models. To compute

the likelihood function associated with the assumed decision making process (the Wiener

distribution), we used the jags-wiener module (Wabersich and Vandekerckhove, 2014). This

allowed us to explain accuracy and response time distributions within conditions and across

subjects. For each model, samples from the posterior distributions of the parameters were

found by running JAGS with six Markov Chain Monte Carlo (MCMC) chains of length

21000, with 1000 burn-in (discarded) samples and a thinning parameter of 10 (keeping only

every 10th sample) resulting in six joint posterior distribution estimates of 2000 samples
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Figure 2.4: Graphical representation of Model 3. Drift rates δjk, diffusion coefficients ςjk,
and non-decision times τjk were assumed to vary over both conditions and participants. Each
of these parameters are assumed to be drawn from normal distributions with means of the
form αk + xᵀ

jγ, where xj is the vector of SSVEP responses of subject j, and with variances
that did not vary across conditions. As an example, α(τ)k is the condition effect on the
non-decision time and γ(τ) reflects the change in non-decision time (seconds) due to a one
SSVEP unit difference across two participants.



each. We used the R̂ statistic to compare within-chain variance to between-chain variance

in order to assess convergence of the MCMC algorithm (Gelman and Rubin, 1992).

2.2.9 Posterior Predictive Distributions

To quantify model fit, in-sample posterior predictive distributions of accuracy-RTs from

5000 simulated experiments were estimated by sampling from the posterior distributions of

subject-level parameters for each of the three models. That is, s = 1, . . . , 5000 samples

were randomly drawn from the subject-level posterior distributions of the model parameters

producing 5000× 1 column vectors for each drift rate δ
(s)
jk , diffusion coefficient ς

(s)
jk , and non-

decision time τ
(s)
jk . The samples

(
δ
(s)
jk , ς

(s)
jk , τ

(s)
jk

)
were used to generate accuracy-RT samples

from the Wiener distribution (with the rejection sampling algorithm described in Tuerlinckx

et al., 2001).

In order to find candidate PLI predictors for Model 3 and also to gauge the ability of each

model type to predict new subjects’ behavioral data, in-sample and out-of-sample posterior

predictive distributions were generated using the PLI coefficients and posterior distributions

of the condition-level parameters to find predictive distributions of the subject-level param-

eters. This procedure does not use samples from the subject-level posterior distributions

directly, but estimates the subject-level parameters from the posteriors of the condition-

level parameters and EEG covariates before finding a posterior predictive distribution of

accuracy-RTs. Samples from the posterior predictive distribution of subject j’s mean drift

rate on a trial in condition k are drawn from a normal distribution with mean α
(s)
(δ)k+G

(s)
(δ)x2

where x2 is the vector of subject j’s principal component PLI values, α
(s)
(δ)k are samples from

the posterior distribution of condition k’s effect on drift rate, and G
(s)
(δ) is a matrix consisting

of samples from the posterior distributions of the PLI coefficients for drift rate. For in-sample

prediction, we fit different possible forms of Model 3, with different numbers of principal
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components, 17 times each to generate in-sample posterior distributions to find candidate

principal components. Then for out-of-sample prediction, we fit different possible forms of

Model 3, with the resulting candidate principal components, 17 times with each participant

removed from the data set. In the previously mentioned example, both the condition effect

on drift rate and PLI coefficients are estimated from the model with all subjects except j

for out-of-sample prediction.

2.3 Results

For all models and all parameters, convergence of the Monte Carlo chains was satisfac-

tory: R̂ ≤ 1.01 for all parameters (R̂ ≥ 1.10 is conventionally taken as evidence for non-

convergence; Gelman and Rubin, 1992).

2.3.1 Model 1: No individual differences

Marginal posterior distributions of the parameters of Model 1 are plotted in Figure A.1 of

the appendix. The variability of evidence units gained per second ςk increased as bar rotation

variance grew. Evidence units gained per second, drift rate δk, was found to decrease both

with larger contrast noise and larger bar rotation. The parameter estimates seem to show

a complex interaction effect of bar rotation and contrast noise on non-decision time τk.

However, the results from Model 2 will indicate that Model 1 is sufficiently misspecified

that this interaction cannot be interpreted in a meaningful way.
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2.3.2 Model 2: Individual differences

The marginal posterior distributions of the condition-level parameters are shown in Fig-

ure A.1 of the appendix. At the condition level, the effects of the experimental manipu-

lations on drift rate and the diffusion coefficient remain similar to the results of Model 1:

Mean drift rates νk were found to decrease as bar rotation variance grew, smaller mean drift

rates were observed in the high visual noise condition, and mean diffusion coefficients µk

increased as bar rotation variance grew. Main effects on the condition-level non-decision

time not clearly observable in Model 1 were found in Model 2. Mean non-decision time θk

was slow when the bar rotation variance was high, and participants were estimated to have

quick non-decision times in low visual noise conditions.

The complex interactive pattern of non-decision times obtained in Model 1 no longer ap-

pears.

By adding subject-level parameters, the current model not only provides a clearer picture

of condition-level behavior of all participants, but describes the individual differences of the

participants modeled by the subject-level parameters, δjk, ςjk, and τjk. Posterior distributions

for the subject-level parameters of the easiest condition (±30◦ bar rotation and 30% noise)

are provided in Figure A.2. Due to subject-level parameters deviating from the condition-

level parameter’s means, this model is able to predict within-sample data well compared to

the previous model. Percent variances explained (R2
pred) of correct-RT subject medians by

within-sample posterior prediction are provided in Table 2.1. Model 2 explains at least

86.3% of median correct-RT between-subject variance in each condition.
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2.3.3 Model 3: Individual differences with neural correlates

The results of Model 2 clearly demonstrate differences between participants’ cognition in

the perceptual decision making task. We were further able to explain the differences in the

cognitive variables using the neural data: Model 3 was fit in a similar manner to Model 2,

but additionally included principal components of the steady-state PLIs as regressors, as

represented by the vector xj , on the subject-level model parameters.

We generated in-sample posterior predictive distributions using condition-level parameter

posterior distributions (as opposed to in-sample posterior prediction from subject-level pa-

rameters), PLI coefficient posterior distributions, and PLI variables from each subject to

find principal components that best predicted correct reaction time distributions. A plot

of in-sample unexplained median correct-RT between-subject variance as a decreasing func-

tion of number of principal component (PC) regressors included in the model is provided in

Figure A.3 of the supplemental materials. Based on this analysis, principal components 2,

4, and 7 of both the noise and signal sets were tested further to find the model that best

predicted out-of-sample reaction time of correct responses.

Model 3 was the model that best predicted out-of-sample correct-RT distributions by using

noise component 2 and signal component 7 as exogenous PLI regressors on the diffusion model

parameters. It should be noted that the amount of variance of the original PLI data explained

by each PC is not reflective of each PC’s out-of-sample predictive power, just as the amount

of variance of the original data explained by each PC is not reflective of its contribution to

the model (Jolliffe, 1982). A table of percent between-subject variance of median correct-RT

explained (R2
pred) by out-of-sample prediction is provided in Table 2.1. Tables of percent

between-subject variance of mean, 25th percentile, and 75th percentile correct-RT explained

by out-of-sample prediction are provided in the appendix. A new paricipant’s correct-RT

distribution in each condition can be more accurately predicted using the participant’s EEG
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in Model 3’s framework than by using Model 1’s or Model 2’s framework. 31.9% of

the between-subject variance of the easiest condition’s median correct-RT is explained by

out-of-sample prediction.

To aid in interpretation, the posterior distributions of the regression coefficients for each PC

were projected into the PLI coefficient space by multiplying the matrix of PC coefficient

posterior samples G by the inverse-weight matrix V from the PCA algorithm which projects

the principal components into the PLI data space. The result GV are samples from the pos-

terior distributions of the regression coefficients for each PLI variable. This transformation

was performed once for each of the noise and signal variable sets.

The posterior distributions of the signal PLI coefficients are provided in Figure 2.5 with

means, medians and 95% and 99% credible intervals. From the principal component coeffi-

cient and PLI coefficient posteriors, it was clear that there is a complex signal response at

multiple frequencies and cortical locations on the diffusion coefficient and non-decision time.

Participants with larger signal occipital 15 and 45 Hz PLIs are expected to have smaller

variances in the evidence accumulation process (diffusion coefficients) than those partici-

pants with smaller occipital signal PLIs. However, the opposite effect is found in the frontal

electrodes with large 15 and 45 Hz PLIs being associated with larger evidence accumulation

variances. Larger signal responses at 30 and 45 Hz in parietal electrodes is also associated

with larger diffusion coefficients. The effect of signal response on non-decision time is also

complex but closely related to the effect of signal response on the diffusion coefficient. No

evidence of an association between participants’ differences in signal response to differences

in evidence accumulation rates (drift rates) was found.

The posterior distributions of the noise PLI coefficients from the response interval are pro-

vided in Figure 2.6. The posterior distributions of the noise PLI coefficients from the noise

interval are provided in Figure A.4 of the appendix. In all noise harmonic frequencies

during the noise interval and most harmonic frequencies (16, 24, 32, and 48 Hz) during the
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Figure 2.5: The marginal posterior distributions of the signal PLI coefficients (i.e., the
effects of signal enhancement) as measured by a steady-state phase-locking index (PLI), on
the evidence accumulation rate (drift rate; in evidence units per second), variance in the
evidence accumulation process (the diffusion coefficient; in evidence units per second), and
non-decision time during the response interval (in seconds). Dark blue posterior density
lines indicate 95% credible intervals while smaller teal lines indicate 99% credible intervals.
Small horizontal green lines embedded in density curves indicate the median of the posterior
distributions while the orange crosses indicate posterior means. There is an effect of signal
response on the diffusion coefficient and non-decision time that is complex across frequencies
and scalp location. A participant whose PLI responses at all locations and frequencies are 0.2
units greater than another participant’s responses is expected to have 0.061 evidence units
per second larger evidence accumulation variances (where α = 1 evidence unit is required
to make a decision) and have 18 ms faster non-decision times, leading to faster but less
accurate responses. There was no evidence of an effect of attention to the signal on evidence
accumulation rate (the drift rate).



response interval, those subjects who had smaller PLIs at all electrode locations had faster

evidence accumulation rates (drift rates). This finding suggests that those subjects who

better suppressed the stimulus noise accumulated correct evidence faster. Furthermore, a

similar effect was found on non-decision time. Noise suppression in the harmonic frequen-

cies was associated with smaller non-decision times across subjects. However smaller PLIs

at 8 Hz were associated with slower evidence accumulation and faster non-decision times.

Looking at these effects as a whole, those subjects with more suppressed responses to the

noise at all frequencies had larger drift rates and smaller non-decision times leading to faster,

more accurate responses. As a plausible but oversimplified example, a participant whose PLI

responses at all frequencies and locations was suppressed 0.2 units more than another partic-

ipant during both the noise and response intervals is expected to accumulate 0.418 evidence

units per second faster than another participant and have a 70 ms faster non-decision time.

There was little to no evidence of an effect of individual variation in brain responses to noise

on within-trial evidence accumulation variability (the diffusion coefficient).

2.4 Discussion

We have shown that a Bayesian diffusion model framework with hierarchical participant-level

parameters is useful in describing individual differences in the rate of evidence accumulation,

variance in evidence accumulation process, and preprocessing and/or motor response time in

a novel perceptual decision making paradigm. Assuming the model describes the relationship

between cognition and behavior sufficiently well, we are able to infer cognitive differences

among participants. Furthermore, we have shown that differences in participants’ attention

as measured by steady-state visual evoked potentials relate to some of these differences in

participants’ cognition.

Individual differences in the rates of evidence accumulation (drift rates) were partially ex-
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Figure 2.6: The marginal posterior distributions of the noise PLI coefficients (i.e., the ef-
fects of noise suppression) as measured by a steady-state phase-locking index (PLI), on the
evidence accumulation rate (drift rate; in evidence units per second), variance in the ev-
idence accumulation process (the diffusion coefficient; in evidence units per second), and
non-decision time (in seconds) during the response interval. Dark blue lines indicate 95%
credible intervals, smaller teal lines indicate 99% credible intervals, horizontal green lines in-
dicate posterior medians, and the orange exes indicate posterior means. At noise harmonic
frequencies (16, 24, 32, and 48 Hz) during the response interval, those subjects who sup-
pressed noise had faster evidence accumulation rates; this effect was found at all electrode
groups. However, noise enhancement at 8 Hz was associated with slower evidence accu-
mulation. Furthermore, those subjects who better suppressed noise at the same harmonic
frequencies had faster non-decision times. For example, a participant whose PLI responses
were suppressed 0.2 units more than another participant’s responses at all locations and
frequencies during the response interval is expected to accumulate 0.288 evidence units per
second faster (where α = 1 evidence unit is required to make a decision) and have 48 ms
faster non-decision times, leading to faster and more correct responses. There was no evi-
dence of an effect of attention to the visual noise on variance in evidence accumulation (the
diffusion coefficient).



plained by individual differences in noise suppression as measured by SSVEPs. Participants

who better suppressed noise at high frequencies during the both the preparatory period

(noise interval) and the decision period (response interval) were able to accumulate correct

evidence faster, which led to more accurate, faster response times. Furthermore, those indi-

viduals who better suppressed noise in the same frequency bands and locations had faster

non-decision times (preprocessing and/or motor response speed). This effect on non-decision

time is hypothesized to be reflective of faster preprocessing time in subjects who better sup-

pressed noise since we do not expect noise suppression to effect motor response speed. Both

findings suggest a role of noise suppression in beta and gamma EEG frequency bands on

the speed of evidence accumulation and preprocessing prior to evidence accumulation in

perceptual decision making tasks.

Enhancement of signal was found to describe individual variation in “randomness” of ev-

idence accumulation within trials (as measured by the diffusion coefficient). Participants

who did not properly enhance signal in occipital, central, and pre-frontal electrodes had the

most variable evidence accumulation processes. There is also evidence that a participant’s

enhancement of signal may have affected their preprocessing time in a complex way across

frequencies and cortical locations. This suggests that signal enhancement in beta and gamma

EEG frequency bands effect within-trial evidence accumulation variance and preprocessing

in perceptual decision making.

In summary, from the results of the modeling procedure it was found that some individual

variation in evidence accumulation speed (drift rate) is explained by noise suppression, some

individual variation in evidence accumulation variance (diffusion coefficient) is explained

by signal enhancement, and some individual variation in non-decision time (presumably

preprocessing time) is explained by both noise suppression and signal enhancement.

The usefulness of the model with SSVEP attention measures as regressors is not only in

its descriptive ability, but also in its predictive ability. New subject correct-RT behavior
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was not accurately described by the model without individual differences nor the model

with individual differences. But by explicitly including individual differences with neural

covariates in hierarchical models, the correct reaction time distributions of new subjects

with known neural measures are more accurately predicted. We expect the addition of

the phase-locking index of SSVEPs to be predictive of behavior in any perceptual decision

making paradigm, especially if used in a hierarchical Bayesian framework. Theoretically the

hierarchical EEG-diffusion model will also be able to predict the PLI measures of a missing

participant given a participant’s behavioral data. We will explore the practicality of such

predictions in future studies. Possible applications of behavioral and neural data prediction

include: (a) the ability to interpolate data from incomplete behavioral data sets (b) the

ability to interpolate data from incomplete neural data sets (c) more powerful statistical

inference through simultaneous accounting for changes in behavior and neural data.

In the future for both hypothesis testing and response-RT prediction, latent variables linearly

or non-linearly related to the EEG covariates can be included with the cognitive model in

a hierarchical Bayesian framework (see Vandekerckhove, 2014, for details). The benefits of

such an analysis would be: to choose neural covariates maximally descriptive or predictive

of the data, choose electrodes and frequencies maximally descriptive or predictive of the

data, reduce the number of covariates, and reduce the multicollinearity of the covariates by

assuming there exist underlying variables related to multiple EEG covariates. In the present

study, the problems of multicollinearity and variable overabundance were overcome with two

principal component analyses (PCAs). PCAs do not extract mixtures of the data which are

most descriptive or predictive of the model parameters but instead extract mixtures of the

data which are uncorrelated. A shortcoming of this study is that we did not pick frequencies

and cortical locations that were maximally predictive of behavior as exogenous variables.

Cortical locations naively based upon large non-focal groupings were chosen. Instead of

performing a non-Bayesian PCA before submitting the neural data to the Bayesian algorithm,

a linear mixture of neural data that best describes the cognitive model parameters could be
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extracted from the Bayesian algorithm itself, analogous to a partial least squares regression

in a non-Bayesian approach (see Krishnan et al., 2013, for an example). In order to use

this latent variable technique, the model must be run on a training set using a subset of

the EEG data and then run on a test set to measure out-of-sample model predictive ability.

This would result in a data reduction of the EEG that best predicts behavior in the context

of the model.

42



43

In-sample Prediction Out-of-sample Prediction

Rotation Noise M1 M2 M3 M1 M2 M3

±30◦ 30% −0.1% 94.3% 95.0% −13.5% −11.8% 31.9%

±35◦ 30% −0.1% 95.6% 95.8% −12.3% −11.7% 27.6%

±40◦ 30% −0.5% 92.2% 92.1% −12.5% −11.5% 19.9%

±30◦ 45% −1.2% 86.3% 87.4% −15.1% −11.7% 29.4%

±35◦ 45% −0.2% 92.3% 91.6% −12.0% −13.6% 22.8%

±40◦ 45% 0.2% 92.6% 91.9% −11.9% −15.0% 28.0%

±30◦ 60% −0.7% 93.1% 92.8% −12.9% −13.0% 18.6%

±35◦ 60% −2.3% 92.5% 92.6% −14.7% −13.5% 13.3%

±40◦ 60% −0.6% 90.9% 91.2% −13.8% −18.0% 26.2%

Table 2.1: Percentage of between-subject variance in correct-RT medians explained by in-
sample and out-of-sample prediction (R2

pred) for each experimental condition. The in-sample
predictive ability of the no-individual differences Model 1 was unsurprisingly poor, while
the in-sample predictive ability of individual differences models (with and without EEG re-
gressors, Model 2 and Model 3 respectively) explained most of the variance of correct-RT
subject medians. Out-of-sample prediction was performed by using an iterative leave-one-
subject-out procedure, first by obtaining posterior distribution estimates for each parameter
by modeling all but one participant’s behavior and EEG data and then estimating the left-out
participant’s correct-RT distribution using the resulting model fit and the left-out partici-
pant’s EEG. Models without EEG regressors (i.e. Model 1 and Model 2) are poor choices
for new participant behavior prediction. The model with a noise principal component and a
signal principal component of the phase-locked EEG as covariates of diffusion model param-
eters (Model 3) more accurately predicts new participants’ correct-RT behavior. Negative
values indicate overdispersion of the model prediction (due to posterior uncertainty) relative
to the real data.



Chapter 3

Within-subject changes in attention

influence decision making

3.1 Introduction

The goal of this study was to evaluate whether attention could predict different components

of the decision making process on each trial of a visual discrimination experiment. We

make use of high-density electroencephalographic (EEG) recordings from the human scalp

to find single-trial evoked potentials (EPs) to the onset of visual signal and to the onset of

a distractor (mask) to measure the deployment of attention to task-relevant features. We

found that on each trial, modulations of the evoked potentials by attention were predictive

of specific components of a drift-diffusion model of the decision making process.
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3.1.1 Visual attention and decision making

Attention is beneficial for decision making because relevant features of the environment can

be preferentially processed to enhance the quality of evidence. During visual tasks individuals

may deploy different attention strategies such as: enhancing the signal, suppressing external

noise (distractors), or suppressing internal noise (Lu and Dosher, 1998; Dosher and Lu,

2000b). These strategies are thought to change based on the signal to noise ratio of the

stimulus, such that individuals will enhance sensory gain to both signal and noise during

periods of low noise and sharpen attention to only signal during periods of high noise (Lu

and Dosher, 1998), although specific strategies have been shown to differ across subjects

(Bridwell et al., 2013; Krishnan et al., 2013; Nunez et al., 2015). Multiple groups have

proposed models of visual attention and decision making that yield diverse reaction time

and choice distributions dependent upon attentional load (Spieler et al., 2000; Smith and

Ratcliff, 2009). Attention can be deployed to the features and/or location of a stimulus, and

attention can benefit decision making when the subject is cued to the location or features of

the stimulus (Eriksen and Hoffman, 1972; Shaw and Shaw, 1977; Davis and Graham, 1981).

Event-related potentials (ERPs) are trial-averaged EEG responses to external stimuli. Visual

ERPs (also labeled Visual Evoked Potentials; VEPs) have been shown to track visual atten-

tion to the onset of stimuli (Harter and Aine, 1984; Luck et al., 2000). That is, amplitudes

of the peaks of the ERP waveform (i.e., ERP “components”) within certain millisecond-scale

time windows are shown to be larger when subjects encounter task-relevant stimuli in the

expected location in visual space. Two components of particular interest are the N1 (or

N200 ) and P2 (or P200 ) components. The terms N1 and P2 refer the order of negative

and positive peaks in the time series respectively, and the more general alternative names

N200 and P200 refer to their approximate latencies in milliseconds. Changes in N200 la-

tencies have been shown to correlate with attentional load (Callaway and Halliday, 1982),

and N200 measures have even been used in Brain-Computer Interfaces (BCI) that make use
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of subjects’ attention to specific changing stimuli, such as letters in a BCI speller (Hong

et al., 2009). Findings in these trial-averaged EEG (ERP) studies suggest that information

is also available in single-trials of EEG that can be used to evaluate the relationship between

attention and decision making. In this paper we will use the alternative names P200 and

N200 because 1) the exact time windows of components vary across studies, 2) components

in this study were both localized to around 200 milliseconds, and 3) components in this

study were found on single-trials as opposed to in the trial-average.

3.1.2 Single-trial EEG measures of attention

EEG correlates of attention and decision making have been found using classification meth-

ods. One group has shown that the amplitude of certain EEG components in the time

domain track type and duration of two-alternative forced choice responses and then showed

that these components’ amplitudes tracked evidence accumulation rate (Philiastides et al.,

2006; Ratcliff et al., 2009). However the EEG components in these studies were found by

finding the maximum predictors of the behavioral data and thus had no a priori interpre-

tation. Another group has found that that single-trial amplitude in a few frequency bands,

especially the 4-9 Hz theta band, predicts evidence accumulation rates (van Vugt et al.,

2012). However these oscillations were found using canonical correlation analysis (CCA;

Calhoun et al., 2001), a data driven algorithm that found any EEG channel mixtures that

contained correlations with the drift diffusion model parameters. While the results were

confirmed using cross validation, the set of EEG identified by this method also did not have

an a priori explanation. These studies point us in directions of exploration and perform well

at prediction, but we have little information as to whether the EEG information reflected

attention, the decision process itself, or some other correlate of evidence accumulation. In

this study, we introduce a simple procedure that is informed by ERPs known to be related to

attention, and we make use of single-trial ERP estimates to model behavior on single trials.
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3.1.3 Hypothesized attention effects

An integrated model of visual attention, visual short term memory, and perceptual decision

making by Smith and Ratcliff (2009) predicts that attention operates on the encoding of the

stimulus, and that enhanced encoding increases drift rate during the decision making process.

Furthermore, the model predicts that visual encoding time (i.e. visual preprocessing) will

be reduced by attention which is reflected in the non-decision time parameter. However,

this model of visual attention only considers the detection of a stimulus in an otherwise

blank field—that is, a field with no visual noise. Thus, it does not have predictions for the

distinct processes of noise suppression and signal enhancement, as in the Perceptual Template

Model (Lu and Dosher, 1998). Signal enhancement during the evidence accumulation process

is predicted to reduce the diffusion coefficient ς because the mechanism by which signal

enhancement takes place, according to the Perceptual Template Model, is additive internal

noise reduction1 (Dosher and Lu, 2000a); this mechanism is predicted to be most effective

in low noise conditions since decreasing internal noise will lead to better processing of both

the visual signal and external visual noise. External noise suppression, on the other hand, is

expected to reflect the encoding of the stimulus by manipulation of a perceptual template,

increasing the average rate of evidence accumulation δ by improving the overall quality of

evidence on a trial. The Perceptual Template Model predicts this mechanism is most effective

in high noise conditions.

In a previous study we showed that individual differences in noise suppression predicts in-

dividual differences in evidence accumulation rates and non-decision times (Nunez et al.,

2015). We also showed that differences across individuals in signal enhancement predict

individual differences in non-decision times and evidence accumulation variance (i.e. the

diffusion coefficient), which we assume tracks internal noise in the subject. The findings of

1“In stimulus enhancement, attention increases the gain on the stimulus, which is formally equivalent
to reducing internal additive noise. This can improve performance only in low external noise stimuli, since
external noise is the limiting factor in high external noise stimuli.” (Dosher and Lu, 2000a, p. 1272)
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signal enhancement effects on evidence accumulation variance and noise suppression effects

on evidence accumulation rate seem to correspond closely to predictions made by the Per-

ceptual Template Model. However the Perceptual Template Model does not make explicit

predictions about attention effects on non-decision times. The previous study did not explore

how trial-to-trial variation in attention affected trial-to-trial cognitive differences. Individ-

ual differences in attention could be found that are not detected to be changing within a

subject, and/or trial-to-trial variability in attention could occur that does not change across

individuals. In this study, we show that within-subject, trial-to-trial variability in attention

to both noise and signal predict variability in drift rate and non-decision times, correspond-

ing closely to predictions made by the model of Smith and Ratcliff (2009) that predicts

speeded encoding time and increased evidence accumulation rate due to enhanced attention.

The two studies together suggest that within-trial evidence accumulation variances ς varied

across individuals, but we did not find evidence that this measure varied within individuals

due to changes in trial-to-trial attention.

3.2 Methods

3.2.1 Experimental stimulus: Bar field orientation task

Reported in a previous study, behavioral and EEG data were collected from a simple two-

alternative forced choice task to test individual differences in attention during visual decision

making (Nunez et al., 2015). Here, we reanalyze these data to explore per-trial attention

effects on the decision making process. Subjects were instructed on each trial to differentiate

the mean rotation of a field of small bars that were either oriented at 45 deg or 135 deg from

horizontal on average. Two representative frames of the display and the time course of a

trial are provided in Figure 3.1. The circular field of small bars was embedded in a square
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field of visual noise that was changing at 8 Hz. The bar field was flickering at 15 Hz. These

frequencies were chosen to evoke steady-state visual evoked potentials (SSVEPs), stimulus

frequency-tagged EEG responses that were useful in the previous study but will not be used

in this study. Stimuli were built and displayed using the MATLAB Psychophysics toolbox

(Psychtoolbox-2; www.psychtoolbox.org).

Subjects viewed each trial of the experimental stimulus on a monitor in a dark room. Subjects

sat 57 cm away from the monitor. The entire circular field of small oriented bars was 9.5 cm in

diameter, corresponding to a visual angle of 9.5◦. Within each trial subjects first observed a

black cross for 750 ms in the center of the screen, on which they were instructed to maintain

fixation throughout the trial. Subjects then observed visual noise for 750 ms. This time

period of the stimulus will henceforth be referred to as cue interval, with the onset EEG

response at the beginning of this interval being the response to the noise (or “distractor”)

stimulus. Subjects then observed the circular field of small oriented bars overlaid on the

square field of visual noise for 1000 to 2000 ms and responded during this interval. Subjects

were instructed to respond as accurately as possible while providing a response during every

trial. Because evidence required to make a decision only appeared during this time frame,

the decision process was assumed to take place during this interval. This interval is referred

to as the response interval, and attentional onset EEG measures during this time period are

referred to as responses to the signal stimulus. After the response interval the fixation cross

was again shown for 250 ms to alert the subjects that the trial was over and to collect any

delayed responses.

Three levels of variance of bar rotation and three levels of noise luminance were used to

modulate the task difficulty. However only the noise luminance manipulation is relevant for

the analysis presented here. Average luminance of the noise was 50% and the luminance of

the bars was 15%. In the low noise condition, that luminance was drawn randomly at each

pixel from a uniform distribution of 35% to 65% luminance. In the medium and high noise
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Figure 3.1: The time course of one trial of the experimental stimulus. One trial consisted of
the following: 1) 750 ms of fixation on a black cross on a gray screen, then 2) visual contrast
noise changing at 8 Hz for 750 ms while maintaining fixation (dubbed the cue interval) and
3) a circular field of small oriented bars flickering at 15 Hz overlaid on the changing visual
noise for 1000 to 2000 ms while maintaining fixation (dubbed the response interval). The
subjects’ task was to indicate during the response interval whether the bars were on average
oriented towards the “top-right” (45◦ from horizontal; as in this example) or the “top-left”
(135◦ from horizontal). It was assumed that subjects’ decision making process occurred only
during the response interval but could be influenced by both onset attention to the visual
noise during the cue interval and onset attention to visual signal during the response interval.



conditions, noise luminance was drawn randomly at each pixel from a uniform distribution of

27.5% to 72.5% and 20% to 80% luminance respectively. Each subject experienced 180 trials

from each noise condition, interleaved, for a total of 540 trials split evenly over 6 blocks. The

total duration of the visual experiment for each subject was approximately one hour and

15 minutes including elective breaks between blocks. More details of the experiment can be

found in our previous publication (Nunez et al., 2015).

Behavioral and EEG data were collected concurrently from 17 subjects. Subjects performed

accurately during the task. The across-subject mean, standard deviation, and median of

accuracy were 90.1%±5.8% , ỹ = 91.6%, while the across-subject mean, standard deviation,

and median of average reaction time were 678 ± 106 , t̃ = 670 ms. Individual differences

in behavior existed across subjects with the most accurate subject answering 98.3% of trials

correctly and the least accurate subject answering 78.5% of trials correctly. Two different

subjects were the fastest and slowest with mean RTs of 502 ms and 866 ms respectively.

3.2.2 Single-trial EEG predictors

Electroencephalograms (EEG) were recorded using Electrical Geodesics, Inc.’s high density

128-channel Geodesic Sensor Net and Advanced Neuro Technology’s amplifier. Electrical

activity from the scalp was recorded at a sampling rate of 1024 samples per second with

an online average reference using Advanced Neuro Technology software. The EEG data

was then imported into MATLAB for offline analysis. Linear trends were removed from the

EEG data, and the data were band pass filtered to a 1 to 50 Hz window using a high pass

Butterworth filter (1 Hz pass band with a 1 dB ripple and a 0.25 Hz stop band with 10 dB

attenuation) and a low pass Butterworth filter (50 Hz pass band with 1 dB ripple and a 60

Hz stop band with 10 dB attenuation).

EEG artifact is broadly defined as data collected within EEG recordings that does not
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originate from the brain. Electrical artifact can be biological (e.g. from the muscles-EMG or

from the arteries-EKG) or non-biological (e.g. temporary electrode dislocations, DC shifts,

or 60 Hz line noise). Contribution of muscle and electrical artifact was reduced in recordings

by using an extended Infomax Independent Component Analysis algorithm (ICA; Makeig

et al., 1996; Lee et al., 1999). ICA algorithms are used to find linear mixtures of EEG

data that relate to specific artifact. Components that are indicative of artifact typically

have high spatial frequency scalp topographies, high temporal frequency or a 1/f frequency

falloff, and are present either in only a few trials or intermittently throughout the recording.

These properties are not shared by electrical signals from the brain as recorded on the scalp

(Nunez and Srinivasan, 2006). Using these metrics, components manually deemed to reflect

artifact were projected into EEG space and subtracted from the raw data. Components

deemed to be a mixture of artifact and brain activity were kept. More information about

using ICA to reduce the contribution of artifact can be found in Jung et al. (2000).

Event-related potential (ERP) components have been shown to index attention (Callaway

and Halliday, 1982; Harter and Aine, 1984; Luck et al., 2000), in particular the P200 and

N200 latencies and amplitudes, and these values were used as independent measures of

attention in the following analyses. Event-related potentials (ERPs) are EEG responses that

are time-locked to a stimulus onset and are typically estimated by aligning and averaging

EEG responses across trials. They usually cannot be directly measured on each trial from

single electrodes. Raw EEG signals could be used as a single-trial measures but typically

have very low signal-to-noise ratios (SNR) for task-specific brain responses. Since the goal

of this analysis was to explore single-trial effects of attention on visual decision making, a

single-trial estimate of the ERP was developed.

Because the signal-to-noise ratio (SNR) in ongoing EEG increases when adjacent electrodes

of relevant activity are summed (Parra et al., 2005), we anticipated that the SNR of the

response to the visual stimulus would be boosted on individual trials by summing over the
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mixture of channels that best described the average visual response. Traditional ERPs at

each channel (represented by a matrix of size T × C where T is the length of a trial in

milliseconds and C is the number of EEG channels) were calculated separately for each

subject. One ERP was calculated for the response to the visual signal and another was

found for the response to the visual noise by averaging a random set of two-thirds of the

trials across all conditions for each subject in each window. This random set of trials was

the same set used as the training set for cross validation, to be discussed later. The test sets

of trials were not used to calculate the traditional ERPs.

Singular value decomposition (SVD; analogous to principal component analysis) of the trial

averages were then used to find linear mixtures of channels that explained the largest amount

of the variance in the ERP data (i.e. the first right-singular vectors v, explaining a percentage

of variance from 39.4% to 91.9% and 45.0% to 93.2% across subjects in the cue and response

intervals respectively). The first right-singular vectors were then used as weights to mix

the raw EEG data into a brain response biased toward the maximum response to the visual

stimuli, yielding one time course of the EEG per trial for both the cue and response intervals.

A visual representation of the simple procedure for a single trial is provided in Figure 3.2.

The raw data matrix E of dimension N ×C was multiplied by the first right singular vector

v (a C × 1 vector of channel weights) to obtain a N × 1 vector Ev = e, which could then be

split up into epochs of length T × 1 representing the response to the stimulus on each trial.

Note that the voltage amplitudes of the ERP measures calculated based on this method will

differ from traditional single electrode ERP amplitudes since the single-trial estimates are a

weighted sum of potentials over all electrodes.

Not only did this method boost the SNR of the EEG measures, but this method also reduced

EEG measures of size T × C on each trial to one latent variable that varies in time of size

T × 1. Thus the correlation of the EEG as inputs to the model was drastically reduced and

the interpretability of model parameters was increased compared to analyses with highly
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Figure 3.2: A visual representation of the singular value decomposition (SVD) method for
finding single-trial estimates of evoked responses in EEG. The EEG presented here is time-
locked to the signal onset during the response interval, such that the single-trial ERP encoded
the response to the signal onset. A single trial of EEG from Subject 16 (Left) can be thought
of as a time by channel (T × C) matrix. The first SVD component explained the most
variability (79.9%) in Subject 16’s ERP response to the signal across all trials in the training
set. SVD weights v (C × 1) are obtained from the ERP response (i.e. trial-averaged EEG;
T ×C) and can be plotted on a cartoon representation of the human scalp with intermediate
interpolated values (Middle). This specific trial’s ERP (Right) was obtained by multiplying
the time series data from each channel on this trial by the associated weight in vector v and
then summing across all weighted channels.

correlated model inputs. The weight vector v for each subject in both the cue and response

intervals also yields a scalp map when the values of the weights are interpolated between

electrodes. Channel weights calculated using SVD on subject’s ERPs to the noise onset

(during the cue interval) are shown in topographic plots for each subject in Figure 3.7.

Channel weights calculated using SVD on subject’s ERPs to the signal onset (during the

response interval) are shown in topographic plots for each subject in Figure 3.6. While raw

EEG on single trials from single electrodes may have large enough SNRs to be informative

for our analysis, we would not obtain an idea of the locus of activation or the pattern of

activation over the scalp.

We focused our analysis on the windows 150 to 275 ms post stimulus-onset in the cue and

response intervals. These windows were found to contain P200 and N200 ERP components.

On each trial, we measured the peak positive and negative amplitudes, and the latency at

which these peaks were observed. We used these 8 single-trial measures to predict single-trial
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diffusion model parameters. However in this paper we will focus only on the results of models

with 4 single-trial measures: the amplitude and latency of the peak positive deflection (P200)

during the cue interval and the amplitude and latency of the peak negative deflection (N200)

during the response interval, because very weak evidence, if any, was found for the effects

of the other attention measures on diffusion model parameters in models with all 8 single-

trial measures. It should be noted that single-trial measures of EEG spectral responses at

SSVEP frequencies (see Nunez et al., 2015) were briefly explored but future methods must

be developed to increase signal-to-noise ratios of SSVEP measures on single-trials.

3.2.3 Hierarchical Bayesian models

Hierarchical models of visual decision making were assumed and placed into a Bayesian

framework. Bayesian methods yield a number of benefits compared to other inferential

techniques such as traditional maximum likelihood methods. Rather than point estimates

of parameters, Bayesian methods provide entire distributions of the unknown parameters.

Bayesian methods also allow us to perform the model fitting procedure in a single step,

maintaining all uncertainty about each parameter through each hierarchical level of the

model.

One downside of Bayesian methods is that creating sampling algorithms to find posterior

distributions of Bayesian hierarchical models can be time consuming and cumbersome. How-

ever Just Another Gibbs Sampler (JAGS; Plummer, 2003) is a program that uses multiple

sampling techniques to find estimates of hierarchical models, only requiring the form of the

model, data, and initial values as input from the user. In order to find posterior distributions,

we have used JAGS with an extension that adds a diffusion model distribution (without in-

trinsic trial-to-trial variability) as one of the distributions to be sampled from (Wabersich

and Vandekerckhove, 2014). Similar software packages to fit hierarchical diffusion models
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have been developed independently in other programming languages such as Python (Wiecki

et al., 2013).

In order to evaluate the benefit to prediction of adding EEG measures to hierarchical diffusion

models, three different models were compared. Model 3 assumed that evidence accumulation

rates, evidence accumulation variances, and non-decision times were each equal to a linear

combination of EEG measures on each trial. Because we found no effect of the observed

single-trial EEG measures on single-trial evidence accumulation variances, we also fit Model

2, where single-trial evidence accumulation rates and non-decision times were influence by

EEG, but single-trial evidence variances were not. Model 1 did not assume any EEG con-

tribution to any parameters. This model assumed that parameters not varying with EEG

would change based on subject and condition, drawn from a condition level distribution.

Graphical representations of the hierarchical Bayesian models are provided in Figure 3.3

following the convention of Lee and Wagenmakers (2014).

For Model 1 (Figure 3.3a), prior distributions were kept mostly uninformative (i.e. param-

eters of interest had prior distributions with large variances) so that the analyses would be

data-driven. The prior distributions of parameters for each subject j and condition k free

from EEG influence had the following prior and hyperprior structure

(
δjk | µ(δ)k, σ(δ)

)
∼ N (µ(δ)k, σ

2
(δ)) , µ(δ)k ∼ N (1.5, 42) ∈ (−9, 9), σ(δ) ∼ Γ(5, 0.20)(

τjk | µ(τ)k, σ(τ)
)
∼ N (µ(τ)k, σ

2
(τ)), µ(τ)k ∼ N (0.3, 12) ∈ (0, 3) , σ(τ) ∼ Γ(5, 0.05)(

ςjk | µ(ς)k, σ(ς)
)
∼ N (µ(ς)k, σ

2
(ς)) , µ(ς)k ∼ N (0.6, 22) ∈ (0, 4) , σ(ς) ∼ Γ(5, 0.05)

Where the normal distributions N are parameterized with mean and variance respectively

and the gamma distributions Γ are parameterized with shape and scale parameters respec-

tively.

In Models 2 (Figure 3.3b) and 3 (Figure 3.3c), to ensure noninterference by the prior

distributions, uninformative priors were given for both the effects γjk of EEG on the param-
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eters of interest and the linear intercepts ηjk. Note that the effect of EEG γjk is a vector

with one element per EEG regressor and each effect of EEG is assumed to be statistically

independent from the others. If a drift-diffusion model parameter was assumed to be equal

to a linear combination of EEG inputs then the following two lines replaced the priors of the

respective parameter above.

(
ηjk | µ(η)k, σ(η)

)
∼ N (µ(η)k, σ

2
(η)) , µ(η)k ∼ N (0, 1002) , σ(η) ∼ Γ(5, 5)(

γjk | µ(γ)k, σ(γ)
)
∼ MVN (µ(γ)k, σ

2
(γ)I), µ(γ)k ∼ MVN (0, 1002I), σ(γ) ∼ Γ(5, 5)

In Models 2 and 3, the parameter on each trial was assumed to be equal to a simple linear

combination of the vector of single-trial EEG inputs xijk on that trial i with ηjk and γjk as

the intercept and slopes respectively:

δijk = η(δ)jk+γᵀ
(δ)jkxijk

τijk = η(τ)jk+γ
ᵀ
(τ)jkxijk

ςijk = η(ς)jk+γᵀ
(ς)jkxijk

Where the first two equations refer to the structure of Model 2 and all three equations

refer to the structure of Model 3. Note that the p ∗ 1 vector of effects γjk of EEG on each

parameter could include the intercept term ηjk to create a (p + 1) ∗ 1 vector of effects γ∗jk

(and the EEG vector xijk would include a value of 1 to be multiplied by the intercept term).

We use this notation in Figure 3.3 for simplicity.

Because not all trials are believed to actually contain a decision-making process (i.e. the

subject quickly presses a random button during a certain percentage of trials reflecting a

“fast guess”), reaction times below a certain threshold were removed from analysis and

cross-validation. Cutoff reaction times were found for each subject by using an exponential

moving average of accuracy after sorting by reaction time (Vandekerckhove and Tuerlinckx,

2007). The rejected reaction times were all below 511 ms with a mean cutoff of 410 ms across
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(c) Model 3

Figure 3.3: Graphical representations of the three hierarchical Bayesian models following
the convention of Lee and Wagenmakers (2014). Each node represents a variable in the
model with arrows indicating what variables are influenced by other variables. The magenta
2 ∗ 1 vector of reaction time and accuracy yijk and the blue (p + 1) ∗ 1 vector of p EEG
regressors (+1 intercept) xijk are observed variables, as indicated by the shaded nodes.
Bolded blue variables indicate (p + 1) ∗ 1 vectors, such as the subject j level effects γ∗jk of
each EEG regressor and the condition k level effects µ(γ∗)k of each EEG regressor. In Model
3 for each trial i, values of non-decision time τijk, drift rate (evidence accumulation rate)
δijk, the diffusion coefficient (evidence accumulation variance) ςijk are deterministic linear
combinations of single-trial EEG regressors xijk and the effects of those regressors γ∗jk that
vary by subject and condition.



subjects. This resulted in an average rejection rate of 1.4% of trials across subjects with a

maximum of 6.3% of trials rejected for one subject and a minimum of 0.7% of trials rejected

for 11 of the 17 subjects.

Each model was fit using JAGS with six Markov Chain Monte Carlo (MCMC) chains run

in parallel (Tange, 2011) of 52,000 samples each with 2,000 burn-in samples and a thinning

parameter of 10 resulting in 5,000 posterior samples in each chain. The posterior samples

from each chain were combined to form one posterior sample of 30,000 samples for each

parameter. All three models converged as judged by R̂ being less than 1.02 for all parameters

in each model. R̂ is a statistic used to assess convergence of MCMC algorithms (Gelman

and Rubin, 1992).

Posterior distributions were found for each free parameter in the three models. Credible

intervals of the found posterior distributions were then calculated to summarize the findings

of each model. EEG regressor effects were deemed to have weak evidence if the 95% credible

interval between the 2.5th and 97.5th percentiles of the subject mean parameter µ(γ)j was non-

overlapping zero. Effects were deemed to have strong evidence if the 99% credible interval

between the 0.5th and 99.5th percentiles was non-overlapping zero.

3.2.4 Cross-validation

All trials from all subjects were used during initial exploration of the data. However once

it was decided that the signal onset response was a candidate predictor of drift rate, cross-

validation was performed using a training and test set of trials. Out-of-sample performance

for both known and unknown subjects were found by randomly assigning two-thirds of the

trials from each subject in a random sample of subjects (i.e. 13 of 17 subjects were chosen

at random) as the training set and one-third of the trials from the 13/17 subjects and all

trials from the remaining 4/17 subjects as the test set. After fitting the model with the
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training set, posterior predictive distributions of the accuracy-RT data were found for each

subject. Posterior predictive distributions were calculated by drawing from the subject-level

posteriors of the known subjects and by drawing from the condition-level posteriors of the

unknown subjects. The posterior predictive distributions were then compared to the sample

distribution of the test set.

In some recent papers, evaluation of models’ prediction ability has been left to the readers

with the aid of posterior predictive coverage plots (e.g. see figures in Supplementary Ma-

terials). Here we formally evaluate the similarity of the posterior predictive distributions

to the test samples via a “proportion of variance explained” calculation. Specifically, we

calculated R2
pred of subjects’ accuracy and correct reaction time 25th percentiles, medians,

and 75th percentiles across subjects. R2
pred is a measure of percentage variance in a statistic

T (e.g. accuracy, correct-RT median, etc.) explained by in-sample or out-of-sample pre-

diction. In this paper, R2
pred is defined as the percentage of total between-subject variance

of a statistic T explained by out-of-sample or in-sample prediction. It is a function of the

mean squared error of prediction (MSEP) and the sample variance of the statistic T based

on a sample size of J = 13 or J = 4 subjects for known and unknown subject calculations

respectively. This measure also allows comparisons across studies with similar prediction

goals. Mathematically, R2
pred is defined as

R2
pred = 1−

∑J
j=1(Tj − T(pred)j)2/(J − 1)∑J

j=1(Tj − T̄ )2/(J − 1)
= 1− MSEPT

V̂ar[T ]
(3.1)
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Figure 3.4: Single-trial evoked responses of an example subject, Subject 12, to the visual
noise during the cue interval (Left) and single-trial evoked responses to the visual signal
during the response interval (Right). Single-trial P200 and N200 magnitudes were found
by finding peak amplitudes in 150 to 275 ms time windows (as indicated by the vertical
dashed lines) of the SVD-biased EEG data in both the cue and response intervals. The first
300 ms of the intervals are sorted by single-trial P200 magnitudes in the cue interval and
single-trial N200 magnitudes in the response interval. Latencies of the single-trial P200 and
N200 components correspond to known latencies of P2 and N1 ERP components.

3.3 Results

The single-trial EEG measures “regressed” on diffusion model parameters were the peak

positive and negative amplitudes and latencies (corresponding to P200 and N200 peaks re-

spectively) in the 150 to 275 ms windows post noise-onset in the cue interval and post

signal-onset in the response interval. However the magnitude and latency of the peak neg-

ative deflection (N200) in response to the noise stimulus and the magnitude and latency of

the peak positive deflection (P200) in response to the signal stimulus were not informative

(i.e. most condition-level effect posteriors of these measures overlapped zero significantly in

models with all P200 and N200 measures included as regressors). For simplicity we only

discuss results of models with P200 measures following the noise stimulus in the cue interval

and N200 measures following the signal stimulus in the response interval. Example single

trial amplitudes of these P200 and N200 peaks for Subject 12 are shown in Figure 3.4.
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Since no effects of explored measures were found on within-trial evidence accumulation vari-

ance in Model 3 (i.e. posterior distributions of γ(ς)jk were centered near zero), the only EEG

effects that will be discussed are those on evidence accumulation rate and non-decision time

from a fit of Model 2. The posterior distributions of EEG effects on evidence accumulation

rate γ(δ)jk and non-decision time γ(τ)jk did not differ significantly from Model 2 to Model 3.

Moreover, Model 2 produced better out-of-sample prediction than Model 3 for new subjects.

A graphical example of the effects found with Model 2 in two representative trials are given

in Figure 3.5.

3.3.1 Intercept terms of evidence accumulation rate and non-decision

time

The intercept term of each variable gives the value of each variable not explained by a linear

relationship to N200 and P200 amplitudes and latencies. That is, the intercept gives the value

of each parameter that remains constant from trial to trial, with the between-trial variability

of the parameter being influenced by the changing trial-to-trial EEG measures. Model 2’s

posterior medians of the condition level evidence accumulation rate intercepts µ(ηδ)j and non-

decision time intercepts µ(ητ )j are reported. In low noise conditions, evidence accumulation

rate intercepts were 1.46 evidence units per second (i.e. if there was no behavioral effect

of EEG on each trial and no variance in the evidence accumulation process, it would take

the average subject 343 ms to accumulate evidence since a decision is reached when α = 1

evidence unit is accumulated and subjects start the evidence accumulation process with .5

evidence units). In medium and high noise conditions, evidence accumulation rate intercepts

were 1.30 and 0.86 evidence units per second respectively. Non-decision time intercepts were

340 ms in low noise conditions, 425 ms in medium noise conditions, and 440 ms in high noise

conditions.
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Figure 3.5: Two trials of Subject 10’s SVD weighted EEG (Top and Bottom with bounds
−85 to 85 µV ) and representations of this subject’s evidence accumulation process on 6 low
noise trials (Middle). Evidence for a correct response in one example trial (denoted by the
red line) first remains neutral during an initial period of visual preprocessing time τpre. Then
evidence is accumulated with an instantaneous evidence accumulation rate of mean δ (the
drift rate) and standard deviation ς (the diffusion coefficient) via a Wiener process. The
subject acquires either α = 1 evidence unit or 0 evidence units to make a correct or incorrect
decision respectively. After enough evidence is reached for either decision, motor response
time τmotor explains the remainder of that trial’s observed reaction time. The 85th and 15th

percentiles of Subject 10’s single-trial drift rates δi,10,1 in the low noise condition are shown as
orange and green vectors, such that it would take 253 and 299 ms respectively to accumulate
the .5 evidence accumulation units need to make a correct decision if there was no variance
in the accumulation process. The larger drift rate is a linear function of the larger single-trial
N200 amplitude (**), while the smaller drift rate is a linear function of the smaller N200
amplitude (*). The scalp activation (SVD weights multiplied by one trial’s N200 amplitude)
of this subject’s response to the visual signal ranges from −13 to 13 µV on both trials. The
two dark blue and red evidence time courses were randomly generated trials with the larger
drift rate. The three dotted, light blue evidence time courses were randomly generated trials
with the smaller drift rate. True Wiener processes with drifts δi,10,1 and diffusion coefficient
ς10,1 were estimated using a simple numerical technique discussed in Brown et al. (2006).
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To understand the degree of influence of EEG on model parameters, approximate condition

level evidence accumulation rates and non-decision times were calculated and then compared

to the intercept of the respective parameter. Taking the mean peak positive and peak

negative amplitudes and latencies across all subjects and trials in each noise condition and

multiplying by the median posterior of the effects, it was found that evidence accumulate

rate in low noise was 1.90 evidence units per second, 1.65 evidence units per second in

medium noise, and 1.35 evidence units per second in high noise. It was also found that non-

decision time was 393, 400, and 425 ms in the low, medium, and high noise conditions. The

intercepts of non-decision time thus described approximately 86%, 94%, and 96% of the true

condition means in low, medium, high noise conditions respectively. However, the intercepts

of the drift rates only described approximately 77%, 79%, and 63% of the true condition

means in low, medium, and high noise conditions respectively. While this gives the reader an

idea of the strength of the influence of single-trial EEG measures on the parameters, better

evaluations of the degree of effects are presented below.

3.3.2 Effects of attention on non-decision time in low-noise condi-

tions

Strong evidence was found to suggest that in low noise conditions single-trial non-decision

times τijk are positively linearly related to delays in the EEG response to the visual signal as

measured by the latency of the negative peak (N200) following stimulus onset. A probability

greater than 99% of the condition-level effect being greater than zero in all subjects was

found. This relationship to an EEG signature 150-275 ms post stimulus onset suggests an

effect on preprocessing time rather than motor-response time. By exploring the posterior

distribution of the mean effect across-participants µ(γτ )j, it is inferred that non-decision time

increases 12 ms (the posterior median) when there is a 40 ms increase in the latency of

the single-trial negative peak (where 40 ms was the standard deviation across all trials and
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subjects) in the low noise condition, with a 99% credible interval of 3 to 21 ms. Figure 3.6

shows the per-subject effects of signal N200 latency on non-decision time in the low noise

condition. No evidence was found to suggest that the signal N200 latency affected non-

decision time in medium nor high noise conditions. 95% credible intervals for these increases

in the subject mean non-decision time for 40 ms increased N200 delays were −9 to 4 ms and

−8 to 3 ms respectively. No evidence was found to suggest that attentional delay to the

noise, the noise P200 latency, affected non-decision time.

Weak evidence was found to suggest that magnitude of the response to the stimulus affects

non-decision time in the low noise condition. The posterior median suggests that a 26.83 µV

(the standard deviation) decrease in magnitude of the negative peak (i.e. moves the negative

peak towards zero) leads to a 11 ms increase in non-decision time. The 95% credible interval

of this effect of N200 signal magnitude on non-decision time was a 2 to 21 ms. No evidence

was found to suggest that the magnitude in the medium and high noise conditions affected

non-decision time.

3.3.3 Effects of attention on evidence accumulation

Evidence was found to suggest that per-trial response to the visual signal (measured by the

negative peak, N200, amplitude) is positively correlated with per-trial evidence accumulation

rates δijk in each condition. In the low noise condition, µ(γ(δ))j, which describes the across-

subject mean of the effect of negative peak on drift rate, was found to have a 95% credible

interval of .02 to .34 evidence units per second increase (where it takes α = 1 evidence unit

to make a decision) and a posterior median of .17 evidence units per second increase for each

magnitude increase (i.e. away from zero) of 26.83 µV , the standard deviation of the negative

peak. Given the same magnitude increase, the posterior median of the effects in the medium

and high noise conditions were .13 and .14 evidence units per second respectively with 95%
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Figure 3.6: The posterior distributions of the effect of a trial’s N200 latency during the
response interval (onset attention latency to the signal stimulus) on trial-specific non-decision
times τijk for each subject j in the low noise condition k = 1. Subjects 2, 6, 7 and 11 were
left out of the training set and their predicted posterior distributions are shown in red.
Thick lines forming the distribution functions represent 95% credible intervals while thin
lines represent 99% credible intervals. Crosses and vertical lines represent posterior means
and modes respectively. Also shown are the topographic representations of the channel
weights of the first SVD component of each subject’s response interval ERP, indicating the
location of single-trial N200s over occipital and parietal electrodes. Evidence suggests that
longer attentional latencies to the signal, N200 latencies, are linearly correlated with longer
non-decision times in the low noise condition.



credible intervals −.01 to .28 and 0 to .28 respectively.

Strong evidence was found to suggest that the magnitude of the positive peak of the re-

sponse to the visual noise during the cue interval affected the future evidence accumulation

rate in the medium noise and possibly high noise conditions. The median of the posterior

distribution of the condition-level effect was .20 evidence units per second when there was a

27.67 µV increase, the standard deviation of the peak magnitude. A 99% credible interval

of this effect was .04 to .32 evidence units per second. Figure 3.7 shows the effects of

the noise P200 amplitudes on specific subjects’ single-trial drift rates in the medium noise

condition. The probability of there being an effect of this P200 amplitude during the cue

interval in the high noise condition was 94.6% (i.e. the amount of the posterior density of

the condition-level effect above zero). The median of the posterior distribution of this effect

was .09 evidence units per second with a 95% credible interval of −.02 to .22 evidence units

per second when there is a 27.67 µV increase in a high noise trial.

3.3.4 Cross-validation

In-sample and out-of-sample posterior predictive coverage plots of correct-RT distributions

for each condition and subject are provided in the Supplementary Materials. All three models

perform well at predicting correct-RT distributions and overall accuracy of training data (i.e.

in-sample prediction; see Table 3.3 and Discussion section). However by cross-validation

we found that the addition of single-trial EEG measures of attentional onset improved out-

of-sample prediction of accuracy and correct reaction time distributions of known subjects

(i.e. those subjects who had 2/3 of their trials used in the training set). R2
pred indicates

the percentage of variance explained by prediction in the given statistic across subjects.

Table 3.1 contains R2
pred values for accuracy as well as summary statistics of correct-RT

distributions of known subjects. Prediction was improved when using Model 3 for these
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Figure 3.7: The posterior distributions of the effect of a trial’s P200 amplitude during the
cue interval (onset of attention to the noise stimulus) on trial-specific evidence accumulation
rates δijk for each subject j in the medium noise condition k = 2. Subjects 2, 6, 7 and
11 were left out of the training set, their predicted posterior distributions are shown in red.
Thick lines forming the distribution functions represent 95% credible intervals while thin lines
represent 99% credible intervals. Crosses and vertical lines represent posterior means and
modes respectively. Also shown are the topographic representation of the channel weights
of the first SVD component of each subject’s cue interval ERP, indicating the location of
single-trial P200s over occipital and parietal electrodes. Evidence suggests that the effect of
the attention to the noise, reflected in P200 amplitudes, positively influenced the drift rate
of each subject in each trial, in the medium and high noise conditions.



subjects with at least 77.3% of variance in correct-RT medians being explained by out-of-

sample prediction, but Model 2 performed almost as well in comparison to Model 1, the

model without single-trial EEG inputs. Model 2 was able to predict at least 76.3% of the

variance in correct-RT medians while Model 1 was able to predict at least 74.5% of the

variance in correct-RT medians. In the low noise condition, Model 2 did not improve upon

Model 1’s explanation of variance in subject-level accuracy but better predicted accuracy in

the other two conditions.

Larger gains in out-of-sample prediction were found for unknown subjects (i.e. those subjects

who were not used in the training set). These improvements were particularly pronounced

in the low noise condition. Model 2 outperformed Model 3, which outperformed Model

1 in turn, as shown in Table 3.2. From these results it is clear that Model 2 was the

best model for out-of-sample prediction overall, especially for new subjects. In the low

noise condition, Model 2 was able to explain 22.1% of between-subject variance in correct-

RT 25th percentiles in the low-noise condition while Model 1 was not able to predict any

between-subject variance in this measure. While the included single-trial EEG measures in

these type of models do not perform as well as new subject prediction when subject-average

EEG measures of attention are included (Nunez et al., 2015), single-trial EEG does improve

prediction. The improvements in R2
pred across models suggest that it is possible that similar

models with more single-trial measures of EEG could explain new subjects’ accuracy and

correct-RT distributions.

3.3.5 P200 and N200 localizations

Both the subject-average P200 and N200 components were localized in time and space.

All single-trial P200 and N200 amplitudes and latencies (i.e. single-trial peak positive and

negative amplitudes 150 to 275 ms in the noise and response interval respectively) were
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Prediction of new data from known subjects

Model 1 Model 2 Model 3

Comparison EEG-δ,τ EEG-δ,τ ,ς
L

ow

25th t1 Percentile 81.6% 85.2% 85.6%

t1 Median 74.5% 76.3% 77.3%

75th t1 Percentile 60.2% 63.3% 63.8%

Accuracy 24.5% 20.8% 27.7%

M
ed

iu
m

25th t1 Percentile 84.1% 85.1% 86.1%

t1 Median 86.8% 87.6% 88.9%

75th t1 Percentile 63.1% 68.2% 69.3%

Accuracy 58.1% 63.5% 63.5%

H
ig

h

25th t1 Percentile 73.0% 76.4% 76.6%

t1 Median 77.4% 76.8% 77.8%

75th t1 Percentile 71.0% 74.2% 74.2%

Accuracy 46.3% 48.9% 51.3%

Table 3.1: Percentage of across-subject variance explained by out-of-sample prediction
(R2

pred) for accuracy and summary statistics of correct-RT distributions of those subjects’
that were included in the training set. 13 of the subjects’ data were split into 2/3 training
and 1/3 test sets. Posterior predictive distributions that predicted test set behavior were
generated for 13 of the subjects by drawing from posterior distributions generated by the
training set. In the Low, Medium, and High noise conditions, the 25th, 50th (the median),
and 75th percentiles and means were predicted reasonably well by the model without single-
trial measures of EEG, Model 1. However including single-trial measures of EEG improved
prediction of correct-RT distributions, especially in the Low noise condition, with Model
3 (which assumes evidence accumulation rate, non-decision time, and evidence accumula-
tion variance vary with EEG per-trial) only slightly outperforming Model 2 (which assumes
evidence accumulation rate and non-decision time vary with EEG per-trial).
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Prediction of new data from new subjects

Model 1 Model 2 Model 3

Comparison EEG-δ,τ EEG-δ,τ ,ς

L
ow

25th t1 Percentile −9.8% 22.1% 17.9%

t1 Median −37.6% −11.6% −14.3%

75th t1 Percentile −67.3% −46.7% −47.6%

Accuracy −8.1% −22.8% −65.9%

M
ed

iu
m

25th t1 Percentile −5.3% 8.4% 5.3%

t1 Median −30.7% −22.5% −25.7%

75th t1 Percentile −62.6% −53.9% −56.2%

Accuracy −13.1% −35.5% −67.7%

H
ig

h

25th t1 Percentile −1.7% 8.2% 7.7%

t1 Median −12.0% −4.3% −2.9%

75th t1 Percentile −37.6% −25.5% −23.7%

Accuracy −4.3% −14.1% −29.1%

Table 3.2: Percentage of across-subject variance explained by out-of-sample prediction
(R2

pred) for accuracy and summary statistics of new subjects’ and correct-RT distributions.
Posterior predictive distributions were generated for 4 new subjects by drawing from condi-
tion level posterior distributions. Most R2

pred measures are negative because the amount of
variance in prediction was greater than the variance of the measure across subjects; however
the relative values from one model to the next are still informative about the improvement
in prediction ability. The model without single-trial EEG measures, Model 1, does not
predict new subjects’ correct-RT distributions. Models with single-trial EEG measures of
onset attention, Model 2 and Model 3, can predict some variance of the new subjects’ 25th

percentiles, with Model 2 outperforming Model 3.



averaged across trials for each subject. Localization in time and on the brain are based on

these across-trial averages. The subject mean and standard deviation of the P200 latency

during the cue interval was 220± 12 ms while the mean and standard deviation the of N200

latency during the response interval was 217± 6 ms. Although these latencies differ slightly

from traditional P2 and N1 findings (Luck et al., 2000), when viewing the event-related

waveforms over all trials it is clear that the P2 and N1 are influenced by the single-trial

measures. As an example, every single-trial evoked response of Subject 12 to the noise and

signal are shown in Figure 3.4, sorted by peak P200 amplitude in the cue interval and

sorted by peak N200 amplitude in the response interval. The P200 and N200 latencies of

this subject correspond to traditional P2 and N1 components.

While EEG localization is an inexact process that is unsolvable without additional assump-

tions, the surface Laplacian has been shown to match closely to simulated cortical activity

using forward models (i.e the mapping of cortical activity to scalp potentials) and have shown

consistent results when used with real EEG data (Nunez and Srinivasan, 2006). Unlike 3D

solutions, projections to the surface of the cortex (more accurately, the dura) are theoreti-

cally solvable, and have been used with success in past studies (see Nunez et al., 1994, for

an example).

In this study we have found surface spline-Laplacians (Nunez and Pilgreen, 1991) on the

realistic MNI average scalp (Deng et al., 2012) of the mean positive peak during the cue

interval (the P200) and the mean negative peak during the response interval (the N200)

by averaging over trials and subjects. The surface Laplacians were then projected onto

one subject’s cortical surface using Tikhonov (L2) regularization and a Finite Element (FE;

Pommier and Renard, 2005) forward model to the MNI 151 average head, maintaining similar

distributions of activity of the surface Laplacians on the cortical surface. The subject’s brain

was then labeled using the Destrieux cortical atlas (Fischl et al., 2004). Cortical topographic

maps of both peaks are given in Figure 3.8. Because we expect the majority of the Laplacian
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to originate from superficial gyri (Nunez and Srinivasan, 2006), we have localized both the

positive and negative peaks only to maximally active gyri. This localization suggested that

both the P200 and N200 were in the following extrastriate and parietal cortical locations:

right and left middle occipital gyri, right and left superior parietal gyri, right and left angular

gyri, the left occipital inferior gyrus, the right occipital superior gyrus, and the left temporal

superior gyrus. Although we should note that the exact localization must have some errors

due to between-subject variance in cortex and head shape and between-subject variance in

tissue properties.

Brain regions found using this cortical-Laplacian method point to activity in early dorsal

and ventral pathway regions associated with visual attention (Desimone and Duncan, 1995;

Corbetta and Shulman, 2002; Buschman and Miller, 2007) and decision making (Mulder

et al., 2014). Corroborating our findings, White et al. (2014) found that blood-oxygen-level

dependent (BOLD) activity in the right temporal superior gyrus, right angular gyrus, and

areas in the right lateral occipital cortex (e.g. the right middle occipital gyrus) correlated

with non-decision time during a simple visual and auditory decision making task. It was

hypothesized that this activity was due to motor preparation time instead of visual prepro-

cessing time (White et al., 2014); however the time-scale of BOLD signals does not provide

additional knowledge to separate visual preprocessing time from motor preparation time.

Informed by EEG, BOLD signals associated with evidence accumulation rates have been

previously localized to right and left superior temporal gyri and lateral occipital cortical ar-

eas, thought to correspond to early bottom-up and late top-down decision making processes

respectively during a visual face/car discrimination task (Philiastides and Sajda, 2007). The

right and left middle occipital gyri have also previously been shown to contribute to evidence

accumulation rates during a random dot motion task (Turner et al., 2015).

73



74

Figure 3.8: Right and left sagittal and posterior views of localized single-trial P200 evoked
potentials during during the cue interval (Top) and localized single-trial N200 evoked poten-
tials during the response interval (Bottom) averaged across trials and subjects. The cortical
maps were obtained by projecting MNI-scalp spline-Laplacians (Nunez and Pilgreen, 1991;
Deng et al., 2012) onto a subject’s anatomical fMRI image via Tikhonov (L2) regulariza-
tion, maintaining similar distributions of activity of the surface Laplacians on the cortical
surface. Blue and orange regions in microamperes per mm2 correspond to cortical areas esti-
mated to produce negative and positive potentials observed on the scalp respectively. These
two particular projections of the Laplacians suggest that P200 and N200 activity occurs in
extrastriate cortices and areas in the parietal lobe.



3.4 Discussion

3.4.1 Attention influences perceptual decision making on each

trial

The results of this study suggest that fluctuations in attention to a visual signal accounts

for some of the trial-to-trial variability in the brain’s speed of evidence accumulation on

each trial in each condition. There is also evidence to suggest that increased response to

the competing visual noise increases the brain’s speed of evidence accumulation, but only

in medium and high noise conditions. Although a simple explanation of this effect would

be differences in trial-to-trial arousal, we note that the effect only occurs in medium-noise

and high-noise conditions. We have previously found evidence that noise suppression during

the cue interval predicts enhanced drift rates based on the subject-average SSVEP responses

in these data (Nunez et al., 2015). Thus, our effect may reflect the attention the subject

places on the cue, which determines whether to engage mechanisms of noise suppression, but

we could not directly assess this possibility as new methods must be developed to measure

SSVEPs on single trials. This would reflect a hypothesis based on the Perceptual Template

Model that predicts that subjects will suppress attention to visual distractors during tasks

of high visual noise (Lu and Dosher, 1998).

We assume that the effect of N200 latency on non-decision time during the response interval

is on preprocessing time instead of motor response time. There was no a priori reason to

believe that an attention effect that takes place 150-275 ms after stimulus onset would affect

the speed of efferent signals to the muscle, given that the response times were at least 500

ms. These findings lead us to conclude that the effect of attention in response to the signal

in low noise conditions is to reduce preprocessing delay time. This appears consistent with

predictions of signal enhancement in low-noise conditions in the Perceptual Template Model.
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However, we note there is not a perfect equality between N200 latency and preprocessing

time (the condition and subject-level coefficient posteriors are not centered on 1). And the

identification of both preprocessing time and motor response time is not possible with a

drift-diffusion model fit without additional assumptions or external inputs such as EEG.

Reaction time (RT) and choice behavior during visual decision making tasks are well char-

acterized by models that assume a continuous stochastic accumulation of evidence. And

many observations of increasing spike-rates of single neuron action potentials lend support

to this stochastic theory of evidence accumulation on a neural level (Shadlen and Newsome,

1996, 2001). Recently some macroscopic recordings of the cortex have shown that increasing

EEG potentials ramping up to P300 amplitudes are correlates of the stochastic accumulation

of evidence (O’Connell et al., 2012; Philiastides et al., 2014; Twomey et al., 2015). It has

been hypothesized that this EEG data reflects the evidence accumulation process itself (or a

mixture of this process with other decision-making correlates) and not a correlated measure

such as top-down attention. This hypothesis leads to the natural prediction that single-trial

drift rates are explained by single-trial P300 slopes. However within a small region of the

cortex, neurons will have diverse firing patterns during the decision making process, only

some of which are observed to have increasing spiking-rate behavior indicative of stochastic

evidence accumulation (Meister et al., 2013). The properties of volume conduction through

the cortex, skull, and skin only allow for synchronous post-synaptic potentials to be observed

at the scalp (Nunez and Srinivasan, 2006; Buzsaki, 2006). Therefore an increasing spike-rate

as observed on the single-neuron level is not likely to be observed as an increasing waveform

in EEG recorded from the scalp. We also would expect the evidence accumulation process

to terminate before the response time since a portion of the response time must be dedicated

to the motor response after the decision is made. This may not be the case for the ramping

P300 waveform on single-trials even though it is predictive of model parameters (Philiastides

et al., 2014). If the stochastic evidence accumulation process was truly reflected in the ramp-

ing of EEG, a testable prediction would be that the variance around the mean rate of the
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P300 ramp on each trial would be linearly related to the diffusion coefficient ς, in addition

to single-trial P300 slopes being linearly related to the drift rate δ. There are many EEG

measures thought to be related to attention such as event related potential (ERP) compo-

nents, power in certain frequency bands, and steady-state visual evoked potential (SSVEP)

responses. It is likely that EEG measures that share similar properties with stochastic evi-

dence accumulation processes are in fact due to these correlates of attention or other forms

of cortical processing that can influence the decision making process.

3.4.2 External predictors allow for trial level estimation of diffu-

sion model parameters

The Wiener distribution (i.e. the diffusion model) used in this study does not incorporate

trial-to-trial variability in drift rates within the probability density function as assumed by

Ratcliff (1978). Instead we assume that each trial’s drift rate is exactly equal to a linear

function of EEG data and use an evidence accumulation likelihood function that does not

assume drift rates vary trial-to-trial by any other means. Per-trial non-decision times and

diffusion coefficients were also assumed to be exactly equal to linear functions of EEG data.

Per trial estimates of diffusion model parameters cannot be obtained without imposing con-

straints or including external inputs. In this study, we have shown that the single-trial

P200 and N200 attention measures can be used to discover per trial estimates of all three

free parameters, non-decision time, drift rate, and the diffusion coefficient. Non-decision

time, the drift rate, and the evidence boundary could also be modeled as per trial estimates

of external inputs, as would be useful in other speeded reaction time tasks where external

per-trial physiological measurements are available. Other possible per-trial external inputs

that could be used include: magnetoencephalographic (MEG) measures, functional mag-

netic resonance imaging (fMRI) measures, physiological measurements such as galvanic skin
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response (GSR), and near infrared spectroscopy (NIRS), where each modality may have

multiple external inputs (e.g. multiple linear EEG regressors of single-trial parameters, as

in this study). The more external inputs correlated with single-trial parameters included

in the model, the better the single-trial estimate of the parameters will be. This will allow

decision model researchers to better explore the efficacy of the diffusion model by comparing

single-trial estimates of parameters.

3.4.3 Behavior prediction and BCI applications

We have observed that single-trial measures of EEG in a hierarchical Bayesian approach to

decision-making modeling improves overall accuracy and correct-RT distribution prediction

for subjects with observed behavior. This paradigm also lead to significant improvement

in overall correct-RT distribution prediction for those subjects whose behavior was missing.

That is, we have shown that a new subject’s correct-RT distributions can be predicted when

only their single-trial EEG is collected, given that other subjects’ EEG and behavior has

been analyzed. If the goal of a future project is solely prediction (and no explanation of

the cognitive or neural process is desired, as was in this paper), a whole host of single-trial

EEG measures could be included in a hierarchical model of decision making, using perhaps

a simpler model of decision making such as the linear ballistic accumulator model to ease

analysis (e.g. Forstmann et al., 2008; Ho et al., 2009; van Maanen et al., 2011; Rodriguez

et al., 2015) or a more complicated model to improve prediction. The set of single-trial

measures could include: ERP-like components as we discussed in this paper, measures of

evoked amplitudes in certain frequency bands, and measures of steady-state visual evoked

potentials.

However, as observed in Table 3.3, we have not shown prediction of reaction times for

when subjects committed errors because 1) few errors were committed by the subjects in the
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presented data and 2) the type of model we used has been shown to explain incorrect-RT

distributions well only when intrinsic trial-to-trial variability in evidence accumulation rates

(as opposed to extrinsic due to neural regressors, for which it has not been shown) is included

in the likelihood function (Ratcliff, 1978; Ratcliff and McKoon, 2008). In future work we

plan to compare the predictive ability of more complicated models containing both intrinsic

trial-to-trial variability and extrinsic trial-to-trial variability in evidence accumulation rate

due to external neural measures.

The prediction ability of the presented models for accuracy and correct-RT distributions may

have implications for Brain-Computer Interface (BCI) frameworks, especially in paradigms

which attempt to enhance a participant’s visual attention to particular task to improve

reaction time. To maximize prediction, every EEG attention measure should be included,

and the predictors that offer the best out-of-sample prediction within initial K-fold validation

sets should be included. After collection of behavior and EEG from a few participants and a

hierarchical Bayesian analysis of the data, later participants’ single-trial preprocessing times

or evidence accumulation rates could be predicted using only single-trial EEG measures.

Conceivably this would allow for trial-by-trial intervention in order to enhance a participant’s

attention during the task, perhaps using neural feedback (e.g. via direct current stimulation

or transcranial magnetic stimulation) during those trials in which a participant is predicted

to be slow in their response because of a small evidence accumulation rate (e.g. when an

N200 magnitude is small) or a slow preprocessing time (e.g. when an N200 latency is long).

Although whether the participant could use such feedback in time to affect reaction time

and accuracy remains to be tested.
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Prediction of training data from known subjects

Model 1 Model 2 Model 3

Comparison EEG-δ,τ EEG-δ,τ ,ς
L

ow

25th t1 Percentile 96.5% 97.1% 97.8%

t1 Median 96.6% 96.5% 97.3%

75th t1 Percentile 91.4% 93.4% 94.5%

Accuracy 95.1% 95.2% 97.3%

t0 Median −118.8% −108.3% −111.6%

M
ed

iu
m

25th t1 Percentile 86.0% 87.5% 88.6%

t1 Median 95.9% 95.6% 96.3%

75th t1 Percentile 84.7% 89.4% 90.1%

Accuracy 90.7% 94.1% 95.3%

t0 Median −163.9% −158.6% −163.9%

H
ig

h

25th t1 Percentile 85.4% 87.3% 86.7%

t1 Median 93.1% 92.5% 92.9%

75th t1 Percentile 79.1% 83.8% 84.0%

Accuracy 95.9% 97.4% 95.9%

t0 Median −73.4% −71.2% −76.4%

Table 3.3: Percentage of variance across subjects explained by in-sample prediction (R2
pred)

for summary statistics of known subjects’ accuracy-RT distributions. All three models fit
accuracy and correct-RT t1 data very well, explaining over 92% of median correct-RT and
over 90% of accuracy in each condition. However none of the models explain incorrect-RT
t0 distributions well, a known problem for simple diffusion models that can be overcome by
including variable drift rates directly in the likelihood function (Ratcliff, 1978; Ratcliff and
McKoon, 2008).



3.4.4 Neurocognitive models

The term “neurocognitive” has been used to describe the recent trend of combining mathe-

matical behavioral models and observations of brain behavior to explain and predict percep-

tual decision making (Palmeri et al., 2017). The usefulness of combining behavioral models

and neural dynamics has been motivated on theoretical grounds. Behavioral models suggest

links between subject behavior and cognition while laboratory observation and neuroimag-

ing can suggest links between neural dynamics and cognition. The combination of these

methods then provides a predictive chain of neural dynamics, cognition, and behavior. An-

other obvious benefit is the inference gain when predicting missing data. That is, we will

be able to better predict behavior when brain activity is available. This is especially true

when using hierarchical Bayesian models as they maintain uncertainty in estimates through

different levels of the analysis (Vandekerckhove et al., 2011; Turner et al., 2013). While

there are a variety of methods using cognitive models to find cognitive correlates in the

brain dynamics (see Turner et al., 2017, for a review of these methods), some studies do not

further constrain the cognitive models by informing those models with known neural links to

specific cognitive processes. In this chapter, and our previous study of individual differences

(Chapter 2; Nunez et al., 2015), we demonstrate another important use of neural data in cog-

nitive models. Independent neural measures of cognitive processes, such as attention, can be

used to better understand how cognition influences the mechanisms of behavior, furthering

explanation and prediction of the cognitive process.

Data and code sharing

Pre-calculated EEG measures, raw behavioral data, MATLAB stimulus code, JAGS code,

and an example single-trial EEG R script are available upon request and in the following

repository (as of February 2016) if their use is properly cited.
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Chapter 4

EEG measures of neural processing

speed reflect visual encoding time

4.1 Introduction

While research exists on the time course of primates’ visual system in response to external

visual inputs (Schmolesky et al., 1998), the time course of humans’ visual response remains

largely unexplored due to the invasiveness of prevailing techniques (e.g. single-cellular record-

ings). The electroencephalogram (EEG) is a noninvasive technique that records cortical

synaptic activity that is synchronized across the cortex and is thought to represent higher-

level function in electrophysiology (Buzsaki, 2006; Nunez and Srinivasan, 2006; Nunez et al.,

2016). In an exploratory analysis, we propose a method of estimating and verifying individu-

als’ visual encoding time using traditional EEG measures before decision processing of visual

information. These techniques are based on joint estimation of traditional event-related po-

tentials (ERPs) and cognitive models of perceptual decision making that describe human

reaction time and choice distributions. Using these methods, both individual differences and
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within-individual (trial-to-trial) variability in human visual encoding time can be found that

predict observed individual differences and within-individual differences in reaction time.

A multitude of theoretical and experimental work studying micro-scale electrophysiological

decision making, i.e. single neurons that track the cognitive process and neural computa-

tion of decision making (Shadlen and Newsome, 2001; Gold and Shadlen, 2007), while there

exists only a small amount of theoretical work to inform experimental results on the meso-

or macro-scale level in electrophysiology (e.g see Martin et al., 2010; O’Connell et al., 2012;

Frank, 2015). In this Chapter I explore the veracity of a marco-level electrophysiological

measure of visual encoding by drawing inference from a well-established cognitive model

of human decision-making behavior. In particular I explore an early visual stimulus-locked

negative peak latency in parietal and occipital electrodes, dubbed an “N200” ERP com-

ponent to label its peak direction (negative) and its approximate latency in milliseconds

(approximately 200 ms). By exploring the predictability of this stimulus-locked EEG mea-

sure embedded in cognitive models of perceptual decision making, inference about the neural

process of decision making can be better understood.

4.1.1 Previous explorations of electrophysiological measures of vi-

sual encoding

The speed of human visual system has previously been measured with event-related po-

tentials (Thorpe et al., 1996) using clever condition differences between in go/no-go tasks.

Thorpe et al. (1996) estimated that visual processing in their particular task occurred at

about 150 ms in humans. Other evidence has recently been found to suggest that N200 laten-

cies influence the onset of decision making processes after initial visual encoding (Loughnane

et al., 2016). In particular, Loughnane et al. (2016) found evidence that contralateral encod-

ing time over parietal cortex are captured by the first negative peaks, “N1”s, in event-related
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potentials (ERPs). In another study, single-trial EEG potentials thought to be generative

of N1 peaks (computationally found using the algorithm from Anderson et al., 2016) were

suspected to be related to a “preattentive” phase of decision-making, reflecting the time for

attended visual information to reach extrastriate areas (Zhang et al., 2016). Further evidence

in support of this theory are that single-neuron recordings of evidence accumulation from

lateral intraparietal areas (LIP) in primates typically begin at similar time periods after an

experimental stimulus is displayed (Shadlen and Kiani, 2013). Finally, Martin et al. (2010)

found evidence that the same N1/N200 peak tracked non-decision time by looking at linear

relationships between various ERP peak latency periods and residual reaction times.

Note that “N1” peaks are also referred to as “N200” peaks, referring to approximate time in

milliseconds of occurrence (e.g. see Hong et al., 2009). Some literature also refers to similar

peaks as the “N2” peak, unfortunately leading to confusion in the nomenclature (e.g. see

Martin et al., 2010; Schubert et al., 2017). However the evidence does not seem to suggest

that these potentials reflect different processes across visual studies and experiment types.

In this chapter I will refer to “N200” when I refer to both the traditional trial-average ERP

latencies and single-trial estimates of these latencies.

4.1.2 Separation of encoding, decision, and motor time during

human decision making

Given the evidence in the literature, it is hypothesized that particular latencies of peaks in

event related potentials (ERPs; EEG in response to stimuli at certain time points) predict

decision making processes and, in particular, reflect encoding time of visual stimuli. Here

encoding time is defined as the amount of time for visual processing to occur in the hu-

man brain before decision processes can begin. Behaviorally, trial-to-trial differences and

subject-to-subject differences in encoding time are predicted to affect only trial-to-trial and
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subject-to-subject differences in the onset of reaction time distributions, not the reaction

time distribution shapes or accuracy, reflecting the fact that encoding does not affect the

decision making process itself. Models of both trial-to-trial and session-to-session differences

in encoding time will be evaluated with hierarchical diffusion models that include single-trial

and session-level estimates of stimulus-locked EEG responses. A linear relationship between

the predictor variable estimating speed of cortical response (either traditional trial-averaged

ERP potential peaks or single-trial latency estimates as calculated from EEG) and estimates

of encoding time from reaction time distributions is hypothesized that has a linear slope co-

efficient of 1, indicating that a 1 ms increase in cortical response time reflects a 1 ms increase

in reaction time distributions.

4.2 Methods

4.2.1 Session-level observations

In order to evaluate the hypothesis, data was analyzed from two similar experiments. Data

from Experiment 1 consisted of EEG recordings and behavioral observations from 12 unique

subjects with 2 sessions of EEG each. Data from Experiment 2 consisted of EEG recordings

and behavioral observations from 4 unique subjects with 7 sessions each. Sessions of EEG

collection and task performance for each subject in Experiment 1 were separated by at least

24 hours. Sessions of EEG collection and task performance for each subject in Experiment

2 were separated by 1 week. Models 2 and 3 treat all EEG sessions as observations for

the regression relationships, collapsing and disregarding subject differences. While subject-

differences are important, subject differences were ignored in order to increase the observation

count. The confirmatory study described in Chapter 5 contains a less heterogeneous data

set with more unique subjects.
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4.2.2 Experimental tasks

Subjects were tasked to perform a two-alternative forced choice task, specifically to determine

whether a Gabor stimulus contained high or low spatial frequency content. Stimuli for

Experiments 1 and 2 are built and displayed using the MATLAB Psychophysics toolbox

(Psychtoolbox-3; www.psychtoolbox.org). Example stimuli for both Experiments 1 and 2

are given in Figure 4.1).

Subjects in the two experiments described performed visual-based tasks in a dark room on

a ∼ 61 cm LCD monitor with a distance of 57 cm from retina to display. The monitor

resolution was set as 1920 ∗ 1280 pixels with a 120 Hz refresh rate. Visual angle refers to

the angular distance from a stationary subject’s retina to an object in the visual field. A

distance of 57 cm was chosen to ensure easy calculation of visual angles, with x cm equaling

∼ x◦ visual angle. The subjects were told to maintain fixation throughout the task on a .25

cm (.25◦) fixation spot while attending to to the stimulus.

Gabors are spatial grating patterns with a Gaussian falloff of contrast that produces maximal

firing in certain neurons within the primary visual cortex (Webster et al., 1985). Subjects in

both experiments were tasked with identifying the spatial frequency (either “high” or “low”

spatial frequency) of large Gabors that are randomly rotated on each trial, matching observed

Gabor templates (observed before the first session) with the spatial frequency observed on

the current trial. In Experiment 2, the high and low spatial frequencies of the target Gabors

were 2.4 and 2.6 cycles per degree visual angle (cpd) respectively. While in Experiment

1, the targets were randomly drawn from a Beta(13.5, 1.5) distribution or a Beta(1.5, 13.5)

distribution with means 2.4 and 2.6 cpd respectively. Before and during the Gabor display

on each trial, a disk of visual noise was displayed. In Experiment 1, checkerboard noise was

displayed. While in Experiment 2, the noise was spatially bandpass filtered to include only

masking noise centered around both 2 and 3 cpd was used, equally masking both the high
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(a) Experiment 1

(b) Experiment 2

Figure 4.1: Example stimuli of the cue and response intervals of medium noise conditions
from Experiments 1 (top) and 2 (bottom). In both experiments an SSVEP paradigm was be
used in which the visual noise changed at 40 Hz and the Gabor signal flickered at 30 Hz to
evoke 40 Hz and 30 Hz responses in electrocortical activity that track attention to the noise
and signal stimuli respectively. Single-trial ERPs were measured both to the onset of visual
signal in the response intervals.
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and low spatial frequency targets. Both experiments contained three conditions of high,

medium, and low visual noise contrast.

The time course of each trial was as follows: subjects were asked to fixate on a fixation

spot (.25◦ visual angle) in the center of the screen throughout the experiment, visual noise

changing at 40 Hz was displayed a variable length of time between 500 ms to 1000 ms during

the cue interval, then the Gabor signal stimulus was flickered at 30 Hz embedded in the noise

stimuli for 1200 ms to 2000 ms during the response interval. During the response interval,

subjects are asked to respond as accurate as possible in the time allowed using a button box

(using their left hand to respond for low spatial frequency targets and their right hand for

high spatial frequency targets, although this will be reversed in some subjects for Experiment

2). Auditory feedback stimuli occurred after the response interval to indicate trial accuracy;

auditory feedback was given in order to maintain subject vigilance. An entire session of task

performance and EEG collect took subjects approximately 1 hour with breaks. Each session

produced 8 blocks of 60 trials each for a total of 480 trials, with the noise contrast conditions

intermixed within each block. Subjects were allowed to take breaks between blocks.

4.2.3 EEG recording

EEG was collected in both experiments using Electrical Geodesic, Inc.’s 128 electrode sensor

net and a Net Amps 200 series amplifier. Electrical activity from the scalp was recorded

at a sampling rate of 1000 samples per second and hardware band pass filtered to either a

1 to 50 Hz window (EEG data from Experiment 1) or a 1 to 100 Hz window (EEG data

from Experiment 2). The hardware band pass filter in Experiment 2 was chosen purposely

to maintain high frequencies so that broadband noise is submitted to an Independent Com-

ponent Analysis (ICA) in order to aid artifact correction (i.e. removing electrical activity

due to muscle, movement and environmental electrical influence) (Makeig et al., 1996; Nunez
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et al., 2016). However both analyses yielded artifact-resistant measures after ICA that were

used for further processing as detailed below.

4.2.4 Calculation of event related potentials

Event-related potentials (ERPs) to the onset of the Gabor patch during the response interval

were analyzed using five key steps steps: 1) low pass filtering the EEG data to obtain cleaner

estimates of evoked potentials, 2) shifting each trial’s amplitude to rereference to a baseline

(i.e. the average amplitude in a 100 ms window before the stimulus), 3) averaging across

trials to obtain a traditional ERP estimate at 128 electrodes for each subject (minus those

electrodes marked as artifactual), 4) taking a singular value decomposition (SVD) of the

ERPs, and then 5) using the first component as an channel weighting function in order

to obtain better estimate of the peaks and latencies for both session-specific trial-averaged

ERPs and single-trial estimates of ERPs (although traditionally calculated ERPs at specific

electrodes were also compared to this method yielding no difference in latency calculations).

The window to calculate minima in order to evaluate N200 latency responses was found

empirically. Out of the following windows: 100 to 300 ms post-stimulus, 100 to 250 ms

post-stimulus, 150 to 225 ms post-stimulus, and 150 to 275 ms post-stimulus, the 150 to 275

ms window post-stimulus was found to capture the N200 latency on the subject-level well in

each condition because few edge-located minimums were detected in the trial-averaged N200

estimates (i.e. because only 3 estimates out of 147 estimates of trial-averaged N200 latency

were detected at the boundary, it was thought that his window well captured the N200

latency). If either trial-averaged or single-trial N200 latencies were found with a minimum

on the boundary, they were removed from the analysis. A minimum at either 150 or 275 ms

was indicative that N200 latencies were not well estimated in that noise condition or on that

trial.
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The goal of the singular value decomposition (SVD) was to improve the signal-to-noise ratio

of both traditional ERP estimates and single-trial estimates by weight-averaging adjacent

electrodes as a spatial filter (Parra et al., 2005). SVD is the algorithm used my most

principal component analysis (PCA) algorithms and produces non-stochastic, deterministic

results. Better estimates of the traditional ERPs were obtained by finding the first principal

component of the matrix of ERPs (samples T by channel C data, see the discussion in

Chapter 3). The first principal component consists of both a weight vector that produces

a time series over of the trial-average and an associated vector of weights representing the

location of that component. Single-trial estimates of that ERP are then obtained by weight-

summing over the vector of weights as described in Chapter 3 and Figure 3.2.

Different methods for finding channel weights for single-trial estimation of N200 latencies

were explored. The best method was quantified as the method that produced clear peaks

at typical N200 latencies over all trials (and no where else) such that the peak latencies

only differed by a range of about 50 ms across trials. The following methods were explored

in depth: 1) calculating ERPs in each SNR condition and biasing single-trial EEG in each

condition using an SVD component based on that conditions average, 2) calculating ERPs

only in the low noise condition and biasing single-trial EEG in each condition using an SVD

component based only on the low noise condition, or 3) calculating ERPs across all trials,

disregarding condition, and biasing single-trial EEG by that SVD component. Method 1 was

found to be the best calculation. An Independent Component Analysis (ICA) decomposition

of ERP response matrix T × C was also explored. However independent components (ICs)

did not produce consistent estimates of components across subjects. Thus the SVD was

found to be a more stable and objective calculation such that the first component from each

subject and condition was used.
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4.2.5 Presence of fast errors in reaction time distributions

One possible confound in evaluating the relationship between N200 latencies and reaction

time distributions is the presence of fast error reaction times. That is, fast reaction time

observations that are not due to a decision making process, and occur due to another random

process. Because these reaction times are not due to a decision process, the associated

accuracy on those trials should be about 50% in a two-alternative forced choice task. These

reaction times typically pollute the left tail of reaction time distributions as subjects are

often able to become attentive to the task later if attention lapses at the beginning of the

trial. Recent research has studied and developed theory on the notion of mind wandering,

which is defined as cognition that departs from that which is useful to the task at hand (e.g.

Hawkins et al., 2015; Lin et al., 2016).

In order to remove fast responses times that were not due to a decision process, an exponen-

tially weighted moving average was used to calculate accuracy sorted by reaction time, from

shortest reaction time to longest reaction time. A cutoff of 60% accuracy was used and the

accuracy data and the associated short reaction times were removed from the data. However

a fixed cutoff of 350 ms yielded no difference in the ultimate results, and therefore a fixed

cutoff was maintained in the data. This procedure resulted in less than 7.6% of the response

data being dropped for each visual noise condition across sessions of EEG, with the median

being 0% removed in one visual noise condition of one session.

4.2.6 Simple analyses

A criticism of past analyses was that they depended upon complicated assumptions that

exist within drift diffusion models (even though they are empirically validated, see Voss

et al., 2004). Therefore it was apparent that simple analyses were needed in order to explore

neural processing time and visual encoding time relationships, independently of cognitive
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models. Simple linear regressions of both single-trial N200 latencies versus reaction times

and traditional N200 latencies versus reaction time distribution statistics were performed.

Statistics reported are 95% confidence intervals related to the p values and t statistics in

the Neyman and Pearson (1933) tradition as well as the natural logarithm of Bayes Factors

which describe the amount of relative evidence (probability in the Bayesian definition) of

a model which has a non-zero regression slope over a model which has a regression slope

of zero (Kass and Raftery, 1995; Rouder and Morey, 2012). Adjusted R2 is also reported

that describes the fraction of variance of the dependent variable (RT statistics) explained by

the regressor variable (measures of neural processing speed). R2
adj ranges from 0 to 1. All

statistics were generated by JASP, a open-source graphical software package for statistical

analysis (JASP Team, 2017).

4.2.7 Integrated neurocognitive model fitting

As shown in previous research (Frank, 2015; Nunez et al., 2017) single-trial electrophysiolog-

ical measures can be used to estimate single-trial non-decision times and decision parameters

that are not identifiable on single-trials without experimental data from other modalities.

This is performed using hierarchical Bayesian models with linear connectors between neural

data and drift-diffusion model parameters. This technique can yield inference about the

effect of single-trial electrocortical measures of attention on decision making parameters.

Parameter estimates from three hierarchical Bayesian models were found. These linear rela-

tionships were estimated in a single-step in a hierarchical Bayesian framework.

In Model 1, an exploratory analysis was performed where drift diffusion modeling was applied

to reaction time and accuracy data from Experiment 1 that accounted for single-trial changes

in non-decision time τ , within-trial evidence accumulation rate δ and within-trial evidence
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accumulation standard deviation α that were linearly related to single-trial changes in single-

trial N200 amplitudes, single-trial N200 latencies, single-trial P300 amplitudes, single-trial

P300 latencies, and two steady-state visual evoked potential (30 Hz and 40 Hz stimulus

frequency tagged EEG responses).

The relationship between single-trial estimates of neural processing speed as measured by

N200 latencies responses and parameter estimates with cognitive interpretations was tested

by assuming simple link functions between cognitive mechanisms in hierarchical models.

That is, the diffusion model parameters on each trial were assumed to be equal to a simple

linear combination of the vector of single-trial EEG inputs xijk on that trial i with ηjk and

γjk as the intercept and slope parameters respectively:

δijk = η(δ)jk+γᵀ
(δ)jkxijk

τijk = η(τ)jk+γᵀ
(τ)jkxijk

αijk = η(α)jk+γ
ᵀ
(α)jkxijk

Decision-diffusion modeling was also applied to reaction time and accuracy data from Exper-

iments 1 & 2 jointly (data consisted of 12 unique subjects with 2 sessions of EEG each and

4 unique subjects with 7 sessions of EEG each respectively), containing between session-

differences in non-decision time τ , within-trial evidence accumulation rate δ, and speed

accuracy trade-off parameter α that were explained by session j and condition k differences

in traditional N200 latencies zjk (first negative peak latencies of ERPs; see Luck et al., 2000)

of subject-level ERPs. All built models will were assumed to be hierarchical, describing in-

trinsic session j and condition k variability which 1) ensured model fits with small amounts

of data (Lee, 2008; Lee and Newell, 2011; Vandekerckhove et al., 2011) and 2) provided the

ability to predict data more easily for observed and unobserved subjects in future analy-

ses (Wagenmakers, 2009; Nunez et al., 2017). Hierarchical parameters were also split by
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experiment e. Bayesian hierarchical drift-diffusion models were fit using Wiener likelihood

approximations in JAGS, a program that easily samples from marginal posterior distribu-

tions in hierarchical models using Markov Chain Monte Carlo (MCMC) (Plummer, 2003;

Wabersich and Vandekerckhove, 2014).

In Models 2 and 3, wide (uninformative) priors were given the effects γ of EEG on the

parameters of interest, centered at 1 in order to calculate Bayes Factors using the Savage-

Dickey density ratio (see paragraph below; Verdinelli and Wasserman, 1995). In Model 3,

wide (uninformative) priors were given to the modifier effects θ of EEG on the parameters of

interest, centered at 0 for the same reason (see paragraph below). Model 2 had the following

prior and hyperprior structure:

τjk ∼ N (η(τek) + γ1ekzjk, σ
2
(τ)) ∈ (0, 1) , η(τ)k ∼ N (0.3, 0.252), σ(τ) ∼ Γ(0.2, 1)

δjk ∼ N (η(δek) + γ2ekzjk, σ
2
(δ)) ∈ (−9, 9) , η(δek) ∼ N (1, 22) , σ(δ) ∼ Γ(1, 1)

αjk ∼ N (η(αek) + γ3ekzjk, σ
2
(α)) ∈ (0.1, 3), η(αek) ∼ N (1, 0.52) , σ(α) ∼ Γ(1, 1)

zjk ∼ N (µ(zek), σ
2
(z)) , µ(zek) ∼ N (0.2, 0.12) , σ(z) ∼ Γ(0.2, 1)

γ ∼ N (µ(γ), σ
2
(γ)) , µ(γ) ∼ N (1, 32) , σ(γ) ∼ Γ(1, 1)

Model 3 was created in order to test the post-hoc hypothesis that noise condition and vi-

sual noise type (differing across the two experiments) modified the effect of N200 latency

on non-decision time. In Models 3, the effect of trial-averaged N200 latency on non-decision

time was assumed to be moderated by noise condition and experiment with modifier. Thus

Model 3 had the following prior and hyperprior structure:

τjk ∼ N (η(τek) + γ1ekzjk + θ1
ᵀzjk, σ

2
(τ)) ∈ (0, 1) , η(τ)k ∼ N (0.3, 0.252), σ(τ) ∼ Γ(0.2, 1)

δjk ∼ N (η(δek) + γ2ekzjk + θ2
ᵀzjk, σ

2
(δ)) ∈ (−9, 9) , η(δek) ∼ N (1, 22) , σ(δ) ∼ Γ(1, 1)

αjk ∼ N (η(αek) + γ3ekzjk + θ3
ᵀzjk, σ

2
(α)) ∈ (0.1, 3), η(αek) ∼ N (1, 0.52) , σ(α) ∼ Γ(1, 1)

zjk ∼ N (µ(zek), σ
2
(z)) , µ(zek) ∼ N (0.2, 0.12) , σ(z) ∼ Γ(0.2, 1)

γ ∼ N (1, 32), θ ∼ N (0, 12)
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In Model 2 Bayes Factors for effect parameters in each experiment and condition were cal-

culated with Python scripts using a Savage-Dickey density ratio (Verdinelli and Wasserman,

1995) of the posterior density over the prior distribution at γ = 1. These Bayes Factors pro-

vide the degree of evidence (defined as a probability ratio in Bayesian statistics) of a model

where effect of trial-averaged N200 latency on non-decision time is 1-to-1 versus a model

where the effect is unknown (the prior model where γ ∼ N (1, 32)). In Model 3 Bayes Fac-

tors for additional effect parameters in each experiment and condition were calculated using

a Savage-Dickey density ratio of the posterior density over the prior distribution at θ = 0,

i.e. the null model of no additional N200 effect with increasing visual noise contrast. These

Bayes Factors provide the degree of evidence (defined as a probability ratio in Bayesian

statistics) of a model where effect of trial-averaged N200 latency on non-decision time is 0

versus a model where the effect is unknown (the prior model where θ ∼ N (0, 32)).

4.3 Results

4.3.1 Simple results: Scatter plots and linear regression

In order to explore the hypothesis that trial-averaged N200 latency predicts session-level

visual encoding time, linear models between reaction time percentiles (both correct and

incorrect reaction times combined) and N200 latencies were computed. If a drift diffusion

model of quick decision making is to be believed, then the shifts of reaction time (RT)

distributions (and thus the small RT percentiles) should correlate with non-decision time

(i.e. encoding + motor response) while the shape of RT distributions (and thus the medium

and larger RT percentiles) should correlate both with non-decision time and decision making
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properties. Thus linear regressions can be explored without fitting diffusion models to data

directly. A close to 1-to-1 relationship was found between in a simple linear regression

between trial-averaged N200 latencies and 10th RT percentiles as shown in the left portion

of Figure 4.2 with a regression coefficient of β1 = 1.32 (N = 143, 95% confidence interval:

[0.83, 1.81], p < .001, t = 5.33, log(BF) = 10.44). Although it should be noted that only 16%

of the variance in 10th RT percentiles were explained by the variance across trial-averaged

N200 latencies (R2
adj = .162).

The relationship is also expected to be observed in the reaction time distributions itself, albeit

with more variance around the regression line. Single-trial estimates of N200 latencies were

compared to reaction times across all data points. Again, a close to 1-to-1 relationship was

found between in a simple linear regression between single-trial N200 latencies and reaction

times as shown in the right portion of Figure 4.2 with a regression coefficient of β1 = 0.95

(N = 13,868, 95% confidence interval: [0.84, 1.07], p < .001, t = 15.85, log(BF) = 120.42).

However only about 2% of the variance of raw single-trial reaction times were explained

(R2
adj = .018). This may be expected if other mechanisms besides visual encoding time

contribute to the variance in reaction times, which was explored with the following cognitive

modeling results.

4.3.2 Posterior distributions of Model 1

Each model was fit using JAGS with six Markov Chain Monte Carlo (MCMC) chains run

in parallel of 52,000 samples each with 2,000 burn-in samples and a thinning parameter of

either 100 (Model 1) or 10 (Models 2 and 3) resulting in either 500 (Model 1) or 5,000

(Models 2 and 3) posterior samples in each chain. The posterior samples from each chain

were combined to form one posterior sample of 3,000 (Model 1) or 30,000 (Models 2 and 3)

samples for each parameter. All three models converged as judged by R̂ (see Gelman and
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Figure 4.2: Left: A scatter plot of single-trial N200 latencies versus reaction times and the
best fit linear regression line. Observations were generated per trial (N = 15,680) Right: A
scatter plot of trial-averaged N200 latencies (i.e. traditional N1 latencies) and 10th reaction
time percentiles. Observations were generated per noise condition and per EEG collection
session (N = 141).



Rubin, 1992) being less than 1.02 for all parameters in each model.

Posterior distributions of model parameters for 7 subjects’ single-trial N200 linear effects on

single-trial non-decision time (the sum of encoding and motor response time as estimated

by a hierarchical Bayesian account of a decision-diffusion model) support the hypothesis of

a 1-to-1 correspondence (see Figure 4.3). However, this relationship between N200 latency

and non-decision time was weaker and non-existent in medium and high noise conditions. In

medium and high noise conditions, further processing may be required to estimate encoding

time from single-trial N200 latency measures by introducing other sources of variance. In low

noise condition, the evidence suggests that the EEG response to the onset of the stimulus

reflects visual encoding time.

4.3.3 Posterior distributions of Models 2 and 3

Model 2 was used to evaluate the effect of trial-averaged N200 latency (i.e. “traditional” N1

latency) on non-decision time across EEG sessions and noise conditions. The mean effect

across all conditions of each experiment µγ provides a sense of how N200 processing time

tracks non-decision time in general. The posterior distribution of this parameter was found

to be around 1 in each condition and experiment as shown in Figure 4.4, indicating that

1 ms increase in N200 processing corresponded to 1 ms increase in non-decision time. The

posterior distribution of the overall hierarchical effect of N200 peak latency on non-decision

time across sessions is given in Figure 4.5, indicating that the overall evidence for a 1-to-1

relationship between N1 latency and non-decision time is 5.86, indicating moderate evidence.

Model 3 was fit in order to evaluate the observed modifying effect of noise condition on effect

of N200 peak latency (see increasing trend across conditions in Figure 4.4). Some evidence

was found for the null model as indicated by the Bayes Factors for the null effect BF0 as

shown in Figure 4.6. The base effect posterior distribution (evidence for the effect of N200
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Figure 4.3: The posterior distributions of the effect of a trial’s N200 latency (a visual pro-
cessing component of the signal stimulus) on trial-specific non-decision times for each subject
in a low noise condition. Thick lines forming the distribution functions represent 95% cred-
ible intervals while thin lines represent 99% credible intervals. Crosses and vertical lines
represent posterior means and modes respectively. Also shown are the topographic represen-
tations of the channel weights of the first SVD component of each subject’s ERP, indicating
the location of single-trial N200s over occipital and parietal electrodes.
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Figure 4.4: Session-level effects of N200 latency on non-decision time during the training
experiment. Data was collected from 4 subjects over 7 training sessions each, resulting
in 28 observations used in the linear model of trial-averaged N200 peak latency on non-
decision time embedded in a hierarchical linear model. Some evidence exists for the effects
of N200 peak latency on non-decision time to be 1-to-1 (one millisecond increase in N200
latency corresponds to a millisecond increase in non-decision time) as indicated by the Bayes
Factors calculated with a Savage-Dickey density ratio (Verdinelli and Wasserman, 1995) of
the posterior density over the prior distribution at γ = 1.
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Figure 4.5: Overall hierarchical parameter of the effect of trial-averaged N200 latency on
non-decision time during the training experiment. Evidence exists for the effects of N200
peak latency on non-decision time to be 1-to-1 (one millisecond increase in N200 latency
corresponds to a millisecond increase in non-decision time) as indicated by the Bayes Factor
of 5.86 of the posterior density over the prior distribution at µγ = 1.



latency on non-decision time in Experiment 1 in the low noise condition) was close to that

of the overall effect posterior in Model 2. Therefore not much evidence exists for moderator

effects θ of condition and experiment.

4.4 Discussion

Evidence is presented both for and against the N200-visual encoding hypothesis. Evidence

against is often left out of manuscripts presented in exploratory analyses in both the cognitive

psychology and cognitive neuroscience fields, often presented as confirmatory results. Such

“censoring” of data can lead to biases statistical analyses (Guan and Vandekerckhove, 2016).

In this Chapter I present exploratory evidence both for and against this hypothesis.

4.4.1 Evidence for N200 latencies tracking visual encoding

Both simple regression analyses yielded evidence for event-related potential measures of neu-

ral processing speed reflecting visual encoding times due to the simple linear regression slope

coefficients being close to 1. These regression fits indicate 1) that there was approximately

a 1 ms increase in reaction times when there was a 1 ms increase in single-trial N200 la-

tency and 2) that there was approximately a 1 ms increase in 10th percentile reaction times,

a non-parametric estimate of non-decision times, when there was a 1 ms increase in trial-

averaged N200 (i.e. traditional N1) latencies across both experiments and all experimental

sessions and all visual noise conditions of EEG. Furthermore, moderate evidence was found

of this 1-to-1 relationship of both single-trial N200 latencies and trial-average N200 latency

on non-decision time in hierarchical drift-diffusion Models 1, 2, and 3.
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Figure 4.6: Session-level moderator effects of N200 latency on non-decision time during
the training experiment. Data was collected from 4 subjects over 7 training sessions each,
resulting in 28 observations used in the linear model of trial-averaged N200 peak latency on
non-decision time embedded in a hierarchical linear model. Not much evidence exists for
moderator effects of condition as indicated by the Bayes Factor for the null effect BF0 (that
is evidence for θ = 0 or no effect of condition on the N200-non-decision time relationship)



4.4.2 Evidence against N200 latencies tracking visual encoding

When exploring the relationship between cortical processing time (as measured by early

ERP latencies) and subject-to-subject differences in non-decision time, the ability of ERP

latencies to reflect visual encoding time is more clearly dependent upon the quality of visual

stimuli. In two experiments with different noise types, the effects of session-level N1 latency

differences on session-level non-decision time differences (assumed by the model to be the

sum of visual encoding and residual motor response time) seemed to be mediated by the

contrast condition of the visual distractors. This suggest that how well the peak neural

signal latency tracks visual encoding time is dependent upon the quality of the external

signal itself. However not much evidence was found for this qualitative finding as indicated

by the Bayes Factors of the null model in Figure 4.6.

Single-trial N200 latencies may not be related to non-decision time in high noise conditions.

However, further work is required to find better, testable estimates of single-trial neural

processing speed as measured by ongoing EEG. It is also possible that the simple decision-

diffusion model does not provide a satisfactory account of visual encoding. Or that the

beginning of the negative deflection of the single-trial and subject-level EEG is a better

indicator of encoding time. Initial evidence for this latter hypothesis is that early negative

deflections better match visual encoding time as estimated by other modalities (e.g. see

Schmolesky et al., 1998).

4.4.3 A new neurocognitive theory

A neurocognitive model of encoding, decision (via a diffusion process), and motor response

is proposed that is identified with separable measures of encoding and motor response via

EEG and decision processes that are estimated from observed decision and reaction time

distributions. Fitting this type of model to data would allow inference about trial-to-trial
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differences and individual differences in observed cortical signals as well as human behavior

during quick decision making.

While some parameters of the model presented in Equation 4.1 are classical unidentifiable

with behavior alone, both unidentifiability issues can resolved by including electrophysio-

logical measures as correlates of cognition directly as observed data in hierarchical models.

In this Chapter I have presented initial evidence that non-decision time τ is related to the

N200 latency almost 1-to-1 in response to stimuli. In the context of previous research (e.g.

Martin et al., 2010; Loughnane et al., 2016; Zhang et al., 2016), this is further evidence

that single-trial encoding times τe (i.e. visual processing time before the decision begins) are

reflected in N200 latencies in the parietal cortex.

Neurocognitive hierarchical models of encoding, decision, and motor response time thus

become identifiable when treating EEG measures (N200 latencies) as measures of encoding

time. A quantitative neurocognitive theory of visual encoding, rapid decision-making, and

motor preparation is therefore proposed that explains EEG measures of encoding, EEG

measures of motor preparation, behavioral accuracy in two alternative forced choice (2AFC)

tasks, and reaction time distributions. The theory is an extension of a class of Decision-

Diffusion Models (e.g. “drift-diffusion” models, see Ratcliff and McKoon, 2008, for a review)

which predicts that reaction time and accuracy are explained by a continuous accumulation

of evidence towards certain pre-decided evidence thresholds (see Figure 4.7).

The base likelihood of all hierarchical evidence accumulation models will be assumed to be

the same. A drift-diffusion model of accuracy (w = 0 or w = 1) and reaction time t on one

trial is predicted to be a function of encoding time τe, motor response time τm, the drift

rate – the average rate of evidence accumulation within one trial δ, the diffusion coefficient

– the variance around the average rate of evidence accumulation ς, and the amount of

evidence required to make a decision αt, which may be assumed to decrease with time. The

bias towards correct or incorrect responses is assumed to be equal to z0 = 0.5αt. The joint
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Figure 4.7: A graphical illustration of a Neural Decision Diffusion model in which the en-
coding time τe on single-trials describes the latency of the negative peaks of the EEG on 146
single-trials in occipital and parietal locations. Single-trial observations of the N200 latency
are found by using a decomposition of the average ERP response at each electrode and then
biasing the raw EEG by the resulting channel weights (this algorithm detailed in Chapter 3).
Total non-decision time τ reflects both stimulus encoding time τe as well as residual motor
response τm (i.e. motor preparation time after the decision is made) and can be estimated
from reaction time distributions.



density f of RT t and accuracy w of this simplified diffusion model is given in Equation 4.1.

The density is derived from the solution given by (Ratcliff, 1978; Tuerlinckx, 2004).



f(t, w = 0 | α, ς2, τe, τm, δ) = πς2

α2
t
e
− 1

2ς2
[δαt+δ2(t−τe−τm)]∑∞

k=1

[
k sin

(
1
2
πk
)
e
− 1

2α2t
k2π2ς2(t−τe−τm)

]

f(t, w = 1 | αt, ς2, τe, τm, δ) = f(t, w = 0 | αt, ς2, τe, τm,−δ)

(4.1)

Note that the density in Equation 4.1 is classically unidentifiable when estimating the

model with only reaction time and accuracy observations for two reasons. 1) Encoding time

τe and motor response time τm both contribute to residual response time τ = τe + τm which

approximately equals the smallest observed reaction time that is not due to fast guesses. 2)

Only two of the three parameters related to evidence accumulation (i.e. drift rate δ, the

diffusion coefficient ς, and the boundary separation α) can be found with behavioral data

alone because, for example, if αt is constant with t, multiplying ς by two and dividing both

α and δ by two would result in the same fit of choice-RT (Wabersich and Vandekerckhove,

2014).

The goal of future work is to further develop theory that reconciles psychological phenomena

with observations about the brain found in the cognitive neuroscience literature. This work

would lead to the ability to fit the density given in Equation 4.1 with identified parameters

that explain both psychological phenomena and observed brain electrophysiology.

108



Chapter 5

Do EEG markers of motor processing

reflect motor preparation time?

5.1 Introduction

Simple theories of speeded decision-making often assume that the cognitive processing re-

quired occurs in three sequential time periods: 1) a period of visual encoding, 2) a period

of decision-making, and then 3) a period of motor response time (e.g. Ratcliff and McKoon,

2008). In a new preregistered study, I propose to test the common sequential assumption of

cognitive processing during quick decision making by using EEG measures and hierarchical

drift-diffusion models, analyses similar to those presented in the previous chapter. If evi-

dence of sequential processing is found, the second goal is to find estimates of these three

time periods in milliseconds for each subject using a mixture of human behavior observations

(choice and reaction time) and evoked electroencephalographic (EEG) measures.

To further understanding of the time course of quick decision making, EEG measures of

motor response time will be evaluated in relation to the predicted model of decision making.
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The mu rhythm is a high alpha / beta band (often estimated at ∼ 9 − 15 Hz) response

in EEG over the motor cortex (central electrodes) that typically decreases in magnitude

during motor preparation (Pfurtscheller et al., 2006). However the beta rhythm (∼ 18− 25

Hz) can also be important markers of sensorimotor preparedness (McFarland et al., 2000).

This neural motor measure has even become a reliable predictor in Brain-Computer Inter-

faces (e.g. McFarland et al., 2005). For this reason it is thought that the time course of

“desynchronization” (decrease in EEG power) in the beta-band will be indicative of motor

response time. This hypothesis will be evaluated using analysis of diffusion models with

beta-band power decreases as measures of motor response time. Furthermore, it is hypoth-

esized that non-decision time for each subject, as estimated by reaction time distributions,

will total N200 negative peak latency time (an ERP possibly reflecting visual encoding time

as explored in Chapter 4) and evoked motor response time as estimated by the peak nega-

tive amplitude of the beta band-desynchronization. The estimation of encoding time from

the stimulus-locked EEG, the decision processes from the accuracy and response time dis-

tributions, and the motor response time from the mu-band desynchronization will refine

knowledge of both individual differences and between experimental condition differences in

quick decision making.

5.2 Methods

5.2.1 Preregistration

The confirmatory analysis of encoding time and motor response time separation was prereg-

istered at the Open Science Framework (https://osf.io). Some data was collected before

the preregistration was completed. However no data had been analyzed nor cleaned before

the preregistration. Pilot data had been viewed and analyzed. However the pilot data will
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not be used in future analysis. At the time of this writing, data was still being collected and

therefore the final results are expected to be published in late 2017.

5.2.2 Subjects

Participants were recruited by word-of-mouth and email on the main campus of the Uni-

versity of California, Irvine. Participants must have been at least 18 years of age and have

no prior history or family history of epilepsy. Participants were paid $60 for two sessions of

EEG data collection during a visual decision making experiment, multiple trials of a simple

game built using Psychtoolbox 3 in MATLAB. Evoked-EEG measures, reaction times, and

choices were collected using MATLAB scripts.

5.2.3 Dataset

The target sample size is 32 subjects, each with 2 sessions of recordings. One session will

yield 1) 480 trials of EEG data and behavior, 2) a 2 minute record of EEG while the subject

is at rest with eyes closed, and 3) a 2 minute record of EEG while the subject is at rest with

eyes open, fixated on a computer screen. We will recruit up to 50 participants, assuming

that not all participants will complete two sessions.

The sample size for both trials and number of participants was constrained by time. We did

not wish to keep participants in the experiment room for longer than 2 hours because partici-

pants would have become fatigued, resulting in poor experimental performance. Empirically

it was found that 480 trials of data could be collected (80 trials per experimental cell) per

experimental session, resulting in a total of 960 trials of EEG and behavioral observations

per participant across sessions. We will terminate our data collection when we have both

EEG and behavioral data from 32 participants with two complete sessions each.
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5.2.4 Experimental tasks

Subjects were tasked to perform a two-alternative forced choice task, specifically to deter-

mine whether a Gabor stimulus contained high or low spatial frequency content. Stim-

uli were built and displayed using the MATLAB Psychophysics toolbox (Psychtoolbox-3;

www.psychtoolbox.org). A graphical representation of one trial of the experiment is given

in Figure 5.1.

Subjects in the two experiments described performed visual-based tasks in a dark room on

a ∼ 61 cm LCD monitor with a distance of 57 cm from retina to display. The monitor

resolution was set as 1920 ∗ 1280 pixels with a 120 Hz refresh rate. A distance of 57 cm was

chosen to ensure easy calculation of visual angles, with x cm equaling ∼ x◦ visual angle.

Figure 5.1: Example stimuli of the cue and response intervals of the experiment with three
conditions of different times to respond (.6, .9, and 1.5 seconds). An SSVEP paradigm was
be used in which the visual noise changed at 40 Hz and the Gabor signal flickered at 30 Hz
to evoke 40 Hz and 30 Hz responses in electrocortical activity that track attention to the
noise and signal stimuli respectively. For the first half of an experimental sessions, subjects
had to respond with either only their right or left hands, and then use the other hand for
the second half of the experiment.
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The subjects were told to maintain fixation throughout the task on a .25 cm (.25◦) fixation

spot while attending to to the stimulus. The high and low spatial frequencies of the target

Gabors were 2.4 and 2.6 cycles per degree visual angle (cpd) respectively. The visual noise

was broadband noise. The experiment contained only one condition of contrast noise, found

to make the experiment somewhat difficult for subjects.

This experiment had a within-subject design with 2 factors (“time boundary” and “hand of

response”). The “time boundary” factor had thee levels: 1.5 seconds to respond, .9 seconds

to respond, and .6 seconds to respond. The “hand of response” factor has two levels: left

hand and right hand. Such that subjects responded with only their left hand or with only

their right hand during particular trials (using their ring and index fingers for each choice

button on a response-collection device). The trial types were blocked, therefore there were

2 ∗ 3 = 6 different types of blocks. Subjects started each session with either their right or

left hands and then were displayed the blocks with either increasing or decreasing time-to-

respond in either hand. Block order was counterbalanced across subjects. Subjects were thus

assigned randomly to one of eight block orders (where each session of the experiment has 8

blocks). Subjects participated in two sessions of EEG data collection on separate days, less

than a week apart. The block order for the second session reversed the “hand of response”

order and reversed the block order of the “time boundary” within each hand condition.

The time course of each trial is as follows: subjects are asked to fixate on a fixation spot (.25◦

visual angle) in the center of the screen throughout the experiment, visual noise changing

at 40 Hz is displayed for 500 ms to 1000 ms during the cue interval, then the Gabor signal

stimulus is flickered at 30 Hz embedded in the noise stimuli for 1500 ms to 2000 ms during the

response interval. During the response interval, subjects are asked to respond as accurate as

possible in the time allowed during that block (either .6 seconds, .9 seconds, or 1.5 seconds).

using a button box. Each session produced 6 blocks of 80 trials each for a total of 480 trials.

Subjects were allowed to take breaks between blocks.
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Figure 5.2: Example feedback images given to subjects during the experiment. Faces were
displayed directly after completion of each trial. (Left) Happy faces were displayed when
a subject answered within the allowed time period (either .6, .9, or 1.5 seconds into the
response interval, depending upon the condition of that block of trials) and chose the correct
spatial frequency. (Middle) “Unsure” faces were displayed when a subject answered within
the allowed time period but chose the incorrect spatial frequency. (Right) Sad faces were
displayed when a subject did not answer in the allowed time period for the block of trials.
Sad faces were used to encourage subjects to answer within the time boundary.

For trial-to-trial feedback, cartoon face stimuli will be used, as humans are thought to use

emotion and facial expressions as a mechanism of feedback and simple face stimuli have

even been used in robotic learning experiments as proof-of-concept (Andry et al., 2011).

“Unsure” faces were given for trials answered incorrectly but in the correct amount of time,

happy faces were given for trials answered correctly in the correct amount of time, and sad

faces were given for trials not answered in the correct amount of time for the block condition.

Sad faces were given to encourage subjects to answer within the time boundary. However for

all subsequent analyses, correct and incorrect trials will still be calculated based on the full

response interval time period, so that the time boundary does not directly affect accuracy

calculations. Example feedback stimuli are displayed in Figure 5.2.
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5.2.5 EEG recording

Electroencephalograms (EEG) were recorded using Electrical Geodesics, Inc.’s high density

128-channel Geodesic Sensor Net and Advanced Neuro Technology’s amplifier. Electrical

activity from the scalp was recorded at a sampling rate of 1024 samples per second with

OpenVibe recording software and Lab Streaming Layer to output the data for offline analysis

using MATLAB and Python scripts.

5.2.6 Calculation of event related potentials

Following the results of Chapter 4, the ERP was windowed 150 to 275 ms post-stimulus

in order to calculate trial-averaged N200 latency (the time of the minimum latency within

the aforementioned window). However if N200 latencies were found with a minimum on

the boundary, they were removed from the analysis. A minimum at either 150 or 275 ms

was indicative that N200 latencies were not well estimated in that session. Singular value

decomposition (SVD) was used to find single-trial latency estimates and reduced latency

estimates of trial-averaged N200 latencies (see Nunez et al., 2017, and Methods of Chapter

4)

To find single-value estimates of motor response time, beta desynchronization was calculated

by using the Fast Fourier Transform (FFT) function in MATLAB with a moving Gaussian

window over the time course of the response-locked data. Then left and right central elec-

trodes (C3 and C4 in the 10-20 electrode layout, see Jasper, 1958) were used to find beta band

(14-18 Hz) desynchronization time courses for left-hand and right-hand responses (found us-

ing the contralateral electrode on the opposite hemisphere to the used hand in that block).

The peak negative magnitude of the beta band desynchronization before response was used

as an estimate of motor preparation time, to be compared to reaction time distributions and

non-decision time estimates.
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5.2.7 Data exclusion

In order to remove “fast error” trials that do not contain decision-making processes, reaction

times less than 350 ms will be removed. Trial records deemed to contain too much EEG

artifact by visual inspection (high amplitude or high frequency electrical activity that is

impossible for cortically-generated activity, see Nunez et al., 2016) will be removed. Single-

trial N200 latencies that are found to be on the boundary (either 150 ms or 275 ms post-

stimulus; indicating a failure of the simple windowing algorithm to find a stimulus-related

peak) will be removed. Trial-averaged N200 latencies that are found to be on the same

boundaries will also be removed for the same reasons. Beta desynchronization peaks that

are found to be on the −600 ms or −200 ms window boundaries will be removed for the same

reasons. Test data will be removed from each block of the data such that 25% of trials will

be marked as test data for use in out-of-sample posterior predictive distribution evaluations

in exploratory analyses.

5.2.8 Simple analyses

In the same analysis as Chapter 4, simple linear regressions of both single-trial N200 latencies

versus reaction times and trial-averaged N200 latencies versus reaction time 10th percentiles

will be performed. The trial-averaged N200 latencies observations will be calculated per

session and condition of the experiment (and therefore per block of the experiment, each

block being a particular hand and response-cutoff condition). The response-locked peak

beta desynchronization times will also be used as regressors in a simple linear model with

10th reaction time percentiles as the dependent variable. In addition, a linear regression will

be performed with two regressors. The two independent variables will be trial-averaged N200

latencies and beta-desynchronization peak latency times, with reaction time 10th percentiles

as the dependent variable.
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In the simple linear regression analyses, statistics reported will be 95% confidence intervals

of the effect parameters as well as the natural logarithm of Bayes Factors which describe the

amount of relative evidence (probability in the Bayesian definition) of a model which has a

non-zero regression slope over a model which has a regression slope of zero. Adjusted R2

will also be reported that describes the fraction of variance of the dependent variable (RT

statistics) explained by the regressor variables (N200 latencies and peak beta desynchroniza-

tion times). All statistics will be generated by JASP (JASP Team, 2017), a open-source

graphical software package for statistical analysis.

5.2.9 Integrated neurocognitive model fitting

Both Models 2 and 3 from Chapter 4 will be repeated, with two observations of trial-averaged

N200 latency per hand condition and three observations per response-cutoff condition. If

the Bayes Factors using the Savage-Dickey method indicate some evidence that there is a

1-to-1 linear effect of N200 latency on non-decision in the first hierarchical Bayesian model

(BF > 3 for the hierarchical effect parameter), then an alternate hierarchical Bayesian model

will be used to test whether there were additive effects of N200 latency for the right hand

and longer time boundaries. If evidence is found for both simple hypotheses (evidence of

both a 1-to-1 effect of N200 latency and 1-to-1 effect of peak beta desynchronization time on

non-decision time) then an alternate hierarchical with both EEG regressors on non-decision

time simultaneously will be fit.

The posterior distributions of the linear effect parameters in the hierarchical Bayesian models

were evaluated using Bayes Factors calculated using the Savage-Dickey ratio to 1) indicate

evidence of a 1-to-1 linear effect of N200 latency on non-decision time, 2) indicate evidence

of a 1-to-1 linear effect of peak beta desynchronization time on non-decision time, and 3)

indicate evidence of the null effect (a slope parameter of zero indicating no effect) of additive
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effect parameters in the follow-up analysis.

5.3 Future directions

5.3.1 EEG markers of decision-making

In Section 4.4.3 I describe an extended theory of decision making that is not identifiable

with behavioral data alone. However the three evidence accumulation variables may be

separable with the addition of macro-scale cortical behavior. For instance, the diffusion

coefficient ς describes the variance in the relative evidence accumulated between two choices

on every trial. Assuming neural population representations of evidence (Shadlen and Kiani,

2013), the representation of evidence is expected to vary within a trial at every time step

based on the amount of variance in the neural population response due to oscillatory local

field potentials (Mitchell et al., 2007, 2009). Because EEG is thought to be generated

from synchronous slow-wave extracellular potentials (Buzsaki, 2006; Nunez and Srinivasan,

2006) and alpha power (8 to 12 Hz) decreases are a well known phenomenon that predicts

accuracy (Ergenoglu et al., 2004), the reduction of humans’ resting-state alpha rhythm over

parietal and occipital cortex may reflect a mechanism of internal noise reduction in the

neural representation of the evidence accumulation process. It is therefore predicted that

trial-to-trial alpha power influences trial-to-trial evidence accumulation variances in the form

of internal noise reduction. This hypothesis will be evaluated by first using 1) single-trial

and subject-level connectors between alpha power and parameter estimates of the diffusion

coefficient ς in hierarchical models and 2) in-sample and out-of-sample prediction for model

validation. If enough evidence for this noise suppression mechanism is found, then neural

representations of estimates of ς will be evaluated in models with the all three evidence

accumulation parameters (e.g. α, ς, and δ) estimated.
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The neural response to visual face feedback on the previous trial is expected to affect only

the evidence boundary (i.e. affecting the subject’s speed-accuracy tradeoff) and not other

evidence parameters, so the effects of neural response to visual face feedback will be explored.

Slow-wave motor EEG potentials and their relationship to decision-time will also be explored

in hierarchical models.

5.3.2 In support of open science

Data and code will be released online in support of the greater scientific community and

in an effort to promote “open science” (Eich, 2014). Specifically, raw EEG data from a

few example subjects and sessions, behavioral data and preprocessed EEG measures for all

subjects and sessions, generated visual stimuli written in MATLAB with Psychtoolbox 3,

simple MATLAB or Python scripts to perform computations of any newly discovered analysis

techniques, and MATLAB or Python code needed to generate results presented in published

work will be released online.
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Appendix A

Supplementary materials Chapter 2

A.1 Supplementary Equations

A.1.1 Predictive power as measured by R2
pred

We define R2
pred as a measure of the percentage of total between-subject variance of a statistic

T (e.g. the correct-RT median) explained by in-sample or out-of-sample prediction. It is

a function of the mean squared error of prediction (MSEP) and the sample variance of the

statistic T based on a sample size of n = 17 subjects. R2
pred is defined in Equation A.1.

R2
pred = 1−

∑17
j=1(Tj − T(pred)j)2/16∑17

j=1(Tj − T̄ )2/16
= 1− MSEPT

V̂ar[T ]
(A.1)

A.1.2 Supplementary Figures and Tables
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Figure A.1: The posterior means as represented by the black crosses and 95% credible
intervals of the condition level parameter posterior distributions. From top to bottom, the
rows correspond to the condition level drift rate, diffusion coefficient, and non-decision time
posterior distributions for each model. The left column displays posterior samples of the
parameters in Model 1, the model without assumed individual differences. The middle
column shows condition level posterior distributions from Model 2. The larger variances
in the posterior samples are due to explicitly modeled individual differences. The right
column shows the credible intervals of the condition effects on each variable of Model 3. As
expected the model with exogenous neural data as predictors of the subject level parameters
has no effect on the condition level parameters.
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Figure A.2: Posterior distributions for the subject level parameters of the ±30◦ bar rotation
and 30% noise condition. The thick blue line of the posterior density indicates 95% coverage,
the density between the 2.5th and 97.5th percentiles. The thin teal line of the posterior
density indicates 99% coverage, the density between the .5th and 99.5th percentiles. The
vertical black line is the mean value of the condition level parameters. Nine subject level drift
rates δj1 deviate significantly at the 95% level from the mean posterior condition level drift
rate νk. Three subject level diffusion coefficients ςj1 deviate significantly at the 95% level
from the mean posterior condition level diffusion coefficient µk. And nine subject level non-
decision times τj1 deviate significantly at the 95% level from the mean posterior condition
level non-decision time θk. It is clear from these results that there were differences between
participants’ cognition in the easiest condition.
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Figure A.3: Two principal components analyses (PCAs) on the noise and signal PLI variables
were performed to obtain Model 3’s regressors. We generated in-sample posterior predictive
distributions using samples from condition level parameter posterior distributions and EEG
variables (to find subject level parameter predictive distributions) in order to find principal
components that best predicted correct-RT distributions. Predictive power was measured as
R2

pred of the subject correct-RT medians of each condition. Each model type is plotted versus
1− R2

pred which is a measure of the percent variance of a statistic (e.g. median correct-RT)
unexplained by in-sample prediction. We iteratively added one principal component per
variable set (signal variables and noise variables) to the model. Based on this analysis
principal components 2, 4, and 7 of both the noise and signal sets were tested further to find
the model that best predicted out-of-sample reaction time of correct responses.
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Figure A.4: The marginal posterior distributions of the noise PLI coefficients on the drift
rate, diffusion coefficient, and non-decision time during the noise interval. Dark blue lines
indicate 95% credible intervals, smaller teal lines indicate 99% credible intervals, horizontal
green lines indicate posterior medians, and the orange exes indicate posterior means. We
consider noise PLI coefficients to be significant if the 95% credible intervals do not include
0. At all noise harmonic frequencies (16, 24, 32, 40 and 48 Hz) during the noise interval,
those subjects who suppressed noise had faster evidence accumulation rates (drift rates); this
effect was found at all electrode groups. However noise enhancement at 8 Hz was associated
with slower evidence accumulation. Those subjects who better suppressed noise at harmonic
frequencies also had faster non-decision times. E.g., a participant whose PLI responses were
suppressed .2 units more than another participant’s responses at all locations and frequencies
during the noise interval is expected to accumulate 0.131 evidence units per second faster
and have 22 ms faster non-decision times, leading to faster and more correct responses.



Correct-RT Mean Out-of-sample Prediction

Condition M1 M2 M3

±30◦ BR 30% Noise −25.2% −23.2% −4.0%

±35◦ BR 30% Noise −38.1% −21.8% 6.5%

±40◦ BR 30% Noise −26.3% −17.1% 18.9%

±30◦ BR 45% Noise −21.4% −23.0% −0.8%

±35◦ BR 45% Noise −43.1% −18.1% 16.0%

±40◦ BR 45% Noise −73.8% −17.0% 25.3%

±30◦ BR 60% Noise −47.5% −28.6% −3.3%

±35◦ BR 60% Noise −44.0% −29.4% −11.7%

±40◦ BR 60% Noise −48.8% −13.6% 36.8%

Table A.1: Percentage of between-subject variance in correct-RT means explained by out-
of-sample prediction (R2

pred) for each experimental condition.
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Correct-RT 25th Percentile Out-of-sample Prediction

Condition M1 M2 M3

±30◦ BR 30% Noise −50.2% −24.0% 23.6%

±35◦ BR 30% Noise −70.6% −31.5% 13.0%

±40◦ BR 30% Noise −51.8% −26.5% 15.8%

±30◦ BR 45% Noise −47.4% −25.4% 19.2%

±35◦ BR 45% Noise −97.6% −30.9% 16.6%

±40◦ BR 45% Noise −120.3% −43.5% −0.1%

±30◦ BR 60% Noise −110.2% −49.0% −5.3%

±35◦ BR 60% Noise −70.8% −35.6% 7.3%

±40◦ BR 60% Noise −79.2% −45.7% 1.7%

Table A.2: Percentage of between-subject variance in correct-RT 25th percentiles explained
by out-of-sample prediction (R2

pred) for each experimental condition.
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Correct-RT 75th Percentile Out-of-sample Prediction

Condition M1 M2 M3

±30◦ BR 30% Noise −62.5% −41.3% −15.7%

±35◦ BR 30% Noise −61.3% −21.8% 0.4%

±40◦ BR 30% Noise −50.0% −22.9% 9.9%

±30◦ BR 45% Noise −39.1% −27.3% −20.7%

±35◦ BR 45% Noise −88.2% −18.4% 12.4%

±40◦ BR 45% Noise −193.2% −24.0% 13.2%

±30◦ BR 60% Noise −86.3% −24.8% −6.5%

±35◦ BR 60% Noise −82.4% −33.6% −19.5%

±40◦ BR 60% Noise −71.6% −11.8% 27.8%

Table A.3: Percentage of between-subject variance in correct-RT 75th percentiles explained
by out-of-sample prediction (R2

pred) for each experimental condition.
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B.0.1 Posterior predictive plots
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Figure B.1: For each subject, posterior predictive distributions of correct-RTs during trials
from the low noise condition were compared to true correct-RT distributions from training
(i.e. “in-sample”) data. Note that subjects 2, 6, 7, and 11 were randomly chosen to be
left out of the training set in order to test the prediction ability of each model for unknown
subjects. Each model performs well at predicting training correct-RT data from known
subjects in the low noise condition. More comprehensive evaluations of in-sample prediction
are provided in Table 3 in the paper.
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Figure B.2: For each subject, posterior predictive distributions of correct-RTs during tri-
als from the medium noise condition were compared to true correct-RT distributions from
training data. Each model performs well at predicting training correct-RT data from known
subjects in the medium noise condition. More comprehensive evaluations of in-sample pre-
diction are provided in Table 3 in the paper.
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Figure B.3: For each subject, posterior predictive distributions of correct-RTs during trials
from the high noise condition were compared to true correct-RT distributions from training
data. Each model performs well at predicting training correct-RT data from known subjects
in the high noise condition. More comprehensive evaluations of in-sample prediction are
provided in Table 3 in the paper.
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Figure B.4: For each subject, posterior predictive distributions of correct-RTs during trials
from the low noise condition were compared to true correct-RT distributions from test (i.e.
“out-of-sample”) data. The predictive ability of Models 2 and 3 were influenced by observed
single-trial EEG data during the randomly-assigned test trials. Note that the predictive abil-
ity of each model for subjects 2, 6, 7, and 11 is decreased in comparison to the other subjects
because these subjects were left out of the training data. More comprehensive evaluations of
out-of-sample prediction for both “known” and “unknown” subjects are provided in Tables
1 and 2 in the paper.
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Figure B.5: For each subject, posterior predictive distributions of correct-RTs during trials
from the medium noise condition were compared to true correct-RT distributions from test
data. More comprehensive evaluations of out-of-sample prediction for both “known” and
“unknown” subjects are provided in Tables 1 and 2 in the paper.
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Figure B.6: For each subject, posterior predictive distributions of correct-RTs during trials
from the high noise condition were compared to true correct-RT distributions from test
data. More comprehensive evaluations of out-of-sample prediction for both “known” and
“unknown” subjects are provided in Tables 1 and 2 in the paper.
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