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Abstract

Essays in Environmental Economics

by

Ken Bao

This dissertation consists of three essays. The first aims to compare the cost-effectiveness

between command-control and market instruments in addressing non-point source pollu-

tion. By definition, non-point source pollution (NPSP) is extremely difficult to observe

individual level discharge and thus, very hard to implement market incentive policies. I

exploit a policy setting where agricultural runoff is in fact, a point source pollution but

is regulated as if it were NPSP which allows the study of abatement behavior in what

is typically a NPSP setting. I study a program called the Florida Everglades Forever

Act intended to reduce phosphorus runoffs from entering the sensitive Everglades ecosys-

tem. The program consists of both a command-control component as well as a market

incentive component which I am able to disentangle using a new dataset I developed

on annual farm level discharge and subsidies for pollution reduction. I use the two-step

Arellano-Bond estimator to estimate a marginal abatement cost (MAC) curve for the

average farm. With the estimated MAC curve, I simulate the costs under the market

mechanism and compare that with both data-estimated and engineer-estimated costs

under command-control. I find that to achieve the same benchmark pollution outcome,

the market mechanism would reduce compliance cost by 20%.

The second chapter examines the theoretical efficacy of an ambient mechanism in

ameliorating the NPSP problem. Specifically I examine theoretically how an ambient

mechanism to ameliorate the NPSP problem can produce free-riding incentives. Specifi-
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cally, I show the conditions in which uncertainty about firm types may lead to incorrectly

setting the uniform ambient tax rate which then creates the potential for free-riding. I

also compare the Nash and Sub-game Perfect Nash equilibria and analyze the potential

welfare gains of adding more water quality monitoring points. I find that expanding the

network of water monitors in such a setting does not always reduce free riding potential

compared to the single-monitor case though it never rises above this level. The reason

is that splitting the group by adding more monitors could simply be redistributing the

free-riding potential to the multiple groups rather than actually decreasing the free-riding

potential of all groups together.

Chapter three is joint work with Chris Costello which discusses the role of indemnity in

Payments for Ecosystem Services programs (PES). PES programs are voluntary programs

where private or public beneficiaries of ecosystem services (a public good) agree to pay

private producers of ecosystem service (ES) inputs. However, when there is private

risk to the private provisioning of ES inputs, then there may be gains to offering loss

protection (indemnity). This paper characterizes conditions in which it is optimal for a

budget constrained regulator to (i) offer indemnity in conjunction with a linear pricing

contract and (ii) to pursue the dual objective of poverty alleviation and maximizing

social benefits from ES inputs. We find that it is optimal for the regulator to share in

the risk of producing ES inputs (or outputs), i.e., offer full indemnity if agents are risk

averse. Furthermore, the value from optimally choosing the indemnity, compared to the

no-indemnity case, is higher whenever agents are more risk averse and can lead to as

much as a 40% increase in ES supply for the same budget. We also provide a guide to

practitioners and empirical researchers on how to evaluate the appeal of indemnity in

any particular setting for which PES exists and provision of which is risky. Lastly, we

identify a estimatable threshold for the business-as-usual ES supply curve slope above
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which it is optimal to pursue the dual objective.
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Chapter 1

Command-Control Versus Market

Incentive Policies for Non-point

Source Pollution

1.1 Introduction

Non-point source pollution (NPSP), defined as pollution with transport mechanisms

that are too complex and/or sources too diffuse to feasibly monitor individual contribu-

tions, poses a unique challenge for regulators and economists. Examples of NPSP include

agricultural runoff, litter, car exhaust, etc. The challenge lies in how to best regulate

pollution when you cannot observe or measure individual contributions?

There are two main approaches in the realm of mandatory policies used to regulate

pollution and those are command-and-control and market-based incentive polices. The

goal of this paper is to compare the cost effectiveness of a command-control policy with

the effectiveness of a market incentive policy in a NPSP setting. This study is especially
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Command-Control Versus Market Incentive Policies for Non-point Source Pollution Chapter 1

important for water pollution in the U.S. where almost $5 trillion dollars (or 0.8% of

GDP every year) has been spent since the start of the Environmental Protection Agency

to clean up the nation’s waters (Keiser and Shapiro, 2019) but there is evidence that the

costs may have exceeded the benefits. According to the 2017 National Water Quality

Inventory: Report to Congress, roughly half of the nation’s waters are still too impaired

to support swimming and fishing due to NPSP. Annual economic damages from nutrient

runoffs alone amount to roughly $4 billion each year (Chatterjee, 2009) and therefore,

there is a pressing need to find cost-effective means in addressing NPSP.

I study a program called the Everglades Forever Act (EFA) passed in Florida in 1994

and was designed to regulate phosphorus runoffs from a specific farming region known

as the Everglades Agricultural Area (EAA). This empirical setting is extremely attrac-

tive for this exercise because it overcomes the observability problem unique to NPSP.

Due to the atypical geographical features of the EAA, the farm runoff problem is truly

point-source with individual level discharge monitoring. However, runoff in this region

is regulated as if it were NPSP due to a stakeholder process with farmer participation.

I find that the market incentive could achieve the same aggregate pollution outcome as

the command-control policy with an estimated 20% savings in average compliance cost.

This paper contributes to a larger literature that compares the cost-effectiveness of

market incentives with command control. There have been many papers that investigate

the relative cost performance of command-control and market-based policies for point-

source (Goulder et al., 1999; Newell and Stavins, 2003; Goulder and Parry, 2008) and

conservation contexts. However, there has not, to the best of my knowledge, been as

much progress in this area for the non-point source pollution because market incentive

policies have rarely been implemented in NSPS settings and studies on their cost ef-
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fectiveness would require observations at the individual level. Rendleman, Reinert and

Tobey (1995) is the only paper so far that has tried to do this by using a computable

general equilibrium model calibrated to match estimated elasticities of input substitu-

tion. They estimate that the cost-effectiveness of input taxes compared to mandated

input levels produce only a ten percent cost savings. In contrast, the comparison made

in this paper is between command-control and a different market incentive mechanism

for NPSP known as the ambient market mechanism.

In the agricultural runoff setting, command-control policies typically come in the

form of mandatory best management practices (henceforth BMPs) which are structural

(digging a detainment pond) or non-structural changes (stricter fertilizer application)

that are designed to be verifiable and to reduce runoff. Though they can offer significant

reductions in runoffs, they also produce little flexibility for firms to undergo the least

cost abatement actions.

Ambient-based market mechanisms (henceforth AMMs) offers much more flexibility

on the other hand. Economists have developed an eloquent theory of ambient based mar-

ket mechanisms beginning with Segerson (1988)’s seminal paper which followed the works

of Holmstrom (1982) and Meran and Schwalbe (1987). AMMs either tax or subsidize (or

both) all known polluters based on the entire group’s performance (ambient pollution)

relative to an ambient standard. The pecuniary reward/punishment is based on the dif-

ference between observed ambient pollution and the ambient standard. For situations

in which ambient pollution can feasibly be observed, Segerson (1988) showed theoreti-

cally how a regulator could impose an individual specific ambient tax/subsidy rate that

achieves the first best outcome as a Nash equilibrium. This has led to a large literature

focusing on the theoretically optimal design of AMMs under various contexts (Cabe and
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Herriges, 1992; Hansen and Romstad, 2007; Herriges, Govindasamy and Shogren, 1994;

Horan, Shortle and Abler, 1998; Xepapadeas, 1991, 1992). These theoretical develop-

ments produced a large experimental literature testing various ambient mechanisms in

a laboratory setting (Camacho and Requate, 2004; Cochard, Willinger and Xepapadeas,

2005; Poe et al., 2004; Spraggon, 2002; Suter, Vossler and Poe, 2009). By and large, these

studies suggest that ambient mechanisms can achieve pollution targets at least cost.

The cost advantages from ambient mechanisms compared to command-control is more

ambiguous than in other contexts and thus the comparison should be of great interest.

On the one hand, AMMs provide the greatest flexibility for firms to abate. On the other

hand, AMMs could have too much flexibility that leads to free-riding therefore under-

cutting potential cost advantages. For instance, there may be some polluters who are

polluting more than the cost efficient level while others compensate by polluting less than

optimal so that the ambient target is still met (Kotchen and Segerson, 2020).

Despite the apparent advances in the development of AMMs, they have rarely been

implemented in practice. There are a few notable examples of pseudo AMMs used in

practice (Wong et al., 2019; Reichhuber, Camacho and Requate, 2009), however it is hard

to argue that those studies are applicable to the agricultural runoff context. The policies

under those studies were implemented in common pool resource settings and did not

always target the extractors themselves. Consequently, these studies cannot disentangle

the total effect between abatement by peer enforcement or abatement by pecuniary in-

centives. Furthermore, in these settings, an extractor would have to go to the extraction

site without being caught by a voluntary enforcer which strengthens the enforcement

mechanism. In contrast, there is much less of a role for the enforcement mechanism to

play in settings like agricultural runoffs or ground water extraction.
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To do the cost comparison set out in this paper, I proceed as follows. First, I study the

EFA which had both a command-control and a market incentive component. Using a two-

step Arellano-Bond estimator, I estimate how farms’ discharge responded to an effective

abatement subsidy by using fixed effects to control of the impacts coming from the

command-control component. This exercise allows me to recover the marginal abatement

cost curve which can then be used to estimate the efficient ambient tax and compliance

costs for various pollution targets. The same empirical exercise also allows me to estimate

the ambient pollution outcomes under the command-control component only which I then

use as my benchmark polluion target. Compliance costs under the command-control are

taken from engineer estimates and validated using USDA state level annual agricultural

expenditure data. I find that the market incentive component of the EFA did cause

meaningful reductions in discharge and that it could have achieved the same ambient

pollution outcome as the command-control policy but with a 20% cost savings.1.

Evolution of NPSP Policies in Practice

U.S., Europe and various other OECD countries have historically relied heavily on

voluntary financial incentive tools, i.e., pay-the-polluter principle, to address agricultural

runoff (Drevno, 2016; Shortle and Horan, 2013; Shortle et al., 2012) which have had a

limited effect on water quality. These policies typically involve payments to farmers in

exchange for implementing best management practices (BMPs) that target pollution re-

duction and such agreements are made voluntarily. However, in the U.S., the majority

of voluntary programs only treat NPSP as a secondary goal.

1This result relies on assumptions made under standard AMM theory which are: (1) no cooperation
and (2) farms understand how their decisions affect ambient pollution.

5



Command-Control Versus Market Incentive Policies for Non-point Source Pollution Chapter 1

Relatively recently, water quality trading mechanisms were suggested and imple-

mented in an effort to implement a more focused voluntary program that targets runoffs

directly (Dowd, Press and Los Huertos, 2008; Shortle and Horan, 2001). These trading

systems work by allowing point source polluters to purchase additional pollution permits

from a non-point source polluter. In return, the non-point polluter must either change

their use/management of polluting inputs (e.g., install a vegetation buffer strip) or achieve

some level of abatement (which is estimated using models). Stephenson and Shabman

(2017) have argued that such mechanisms have largely failed at addressing non-point

source pollution because the law does not absolve the point source polluter from respon-

sibility if the non-point source person does not hold up their end of the bargain. This has

led to virtually no trades happening between point-source and non-point source polluters.

Likely as a response to the failings of the previous approaches, states have begun

to shift towards applying the polluter-pays principle in addressing agricultural runoff.

In recent decades, this has typically come in the form of mandatory BMPs (Shortle

et al., 2012). However, without a proper study on the cost effectiveness of BMPs, this

new policy direction may be misguided. Thus, the reason for comparing the mandatory

BMPs with AMM is because AMMs have the potential to achieve pollution reductions

at least cost (Suter et al., 2008; Hansen and Romstad, 2007; Hansen, 1998) though it

is far from guaranteed. The extent to which a uniform ambient tax/subsidy can lead

to least cost abatement depends in large part the degree of free-riding and collusion.

Despite some of its potential drawbacks, ambient mechanisms have a number of appealing

aspects. First, it can be designed to be consistent with either the polluter-pays principle

or pay-the-polluter principle giving policy makers flexibility to choose the more politically

appetizing design. Second, it circumvents the need to observe or estimate contributions

individually. Lastly, it is based on actual performance which maintains flexibility for
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firms to choose their most desired methods of abatement.

1.2 Everglades Forever Act (EFA)

The Everglades Forever Act was signed into law by the Florida Legislature in 1994 to

address the issue of nutrient loading into the Everglades, specifically phosphorus loadings

from farms within the Everglades Agricultural Area (EAA).2 The policy has two major

components relevant to this study and the regulatory agency in charge of enforcement

and oversight is called the South Florida Water Managment District (SFWMD).

Command-Control Component of the EFA

The first component was a mandate that required all owners of commercial agricul-

tural parcels within the EAA to obtain a permit in order to continue commercial farming

operations.3 To obtain a permit, parcel owners needed to develop a best management

practice (BMP) plan and a water quality/quantity monitoring plan. The water monitor-

ing plan requires a qualified third party to collect and analyze the farm-specific runoff

samples. Although this data is not directly used by the regulatory agency to determine

regulatory compliance, it is still gathered so that the SFWMD regulator has it in the case

of non-compliance4. Once approved by the SFWMD, applicants must achieve full imple-

mentation of both plans by the start of the 1996 water-year to remain in compliance.5

The BMPs that are implemented in the EAA must be set in accordance with the goal of

reducing total phosphorus (TP) loads attributable to the EAA by 25% of historical TP

loads. The regulator presented a menu of BMP options for permit applicants to choose

2For a full overview of the policy context, see Milon (2018).
3Map of the EAA and its sub-basins are shown in Figure 1.
4Non-compliance occurs whenever the entire EAA basin fails to reach an estimated 25% phosphorus

reduction for three consecutive water years (Appendix A3 of Florida Statute Chapter 40E-63).
5A water-year starts on May 1st and ends on the following April 30th. For example, water year 1994

spans from May 1st, 1993 to April 30th, 1994.
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from. Each BMP option is assigned a point value that signals its expected effectiveness

in reducing runoff. Applicants are required to choose a combination of BMPs such that

the sum of the points from their chosen set is at least 25.6

Group Incentive Credit Program

The second component of the EFA policy charges an Agricultural Privilege Tax on

parcel owners in the EAA that undergo commercial agricultural operations. This was

meant to be both a funding source for cleanup projects as well as providing further in-

centive to induce TP load reductions beyond the 25% reduction target. The privilege

tax started off at $24.89 per acre and weakly increases over time till 2013 according to a

set schedule. Details about the exact evolution of this tax scheme is presented in column

2 of Table A.1.

To remain in compliance and avoid excess regulatory burden, the entire EAA basin

must achieve a percent TP load reduction of 25% relative to a baseline historic TP

level.7 Water quality monitoring stations are placed downstream of the main canals

running through the EAA and are used to measure ambient quality attributed to EAA

farmers. If the entire EAA basin achieves a TP load reduction by more than the 25%

target for reduction, then everyone is awarded one tax credit per acre for each percentage

point above 25%. Earned credits can go towards reducing future privilege tax obligations

two water years from which it was earned. The rate at which a credit can reduce the

tax is the same for all parcels. However, at a minimum, the tax per acre must not fall

below $24.89 which implies that for each year, there is a maximum number of exercisable

6TP load is a measure of how much phosphorus passes a particular point (typically a point on a
moving body of water) over a given time.

7Baseline TP values are acquired through a prediction model that incorporates paramter values from
the 1980-1988 and meterological conditions of the current year.
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credits (shown in column 5 of Table A.1) that prevents one from reducing their per acre

tax below the minimum of $24.89. Between 1994 and 1997, farmers could not exercise

any earned credits since the tax is already at the minimum. Between 1998 and 2001,

farmers could exercise one unit of earned credit per acre to reduce their tax per acre

by $0.54. However, since the tax cannot be below $24.89, farmers can only exercise a

maximum of 3.91 credits per acre. If farmers have more credits than they need in any

given period, then the credits can be carried forward for future use but the value of a

single credit changes over time and is shown in the third column of Table A.1.

Individual Incentive Program

Additionally, farms can earn credits based on individual performance as well as

through group performance (EAA wide credits)8. Farms can submit applications to

further earn credits through their individual performance by proving that their TP load

reductions exceeded the target given by column 4 of Table 1.9 In this way, polluters can

“double dip”, so to speak, on the same level of abatement effort. All credits, whether

earned through the ambient quality performance or individual performance, are used in

almost the same way and the accounting system for both are the same which makes it

difficult to isolate and measure the effect of the ambient subsidy.10 By 2013, the ambient

and individual incentive credit program will end so that all leftover credits will expire

and no more credits can be earned or used to reduce the Agricultural Privilege Tax.

This terminal date for the tax credit program was written into law back in 1994 and so

knowledge of this terminal date was public information.

8The language in this paper will treat each observed unit as if they are individual farms. However,
the regulatory unit is at a sub-sub basin level so that each ”unit” in the data can actually be composed
of multiple farms.

9It should be noted that all farms are required to disclose their individual loadings. It is then unclear
what is additionally being reported by the application for individual credits.

10Individual credits can also be earned if farms show that their TP loads were below 5 ppb. However,
credits earned in this manner cannot be rolled over for future use.

9
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If the EAA basin is determined to be out of compliance for at least three consecutive

years, then enforcement action will be taken. The SFWMD will then use the reported

TP loads from each farm to target those who are not reducing their TP loads enough.

If there is further non-compliance by said farms, punitive measures such as fines or

arrests are possible though such measures were never required. Between 1994 and 2013,

the aggregate abatement target had been exceeded except for one year (Milon, 2018).

Throughout the empirical analysis, there is no need to distinguish how credits are earned

because once a credit is earned, they are used in virtually the same way. I do this for

simplicity and because it is rather innocuous because I discuss later that other aspects

of the EFA policy dissolves the strategic interactions among farms anyway.

Why the Everglades?

An empirical investigation of any policy that addresses NPS pollution problems would

ideally have data at the individual polluter level so that polluting behavior can be an-

alyzed. However, the very nature of NPS pollution means that individual discharge of

effluents cannot be observed. The situation in Southern Florida offers an exciting oppor-

tunity to get around this problem. Due to the geographical features of the land, farms

have to be hydrologically connected to large canals and drainage systems in order to con-

tinue agricultural production. Each farming parcel is surrounded by canals that channel

water to one point (sometimes more) where water is then pumped out into the public

canal system. When multiple farms share the same pumping infrastructure, then they’re

said be a part of the same basin and the EFA requirements will apply to that basin as

a whole. The reason for the extensive canal system is that the EAA was once a part of

the Everglades wetlands but during the early 20th century a large system of canals was

10
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developed by both the Army Corps of Engineers and local farmers to reclaim land for

agriculture. This infrastructure, depicted in Figure A.3, is largely publicly funded and

allows farmers to drain their fields during the wet season and provides irrigation from

Lake Okeechobee during the dry season. Without this intricate canal system, agriculture

in this region would not be possible (Daroub et al., 2009). The process of drainage and

irrigation via canals means that water inflows and outflows from any unit passes through

an identifiable point creating this unique situation whereby this runoff problem is actually

a point-source pollution problem but is regulated as if it were non-point source.11

1.3 Data

Most of the data for farms within the EAA effected by the EFA are taken from the

annual Everglades Consolidated Reports and South Florida’s Environmental Reports.12

These reports contain both annual TP load and estimated TP load reduction (relative to

baseline), land size, baseline year, whether the farm elected to enroll in the Early Baseline

Option, each farm’s baseline (pre-BMP) TP loads, acres dedicated to vegetable produc-

tion, and the EAA wide incentives earned by all farms for each year. The baseline year

is the water-year for which the farm established its pre-BMP base period load. Basins

(farms) can enroll in the Early Baseline Option which requires farms to fast track their

compliance timetables and water quality monitoring efforts and divulge more informa-

tion such as soil type and other farm specific characteristics. In return, farms who elect

to participate in the Early Baseline Option have less regulatory oversight and face less

liabilities in the event that non-compliance occurs.13 Data on individually earned credits

(earned based on individual performance) and dates of potential BMP changes were ob-

11Political and institutional context for how this peculiar pollution management system came to be
can be found in Milon (2018).

12URL for the reports: https://www.sfwmd.gov/science-data/scientific-publications-sfer
13See F.A.C. 40E-63.145(4)(g)
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tained through a public records request submitted to the SFWMD. The data starts from

1994 to 2018 and is measured on an annual basis14. There are about 221 farms through-

out the sample period with only 127 of which are balanced throughout the time period.

Other geospatial data such as permit application boundaries and canal networks used

to calculate distances from monitoring points were taken from SFWMD’s arcgis website.15

I also have data from water quality monitoring stations (WQMS) located across the

state of Florida which is obtained through the DBHYDRO database which is also owned

and maintained by the SFWMD agency. Such data will allow me to create watershed

control groups so that I can compare water quality outcomes from the regulated EAA

basin with other basins to estimate the overall effect of the EFA policy.

1.4 Did the Everglades Forever Act Work?

In many ways, the policy of the EFA has worked but in other ways it has not. For

instance, the main goal of the EFA was to achieve a water quality standard for the

water entering the Everglades such that the concentration of phosphorus does not ex-

ceed 10 ppb.16 The strategy was to reduce the phosphorus load flowing out of the EAA

by 25% and leave the remainder of the clean up effort to the storm water treatment

areas situated south of the EAA. However, between 2007-2017, the outflow phosphorus

concentrations averaged over 126 ppb (Milon, 2018) so in that sense, the policy has failed.

However, according to the SFWMD’s own internal reports, the EFA has largely suc-

14Data for years 1994 through 2000 was also obtained via public records request.
15URL: https://sfwmd.maps.arcgis.com
16It was originally aimed to achieve a concentration no greater than 50 ppb but was later amended in

2003 to 10 ppb.
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ceeded in reducing the phosphorus concentrations flowing out of the EAA with an average

annual reduction of 55% far exceeding the 25% reduction goal (Davison et al., 2017). In

that sense, the policy was quite successful. Furthermore, the EAA never fell below the

25% reduction target at all except for one year. Unfortunately, percent reduction is based

on SFWMD’s estimation of the pre-policy phosphorus loads and is subject to unknown

but possibly significant error. Therefore, there is value in focusing on the overall trends

in the levels themselves which show much more modest improvements (Davison et al.,

2017). The downside is that the EAA does not exist in a vacuum and its outflow water

quality is subject to, in some degree, the inflow water quality from Lake Okeechobee

residing to its north (upstream).

In ??, I use the synthetic control method to tackle this problem of ignoring upstream

changes in water quality. The unit of analysis is the water quality monitoring station and

is given treatment if the station is immediately downstream of the EAA and if the year

is after the passage of the EFA. There are 2 treated units and about 21 potential donors.

Donor stations are from areas either to the north, east, or west of the Lake Okeechobee.

All other stations are ignored due to them being down stream of the EAA.

The results are shown in Figures A.1 and A.2 which indicate that the EFA policy had

a statistically significant negative effect on overall phosphorus concentration compared

to other regions but it’s also possible that those donor units also received a separate

type of treatment. Namely, projects meant to improve water quality. Even though the

estimated effects here may seem quite small and the statistical significance is tenuous at

best, this is due to the fact that the counterfactual here for the EAA is a world where

the EFA was not passed but instead received similar project investments through the

Comprehensive Everglades Restoration Plan. If one somehow found donors that truly
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were not affected by any water improvement projects at all, then the estimated treatment

effect is likely higher. Now I turn to answering what role, if any, the incentive credits

played in determining farm runoffs.

1.5 Standard Ambient Subsidy Model

Here, the model for the standard ambient subsidy mechanism is introduced with the

goal of arriving at a calculation for the optimal subsidy rate. The standard model makes

a few simplifying assumptions. First, I assume that regulated polluters cannot cooperate

meaning that each agent simply takes the discharge levels of others as given and chooses

their own optimal discharge. Second, agents have full control over their discharges and

understand how it will impact ambient pollution17.

Let s denote the ambient subsidy rate, Y denotes observed ambient pollution, and Y

denotes the ambient pollution standard. Under the standard ambient subsidy mechanism

Si given in (1.1), if observed pollution Y exceeds the standard Y , then the polluters

would not be in compliance and thus receive nothing. If observed pollution is below

the standard, then polluters are in compliance and each receives a subsidy equal to

s(Y − Y ). Profit from farming operations is assumed to be a standard concave function

with a satiation point (θi) and is given by πi(yi) = π(yi, θi) where yi is chosen discharge

and θi also represents i’s business-as-usual (BAU) level of discharge and is used to reflect

firm type. Observed ambient pollution is assumed be a linear sum of each farm’s total

discharge Y =
n∑

i=1

yi.

17Uncertainty in the ambient pollution function will be introduced later.
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Si =


s(Y − Y ) if Y < Y

0 if Y ≥ Y

(1.1)

If Y = Ỹ , where Ỹ =
∑
i

ỹi, then there is a unique Nash on a non-compliant outcome.

However, if Y > Ỹ , then there can be two Nash equilibria, one where there is compliance

(Y < Y ) and one where there is non-compliance (Y > Y ). Each polluter is willing to

reduce their emissions by one unit from their business-as-usual level if they are paid s for

that reduction. If a farm is pivotal in the determination of compliance, then the lowest

level of discharge that is profitable is (henceforth referred to as the minimum profitable

pollution level) denoted as ỹi and is defined in (1.2). Said differently, if the only way for

the pivotal farm to attain compliance is by reducing discharge below ỹi, then the farm

would not do so and instead opt to pollute at the BAU level, θi (Bao, 2021).
18 However,

whether a subsidy is paid out depends on others’ actions. There can be two sets of

policies, one that satisfies the incentive compatibility constraint for all agents thereby

engendering a compliant Nash equilibrium (Y NE < Y ) and a second, more generous one

that completely eliminates the non-compliant Nash.

π′(Ỹi, θi) = s (1.2)

To achieve the first policy (henceforth referred to as the compliant Nash) it must be

such that the incentive compatibility constraint, given by (1.3), holds for every agent.

Note that the left hand side of (1.3) is the same for everyone so the policy need only

hold for the agent k : k = argmax
j

{πj(θj) − πj(ỹj)}. The subsidy rate s is chosen so

that the ambient pollution under a compliant Nash achieves the target, Y , while the

18It should be noted that there are two possible Nash Equilibria in general. Either noncompliance
occurs where everyone pollutes at their BAU levels or compliance occurs where everyone pollutes at
their ỹi levels so that Y is strictly less than Y .
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value Y must be chosen so that pivotal agents are incentivized to choose their minimum

profitable pollution level (chosen so that (1.3) holds where Y NE is the ambient pollution

under compliant Nash).

s(Y − Y NE) ≥ πi(θi)− πi(ỹi) (1.3)

Let the profit function be defined as in (1.4).19 Then one only needs to evaluate

the values for θi and γi (the business-as-usual discharge and the slope of the marginal

abatement cost curve, respectively) in order to back out the value for s (the implied

static marginal incentive from the incentive credit program) necessary for the compliant

Nash to achieve Y .

πi(Yit) = −γi
2
(θi − yit)

2 (1.4)

Setting the right hand side of (1.2) equal to the subsidy rate s gives i’s minimum

profitable pollution (1.5), also known as their pollution demanded conditional on price

s.

ỹi = θi −
s

γi
(1.5)

Then utilizing the pollution constraint (1.6) we get that the optimal subsidy rate, is given

by (1.7)20.

Y =
n∑

i=1

ỹi (1.6)

s∗ =
Y bau − Y∑

i

1
γi

=
Y bau

(
1− Y

Y bau

)
∑
i

1
γi

(1.7)

19Even if the marginal profit curves are not linear, one can use a linear approximation of the function
and proceed.

20The pollution target in (1.6) is the “true” target.
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where Y bau =
n∑

i=1

θi Adding a command-control policy to the model is straightforward.

Simply change θi to θ
bmp
i < θi (which implies Y bmp < Y bau) and I assume γi remains

unchanged (γi = γbmp
i ) In words, I model command-control as a policy that mandates the

adoption of best management practice (BMP) so that, in absence of a market incentive,

there will strictly be lower levels of pollution by all individuals. However, I assume that

the command-control policy does not change the slope of the pollution demand curve.

Strategic Interactions

An important feature of my empirical setting is now incorporated into the model here.

Under the EFA, the mandatory BMPs imposed on polluters is done so in accordance with

the goal of reducing phosphorus runoff by 25% relative to estimated baseline levels. In

effect, the BMPs alone were intended to reach this pollution standard on its own and the

incentive credit program was layered on top in an attempt to induce additional abate-

ment. Importantly, the target for both command-control and market incentives were

set equal to 75% of BAU levels (without BMPs), i.e., Y = 0.75Y bau = Y bmp. Setting

the pollution target in such a way dissolves the strategic interactions between polluters

under an ambient subsidy. So long as polluters do not collectively exceed the ambient

pollution level given by Y bmp (Y bmp =
n∑

i=1

θbmp
i ), then each farmer can be confident that

their marginal abatement efforts will always result in a marginal reward because there is

no threat of the ambient pollution exceeding the subsidy threshold. In other words, there

is no risk of other farms discharging so much that the subsidy will not trigger regardless

of own abatement efforts.

Unfortunately, it is not obvious how to translate the marginal incentives that farmers

faced under the incentive credit program into an implied s for the static model. Nor is it
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obvious how one would back out the parameter γi under the current policy setting. This

is because the incentive credit program under the EFA created a dynamic decision prob-

lem for farmers where abatement effort today leads to the accumulation of tax credits

that can only be used to reduce future tax burdens.

The remainder of this paper will proceed as follows. First, I model the dynamic

decision problem farmers faced under the EFA taking their BMP decisions as given. I

show that the policy function that arises serves three main purposes in the analysis.

First, it allows me to calculate an upper bound on the implied static subsidy rate s.

Secondly, it informs my empirical strategy by identifying the relevant economic incentive

to be used as my covariate of interest. Lastly, it allows me to interpret the estimates as

the slope of the marginal profit curve, γi.

Polluter’s Decision Problem Under Incentive Credit Program

In this section, I try to model the decision problem that agents actually faced under

the EFA policy. The incentive credit program under the EFA engendered a dynamic de-

cision problem for the farmers in that tax credits awarded for compliance can be stored

for future use, e.g., used to reduce the lump sum tax in future periods. So instead of

behavior being governed by (1.2), it is instead governed by (1.8).

π′(y∗it, θi) = Git (1.8)

The term Git is simply the partial derivative of the continuation value with respect to

the pollution choice variable (see equation A.11 for the technical expression). To put

into words, the incentive credit program made farmers’ abatement incentives tied to un-
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certain future outcomes that are also discounted. The term Git represents the expected

present value from reductions in future taxes via a marginal increase in abatement. Said

differently, Git represents the partial derivative of the continuation value with respect to

pollution choices, yit.

Equation (1.8) implies some value for the privately optimal discharge y∗it(Git, θi). If

the ambient incentives induces changes in discharge levels then we would expect that

y∗it changes depending on the value of Git. The main goal in the empirical section is to

estimate the partial
∂y∗it
∂Git

. This estimand is equivalently given by (1.9) which shows how

a simple comparative static on the policy function can retrieve the parameter γi.
21 This

parameter can be construed as the slope of the marginal abatement cost curve, the same

as in the standard ambient subsidy model (1.2).

∂y∗it
∂Git

=
1

∂g(yit,θi)
∂yit

=
1

π′′ (y∗it, θi)
= − 1

γi
(1.9)

A Proxy for Git

The problem with using Git directly is that it represents the farmer’s expectations

about the future values of credits earned today. Additionally we have no way of knowing

each farmer’s discount factors. One way to proxy for Git is to use something that is

conceptually similar. Since the partial derivative of the continuation value hinges on the

number of credits left to earn, then I can simply use that as my proxy. Specifically, I will

use the proxy defined in (1.10), the number of credits still needed to be earned, as a proxy

for Git. The justification of Dit is detailed in ?? where I also show that

∣∣∣∣ ∂y∗it∂Git

∣∣∣∣ > ∣∣∣∣ ∂y∗it∂Dit

∣∣∣∣.
21Abusing terminology a bit here because equation (1.9) is not truly my estimand due to it being

individual specific. This is more like the ideal estimand. The empirically feasible estimand, discussed
later, is the average of (1.9) across farms.
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Therefore, my estimates of slope γi using estimates of
∂y∗it
∂Dit

will be biased away from

zero of the true slope term without any BMPs, γ. Consequently, the compliance cost

estimates under an ambient subsidy will also be biased away from zero. The term M

represents the maximum exercisable credits each period from 1998-2013 and (T − t+ 1)

represents the number of remaining periods in which credits are relevant, including the

present. The product of which represents the maximum level of credits necessary to

achieve minimum tax burden for the duration of the policy.22 The term Sit represents

the starting balance of credits (a stock variable) for period t.

Dit = (T − t+ 1)M − Sit (1.10)

If Dit ≤ 0 then Sit is more than enough to cover current and all future period’s credit

demands leaving Git = 0 because earning more credits today will not increase the amount

of exercised credits in the future. Alternative, if Dit > 0, then there are still incentives to

reduce discharge because the current stock of credits is not enough to reach the maximum

needed level. So as Dit increases, Git increases (weakly) as well. Additionally, both terms

decrease with the distance between current period t and the credit expiration date T .

Said differently, as time nears the end of the incentive program, there is less incentive to

abate pollution which is represented by smaller values of Git and Dit.

1.6 Effect of the Incentive Credits

The goal of this section is to estimate the effect of incentive credits on farms’ phos-

phorus levels while controlling for BMPs in a coarse manner. The incentive that a farm

has to increase their abatement efforts above what is required by the mandatory BMPs

22This includes the present so think of it as a starting balance value.
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is captured by the variable Dit mentioned before. This variable represents the amount of

credits that farm i has left to earn at time t and is calculated by subtracting the current

stock of credits from the maximum exercisable number of credits over the duration of the

policy. I can re-code this variable to be a dummy that equals 1 when firms have already

reached their max credits needed and 0 otherwise. This binarized treatment variable

separates the sample into cohort groups where each farm within the same cohort stopped

needing to earn additional credits at the same time.

Empirically, it is useful to distinguish two effects on discharges that are at play. First,

is the effects from the mandatory BMPs (think switching from θi to θ
bmp
i ) and the sec-

ond is the value of earning tax credits (think Dit ≈ Git). Such credits can come from

both group performance and the individual performance. The empirical strategy does

not need to distinguish between these effects to estimate farms’ pollution in response to

credits generally, however. Fortunately, the ability to earn additional credits via individ-

ual performance provides the necessary variation in Dit needed to estimate our estimand.

Otherwise, all farms in our sample would have identical Dit values because the credits

would only be earned through group performance. Figure A.12 graphs a heatmap of the

distribution of Dit across time and gives a glimpse at the identifying variation across

both N and T .

For further context, see Figures A.13 through A.16 which plot the annual averages of

the outcome variable and covariates broken out by cohort. For instance, the 1999 cohort

are consists of all farms who, at the start of 1999, no longer needed to earn more credits

(Dit = 0). The figures show that there were significant differences in baseline phosphorus

loads across cohorts and that the cohort that earned the most credits had the highest

initial levels of phosphorus loads per acre. As might be expected, this decreases with co-
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hort years since farms with lower initial phosphorus loads have less room to reduce their

loads and thus, not as able to aggressively abate to earn credits faster. Interestingly, the

treatment cohorts differ greatly over all covariates but are relatively similar in terms of

the outcome variable after water year 1995. The cohort that earned credits the fastest

tends to be farms who had high initial discharges, started operations at the beginning of

the policy (Figure A.17), had the most land dedicated to vegetable production, large in

size, and located midstream.

The chosen BMPs by each basin (farms) were required to be in place by 1996 for all

basins and farms who were in operation in 199423. Thus, I restrict the estimation period

to start on 1996 to avoid spurious correlation.24 Furthermore, I allow for the adopted

BMPs to change once every five year cycle. Farms are allowed to adjust their chosen

BMPs but only during the permit renewal process which occurs every five years from

when they were first issued their permit (different for each farm). I include a categorical

variable that represents which cycle each farm is at for each water-year thus creating a

unit-specific 5-year fixed effects for all units.

Empirical Methodology

To achieve a consistent estimate of our estimand, the average of (1.9), I rely on the

Arellano-Bond two-step estimator also known as the two-step difference GMM estimator.

In a perfect world, the estimating equation would be given by (1.11) where Yit is the

23Basins are hydrologically connected farms that share the same discharge infrastructure. Essentially,
the level of monitoring is at the basin level, not necessarily the farm level. For a breakdown of basins
under different management types from single ownership to varying degrees of shared ownership, see
(Yoder, 2019; Yoder, Chowdhury and Hauck, 2020)

24Some farms came into operation after 1994; the timeline of when BMPs were required to be fully
implemented is not known in those cases. I chose to drop the first 2 years of available data for such
farms.
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phosphorus load attributed to farm i at water year t. The Xit term includes time fixed

effects, BMP-cycle, land size, interaction between Dit and distance from monitoring

points, and acres dedicated to vegetable production.25

Yit = αi + αt + β1Dit + β2Xit + εit (1.11)

The problem with estimating (1.11) is that Dit (the credits left to earn) is correlated

with the error term leading to bias and inconsistent estimates of β. This correlation is

due to the fact that Dit is a function of the balance (stock) of credits Sit via (1.10). The

stock value Sit is a function of all past outcomes (Yi1, . . . , Yi,t−1) and thus all past error

terms which violates strict exogeneity. A known workaround is to take first differences of

(1.11) so that consistency only requires sequential exogeneity (Hansen, 2021; Anderson

and Hsiao, 1981). A variable satisfies sequential exogeneity if it is not correlated with

current or future period error terms and only past ones, if at all; covariates that satisfy

sequential exogeneity are said to be predetermined. Then lagged values of the predeter-

mined variables are suitable IVs for the first differenced predetermined variable. I argue

that they are suitable since the relevance condition is satisfied by (1.10) together with the

law of motion for credit stock (A.9). The exclusion restriction assumption is satisfied via

the sequential exogeneity as seen by first differencing equation (1.10). First differenced

values are denoted with a △ symbol where △rt = rt − rt−1. The first differenced version

of (1.11) is given by (1.12).

△Yit = β1△Dit +△αt + β2△Xit +△εit (1.12)

To see how the sequential exogeneity assumption might hold here, first remember that

Dit is a function of all past Yit’s. Then the challenge is to establish the fact that pre-

25Acres dedicated to vegetable production is given special treatment under the EFA.
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vious discharges (Yit−k) are uncorrelated with future error terms (εit+k). The first order

condition (1.2) implies that, under a compliant Nash, current period optimal discharge

is a function of today’s expectations about future credit stock levels, i.e., the Git term

which is itself a function of past performance and thus past errors. So long as error terms

are not autocorrelated, Git are not be related to future error terms. The assumption of

no autocorrelation is already a necessary assumption required for the consistency of the

two step difference GMM estimator and so it does not add any additional assumptions.

Furthermore, autocorrelation is something that can be readily tested and is done auto-

matically in STATA. The results indicate that there is no autocorrelation in the level

errors.

Empirical Results

The result from estimating (1.12) using lagged values of Dit as instruments for △Dit

(limiting lag lengths to 10), is reported in column 1 of Table ??. The estimation sam-

ple is restricted to years 1996 or later to avoid spurious correlation because most farms

were transitioning towards full BMP implementation between 1994 and 1996 water years

and water year 1996 was the deadline to complete BMP implementation. Some farms

were provided exceptions and allowed to complete BMP implementation after 1996 but

excluding those farms from the estimation sample only strengthened the results. Both

point estimates and corresponding statistical significance results are robust to varying

the exogeneity assumptions on the control variables basin acreage and vegetable acreage.

Column 1 shows the results from treating such variables as strictly exogenous. Column 2

treats the control variables as predetermined whereas column 3 treats only the vegetable

acres as the only other predetermined covariate and is our preferred specification. This

reflects the fact that the entire incentive credit program applies only to acres not dedi-

cated to vegetable production. Thus, farms could selectively change their acres dedicated
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to vegetables according to the incentives coming from the credit program. The Hansen

test for over-identifying restrictions almost always leads to a fail-to-reject outcome with

the corresponding null being that instruments are jointly valid.

At the start of the policy, most farms had a maximum of roughly 180 credits that they

needed to earn to reach the minimum tax for every year up to and including 2013. Taking

the estimates from column 3 Table ?? at face value would imply that the incentive credit

program resulted in an average P load decrease of about 2.11 lbs/acre (.0117 × 180)

in 1994 (CY). By water year 2002, on average, firms had roughly 4 credits left to earn

meaning that the incentive credits induced 0.047 lbs/acre of phosphorus abatement on

average. For context, the median and mean pre-intervention P loads were about 1.8 and

2.96 lbs/acre, respectively. Figure A.12 illustrates the distribution of Dit values across

time and units. By water year 1999, most farms had less than 5 credits left that they

need to earn which is a very insignificant motivation for abatement.

Table A.3 from shows the same estimation results but using estimated percent P

load reduction as the outcome variable. Those results indicate that the incentive credit

program did not account for any variability in P loads once precipitation was accounted

for at the farm level.26 Importantly, the magnitudes of those coefficients are implausibly

large since the maximum credits needed to earn in 1996 was about 180 credits. The results

then imply that farms reduced their P loads by more than 100%. However, the standard

errors are quite large as well suggesting that using estimated percetn P load reduced as

the dependent variable comes with much more noise thus limiting the usefulness of those

results considerably.

26The percent P load reduction is estimated by SFWMD using precipitation at the farm level as the
only covariate.
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1.7 Cost Effectiveness

For this section I compare the compliance cost under the mandatory BMPs with that

under an ambient subsidy to gauge relative efficiency. Using some back of the envelope

calculations, I am able to estimate what the ambient subsidy rate has to be for the

compliant Nash to achieve some pollution target. These calculations are based on the

assumption that BMPs did not change the slope of marginal profit curves.

Ambient Subsidy Rate under Compliant Nash

The incentive credit program under the EFA is not the standard ambient subsidy

mechanism and the task here is to answer the question, what would the standard am-

bient subsidy look like in our empirical setting? To answer this, I use estimates from

the last column of Table ?? to produce the marginal abatement curve per acre (shown

in Figure A.19) for the average farmer in the EAA.27. To get an estimate of the average

discharge under the command-control only scenario (θbmp
i ), I average the TP loads across

farms under each period for which farms no longer needed to earn credits (see Figure

A.12).

Using the functional form assumptions under the static model for the compliant

Nash subsidy rate (not per acre) from Equation (1.7), I can map out what the subsidy

rate should be for different targets expressed as a fraction of ambient pollution under

command-control only. Without individual level estimates for γ, I approximate the pol-

lution demand (and inverse demand) for the average farmer using estimates from earlier

to get (1.13) where tildes represent per acre versions of their original counterparts. Fur-

thermore, the average farm produced about 2.08 lbs/acre (2.23 metric tons or 4925 lbs)

27The estimated curve does not seem to be out of the question when one compares this to the profit
estimates from Roka et al. (2010).
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of phosphorus during the baseline year, the year before the EFA policy kicked in.

π̃′
i(ỹi) =

1

0.0117
(2.08− ỹi)

ỹi = 2.23− 0.0117s

(1.13)

Equation (1.14) gives the ambient subsidy rate for various targets for ambient pollution.

To estimate Y bau =
∑
i

θi, I take the baseline data (data pre-EFA intervention) on total

lbs of phosphorus discharged and sum that value across farms to get 402.04 metric tons

of phosphorus for the average year under business-as-usual.28

s∗ =

402.04

(
1− Y

T

402.04

)
2.1177

(1.14)

Figure A.20 plots Equation (1.14), the estimated subsidy rate necessary for the compliant

Nash to achieve various pollution targets (expressed as a fraction of emissions level with

only command-control.). In reality, the target loads set forth by the EFA between 2013

to 2017 varied quite a bit ranging from 139 to 213.8 metric tons, as a consequence, the

ambient pollution under command-control only would vary too.

The horizontal axis in Figure A.20 is the ambient pollution target expressed as a

fraction of the total pollution under command-control (Y bmp). Thus the prediction is

that if the regulator wanted to decrease ambient pollution by 25% relative to Y bmp, then

the ambient subsidy rate needs to be roughly $47.46. In other words, without the EFA

in place, the regulator could have achieved, at a minimum, a 25% reduction relative to

Y bau with an ambient subsidy rate of $47.46.

28Metric tons is unit used in determining compliance by the SFWMD regulator.
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The benchmark pollution level for cost comparison is arrived at by estimating the

percent abatement under only the command-control component of the EFA. The EAA

wide basin averaged an annual reduction of about 55% (Davison et al., 2017). However,

this average is the result of both the command-control and the market incentive com-

ponents. In order to estimate what the average TP reduction would have been under a

mandatory BMP only scenario, I use the estimated model from the column 3 of Table

?? to estimate the counterfactual EAA basin-wide TP loads setting Dit = 0 for all (i, t).

The result of this is graphed in Figure A.21. On average, the estimated counterfactual

basin-wide TP loads were 47.34% higher when compared to the estimated basin-wide

TP loads using the true EFA data. Said differently, I estimate that without the market

incentive component of the EFA, the average annual emissions would be 47.34% higher

implying that average TP load reductions under a command-control-only regime would

have been about 37% rather than 55%. Therefore if the regulator instead opted for a

standard ambient subsidy such that the compliant Nash achieves the same abatement

level of 37%, a subsidy rate of $70.24 is needed. Taking the relevant area under the

marginal abatement cost curve results in an area of about $27.08/acre which represents

the estimated compliance cost per acre under the standard ambient subsidy policy for

the average farm. Scaling this figure up using the median land size of 1021.5 acres means

that the compliance cost for the average farm is almost $27,700/year or roughly 4% of

farming costs estimated in Roka et al. (2010).

Cost of Mandatory BMPs

The set of BMPs for which farmers got to choose from were designed by the Univer-

sity of Florida’s Institute of Food and Agricultural Sciences who worked with farmers to

develop cost-effective management practices meant to reduce phosphorous loads. Cou-

pled with the fact that farmers could choose which of the designed BMPs to actually
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implement opens up the potential for the mandatory BMPs to achieve pollution goals at

very low costs. The cost of implementing the command-control component of the EFA,

i.e., the mandatory BMPs, is taken from engineering estimates and validated through

data from USDA.

About 80% percent of the EAA, which is the geographical region under regulation,

is dedicated to sugarcane production (Daroub et al., 2011). The total operating cost is

roughly $638.88/acre (Roka et al., 2010) the data for which came from calendar years

2008-09 but those estimates do not disentangle the costs from BMPs. Therefore, this

number can be interpreted as a farm operating costs for sugarcane under only the manda-

tory BMPs because farms did not face any need to earn additional credits by 2003. Short

of interviewing the farms perfectly to get the truth of behaviors, there is no way of know-

ing how much the mandatory BMPs actually costed the polluters, separate from the

effects from the incentive credit program. The engineering estimate of mandatory BMPs

were made ex-ante, i.e., before the passage of the EFA. The BMP cost estimates imply

that for the evaluated set of BMPs, the cost would have been $34.15 per acre in 2009

terms (Johns, 1993) and comes out to about 5% of the total per acre cost.

I validate the ex-ante engineering estimates by using the two-way fixed effects (1.11)

model with data from the USDA Quick Stats portal that has annual state level data

on total agricultural expenses and total acres operated from 1970-2018. The two-way

fixed effects model has two dummies of interest. The first represents the effect from the

passage of the EFA (= 1 if Florida and year ≥ 1994) and the second represents the effect

after the latest break point in our data (= 1 if Florida and year ≥ 2003) as an attempt to

disentangle the command-control and market incentive programs under the EFA. I find

that the EFA increased state agricultural expenditure per acre by about 12% compared
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to pre-EFA periods whereas the break point dummy saw an increase of only 5% (but not

statistically significant). This suggests that the mandatory BMPs alone had an increase

in cost of about 5% which happens to be identical to the engineering estimates if the cost

figure from Roka et al. (2010) is used as the base.

1.8 Results and Conclusion

Two main findings in this paper standout. First, farms did on average respond to the

market incentive component of the EFA even after implementing mandated practices un-

der the command-control component. Further, the market incentive was responsible for

almost a quarter of the water quality improvements seen since the passage of the EFA in

this region. Second, I find that to achieve a benchmark abatement of 37%, the cost of the

command-control is about $34.15/acre compared to the market incentive of $27.08/acre

meaning that the compliant Nash ambient subsidy produces an average compliance cost

savings of 20%.29

Further, the compliant Nash can be guaranteed if the “target” Y is set equal to the

business-as-usual (BAU) level Y bau but this is not the true target in the sense that the

regulator does not aim to achieve Y bau. The calculation for optimal subsidy rate will still

use the true target but the subsidy base (Y − Y ) will use a “target” equal to the BAU

level. Under that simulated ambient subsidy scenario, the regulator would be paying

a total subsidy amount of about $10 million/year in order for the compliant Nash to

achieve annual abatement of 37%. This subsidy amount is equal to about 0.3% of 2019

29Although this isn’t a comparison with the least cost ideal, i.e., as in a point source regulation, it is
a comparison with an analogous second best situation.
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sugarcane revenue in the EAA.30 This is very important result in that even if the regula-

tor pays everyone for each unit of abatement from the BAU level, that cost is seemingly

quite small.

The comparison of the BMP cost with the ambient subsidy is not standard in that the

ambient subsidy mechanism does not represent the least cost solution. In other words,

firms do not make discharge decisions in a socially optimal way. As many have pointed

out, ambient mechanisms have the tendency to achieve the pollution target but in a way

where some are abating more than socially optimal and others abating less so (Kotchen

and Segerson, 2020). Yoder, Chowdhury and Hauck (2020) found that EAA farms had

very heterogeneous trends in P loads throughout the policy duration; some had statis-

tically significant negative trends while a lesser number exhibited positive trends. This

finding is consistent with the idea that there exists some free-riders.31

Furthermore, the comparison relies on the assumption that the estimated slope of the

demand curve accurately reflects the true slope with no policy intervention. There may

be a number of reasons to doubt this due to the interaction with BMP adoption, the use

of a proxy (see equation ??), and the existence of cooperative behavior. If we relax this

assumption, then the compliance cost under only the standard ambient subsidy policy

can look quite different. As a result, I provide a table that shows various possibilities for

the slope to be different and create a range of numbers shown in Table A.4. Each row of

Table A.4 refers to a different value for λ which controls the ratio between slopes under

mandatory BMPs and that under the business-as-usual as shown in equation (1.15).

30Florida Department of Agriculture and Consumer Services https://www.fdacs.gov/Agriculture-
Industry/Florida-Agriculture-Overview-and-Statistics.

31Figure 6, Yoder, Chowdhury and Hauck (2020).
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γestimated = λγbau (1.15)

Finally, the author would like to caution those who view this work as evidence that

ambient mechanisms can reduce NPSP in the agricultural runoff context for two rea-

sons. First, this paper does not test the assumptions under standard AMM theory but

rather assumes they hold and compute the outcomes. Secondly, external validity is lim-

ited by the possibility of cooperation/coalition formation and how that may change the

way the above findings are interpreted. The level of cooperation/communication among

farmers matters because lab evidence corroborates the theory that cooperative behavior

often leads to excessive abatement (reduces occurrence of non-compliant Nash) under

an ambient subsidy (Suter, Vossler and Poe, 2009; Poe et al., 2004). In all likelihood,

the estimated γ comes from at least a partially cooperative setting in which some agents

maximize individual payoffs while others form a coalition and maximize sum of members’

payoffs. This is because the EFA was the product of a negotiated settlement with great

stakeholder involvement (Yoder, 2019). Yoder (2019) interviewed many farmers in the

EAA who cited the minimization of regulatory intrusion and the avoidance of in-fighting

as reasons for the group liability design. Furthermore, roughly 70% of the EAA land is

operated by two companies split nearly evenly.32 Taken together these facts suggest that

average behavior, as indicated by our estimate for γ, is a result of a partially-cooperative

setting and likely leaning more towards the full-cooperation side of the spectrum. There-

fore, care must be taken to extrapolate this conclusion to settings in which the potential

to cooperate/communicate is vastly different than that of the EAA.

32Table 1, Yoder (2019).
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Chapter 2

Regulating Non-point Pollution with

Ambient Tax: Are more monitors

better

2.1 Introduction

Much of the environmental economics literature focuses on policies that are based

on observable individual emissions such as Pigouvian taxes, tradable permits, and even

Coasian bargaining mechanisms. However, there is an entire class of pollution problems

that render individual emissions monitoring infeasible or prohibitively costly due to the

sources of pollution being diffuse and/or the emissions transfer function being stochastic.

Such occurrences are referred to as non-point source (NPS) pollution.

In the U.S., NPS pollution problems represent the last major hurdle to achieving

water quality goals with agricultural runoff as the main source of such pollution (U.S.

Environmental Protection Agency, 2016). Due to the unobservable nature of NPS pollu-
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tion, traditional emissions-based policies cannot be applied. Fortunately, there are many

alternatives in the policy toolbox from which to choose. The focus of this paper is on

ambient taxes.

Basing policies on observable ambient quality can overcome many of the issues seen

in other alternatives. First, it gives incentives to abate and it is flexible in regards to

the method of abatement, unlike input taxes. Second, ambient-based policies are tied

to observable pollution rather than estimates of it, like the emission proxies, making it

more parsimonious and accurate. However, ambient-based policies have their own set

of problems as well. One important issue is the potential for free-riding to occur since

ambient-based policies are group-based incentives. The research goals in this paper are

to (1) examine under what conditions free-riding can occur under both NE and SPNE

when an ambient tax is imposed, and (2) does adding more monitoring points reduce the

potential for free-riding?

Segerson (1988) and Meran and Schwalbe (1987) were the first to suggest ambient-

based policies to correct for NPS pollution and showed how an ambient tax/subsidy can

induce polluters to collectively choose the socially optimal level of ambient concentration

as a Nash Equilibrium. However, their proposed solutions involve charging firm specific

tax rates which require knowledge of firms’ abatement cost functions thus placing an

informationally expensive burden on the regulator. If knowledge about the distribution

of types is available, it is possible to achieve first best abatement allocations with a uni-

form tax rate even with heterogeneous firms (Segerson and Wu, 2006). Without such

information readily available, the regulator has two options. First, a damage-based tax

can be implemented according to Hansen (1998) which only requires knowledge about

the damage function at the socially optimal ambient level; however, even this can be ar-
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gued as too informationally demanding. Alternatively, Segerson and Wu (2006) develop

a regulatory threat mechanism whereby the regulator threatens the NPS polluters with

an ambient tax if the polluters do not achieve the standard voluntarily. The ambient tax,

if implemented, requires the regulator to invest resources to learn about the firm types

in order to optimally set the tax rate. Unfortunately, this mechanism requires that the

regulator’s threat be credible so it is not a perfect workaround.

Any informational requirement about the damage function or distribution of firm

types is, in practice, still a significant hindrance for the regulator even in a point-source

pollution setting. This fact has motivated the environmental economics literature to shift

its focus towards the second best policy solution which aims to achieve a set pollution

target at least cost. The second best arises because of uncertainty about the optimal

pollution target.

With NPS pollution however, an ambient tax is not guaranteed to achieve this sec-

ond best target without the information requirements mentioned earlier. As noted in

(Kotchen and Segerson, 2020), it is possible that an ambient tax can achieve its pollu-

tion target but with some degree of free-riding (i.e., some polluters discharge more than

socially optimal). Thus, in the presence of free-riding, ambient taxes produce an outcome

closer to a third best situation where the second best target is achieved but at greater

than least cost. In this paper, I characterize the conditions under which free-riding can

occur while achieving the pollution target and examine how expanding the monitoring

network affects the degree of free-riding.

I find that when the uniform tax rate is set too high relative to the pollution target

(i.e., ambient standard), then the possibility of achieving compliance at greater than least
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cost arises. This occurs because the collective tax gives rise to a minimum profitable pol-

lution level (X̃i) for each polluter. This level of discharge is possibly heterogeneous and

marks the lowest level of discharge that a firm is willing to commit towards avoiding the

known tax penalty that would result from non-compliance. Intuitively, if a firm is pivotal

in the determination of compliance, then they would not be willing to pollute below X̃i

to avoid the group tax penalty and would instead prefer to pollute at X̃i and pay the tax

rather than go below X̃i to avoid the tax. Therefore, X̃i is a decreasing function of the

ambient tax rate.

This implies that there is a unique value for t such that the minimum profitable pol-

lution level equals the least cost level for each polluter. Above this unique point for t,

the minimum profitable pollution X̃i is less than the least cost level X∗
i . When that hap-

pens, a multiplicity of Nash Equilibria (NEs) arises1. These NEs all achieve compliance

(henceforth referred to as compliance NEs) but creates a situation where some polluters

are polluting less than the least cost amount so that others can pollute more than the

least cost level. Those who pollute above their least cost level are henceforth referred to

as free-riders. This is the fundamental moral hazard problem prevalent in team games

that lead to free-riding (Holmstrom, 1982).

The other main contribution of this paper is to examine the impact from adding more

monitoring points on the degree of free-riding. The classic model from Segerson (1988)

assumes that individual discharge monitoring is prohibitively costly but that group level

monitoring is feasible. For example, having one monitoring point downstream of all

known polluters. When one such monitoring point is feasible then it is natural to ask

1Least cost pollution level is the pollution level that a planner would choose (for the individual
polluter) that results from a second best optimization problem.
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how many more monitors are feasible? The concept of feasibility here is determined

by an implicit cost-benefit analysis. If the regulated body of water were a lake, such

additional monitoring points would do little to change outcomes and thereby providing

no real benefits. However, under a river network, adding more monitoring points could

effectively partition the initial group of polluters into smaller groups, thereby creating

less free-riding potential and possibly translating to real welfare benefits. Allowing the

number of monitors to be greater than one is the more general model with the classic

Segerson (1988) model as one special case in which the network has only one monitoring

point at the river’s bottom. The other special case is when the number of monitors m

equals the number of polluters n in which case the NPS pollution effectively becomes

point source.

Such an analysis requires the examination of a particular outcome that can be ex-

amined as m increases. However, the presence of free-riding incentives only exists when

there are a multiplicity of NEs. Thus, the Subgame Perfect Nash Equilibrium (SPNE) is

used as an alternative concept where the player furthest upstream is the first mover and

the player furthest downstream is the last mover. Using the SPNE has many advantages

to the research goal. First, the SPNE is a refinement of the NE so it is itself an NE and

remains unique regardless of the ambient tax rate. Secondly, the SPNE produces the

highest cost compliance scenario when firms are homogeneous. Thus, even if there is no

way to know which NE will occur, it is at least possible to examine how the highest cost

NE would change with m. In this way, the SPNE outcome can be viewed as a measure

of the maximum potential for free-riding.

Lastly, many water quality goals encompass rivers/streams which have a flow direc-

tion dictated by gravity allowing the possibility of differential “power” among polluters
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based on their river location. This idea has been studied in the literature on irrigation

access as a public good (Bell et al., 2015; D’exelle and Lecoutere, 2012) and has recently

been studied in a NPS pollution context (Zia et al., 2020; Miao et al., 2016). Both papers

use experimental methods to find that as monitoring locations expand and frequency of

measurement increases, upstream players’ behavior is more affected relative to down-

stream players. However, in those models, the differential strategies between players

located more upstream and those more downstream arises because of the differences in

nutrient transport, specifically the process of nitrification. In this paper, such differences

are ignored because the focus of this paper is on free-riding incentives which exist even

without heterogeneity.

There are many other issues with ambient policies which are not addressed in this

paper. For instance, efficacy of ambient policies requires firms to understand that their

actions have effects on measurable ambient quality. This is typically only an issue when

the number of polluters is large and thus ambient policies have much greater appeal in

settings with few polluters. However, settings with few polluters could exacerbate the

collusion issue that can arise under ambient policies (Cabe and Herriges, 1992). Collu-

sion occurs when polluters have the ability to communicate with each other and find it

collectively more profitable to over abate at the aggregate level. This paper abstracts

away from the collusion issue by focusing on a pure ambient tax which gives no subsidies

for over abatement. Combining this with the assumption of no stochasticity in the ambi-

ent quality buys us a model where there is no incentive to collude and over abate. This

result is confirmed in the experimental literature on ambient policies for NPS pollution

(Cochard, Willinger and Xepapadeas, 2005).

I begin with setting up the model for the social planner that tries to achieve an
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ambient goal at least cost. From this, a least cost policy is derived and used to benchmark

against the other pollution outcomes discussed later. I then derive best response functions

of firms in both the simultaneous and sequential game settings treating the policy as

given and fixed. Then equilibria is discussed in both game types (simultaneous and

sequential) and policy types (perfect tax and strict tax) along with the resulting welfare

implications. Afterwards, I describe and model the potential for free-riding and examine

whether location additional monitors matter and how increasing the number of monitors

might impact the potential for free-riding.

2.2 Model Setup

Consider n known polluters (firms) whose discharge all go to the same monitoring

point. Firms differ in location and are all situated along a simple linear river network

and are allowed to be heterogeneous. I allow firms to freely choose their discharge level

(Xi) and I abstract away from both output decisions and the consumer market. For

now, I assume the regulator can only feasibly monitor ambient concentrations directly

downstream of the last polluter, firm n. Later, I will allow the number of monitors to

increase above one. Figure B.4 depicts a two player example of the game tree when the

game is assumed to be sequential.

The regulator observes ambient quality X, takes the ambient standard X as given

and chooses a value for the uniform tax rate t that will induce a compliance outcome.

Each firm faces an ambient tax given by (2.1)

Ti(X) =


0 if X ≤ X

t(X −X) if X > X

(2.1)
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and firm level payoffs are given by (2.2)

Π(Xi, X, θi) =


π(Xi, θi) if X ≤ X

π(Xi, θi)− t(X −X) if X > X

(2.2)

where π() is the farm profit for a chosen individual pollution level without tax burden

considerations. The model setup will be general enough to allow for heterogeneity but I

will invoke the homogeneity assumption to derive many of the results in this paper. Firm

types are given by θi, the slope of the marginal profit of pollution curve (isomorphic to

marginal abatement cost curve) and πi(Xi) is short hand for π(Xi, θi). A higher value for

θ is assumed to have a positive effect on the marginal profit of pollution ( ∂2πi

∂Xi∂θi
≥ 0) and

thus leading to a (weakly) higher level for Xbau
i , the business as usual level of discharge

for each firm. The ambient pollution is assumed to be the sum of discharges across all

polluters X =
n∑

j=1

Xj. Lastly, πi(·) is assumed to be an upside down parabola where

π′
i(X

bau
i ) = 0 and π(0) = 0.

The Social Planner

The goal of this section is to pin down the optimal uniform tax rate. The planner

wants to choose pollution allocations (X1, . . . , Xn) so that ambient quality reaches the

standard (X ≤ X) at least cost. The cost structure is subsumed in the farm profit

function so that the planner’s problem is framed as in (2.3).

max
{Xi}ni=1

n∑
i=1

π(Xi, θi) s.t. X ≤ X (2.3)

From equation (2.3), the least cost pollution level for individual i, denoted as X∗
i , is
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pinned down by (2.4).

π′(X∗
i , θi)− λ∗(θ1, . . . , θn, X) ≤ 0 for i = 1, . . . , n (2.4)

Thus the socially optimal pollution allocation is such that everyone pollutes up to the

point where their marginal profit from pollution equals the shadow price of pollution

given by the lagrange multiplier, λ∗(θ, X). The least cost pollution allocation is then

given by (X∗
1 , . . . , X

∗
n) and this achieves compliance exactly (

∑
X∗

i = X).

Firm Problem

Polluting firms face the following optimization problem

max
Xi

Π(Xi, X−i, θi) (2.5)

where the objective function in (2.5) is given by (2.2). And since the tax schedule from

(2.1) is piecewise, solving (2.5) requires analyzing the optimum on both sides of the kink

(see Appendix for full solution).

Proposition 2.2.1 For each player i, there exists a minimum profitable pollution level

(denoted as X̃i) such that player i would never find it profitable to pollute below X̃i to

avoid the tax penalty given by t(X−i+X̃i−X) where X−i denotes the pollution attributable

to all but firm i. The minimum profitable pollution level is indirectly given by

π′(X̃i, θi) = t

Therefore we have X̃i = X̃i(t) and X̃
′
i(t) ≤ 0.
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Proof: We can rewrite 2.5 as

max
Xc

i ,X
d
i

{
Πc

i ,Π
d
i

}
(2.6)

where

Xc
i = arg max

Xi

πi(Xi) s.t X ≤ X (14.1)

Πc
i = πi(X

c
i ) (14.2)

Xd
i = arg max

Xi

πi(Xi)− t(X −X) s.t X > X (14.3)

Πd
i = πi(X

d
i )− t(Xd

i +X−i −X) (14.4)

X̃i : π
′
i(X̃i) = t (14.5)

Here, X−i denotes the pollution level of all other players but i. The strategy of player

i can be broken down into two types, a comply strategy and a don’t comply strategy.

The comply strategy and associated payoffs are represented with a superscript c as in

(14.1)-(14.2). The don’t comply strategy and corresponding payoff is represented with a

d as in (14.3)-(14.4).

Recognize that if X̃i +X−i ≤ X then Xc
i ≥ X̃i by definition. We want to show that

Πc
i ≥ Πd

i if and only if X̃i +X−i ≤ X. I prove this below.
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Suppose that Πc
i ≥ Πd

i .

⇐⇒ π(Xc
i ) ≥ π(Xd

i )− t(X −X)

⇐⇒ t(X −X) ≥ π(Xd
i )− π(Xc

i )

⇐⇒ t(Xd
i −Xc

i ) ≥ π(Xd
i )− π(Xc

i ) (add/subtract by t(Xc
i ) to LHS)

⇐⇒ t ≥ π(Xd
i )− π(Xc

i )

Xd
i −Xc

i

Note that there are only two possibilities, either the ”don’t comply” (DC) constraint

binds (X̃i +X−i ≤ X) or it doesn’t (X̃i +X−i > X). When the DC constraint binds,

then we have X̃i ≤ Xc
i < Xd

i . When it fails to bind, we have Xc
i < Xd

i = X̃i.

Since we know that t = π′(X̃i), then if t ≥ π(Xd
i )− π(Xc

i )

Xd
i −Xc

i

holds, it must be the case

that the DC constraint binds since both Xc
i and Xd

i are to the right of X̃i. When the

DC constraint fails to bind, (i.e., Xd
i = X̃i and X

c
i < X̃i), then the slope condition will

fail to hold also. Thus

Πc
i ≥ Πd

i ⇐⇒ X̃i +X−i ≤ X (DC constraint binds)

Therefore, when X−i is small enough so that firm i can pollute at a minimum of X̃i and

still achieve X then it will do so. However, when X−i is sufficiently large so that when

firm i chooses X̃i it would not be compliant, then firm i will still choose to pollute X̃i.
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Nash Equilibrium

Here, I present the setup for the simultaneous game by deriving best response func-

tions and the Nash Equilibrium. From Proposition 2.2.1, we know that no player would

choose pollution below X̃i no matter what. Furthermore, all players would like to choose

Xbau
i if they could do so without incurring a penalty. Thus for all players, their best

response function given the pollution level of others (denoted as X−i) is given by (2.7).

XBR
i =


Xbau

i if X−i ≤ X −Xbau
i

X −X−i if X −Xbau
i ≤ X−i ≤ X − X̃i

X̃i if X−i ≥ X − X̃i

(2.7)

Equation (2.7) is depicted graphically in Figure B.1. If player i knows that they can

pollute business as usual without incurring the tax penalty then they will surely do so.

However, if they cannot do so without being penalized, then they will cut back on pol-

lution levels to avoid the penalty but only up to a certain point. All firms would rather

contribute towards noncompliance rather than pollute below their minimum profitable

pollution levels, X̃i. This result relies on the fact that polluters know exactly what their

tax burden would be in the case of noncompliance and if uncertainty is allowed, firms

will then need to know some moments of the distribution for the penalty.

From proposition 2.2.1 and equation (2.4), we see that if the regulator sets the uni-

form tax rate so that it equals the lagrange multiplier λ∗, then all firms would have their

minimum profitable pollution levels be equal to their least cost pollution levels and thus

would result in a unique Nash Equilibrium where ambient quality target is met exactly

and at least cost (Segerson and Wu, 2006).
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However, assuming that the regulator knows the full distribution of θ is not likely to

hold in reality. Though it could be the case that the regulator can incur a cost to learn θ,

this cost could easily be prohibitively high. When θ is unknown, it invites the possibility

of having a value t ̸= λ∗ while still maintaining compliance; this occurs if t > λ∗.

The Effects of t on Nash Equilibria

Here we look at the implications of various levels of t that would induce a compliance

NE. From equation (2.4) and proposition 2.2.1, we know that when t < λ∗, then X̃i > X∗
i

for all i since we assume π′′() ≤ 0. This inevitably leads to noncompliance because no

one is willing to pollute below their minimum profitable pollution levels which happens

to be higher than the least cost pollution level for each i.

When t = λ∗, each player has their minimum profitable pollution level exactly equal

to their least cost pollution level. When this happens, the only unique Nash Equilibrium

pollution allocation occurs at the point where each firm pollutes exactly X̃i as depicted

in Figure B.2. I refer to this value as the “perfectly” set tax rate. This choice of nomen-

clature captures the idea that when t is set equal to λ∗, players’ best response functions

intersect at exactly one point in the n-dimensional space. At that point, compliance is

met perfectly and at least cost to polluters.

The novel result of this paper focuses attention on the case when t is set “too strictly”

so that t > λ∗. This is shown in Figure B.3 and when this occurs, all players’ minimum

profitable pollution level now lies below their least cost levels (X̃i < X∗
i ). In such a

setting, all firms are willing to pollute less than X∗
i but no less than X̃i to avoid a tax

penalty. Therefore, some firms can get away with polluting above X∗
i and free-ride off of

those who are polluting less than what is optimal. This result is a consequence of having
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a multiplicity of NEs where any allocation outside of X∗ = (X∗
1 , . . . , X

∗
n) is an inefficient

allocation even though all NE’s achieve compliance. This is summarized in theorem 2.2.2

and the intuition for the result is very simple.

When t > λ∗, it creates a gap between X̃i and X
∗
i . This creates a potential surplus

of implied pollution quotas available for some to pollute beyond X∗
i . The total potential

surplus available to a firm i is given by (2.8). When homogeneity is assumed, equation

(2.8) becomes X − nX̃.

n∑
j=1
j ̸=i

(
X∗

j − X̃j

)
(2.8)

Theorem 2.2.2 Let λ∗ be the shadow price of pollution which is defined as in (4). When

t < λ∗, then the NE is non-compliance such that

X =
n∑

i=1

X̃i(t) > X

But when t = λ∗, compliance is reached exactly (i.e.,
n∑

i=1

X̃i(t) = X). Lastly, when t > λ∗

we have
n∑

i=1

X̃i(t) < X

and the allocation (X̃1, . . . , X̃n) is no longer an NE. Instead, the NE is characterized by

(Xne
1 , . . . , Xne

n ) :
n∑

i=1

Xne
i = X

with Xne
i ∈

[
X̃i, X

bau
i

]
for all i. Therefore, the ability to free ride exists to the extent

that t > λ∗.
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Proof: By definition we have

1.
n∑

i=1

X̃i(λ
∗) = X

or equivalently we can state X̃i(λ
∗) = X∗

i

2. X̃i(t) =
(

∂πi(Xi)
∂Xi

)−1

(t)

3. π′
i(Xi) is convex and weakly decreasing over

[
0, Xbau

i

]
By point two and three above, X̃i(t) is also convex and decreasing in t. Therefore, when

t < λ∗ the first point above implies that
n∑

i=1

X̃i > X. It also proves the case for t = λ∗.

And when t > λ∗ we have that X̃i < X∗
i .

Without introducing any equilibrium selection concepts, there is no way to know

which NE will be selected when t > λ∗. Worse yet, in the two player example with

homogeneous types, the allocations (X1, X2) = (X̃1, X−X̃1) and (X1, X2) = (X−X̃2, X̃2)

produces a compliance outcome at the highest cost. It turns out that under homogeneity

and sequential play, then the Sub-game Perfect Nash Equilibrium will produce this “worst

case scenario”.

SPNE as “Worst Case”

It is helpful for expositional purposes to use the SPNE concept to characterize the

“worst case scenario”, that is, when compliance is reached at highest cost. Even though

it may not be innocuous to assume that downstream players can perfectly observe the

quality of water that reaches their own stretch, such an assumption allows us to examine

the SPNE for other purposes. The extensive form game tree is depicted in Figure B.4

assuming only two players. Player 1 is the first mover while player n is the last. Following

standard procedure, we utilize backward induction and first pin down the last player’s
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strategy.

The nth player’s strategy is exactly described by equation (2.7) since they are the

last mover in this game. Player n− 1’s problem will slightly diverge from equation (2.7).

Player n − 1 still has the same value for their minimum profitable pollution level as in

the simultaneous game. The difference here is that their compliance goal is not to stay

under X since they are not the last person in the river. If player n− 1’s goal is to reach

compliance, then they must keep the ambient pollution discharged by everyone upstream

of n (denoted as X↑(n)) to be weakly less than X − X̃n because if player n − 1 pollutes

too much so that X↑(n) is too high, then player n will still choose X̃n and thus push the

group to be out of compliance. The best response function for player n− 1 is then given

by (2.9).

XBR
n−1 =


Xbau

n−1 if X↑(n−1) ≤ X −Xbau
n−1 − X̃n

X − X̃n −X↑(n−1) if X −Xbau
n−1 − X̃n ≤ X↑(n−1) ≤ X − X̃n − X̃n−1

X̃n−1 if X↑(n−1) ≥ X − X̃n − X̃n−1

(2.9)

The term X↑(n−1) denotes the pollution amount attributable to polluters upstream of

n− 1 and is not to be confused with X−(n−1) which is the pollution amount attributable

to all polluters excluding n − 1. Equation (2.9) essentially translates equation (2.7) to

the sequential context so that now player n− 1 takes only upstream pollution (X↑(n−1))

as given and their compliance goal explicitly takes the next player’s strategy into account.

Player n − 1 knows that player n will never choose to pollute below their minimum

profitable pollution level (X̃n). Therefore, if player n− 1 wants to achieve a compliance
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outcome, she must ensure that the water received by n does not exceed X−X̃n. However,

if the water received by n− 1 is too polluted so that n− 1 must pollute below her own

minimum profitable pollution level to achieve the compliance goal, then she will surely

not do so resulting in overall non-compliance. Equation (2.10) extends the best response

function to all players j where j is upstream of n (j < n). For (2.10) to apply to Player

1, simply set X↑(1) = 0.

XBR
j =



Xbau
j if X↑(j) ≤ X −Xbau

j −
n∑

k=j+1

X̃k

X −X↑(j) −
n∑

k=j+1

X̃k if X −Xbau
j −

n∑
k=j+1

X̃k ≤ X↑(j) ≤ X − X̃j −
n∑

k=j+1

X̃k

X̃j if X↑(j) ≥ X − X̃j −
n∑

k=j+1

X̃k

(2.10)

Welfare in Equilibrium

There is a well known result that the SPNE is a subset of the set of NE’s and so

when t is set perfectly, there is a unique NE and is thus identical to the SPNE. When

t is set too strictly (high), however, the SPNE results in one of the extremes from the

set of NE’s. Take Figure B.3 as an example. Assuming that Player 1 is upstream of 2,

the SPNE would produce the point (X − X̃2, X̃2) as the pollution allocation2. This is

because Player 1 can exert its first mover advantage over Player 2 by producing more

pollution and forcing Player 2 to pick up the slack. Player 2 is happy to do this because

of Proposition 2.2.1. This intuition is captured in Corollary 2.2.3 and Theorem 2.2.4.

Theorem 2.2.3 If all firms are identical in all but location, then the SPNE resulting

2Assuming that X − X̃2 < Xbau
1
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from the policy (t,X) where t > λ∗(θ, X) produces a pollution allocation that is non-

increasing downstream. That is

Xspne
h ≥ Xspne

ℓ

where h < ℓ (so that h is upstream of ℓ).

Proof: The proof follows directly from Equation (2.10). For example, take the first

line from the piecewise function and compare this for two different players, h and ℓ where

h is upstream from ℓ. Player h will pollute Xbau if X↑(h) ≤ X − Xbau
h − (n − h)X̃ and

Player ℓ will also pollute Xbau if X↑(ℓ) ≤ X −Xbau
ℓ − (n− ℓ)X̃. Since we have

X↑(ℓ) > X↑(h)

and

X −Xbau
ℓ − (n− ℓ)X̃ > X −Xbau

h − (n− h)X̃

it is hard to tell which player is more likely to play their BAU levels at the moment.

However, we can establish that

X↑(ℓ) −X↑(h) > (ℓ− h)X̃

since players in between h and ℓ would, at a minimum, produce X̃. This then allows us

to claim that the condition for h to play their BAU level is more likely to hold than the

condition for ℓ to play their BAU level. A similar process can be done for the remaining

pieces from (2.10) to fully establish the proof.

Corollary 2.2.4 Suppose all firms are homogeneous except location and that t > λ∗.

Define k = ⌊k̃⌋ > 0 where k̃ = max{B} and B =
{
k ∈ R+

0 : kXbau + (n− k)X̃ = X
}
.

50



Regulating Non-point Pollution with Ambient Tax: Are more monitors better Chapter 2

Then the SPNE would produce the following result

(Xspne
1 , . . . , Xspne

k , . . . , Xspne
n ) = (Xbau, . . . , Xbau︸ ︷︷ ︸

k

, XR, X̃, . . . , X̃︸ ︷︷ ︸
n−k−1

)

and compliance is met exactly so that

X = kXbau + (n− k − 1)X̃ +XR

where XR ∈
(
X̃,Xbau

)
and k =

⌊
X − nX̃

Xbau − X̃

⌋
.

Proof: The SPNE pollution allocation follows directly from the definition of k and

equation (8). To see that XR ∈
(
X̃,Xbau

)
, notice that we have

=⇒ k̃Xbau + (n− k̃)X̃ = kXbau + (n− k − 1)X̃ +XR

=⇒ (k̃ − k)Xbau +
(
1−

[
k̃ − k

])
X̃ = XR

=⇒ σXbau + (1− σ)X̃ = XR (where σ ∈ (0, 1))

Note that ⌊ ⌋ is the floor function/operator.

Theorem 2.2.4 simply says the SPNE would be so that the first k players will choose

BAU levels, player k+1 will pollute some amount between BAU and minimum profitable

level (henceforth referred to as the residual polluter), and the remaining downstream play-

ers pollute the minimum profitable pollution level. This formalizes the arguments made

in the previous section and shows that the SPNE does indeed produce the most extreme

allocation possible when t > λ∗.

The result from theorem 2.2.4 above and theorem 2.2.5 below implies that the SPNE
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still achieves compliance but at the highest possible cost. This result relies heavily on

the homogeneous firm assumption which limits its value somewhat.

Theorem 2.2.5 The SPNE allocation in Corollary 2.2.4 produces the lowest welfare

possible among all other compliance NE’s.

Proof: The welfare from Proposition 2.2.5 is given by

W0 = kπ(Xbau)− (n− k − 1)π(X̃) + π(XR)−D(X)

but since all NE’s result in compliance, the damage function will be same when comparing

across different NE’s and there is no tax incurred. Thus, the only relevant comparison is

done on producer welfare, W p
0 given by

W p
0 = kπ(Xbau)− (n− k − 1)π(X̃) + π(XR)

The only possible reallocation will be one in which a free rider will pollute ε less while a

contributor will pollute ε more. Such a reallocation produces welfare W p
1 where

W p
1 = (k − 1)π(Xbau) + (n− k − 1)π(X̃) + π(Xbau − ε) + π(XR + ε)

Since it would increase welfare marginally more if we give the ε to a polluter at the level

of X̃ over one at XR. Then evaluating W p
0 −W p

1

W p
0 −W p

1 = π(Xbau)− π(Xbau − ε) + π(XR)− π(XR + ε)

= π(Xbau)− π(Xbau − ε)−
[
π(XR + ε)− π(XR)

]
≤ 0 (since π() is concave or π′(x) is decreasing in x for x ≤ Xbau)
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When we start to consider the more realistic scenario where firms are heterogeneous,

the welfare consequences of a too strict t value in an SPNE becomes more complicated. In

particular, the SPNE no longer coincides with the “worst case scenario” which is occurs

when the lowest θ types are free-riding off of the highest θ types. In other words, the

“worst case” occurs when those who stand to gain the least from free-riding, free-ride off

of those who stand to gain the most from free-riding.

2.3 Optimal Location of Additional Monitors

The regulatory structure of applying an ambient tax on NPS polluters along a river

will change as m, the number of monitoring points, changes. How that changes may

depend on where those monitors are located. Towards that end, I will invoke the as-

sumption that firms are homogeneous in all but location and this includes each firm’s

marginal damage of pollution. When an additional monitor is placed upstream of player

ℓ+1, then it would effectively split the group of n polluters into two groups; the upstream

group would have size ℓ while the downstream group has size n− ℓ.

It is assumed that the regulator only cares about total pollution downstream of player

n so that the resulting two groups are regulated independently. Since homogeneity is

assumed here, the ambient tax rate that is applied to each section are the same. The

ambient standard for each section will depend on where the second monitor is located.

The ambient standard for the upstream section is

Xu =
ℓ

n
X
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and the standard for the downstream section is

Xd =
n− ℓ

n
X

so that the sum of the two standards equals the original standard for the case m = 1. It

should be noted that the process of determining the appropriate standard for each section

is extremely simplified here where each section gets a representative share of the total

original standard. Under homogeneity, this arbitrary process happens to be the optimal

choice for the regulator since X∗
i = X

n
for all i. But when heterogeneity is allowed,

this simple process no longer corresponds to the optimal standard for each section. The

corresponding total profits for both upstream (subscript u) and downstream (subscript

d) groups are given in (2.11).

Πu = kuπ(X
bau) + (ℓ− ku − 1)π(X̃) + π(XRu)

Πd = kdπ(X
bau) + (ℓ− kd − 1)π(X̃) + π(XRd

)

(2.11)

The values (kh, XRh
) are defined similarly to (k,XR) from theorem 2.2.4 but are derived

from Xh for h = {u, d}. Thus welfare is given by (2.12).

W = Πu +Πd −D(X) (2.12)

Equations (2.11) and (2.12) indicate that the choice in location (ℓ) affects welfare through

two channels: (1) how it affects total number BAU polluters (ku + kd) and how it affects

the amount that the two residual polluters discharge (XRu and XRd
).

Theorem 2.3.1 Initially let m = 1. Under homogeneity, the welfare maximizing loca-

tion for the second monitor is ℓ = n
2
.

54



Regulating Non-point Pollution with Ambient Tax: Are more monitors better Chapter 2

Proof: First I show that the choice of ℓ doesn’t change the value ku + kd and then

I show that the choice ℓ =
n

2
maximizes π(XRu) + π(XRd

).

By definition we have ku + kd = ⌊k̃u⌋+ ⌊k̃d⌋. We can decompose k̃h for h ∈ {u, d} as

k̃h = ⌊k̃h⌋+ bh

where bh ∈ (0, 1). Then we have

⌊k̃u + k̃d⌋ = ⌊k̃u⌋+ ⌊k̃d⌋+ ⌊bu + bd⌋

and since

⌊bu + bd⌋ =


0 if bu + bd < 1

1 if bu + bd ≥ 1

then

⌊k̃u⌋+ ⌊k̃d⌋ =


⌊k̃u + k̃d⌋ if bu + bd < 1

⌊k̃u + k̃d⌋ − 1 if bu + bd ≥ 1

Now that we have this expression, we see that

arg min
ℓ

⌊k̃u⌋+ ⌊k̃d⌋ = arg min
ℓ

⌊k̃u + k̃d⌋

But since

⌊k̃u + k̃d⌋ =

⌊
ℓ
n
X − ℓX̃

Xbau − X̃
+

n−ℓ
n
X − (n− ℓ)X̃

Xbau − X̃

⌋
=

⌊
X − nX̃

Xbau − X̃

⌋

Thus, the location of the second monitor does not change ku + kd.
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The only channel in which location affects welfare then is through the sum

π(XRu) + π(XRd
)

Denote ℓ∗ as the location that maximizes the above sum. Suppose that ℓ∗ is such that

XRu ̸= XRd
. Then this contradicts the definition of ℓ∗ because by shifting some pollution

from the higher XR to the lower XR it would increase the join profit since π() is con-

cave. Thus, the necessary condition for ℓ∗ to be the argmax of the joint profits is that

ℓ∗ : XRu = XRd
.

By definition we have that

XRu =
ℓ

n
X −

⌊
ℓ
n
X − ℓX̃

Xbau − X̃

⌋
Xbau −

(
ℓ−

⌊
ℓ
n
X − ℓX̃

Xbau − X̃

⌋
− 1

)
X̃

XRd
=
n− ℓ

n
X −

⌊
n−ℓ
n
X − (n− ℓ)X̃

Xbau − X̃

⌋
Xbau −

(
n− ℓ−

⌊
n−ℓ
n
X − (n− ℓ)X̃

Xbau − X̃

⌋
− 1

)
X̃

Therefore, the only ℓ that satisfies the necessary condition for maximization is ℓ =
n

2
.

By equations 2.11 and 2.12, this is also the location that maximizes total welfare.

Theorem 2.3.1 suggests that the optimal location for the additional m − 1 monitors

would be so that the entire river is partitioned evenly. Without a formal proof of this,

for now I treat this as more of a simplifying assumption.

Optimal Number of Monitors

Now that it is established where the additional m − 1 monitors will be located, the

question that remains is how should m be determined so that the potential for free-riding
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is minimized? There will be m sections that are partitioned along the river (the number

of sections equals the number of monitors) and homogeneity means that each section is

regulated the same and thus behaves the same (has the same pollution outcome). The

welfare under an m monitor regime is given by equation (2.13).

Wm = m
[
kmπ(X

bau) + (nm − km − 1)π(X̃) + π(XRm)
]
−D(X) (2.13)

The bracketed term is the profits to each section so that (km, nm, XRm) are respectively,

the number of BAU polluters, number of total polluters, and the discharge level of the

residual polluter for each identical section or group. By construction, nm = n
m

and it is

assumed that it is an integer. Further, the number of BAU polluters for each section is

given by (2.14).

km =
⌊
k̃m

⌋
k̃m = max{Bm}

k̃m =
X − nX̃

m(Xbau − X̃)
=

k̃

m

Bm =
{
km ∈ R+

0 : kmX
bau + (nm − km)X̃ = Xm

}
(2.14)

The number of BAU polluters per section (weakly) decreases with m but the number of

sections increases with m. This begs the question of whether increasing the number of

evenly space monitors actually affects the potential for free-riding in the manner that is

socially desirable. The potential for free-riding is measured by the sum of all individual

differences between the least cost pollution level and their minimum profitable pollution

level. This is stated in the definition of k from theorem 2.2.4 when you recognize that

the least cost pollution level for each polluter equals X
n
under homogeneity. Figure B.5

depicts the intuition for where the potential for free-riding comes from in a more general
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way that allows for heterogeneity.

As a starting point, consider the case in which everyone is producing at their minimum

profitable levels, X̃i. This is not an NE because there are unused implied pollution quotas

left, i.e.,
n∑

i=1

X̃i < X; specifically, there would be X−
n∑

i=1

X̃i many unused implied quotas.

How many BAU polluters that this unused implied quotas can support depends on the

distance between Xbau
i and X̃i for each i. Therefore, under homogeneity we see that theo-

rem 2.2.4 defines the maximum BAU polluters for a compliance NE to be k =

⌊
n
(

X
n
−X̃

)
Xbau−X̃

⌋
.

When we allow for m > 1, then the free-riding potential within each section depends

on the distance between Xm and nmX̃. Since Xm is decreasing faster with m than nmX̃m

does, then the free-riding potential within a section decreases as well. The total number

of BAU polluters for the entire river, denoted as kTm is given by (2.15). At a glance, it

is unclear whether total free-riding potential measured by (2.15) increases or decreases

with m. Certainly when m = n, the potential for free-riding vanishes which would seem

to indicate that the total free-riding potential will decrease with the number of monitors.

However, this is not the case and I show how that works formally below and try to provide

intuition along the way.

kTm = mkm (2.15)

Equation (2.15) implies that

kT1 =

⌊
X1 − n1X̃

Xbau − X̃

⌋
(2.16)

where X = X1 and n = n1. Intuitively, when m = 1 the resulting number of total BAU

polluters is at its maximum (kT1 = maxm{km}) and when m = n then that number is now

at its minimum (kTn = minm{km}). But theorem 2.3.2 shows that the function kTm does

not in generaly change in a monotone fashion. Instead, there is a condition for which kTm
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actually increases with m, though never above kT1 as stated in corollary 2.3.3.

Theorem 2.3.2 Let km and kTm be the maximum number of BAU polluters within a

section and the total maximum BAU polluters along the river, respectively. Then for

m1 < m2 we have that kTm1
> kTm2

if and only if equation (2.17) holds.

k1 − k2
k1

>
m2 −m1

m2

(2.17)

Proof: Let m1 < m2. We seek to find the conditions under which kTm1
> kTm2

.

Suppose that it’s true and let m1 = m2 − c.

kTm1
> kTm2

⇐⇒ m1k1 > m2k2

⇐⇒ m2k1 − ck1 > m2k2

⇐⇒ m2(k1 − k2)

k1
> c

⇐⇒ k1 − k2
k1

>
m2 −m1

m2

Corollary 2.3.3 Increasing m may increase kTm but never more than kT1 . In other words,

a maximum (not necessarily unique) for kTm is kT1 .

Proof: Equations 2.14 and 2.15 imply that

kTm = m

⌊
Xm − nmX̃

Xbau − X̃

⌋
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which we want to compare with equation 2.16. This comparison of these two values can

be boiled down to comparing

⌊ab⌋ with ⌊a⌋b

for some positive value a and positive integer b. Using Hermite’s identity, it is apparent

that

⌊ab⌋ ≥ ⌊a⌋b

which means that

kT1 ≥ kTm ∀m ∈ N

because ⌊mk̃m⌋ =
⌊
m k̃1

m

⌋
= ⌊k̃1⌋.

In general, equation (2.17) is not guaranteed to hold which means that the total

maximum number of BAU polluters along the entire river, is not guaranteed to decrease

with increases in the number of evenly spaced monitors. Its important to clarify that we

are referring to the maximum possible number of BAU polluters that could result from

a simultaneous game since there are so many possible NEs when t > λ∗. Under a more

sequential type game, which is more plausible in a river setting as opposed to a lake, the

result from theorem 2.3.2 is a proper prediction of a behavioral outcome.

Intuitively, theorem 2.3.2 says that an increase in monitors from m1 to m2 would de-

crease the potential for free-riding for the entire river if and only if the percent decrease

in the potential for free-riding within a section, is greater than the percent increase in

monitors (i.e., number of sections) relative to the new value, m2. Restating this graphi-

cally, turn to figure B.6. The result from theorem 2.3.2 means that the distance between

the values Xm and nmX̃ must decrease faster thanm is increasing in order for an increase
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in m to decrease the total potential to free-ride3.

2.4 Discussion

The results suggest that when the regulator can calibrate t perfectly for X, then

there is no difference in the NE and SPNE results. However, if the regulator overshoots

λ∗ even slightly, then the NE and SPNE diverge. For the case in which polluters are

homogeneous in all but location, the SPNE will always produce the worst compliance

outcome in terms of welfare. This is because if t is set too strict (i.e., t > λ∗), then firms’

minimum profitable pollution level (X̃i) is lower than the individual least cost discharge,

X∗
i . This gap gives rise to the potential for free-riding leading to a wide range of pollution

allocations that can both achieve compliance exactly and is individually rational. But

when t = λ∗, firms’ minimum profitable pollution level is exactly equal to the socially

optimal individual discharge. This situation leads to no potential for free-riding and thus

a unique NE would result.

Under homogeneity, the SPNE outcome being the highest cost compliance NE serves

as a useful measure for the potential for free-riding under a simultaneous game. The

main contribution of this shows that when the potential for free-riding exists, additional

monitoring points may not necessarily decrease that potential. The degree to which ad-

ditional monitors decreases that potential, depends on the extent in which the relative

decrease in the potential for free-riding within each section is higher than the relative

increase in the number of sections.

3To see that the distance between Xm and nmX̃ does decrease with m, simply take the derivative of
both values with respect to m and compare.
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Advances in water quality monitory technology has made this line of questioning

more relevant than ever, reducing the cost of implementing more complex monitoring

networks. Understanding the benefits of additional monitoring locations is thus a crucial

component analysis in determining the benefits of such an investment. The policy impli-

cation of this paper’s results is that if a regulator seeks to achieve a NPS pollution goal in

a river-like system through the implementation of an ambient tax, they can do so but at

an unknown cost a priori. The regulator can increase the number of monitoring points,

but doing so does not guarantee that the resulting outcome is closer to the least-cost

outcome. However, additional monitoring locations is more likely to achieve an outcome

closer to the least-cost outcome when the level increase in the number of monitors is

large as is apparent from equation 2.17.

Lastly, our theoretical results are consistent with the laboratory results from Miao

et al. (2016) and Zia et al. (2020) though for different reasons. Those studies sought to

examine the effects on polluter behavior under an ambient tax of changes in the informa-

tion structure such as additional monitoring points or increase in monitoring frequency.

This paper addresses the former directly providing a proper theoretical framework for

that line of analysis. However, those two papers only went as far as one additional

monitoring point which limits the effect on behavior somewhat.
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Chapter 3

Indemnity Payments in PES

Programs: Practical Implications

Joint with Chris Costello

3.1 Introduction

Ecosystem services (sometimes referred to as environmental services) are the aspects

of an ecosystem (or environment) that provide benefits to humanity, directly or indi-

rectly (Millennium Ecosystem Assessment, 2005; Fisher, Turner and Morling, 2009).1 A

majority of ecosystem services (ES) fall within the realm of public goods therefore are

supplied at suboptimal levels. Worse yet, early assessments indicate that these services

are degrading at rapid rates (Millennium Ecosystem Assessment, 2005). One solution

for this market failure that has gained popularity among scholars and practitioners is

known as payments for ecosystem services (PES) (Salzman et al., 2018). PES programs

1Direct benefits could include eco-tourism, pollination for agriculture, carbon sequestration, and
general ecosystem health to prevent desertification. Examples for indirect benefits include non-use value
from biodiversity, predator populations to prevent deer overpopulation, etc.
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facilitate the creation of contracts between ES beneficiaries (or their representative such

as the government or regulator) and ES suppliers where the beneficiary agrees to pay the

supplier for their provision of ES. PES contracts are voluntary programs where agents

have to opt into participation which is in contrast to Pigouvian taxation. Around the

world, there are now 550 PES programs with a combined annual payment of around $36

billion USD (Salzman et al., 2018).2

PES schemes are essentially an application of the Coase Theorem and can be con-

tracted on either ES outputs (like lower atmospheric CO2) or ES inputs (like carbon

sequestering land uses) and which one to contract on is still an active area of research

(White and Hanley, 2016). PES contracts based on outputs are sometimes referred to

as performance-based contracts while input-based ones are also known as action-based

contracts. One central tradeoff between these two types is that contracting on outputs

reduces the uncertainty of benefits from higher ES. However, because of the variability in

nature, the ES production function is inherently stochastic which means that contracting

on ES outputs could put significant risk on the agent. Further, it is typically much harder

to monitor ES outputs compared to ES inputs (Burton and Schwarz, 2013; Derissen and

Quaas, 2013).3 Consequently, many PES programs are contracted on ES inputs rather

than outputs (Jack, Kousky and Sims, 2008) with the majority of European PES pro-

grams being input-based (Wuepper and Huber, 2022).

The PES literature has acknowledged the important role that risk plays in agents’

2In this paper, we abstract away from concerns about the precise definitions of ES (Fisher, Turner
and Morling, 2009) and PES (Schomers and Matzdorf, 2013) where there are disagreements on how
narrow or broad each definition should be. Throughout this paper, both ES and PES will be used to
refer to the broadest definitions of both.

3Though remote sensing is making monitoring environmental factors at large more and more acces-
sible, it is still quite difficult to attribute individual contributions to aggregate environmental quality
measures.
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PES related decisions but rather than formalizing its role, it has chosen to mostly sidestep

the issue by narrowing its focus on input-based PES. We argue that risk ought to have

a larger consideration in the design of PES programs, regardless of whether it is output

or input based. This paper contributes to a small set of papers that analyze the role of

risk in PES payments by offering an alternative to increased payments, that is, offering

indemnity instead. Our goals with this paper is to (i) define the necessary and sufficient

conditions for when it is optimal for the regulator to offer positive indemnity payments

and what that optimal indemnity is, (ii) offer an approach to evaluate how large such

gains could be, (iii) define further conditions for when it is optimal to pursue the dual

objective of additionality and poverty alleviation.4

The model tasks the regulator with representing the beneficiaries of the ES. Their

objective is to maximize the gross social benefit given a fixed budget by choosing both

payment (or subsidy) level and an indemnity level. The typical PES contract is known

as linear pricing contracts which defines a measurable and verifiable ES input and pays

a subsidy for each unit of input supplied.5 The typical linear PES contract chooses the

optimal payment level conditional on the indemnity being zero which will henceforth be

referred to as the pure payment contract. In contrast, the optimal contract is arrived at

by allowing the regulator to freely choose both the payment and indemnity levels.

We find that the pure payment contract always offers full indemnity whenever agents

are risk averse but that when agents are risk neutral, the optimal and pure payment

4Indemnity simply means protection against financial loss/burden. Insurance is a subset of indemnity
in that it specifically requires the indemnitee to pay the indemnitor for indemnity.

5Linear pricing contracts are in contrast to optimal contracts from the mechanism design literature.
Those contracts are optimal in the sense that it maximizes social welfare by explicitly accounting for
the asymmetric information about agent’s counterfactual ES input supply (i.e., additionality). They
are a menu of pairs of ES input levels and the corresponding payment, carefully designed to create a
separating equilibrium that maximizes expected welfare (Mason and Plantinga, 2013).
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contracts provide the same social benefits per government dollar spent. The reason for

this has been well understood from the insurance literature which is that the regulator is

effectively risk neutral so that the cost of bearing the risk of ES provision is equal to the

mean of the cost shock. However, a risk adverse agent would value the cost from risk at

the mean cost shock plus some risk premium. Thus, the regulator can always arbitrage

this by offering indemnity and “charging” a higher price than it costs to insure. The risk

neutrality on the part of the regulator can be justified on the grounds of having a large

number of beneficiaries Arrow and Lind (1970). Further, the value gained from imple-

menting the optimal contract, relative to the pure payment contract, increases with the

coefficient of relative risk aversion. Following Chetty (2006), we show how to estimate

a lowerbound for this parameter using estimates of relevant elasticities and moments of

the ES cost function. We also conduct a numerical exercise that illustrates the relation-

ship between the magnitude of risk aversion and the value added from implementing the

optimal contract. Lastly, we find that the pursuit of the dual objective of maximizing ES

benefits with minimizing poverty is optimal only when a particular comparative static is

below some threshold. Specifically, the condition states that the business-as-usual level

of ES provision must increase with wealth at a sufficiently high rate.

Section3.2 will briefly discuss the context and literature review up which this paper

hopes to contribute. Section 3.3 outlines the model detailing both agents’ and principal’s

problems The next section deals with additionality and outlines conditions in which it

is optimal for the regulator to pursue the dual objective of additionality and poverty

alleviation.
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3.2 Literature on Risk in PES

This paper relates closely with the literature on risk associated with payments for

ecosystem services (PES) which has since established that the required linear payment

needed to induce a certain “risky green” action is higher if agents are risk averse com-

pared to being risk neutral (Beńıtez et al., 2006; De Pinto, Robertson and Obiri, 2013).

Beńıtez et al. (2006) derived the optimal payment needed to induce the adoption of farm-

ing practices/technologies that improve soil carbon sequestration and find that such pay-

ment increases with risk aversion. De Pinto, Robertson and Obiri (2013) does something

similar for the adoption of farming practices that help with climate change mitigation as

well uses Ghana as a case study. The risks faced by agents in each of those papers are

related to revenue risk associated with the desirable “green” practices or technologies.

However, loss protection, also known as indemnity, is rarely brought up as a potential

tool to address risk averse behavior.

There are many other instances in which the participation into PES programs in-

troduces risk to the agent’s bottom line. Another example of risks within input based

PES is payments to encourage coexistence with predators where agents are paid to avoid

revenge killing of a predator that caused damage to either property (livestock) or human

life (Dickman, Macdonald and Macdonald, 2010). Many times, these payments are in

conjunction with either payments for or requirements to provision ES inputs such as

using guardian dogs to minimize conflicts with predators. It is in the predation context

that the literature has explicitly analyzed the role of insurance in conservation and find

success in preserving carnivore populations and habitats (see Dickman, Macdonald and

Macdonald (2010) for a review). There are also case studies that find that such indemnity

schemes lead to moral hazard (Bautista et al., 2019). Other examples of risk associated
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with PES participation include the risk that payments will not be received due to insti-

tutional mistrust (Jack et al., 2022), risks associated with stochasticity of nature within

output based PES contracts, and the risk from habitat maintenance which can cause

damages to livestock through disease transmission from increased wildlife (Rhyan et al.,

2013).

To the best of our knowledge, the literature has not yet addressed what role that “in-

surance” or, more precisely, indmenity, can play in achieving ES goals under an economic

optimality standpoint.6 Only Graff-Zivin and Lipper (2008) suggest insurance as a tool

to be used in conjunction with the standard linear PES contract. However, those au-

thors mentioned it casually as part of a general discussion rather than giving it a formal

treatment. This paper hopes to bring everything together by thinking about the issue

that risk poses in PES schemes generally and how a regulator should account for this in

its design of linear pricing PES contracts.

3.3 Model

The linear PES contract is characterized by (1) an indemnity rate I ∈ [0, 1] that is

paid out for each dollar of loss (xiϵi) that occurs and (2) the ES input payment rate p

which is paid for each unit of ES input xi (henceforth referred to as the pay rate). There

is a cost shock ϵi that is distributed (µϵ, σ
2
ϵ ) and has support over [0, e] and when multi-

plied with xi produces the loss that an agent faces for choosing xi. I assume that only

one ES input xi is being contracted and that the input is continuous over [0,∞] so that if

a cost shock occurs, the PES participant’s loss equals xiϵi but receives xiϵiI in indemnity

6The main difference between insurance and indemnity is that insurance implies that there is an
insurance premium whereas indmenity is a much more general sense of protection against loss and does
not require the insuree to pay a premium or cost of insurance.

68



Indemnity Payments in PES Programs: Practical Implications Chapter 3

payments. If the agent does not participate in the PES program, then xi = 0. Potential

enrollees all have heterogeneous initial wealth ωi and are heterogeneous in their known

input cost function gi(xi, ωi) and for brevity, subscripts i will be henceforth omitted when

risk of confusion is low.7

Agents have Bernoulli utility u(c) over consumption c and a budget constraint defined

in (3.1). Thus, consumption is only stochastic when opting into the PES program by

choosing x > 0 and deterministic if x = 0.8 For any given policy level (I, p), there

will be X units of ES input supplied in the aggregate which then engenders ES output

ES(X). This ES output then leads to some level of social benefit B̃(ES(X)) which may

be random as well. From here on, denote B = B̃ ◦ES as the expected social benefit and

is a function of the aggregate ES inputs provided, X.

3.3.1 Agent’s Problem

Agents are expected utility maximizers who take contract (I, p) as given and chooses

ES input level.

max
x

E [u(c)]

s.t. c = ω + xp− g(x, ω)− xϵ(1− I)

x ≥ 0

(3.1)

The ES input cost function is assumed to be increasing and convex (gx(x, ω) > 0,

gxx(x, ω) > 0.9 The first order condition is given by (3.2) which implicitly defines the

7Small letters will denote individual level values and big letters denoting aggregate values.
8There is no loss of generality since one could simply treat ω as a random variable as well.
9One could allow agents to derive positive benefits from provision of x and include a second argument

into the utility. Then the RHS of (3.2) would instead be equal to E[ux(c, x)]. Further, one would have
to follow more closely to Chetty (2006) in order to account for the role of complementarity between x
and c in the application stage of this paper.
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interior solution x∗.

E

[
u′(c∗(x∗, ω))

∂c∗

∂x

]
= 0 (3.2)

Using monotone comparative statics, it is possible to sign
∂x∗

∂p
and

∂x∗

∂I
.

Lemma 3.3.1 Given contract (I, p), the provision of ES inputs is non-decreasing in

indemnity payment rate I nor is it decreasing in the payment rate p, i.e.,
∂x∗i
∂I

≥ 0 and

∂x∗i
∂p

≥ 0.

Proof: To show that x∗ is non-decreasing in I, we can invoke the Milgrom-Shannon

Monotonicity by simply showing that E
[
u
(
c(x, I)

)]
is single crossing in (x, I). Suppose

x′ > x and I ′ > I. Want to show that (i) E
[
u
(
c(x′, I)

)
− u
(
c(x, I)

)]
≥ 0 implies

E

[
u
(
c(x′, I ′)

)
− u
(
c(x, I ′)

)]
≥ 0 and that (ii) E

[
u
(
c(x′, I)

)
− u
(
c(x, I)

)]
> 0 implies

E

[
u
(
c(x′, I ′)

)
− u
(
c(x, I ′)

)]
> 0.

Let E
[
u
(
c(x′, I)

)
− u
(
c(x, I)

)]
≥ 0.

⇐⇒ E [c(x′, I)− c(x, I)] ≥ 0 (3.3)

since u() is a monotonic transformation of c(). Rewriting gives

⇐⇒ ω + x′p− g(x′)− x′µϵ(1− I)− [ω + xp− g(x)− xµϵ(1− I)] ≥ 0

⇐⇒ p(x′ − x)− [g(x′)− g(x)]− µϵ(1− I)(x′ − x) ≥ 0

Thus we have

=⇒ p(x′ − x)− [g(x′)− g(x)]− µϵ(1− I ′)(x′ − x) ≥ 0
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⇐⇒ E

[
u
(
c(x′, I ′)

)
− u
(
c(x, I ′)

)]
≥ 0

The proof for part (ii) is almost identical to that of (i) except with strict inequalities.

To show that x∗ is non-decreasing in p follows an almost exact procedure.

Lemma 3.3.1 says that an agent’s supply of ES inputs weakly increases with both the

pay and indemnity rates. This implies that there must necessarily be a trade off faced by

the regulator with a fixed budget G who maximizes expected social benefit, B(X). The

natural question then arises, when is it optimal for such a regulator to offer a positive

indemnity rate at the expense of offering higher p?

3.3.2 Planner’s Problem

The social planner takes government budget G as fixed and seeks to maximize ag-

gregate supply of ES input X = X(x∗1, . . . , x
∗
n) =

∑
i

x∗i . Note that the formulation of

(3.4) excludes the welfare of the ES suppliers since the goal is not to achieve a first best

outcome, rather the objective is to maximize the benefit of a public good given a fixed

budget. If the regulator’s budget constraint is not binding then the regulator’s solution

is isomorphic to the Coasean bargaining outcome and will actually achieve first best.

max
(I,p)

B(X) s.t. X(p+ µϵI) ≤ G (3.4)

With the inclusion of indemnity payments, the government expenditure for any given

PES contract (I, p) is now stochastic meaning that there are multiple ways to formulate

a budget constraint for the regulator. Equation (3.4) formulates the budget constraint

in terms of expectations where µϵ is the expected value of the cost shock which can
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be justified on the grounds of having a large beneficiary population (Arrow and Lind,

1970). Alternatively, the budget constraint can be formulated in probabilistic or extreme

terms, e.g., the probability that the regulator’s expenditure exceeds G is less than some

threshold or the budget constraint can be formulated to ensure that the budget will not

be exceeded in the event of an extreme shock (where all agents experience shock ϵi = e).

3.4 When are indemnity payments optimal?

The formulation of (3.4) differs slightly from the standard linear pricing PES con-

tracts. The standard linear pricing PES contract takes I = 0 as given, i.e., there is never

any indemnity payments and is usually so for exogenous reasons rather than a result of

the regulator behaving optimally. As a reminder, this is referred to as the pure pay-

ment contract while the optimal contract refers to the case where the regulator optimally

chooses both I and p. The central question here is whether the regulator can achieve

a higher indirect social benefit function when the constraint I = 0 is relaxed. In other

words, when is it optimal for the regulator to share the risk of supplying ES inputs with

the ES input suppliers?

Proposition 3.4.1 Given the ES supply function X =
∑
i

x∗i , where x
∗
i is the solution

to (3.2), it is optimal for the regulator to offer a positive indemnity rate (I > 0) if and

only if agents are risk averse.

Proof: The goal is the show that the planner can achieve a higher level of indirect

social value when I = 0 is relaxed. First, let I be a parameter in the planner’s problem.

The planner then solves the Lagrangian (3.5) where ψ is the multiplier (distinct from the
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multiplier λ in (3.4)).

F = max
p

B(X) + ψ(G−X(p+ µϵI)) (3.5)

The goal can be equivalently stated as wanting to show that
∂F
∂I

> 0. We can use the

Envelope Theorem to characterize this partial.

∂F
∂I

= B′(X)
∂X

∂I
− ψ

(
∂X

∂I
(p+ µϵI) +Xµϵ

)
=
∂X/∂I

∂X/∂p

[
B′(X)

∂X

∂p
− ψ

∂X

∂p
(p+ µϵI)

]
− ψXµϵ

(3.6)

The first order condition in (3.5) is given by B′(X)
∂X

∂p
− ψ

∂X

∂p
(p + µϵI) = ψX so then

we can write

∂F
∂I

=

(
∂X/∂I

∂X/∂p
− µϵ

)
ψX (3.7)

Since every term is positive, then we have that
∂F
∂I

> 0 if and only if

(
∂X/∂I

∂X/∂p
− µϵ

)
> 0.

Next, we show that this always holds when agents are risk averse.

We first show that the ES supply response to indemnity (∂x
∂I
) can be expressed as in

(3.8 by taking derivative of the FOC wrt to I.10

∂x

∂I
=

µu′ϵ + xµu′′Γϵ

µu′gxx − µu′′Γ2

(3.8)

Where µz ≡ E[z] and Γ =
∂c

∂x
= p− gx(x)− ϵ(1− I). Then using the fact that

E[u′(c)ϵ(1− AΓx)] = Cov(u′(c)(1− AΓx), ϵ) + E[u′(c)(1− AΓx)]µϵ

10Note that small x denotes individual ES input while big X denotes aggregate ES input.
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and using (3.9) gives (3.10).

∂x

∂p
=

µu′ + xµu′′Γ

µu′gxx − µu′′Γ2

(3.9)

∂x/∂I

∂x/∂p
=
E[u′ϵ(1− AΓx)]

E[u′(1− AΓx)]

=
σ̃

E[u′(c)(1−Rδ)]
+ µϵ

(3.10)

Where σ̃ = Cov
(
u′(c)(1−AΓx), ϵ

)
and δ =

Γx

c
=

xp− gxx− xϵ(1− I)

w + xp− g(x)− xϵ(1− I)
and A and

R are the coefficient of absolute and relative risk aversion, respectively. We can rewrite

σ̃ as

σ̃ = Cov(u′(c)(1−Rδ), ϵ)

Note that E[u′(c)(1−AΓx)] = E[u′(c)(1−Rδ)] is then numerator in (3.9) which is always

positive according to Lemma 3.3.1. Then (3.10) implies that (3.7) is positive if and only

if σ̃ > 0. Since u′(c) is increasing in ϵ and δ is decreasing in ϵ then σ̃ > 0. However,

when agents are risk neutral (R = 0), then (3.7) equals zero, i.e.,
(

∂x
∂I

= ∂x
∂p
µϵ

)
. Then

according to (3.7), risk neutrality implies that there is never any change in regulator’s

objective function for any change in I.

Under both optimal and pure payment contracts, the regulator’s budget will always

be exhausted. If the regulator wanted to increase the indemnity rate I from zero, then

their expenditure will increase by Xµϵ (assuming no supply responses) but then the pay

rate p must be reduced which lowers their expenditure by X. However, increasing I

and decreasing p will lead to countering effects on the supply of ES inputs X which has

further impacts on the budget. Thus, (3.7) from the proof of Proposition 3.4.1 simply

says that in order for this budget reshuffling to be optimal, the increase in X in response

74



Indemnity Payments in PES Programs: Practical Implications Chapter 3

to an increase in I must outweigh the decreaseX in response to the required decrease in p.

This point can be further illustrated by looking at (3.11) where (3.11a) shows that

increasing I increases regulator’s expected expenditure (i) through an increase in supply

X and (ii) through increasing the amount paid on existing supply Xµϵ in expectation.

Then to re-balance the budget, a decrease in p is needed leading to lower spending on

existing supply X and by lowering the total ES offered. Suppose that the condition from

Proposition 3.4.1 holds with equality (∂X/∂I = ∂X/∂p ·µϵ). Then a one unit increase in

I requires p to decrease by µϵ for budget balance. This woulds result in zero change in

ES input. If the condition from Proposition 3.4.1 holds with strict inequality, then the

pay rate p would have to decrease by more than µϵ to balance the budget but will still

result in a higher X. For instance, suppose ∂X/∂p ≈ 0 so that the required decrease

in p equals µ + Z since it would have to compensate for increasing I which increases

expenditure through two channels. However, the X would clearly be higher and so this

reshuffling is optimal for the regulator.

∂G

∂I
dI =

[
∂X

∂I
(p+ Iµϵ) +Xµϵ

]
dI (3.11a)

∂G

∂p
dp =

[
∂X

∂p
(p+ Iµϵ) +X

]
dp (3.11b)

Proposition 3.4.1 is quite important as it shows that the regulator can always extract

more social value given a fixed budget G by offering indemnity payments when agents

are risk averse. This may leave the reader wondering, when does the condition from

Proposition 3.4.1 hold?

75



Indemnity Payments in PES Programs: Practical Implications Chapter 3

3.5 Optimal Indemnity Under Risk Aversion

After establishing the fact that it is always optimal for the regulator to offer positive

indemnity when agents are risk averse, one important question still remains. What is the

optimal level of indemnity that the regulator should offer? As it turns out, the intuition

in the above section suggests that it is optimal to offer full indemnity (I = 1) when the

curvature around point A is sufficiently steeper than around B.

Proposition 3.5.1 When agent’s are risk averse then it is optimal for the regulator to

offer full indemnity, i.e., I∗ = 1.

Proof: The proof follows directly from looking at the proof for Proposition 3.4.1

and noting the fact that
σ̃

E[u′(c)(1−Rδ)]
> 0 holds at all levels of I < 1 and that at

I∗ = 1, the FOC from (3.7) fails to hold with equality meaning that the solution is at a

corner one of which is ruled out by Proposition 3.4.1, hence I∗ = 1.

One way to visualize the result from Proposition 3.5.1 is to look at the iso-G (iso

budget) and iso-X (iso supply) curves in Figure C.1. The slope of the iso-G curve can

be found by total differentiating the budget equation in (3.4) and total differentiating

X(I, p). In Appendix C.2 I show that the slope of the iso-X curve is always steeper than

that of the iso-G curve when the condition from Proposition 3.4.1 holds implying that

the solution always occurs at I = 1.

3.5.1 Graphical Argument

The graphical intuition for Proposition 3.4.1 can be illustrated with a simple example.

Consider the case where the choice variable x is binary either 0 or 1, the cost shock is

also binary either 0 or e, and agents differ only in their cost of provisioning, g. Then

the pivotal agent’s decision problem can be summarized by graphing their indifference
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curve over state-contingent consumption space (cb, cg) as in Figure C.2 where cb and cg

are consumption levels under bad and good states.

When agents are risk neutral (R = 0), their indifference curve is a straight line

with slope
π

1− π
where π = P(bad state) = P(ϵ = e). Point A0 would be the pivotal

agent’s consumption bundle under the PES with no indemnity where a0 = ω+p0−g and

b0 = ω+p0−g−e. By definition, the pivotal agent is indifferent between A0 and C which

implies that p0 = µϵ+g = πe+g. Now imagine the regulator decides to switch from I = 0

to I = 1 while holding p = p0. This then pushes the pivotal agent’s consumption bundle

under PES participation to the 45 degree line (going from A0 to B0) which is a horizontal

shift equal to e. If the regulator stays at this policy point (1, p0), then the increase in ES

supply is proportional to the distance CB0. But budget balancing requires a reduction

in p which moves the consumption bundle towards the origin along the path of the 45◦

line.11 Proposition 3.4.1 says that, at B0, if the decrease in p0 required for budget balanc-

ing is higher than µϵ, i.e., need to go from B0 to P1, then it is not optimal to provide any

indemnity. This is because the ES supply at P1 is strictly less than that at A0. Whereas if

the budget balancing decrease in p0 is less than µϵ, i.e., need only go form B0 to P0, then

it is optimal for the regulator to offer positive indemnity since the regulator will always

achieve budget balance and being at P0 offers higher ES supply than A0. It turns out

though that the going from B0 to C will exactly balance the budget and thus, there is no

value added or lost from offering full indemnity which is consistent with Proposition 3.4.1.

However, when agents are risk averse (R > 0), then the pay rate under the pure

payment contract p1 has to be greater than that under the optimal contract p0 = µϵ + g

11Any change in p shifts agents’ bundles towards the origin on a path parallel to the 45◦ line. Changes
in I shift bundles horizontally.
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in order for the same agent to be indifferent between the consumption bundles from not

participating (C) and from participating (A1). Now if the regulator decides to go from

no indemnity to full indemnity (from A1 to B1), then the ES supply increase is much

higher relative to the risk neutral scenario as B1 is much further up on the 45◦ line than

B0. However, the ES supply response to changes in p is always the same no matter the

risk averse behavior. Consequently, the budget balancing required reduction in p1 is the

same as the required reduction in p0 from the risk neutral case.

3.6 Value Added from Indemnity

One may still be wondering how big is the value added from having optimal indemnity

alongside the standard linear pricing PES contracts? In both contracts, the regulator’s

budget constraint will hold with equality in expectation so that the value added V is

given by (3.12) where X1 = X(1, p(1)) represents the aggregate ES input supply under

the optimal contract andX0 = X(0, p(0)) represents the aggregate ES input supply under

the pure payment contract.

V = B(X1)−B(X0) (3.12)

Equation (3.12) implies that the gain from optimal indemnity PES relative to the

pure payment PES is a function of two determinants. First, if the curvature of the ex-

pected social benefit function around the neighborhood of X0 and X1 is high, then the

value added would be higher. Second, if the difference X1−X0 is high then so too would

be the value added. What makes the difference between these two ES input supplied

great has to do with risk tolerance. This boils down to how much can offering indemnity

payments allow the regulator to relax p(I), the conditionally optimal pay rate? To see
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this, note that equation (3.10) is an increasing function of A and R. Not only that,

increasing the risk aversion increases the ratio in (3.10) everywhere over I. Hence being

able to estimate risk aversion allows researchers to estimate the proper policy and the

magnitude of the gain.

Table C.1 shows simulation results using estimates of risk aversion from Elminejad,

Havranek and Irsova (2022) and assuming CRRA utility. Using the parameters from

Table C.1 and randomly generated ES supply costs and initial wealth values (distributions

shown in Figure C.3), we numerically solve the planner’s problem in (3.5) once for I = 0

and another for I = 1 which then allows the calculation of value added. This is then

repeated for each risk aversion parameter in Table C.1. The results show that the value

added from the optimal contract relative to the pure payment contract increase with risk

aversion and can range from 5.56% to 42.5% increase in ES supply.

3.6.1 Estimating R

Table C.1 is only useful for practitioners if there is a way to estimate risk aversion

for any given PES setting with which to compare with the value added figures in the

table. In Appendix C.3, I show that
AΓ

µΓ

< A < R where AΓ =
−µu′′Γ

µu′
is some metric

for absolute risk aversion and A =
−µu′′

µu′
is the absolute risk aversion coefficient, loosely

speaking. Therefore, estimating AΓ is equivalent to estimating the lower bound for risk

aversion R and thus a lower bound on the value added from implementing the optimal.

To estimate AΓ, we follow a similar procedure outlined in Chetty (2006) to derive a

formula for AΓ which I expressed as a function of the price elasticity of Hicksian ES input

supply and the income elasticity of ES input supply. The intuition behind this approach
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is outlined in Chetty (2006) which utilized various labor supply elasticities to compute

upperbounds for the coefficient of relative risk aversion with the idea being that labor

supply responses to wage changes implies the curvature of the utility function which then

gives rise the risk aversion parameter.

First, agents’ choices on x (assuming an interior optimum) must satisfy the first

order condition (3.2). Taking derivatives of their FOC and rearranging algebraically

gives (3.13).

∂x

∂p
=

µu′ + xµu′′Γ

µu′gxx − µu′′Γ2

(3.13a)

∂x

∂w
=

(1− gω)µu′′Γ − µu′gxω
µu′gxx − µu′′Γ2

(3.13b)

Using Slutsky’s decomposition (shown in Appendix C.4) for compensated ES input

supply (h)

∂h

∂p
=
∂x

∂p
− ∂x

∂ω
x (3.14)

then the ratio of the substitution effect and income effect is given by (3.15)

∂h/∂p

∂x/∂ω
=

(
∂x/∂p

∂x/∂ω
− x

)
(3.15)

Then combining (3.13) with (3.15) and some algebraic manipulation gives our equation

for the desired risk aversion metric (3.16).

AΓ =
1 + gxω

(
x+

εhp
εxω

ω
p

)
(gω − 1)

(
εhp
εxω

ω
p

)
+ x(gω − 2)

(3.16)

Where εhp and εxω are the price elasticity of Hicksion supply and income elasticity of
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supply, respectively. Thus to estimate R, one can simply estimate (3.16) and treat the

estimate of
AΓ

µΓ

as the coefficient of relative risk aversion R. One downside is that estimate

(3.16) is quite informationally demanding as it requires the researcher to estimate not

only the substitution and income elasticities, but also various aspects of the ES cost

function, gω and gxω. However, if one is able to establish that the cost function does not

change with income gω ≈ 0, then by Young’s Theorem, the marginal cost will not change

either gxω ≈ 0 which will simplify (3.16) to (3.17). Note that gω = 0 implies that εxω < 0

which makes (3.17) much easier to estimate.

AΓ =

[
− εhp
εxω

ω

p
− 2x

]−1

(3.17)

3.7 Additionality and Poverty Alleviation

In practice, private agents may produce strictly positive levels of the ES input in the

absence of a PES program and therefore there is considerable interest in the literature

and policy arena on the idea of additionality. That is, researchers and policy makers

want to make sure that the ES inputs being contracted for are additional and hence

would not have been procured in the absence of a PES program. It is often very costly

to monitor additionality for all program applicants which could render simple linear

contracts, like the one proposed above, inefficient. There are many papers that try

to create a mechanism to generate a separating equilibrium that is efficient (Mason and

Plantinga, 2013). However, this is only necessary when the regulator cannot observe types

which is something of the opposite extreme. There are characteristics of households that

are cheaply observable such as income or wealth. Then a natural question is when does

additionality decrease (or increase) with wealth? Policy makers are often interested in

this as this directly answers the question of when is it optimal to have the dual objective
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of increasing ecosystem services and providing poverty alleviation. Additionality can be

defined as

αi = x∗i − xbaui (3.18)

It is clear from (3.18) that additionality decreases with wealth if and only if (3.19)

holds.

∂x∗i
∂ωi

≤ ∂xbaui

∂ωi

(3.19)

Without functional form assumptions, however, evaluating (3.19) is quite difficult. In-

stead, Proposition 3.7.1 relies on the intuition that in order for additionality to decrease

in wealth, the slope of the xbau curve, when plotted against ω, cannot be too flat (shown

in Figures C.4 and C.5). A sufficient condition for (3.19) to hold is for the x∗ curve to be

decreasing in ω while the xbau curve is increasing. However, neither curve is necessarily

required to be increasing or decreasing. What is necessary is for the difference between

the two to be decreasing in ω, hence the restriction the slope of the xbau curve.

Proposition 3.7.1 Take PES contract (I, p) as given. Additionality decreases in wealth

(poorer households have higher additionality) if the change in the business-as-usual level

of ES input in response to a change in wealth is above some lower bound. Specifically,

∂α

∂ω
< 0 if and only if

∂xbau

∂ω
>
µAΓ(hω − 1)− hαω
µAΓhα + µAΓ2

where A = −u
′′(c)

u′(c)
is the coefficient of absolute risk aversion, Γ = p − hα − ϵ(1 − I)

is the random marginal return from chosen additionality α, h(α, ω) is the deterministic

cost function in terms of additionality α so that hα, hω, and hαω are all the partials with

respect to the subscripts. The terms µ simply denote the expectation of the subscripted
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variables.

Proof: For the comparative statics on additionality α, it is easier to start with a

reframing of the model where the agent’s choice variable is α = x−xb instead of x where

xb = xbau for simplicity. Thus consumption is given by

c = w + p(α + xb)− h(α, ω)− (α + xb)ϵ(1− I)

where h(0, ω) = g(xb, ω) and h(α∗, ω) = g(x∗, ω). Then the optimal additionality α∗ is

pinned by

E [u′(c)Γ] = 0

where Γ ≡ ∂c

∂α
. Then using the Implicit function theorem, we can differentiate this FOC

WRT ω to get

∂α

∂ω
=
µAΓ(1− hω + ∂xb

∂ω
hα) + µAΓ2

∂xb

∂ω
+ hαω

−µAΓ2 − hαα

and since the denominator is negative, then ∂α
∂ω

< 0 if and only if the numerator is

positive.

Proposition 3.7.1 states that in order for additionality to decrease in wealth, i.e.,

poorer agents having higher additionality, the business-as-usual ES input supply must

increase in wealth beyond some threshold. In other words, the ES input supplied for

poorer agents, in the absence of PES incentives, must be lower than those of wealth-

ier agents and this difference must exceed a threshold. The reason for why a bound is

neeed on the slope of xbau only is because ∂x∗/∂ω has the exact same functional form

as ∂xbau/∂ω but the two are evaluated at different values for both x and (I, p). One

important take away is that it is not sufficient for the marginal cost of ES input supply

to be simply decreasing in wealth in order for additionality to decrease in wealth. That is

because the if the marginal cost decreases in wealth, then both the business-as-usual and
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the PES input supplied will decrease in wealth too leaving the additionality ambiguous.

Lastly, the bound on ∂xbau/∂ω in Proposition 3.7.1 can be estimated if one could

estimate aspects of the cost function and relevant elasticities from (3.16). However, one

would still need to be able to gather sample data on xbau which is often the difficult part.

At the very least, the approach outlined in this paper can be used to motivate such an

effort to gather this data. Doing so can go a long way to answer the question of when

it is optimal for the regulator to pursue the dual objectives of promoting environmental

quality and poverty alleviation.

3.8 Discussion

This paper shows that a regulator should couple indemnity payments with a stan-

dard linear pricing PES whenever the ES supply function is sufficiently more responsive

to indemnity than it is to pay rate. Further, this condition (that ES supply function is

sufficiently more sensitive to I relative to p) always holds when agents are risk averse

but not when agents are risk neutral in which case, there are no gains or losses to the

regulator from offering indemnity. This result is due to the fact that the risk neutral

regulator can supply indemnity at a cost equal to µϵ while risk averse agents are willing

to pay more than that to get full indemnity. Lastly, the optimal level of indemnity with

risk averse agents is full indemnity when agents exhibit risk aversion and is consistent

with the insurance literature. Additionally, the social gain from switching to the optimal

contract is increasing in the risk aversion and can range anywhere from 5% to 40% gain in

ES supply. Finally, the theoretical results indicate that targeting low wealth households

with a PES contract as a means achieving both poverty alleviation and environmental

improvement can be optimal if the slope of the business-as-usual ES supply curve (plot-
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ted against wealth) is sufficiently steep.

For practitioners, I show how one could estimate a lowerbound on the value added by

estimating a lowerbound on the risk aversion parameter R and certain moments of the

ES input cost function, gxω and gω. The procedure is similar to Chetty (2006) and one

important advantage of the approach outlined in this paper is that one can estimate the

indemnity response of ES supply without needing to first have indemnity implemented in

practice. Although it may still be demanding for researchers to estimate this lowerbound,

the informational requirement is reduced greatly if it is possible to establish that the ES

cost function is independent of wealth so that one need only estimate (3.17) rather than

(3.16).

It is important to note that these results do not depend on the specific functional forms

for utility, cost functions, nor the stochastic structure of the cost shock. Furthermore,

these insights can easily be applied to output-based PES programs where indemnity

can be linked to some environmental index similar to index insurance. However, we leave

considerations of moral hazard for future studies but note that moral hazard can manifest

itself in numerous ways. One of which is a “scale” response, i.e., the loss protection

increases the risky activity which means increasing ES supply. This response works in

favor of the regulator but it hurts a third party private insurer. On the other hand,

indemnity may discourage activities that reduce the probability and/or the magnitude

of a loss but do not affect ES supply. In the predation context, indemnity against

depredation may decrease incentives to employ guardian dogs which negatively impact

both the regulator and the private insurer’s objectives.
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Chapter 1 Appendix

A.1 Synthetic Control Method

In this section, I attempt to show that overall the EFA did reduce average total

phosphorus loads attributable to the EAA. First, I plot a simple time series of the water

quality readings from stations within the EAA before and after the EFA implementation

shown in Figure A.1. This is suggestive evidence indicating that the policy did reduce

phosphorus loads based on the apparent downward trend but it fails to take into account

other different factors. Namely, that the state of Florida had implemented a host of other

water quality improvement projects that directly impact the water received by our EAA

region and elsewhere. In essence, the simple time series plot fails to capture the impacts

of water quality improvement projects that occurred upstream of our EAA region but

operated independently of the EFA. Such projects were done under the Comprehensive

Everglades Restoration Plan that the state adopted which is a culmination of various

court decrees, legislation, and directives from the EPA. A naive time series analysis would

incorrectly attribute decreases in phosphorus concentrations downstream of the EAA

soley to the EFA policy. In reality, only a fraction of that decrease can be attributable to
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the EFA while the remainder is a result of efforts of upstream constituents. To account

for this, I conduct a synthetic control analysis using water quality monitoring stations

from other regions in Florida (excluding parts down stream of our treated EAA region)

as the potential control (donor) pool.1

The unit of analysis is at the water quality monitoring station level with a total of 21

potential donors and 2 treatment units (map of locations of donors and hydrological flow

is shown in Figures A.4 and A.5 found in ??). A station is assigned to be in the treated

group if it resides immediately downstream of the EAA area and is used to monitor water

quality coming out of the EAA.2 Units in the treated group are only assigned the treated

1I exclude stations that lie downstream of the EAA region from being in the donor pool as well as
stations that appear to lie in mostly urban areas.

2There are two other stations used to monitor water coming out of the EAA but they lie on the
northern border adjacent with Lake Okeechobee. These stations are mostly used to measure quality of
water that gets back pumped back into the lake during the wet season and can be a very noisy measure
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status for years 1994 and after. I follow the approach from Cavallo et al. (2013) and

Kreif et al. (2015) to run the synthetic control method with multiple treated units. The

outcome variable is the annual geometric average of measured total phosphorus (ppb)

and only one covariate is used which is the annual geometric average of measured nitrate

(ppb).

The optimal weights (wi) are chosen so that equation (A.1) is minimized over the pre-

treatment periods between 1979 and 1993. Here I am assuming that only i = 1 belongs

in the treatment group with i = 2, . . . , J + 1 belonging to the donor group. However in

this setting, there are two treated units and so (A.1) is done separately for both treated

units.

1

15

1993∑
t=1979

(X1t − w2X2t − · · ·wJ+1XJ+1,t)
2 (A.1)

Xit denotes the annual geometric average phosphorus levels for station i and no other

covariates are used.3 Once the optimal weights are computed, average treatment effect,

αt, is calculated via (A.2) and the results of which are implicitly shown in Figure A.1.

α̂t =
1

2

2∑
i=1

(
Xit −

J+1∑
j=2

w∗
ijXjt

)
(A.2)

of overall trends in the EAA since only a few farms contribute to the readings of those stations.
3Geometric average is used because measured phosphorus is a flow measure and in such instances,

geometric averages provides a more accurate summary of the occurrences over time.
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Figure A.1: Synthetic Control Result
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Inference is done by using a permutation-placebo test where a control unit is ran-

domly sampled from the donor pool with replacement. The randomly chosen control

unit is then assigned as “treated”, synthetic control weights are calculated and the corre-

sponding estimated treatment effect is then calculated. This is done about 10,000 times

until a distribution of treatment effects is available so that p-values can be calculated

and the results are shown in Figure A.2. For some randomly chosen control units, the

pre-treatment period matches may be quite poor resulting in large estimated treatment

effects which ultimately leads to conservative p-values. Following Abadie, Diamond and

Hainmueller (2010), control units with pre-treatment root mean squared prediction er-

rors (RMSPE) greater than 10 times the RMSPE of the highest RMSPE from the actual

treatment group, are excluded from this process. The attractive feature of calculating

p-values in this way is that they are valid even if the treatment status is not randomly
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assigned.

Figure A.2: P-Values for Treatment Effects
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There are a number of robustness I have implemented and the results are shown in

Appendix A. First, I try to incorporate anticipatory effects by treating the “effective”

policy implementation date as if it were in 1992. The actual policy implementation

date was 1994 but the policy is a culmination of legal proceedings that occurred with

public attention starting in 1992. The results of changing the intervention date are

shown in Figures A.6 and A.7. I also try to follow the advice from Ferman and Pinto

(2021) which suggests demeaning the data using pre-treatment means before running

the weight computation in situations with poor pre-treatment fit (shown in Figures A.8

through A.11 in ??). The results seem to be largely unaffected in these checks except

for the demeaned version with captured anticipatory effects. Another explaination for

the poor pre-treatment fit is that the outcome variable itself is a very noisy measure
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and applying some noise filtering can help improve pre-treatment matching and improve

other qualities of the estimator but this is saved for future work.

A.2 General Figures and Tables

Table A.1: EAA Agricultural Privilege Tax Schedule

Calendar

Year
Tax Per Acre

Per Acre

Credit Rate

% Reduction Required

for Individual Credits

Max Exercisable

Credits (per acre)

1994-1997 $24.89 $0.33 30 0.00

1998-2001 $27.00 $0.54 35 3.91

2002-2005 $31.00 $0.61 40 10.02

2006-2013 $35.00 $0.65 45 15.55

2014-2026 $25.00

Tax Credits No Longer Available
2027-2029 $20.00

2030-2035 $15.00

2036-after $10.00

Source: Florida CS/HB 7065 and Fl. St. 373.4592
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Figure A.3: EAA Area with Canals/Drainages
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Figure A.4: Map of Donors for Synthetic Ctrl
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Figure A.5: Hydrological flow in Southern Florida

Figure A.6: Synthetic Control Result: Robustness to Anticipatory Effect

50
10

0
15

0
20

0
PH

O
SP

H
AT

E

-10 0 10 20 30
Lead

Treated Synthetic Control

94



Chapter 1 Appendix Chapter A

Figure A.7: P-Values for Treatment Effects: Robustness to Anticipatory Effect
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Figure A.8: Synthetic Control Result: Robustness to Demeaning
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Figure A.9: P-Values for Treatment Effects: Robustness to Demeaning
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Figure A.10: Synthetic Control Result: Robustness to Anticipatory Effect & Demeaning
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Figure A.11: P-Values for Treatment Effects: Robustness to Anticipatory Effect &
Demeaning
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Figure A.12: Heatmap Distribution of Dit’s
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Figure A.13: Annual Average Phosphorus Loads by Cohort
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Figure A.14: Annual Average Land Size by Cohort
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Figure A.15: Annual Average Acres Dedicated for Vegetable Production by Cohort
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Figure A.16: Annual Average Distance from Lake Okeechobee by Cohort
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Figure A.17: Distribution of Baseline Year by Cohort
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Table A.3: Two-step Difference GMM Results: Outcome is Estimated TP Reduction (%)

exogenous controls predetermined controls Veg Acres Predetermined

rolling incentives2 1.670 1.922 1.675

(0.285) (0.267) (0.279)

interact2 -0.0000343 -0.0000334 -0.0000345

(0.141) (0.121) (0.128)

Total Acres Dedicated to Vege 0.0226 0.0529 0.0142

(0.231) (0.423) (0.468)

Basin Acreage -0.00107 -0.00640 -0.00106

(0.692) (0.394) (0.685)

BMP Cycle (categorical) -1.109 -4.345 -2.277

(0.973) (0.832) (0.941)

N 2503 2503 2503

F-stat

p-val Fstat

Sargan Test Pval 0.000186 0.996 0.00895

Hansen Test Pval 0.120 1 0.543

AR1 pval 0.264 0.264 0.264

AR2 pval 0.354 0.354 0.354

Instrument count 169 430 193

Included farms 170 170 170

p-values in parentheses

Standard errors are robust to Hete and Autocor; Windmeijer’s correction applied

∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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Figure A.18: Histogram of Permuted β̂’s

Figure A.19: Estimated Marginal Profit Curve for the Avg. Farm
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Figure A.20: Compliant Nash Subsidy as a Function of Ambient P Target
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Figure A.21: Estimated and Counterfactual TP Loads
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Table A.4: Compliance Cost For Various MAC Slopes under Ambient Subsidy: Set
to Achieve 37% Reduction

λ γbau s Compliance Cost per acre

0.1 854.70 702.44 270.77

0.2 427.35 351.22 135.39

0.6 142.45 117.07 45.13

1.0 85.47 70.24 27.08

1.4 61.05 50.17 19.34

1.8 47.48 39.02 15.04

5.0 17.09 14.05 5.42

10.0 8.55 7.02 2.71

A.3 G to D

Dictionary

� Sit is the starting credit balance for i at the start of t

� M is the maximum exercisable credits each period

� Q∗
it is the chosen amount of credits exercised each period and is assumed to always

be the maximum possible amount.

� Git is the partial derivative of the continuation value wrt the pollution choice vari-

able, Yit

� δ is the discount factor
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Justifying the Proxy Dit

The point here is to show that

∣∣∣∣ ∂Y ∗
it

∂Git

∣∣∣∣ > ∣∣∣∣ ∂Y ∗
it

∂Dit

∣∣∣∣ and that the two partials have the

same sign. First, via chain rule, we have (A.3).

∂Y ∗
it

∂Dit

=

(
∂Y ∗

it

∂Git

)(
∂Git

∂Sit

)(
∂Sit

∂Dit

)
(A.3)

Define Dit = (T − t + 1)M − Sit and rearrange to get that ∂Sit

∂Dit
= −1. Now we need to

find ∂Git

∂Sit
. First, we must recognize that Git can be alternatively expressed as in (A.4)

instead of (A.11).

Git = − d

dYit
δE
[
Vt+1(Sit+1)

]
(A.4)

Then we can apply Young’s Theorem and standard regularity conditions to get (A.5).

∂Git

∂Sit

= − d

dYit
δE

[
∂Vt+1(Sit+1)

∂Sit

]
(A.5)

Now we can find ∂Vt(Sit)
∂Sit−1

and push forward one period. Here, we can invoke the

Envelop theorem so long as the relevant partial of the objective function exists (which it

does). The theorem then gives the following since ∂Sit

∂Sit−1
= 1.

∂Vt(Sit)

∂Sit−1

=
∂Q∗

it

∂Sit

= 1{Sit < M}. (A.6)

Since Q∗
it = min{M,Sit}. Thus (A.5) becomes (A.7)

∂Git

∂Sit

= − d

dYit
δP(Sit+1 < M) (A.7)

We can plug in the equation for the law of motion for credits and rearrange to isolate

the shock variable (αt) so that we have (A.8).
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∂Git

∂Sit

= − d

dYit
δP(αt > Γt) =

∂P(αt ≤ Γt)

∂Γt

(A.8)

Since Γt ≡ Sit −Q∗
it + Y −M −

∑
i

Yit, then
∂Git

∂Sit
∈ [−1, 0] because the partial of a CDF

returns a PDF that is bounded between 0 and 1. Therefore, from (A.3), we finally get

that
∂Y ∗

it

∂Git
has the same sign as

∂Y ∗
it

∂Dit
and that the former has a higher magnitude than the

latter. Q.E.D.

A.4 Solving Farmer’s Dynamic Decision Problem

In this section, I model the farmer’s decision problem as a dynamic optimization

problem with no strategic interactions. I assume that the mandatory BMPs do not

change over time so that the choice of abatement technology is baked into the firm type

parameter, θi, which also represents the business as usual level of discharge after BMPs

are adopted (aka, θbmp
i which will henceforth be referred to as BMP-BAU or θi).

4 The T

term denotes the lump sum tax (values of this are shown in column 2 of Table A.1), Q∗
it

is the optimal level of tax credits used, Sit is the stock of tax credits per acre entering

period t, δ is the discount factor, and M indicates the maximum level of credits that can

be exercised each period (shown in column 5 of Table A.1). Farms’ decision over how

much credits to exercise each period is trivial because they will always choose to exercise

as much as they can in each period (under discounting). The farm’s discharge decision

4In reality, farms are allowed to change BMPs once every 5-year cycle and each farm can be on
different cycles. I explicitly control for this in the empirical section.
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after optimally deciding Qit is given by the Bellman equation (A.9).5

Vt(Sit) = max
Yit

π(Yit, θ
bmp
i )−

(
T −Q∗

it

)
+ δEVt+1(Si,t+1)

s.t. Si,t+1 = Sit −Q∗
it +

(
Y

P − Yt

)
Yt = αt +

∑
i

Yit

Y
P ≥ αt +

∑
i

θbmp
i

αt
iid∼ F (0, σ2

α)

Q∗
it = min{M,Sit}

(A.9)

The timing of events in this dynamic problem is as follows: farms first make decisions

about discharge (Yit), then uncertainty parameter αt is resolved and ambient quality Yt

is observed.6 Then credits owed can be calculated and issued out for use in the next

period. I solve (A.9) backwards under finite time with T being the terminal date and

normalizing the terminal value to zero. The FOC is given by (A.10).

π′(Y ∗
it , θ

bmp
i ) = Git (A.10)

The Git term captures the expected present value of exercising credits in the future

which are earned today by marginally reducing discharge Yit and is defined by (A.11).

Git = −
T∑

k=t+1

δk−t
E

[
∂Q∗

ik

∂Yit

]
(A.11)

Note that since Yit denotes discharges, the partials in (A.11) are weakly negative. The Git

5The model presented in (A.9) intentionally ignores the rates presented in column 3 of Table A.1 for
notational simplicity.

6The uncertainty is in regards to the final observed ambient quality and its variability comes from
weather uncertainty. I could have similarly assumed polluters have perfect foresight.
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term is analogous to the ambient subsidy rate s for the static model since it represents the

pecuniary incentive to abate an additional unit of Yit as evidenced by (1.2) and (A.10).

Further, because (i) Git cannot be observed by the researcher, (ii) it changes over time

and (iii) it changes with Sit (shown later) I instead choose to focus on a proxy for Git in

the empirical portion later on. The policy function can be written in general as

Y ∗
it = g−1(Git, θ

bmp
i ) (A.12)

where g(·) = π′(·). Solve this in finite time via backward induction and normalizing

terminal value so that

VT+1(Si,T+1) =
∞∑
k=0

δkπ(θbmp
i , θbmp

i ) = 0 (A.13)

means that

VT (SiT ) = max
YiT

π(YiT , θ
bmp
i )− (T −Q∗

iT )

FOC: π′(Y ∗
iT ) = 0

=⇒ Y ∗
iT = θbmp

i

=⇒ VT (ST ) = −(T −Q∗
iT )

(A.14)

Then next iteration we have

VT−1(Si,T−1) = max
Yi,T−1

π(Yi,T−1, θ
bmp
i )− (T −Q∗

i,T−1)− δE(T −Q∗
iT )

s.t. SiT = Si,T−1 −Q∗
i,T−1 + (Y − YT−1)

FOC: π′(Y ∗
i,T−1, θ

bmp
i ) = −δE

[
∂Q∗

iT

∂YiT−1

]
=⇒ VT−1(Si,T−1) = π(Y ∗

i,T−1, θ
bmp
i )− (T −Q∗

i,T−1)− δE(T −Q∗
iT )

(A.15)
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Then the next iteration

VT−2(Si,T−2) = max
Yi,T−2

π(Yi,T−2, θ
bmp
i )− (T −Q∗

i,T−2) + δE
[
π(Y ∗

i,T−1, θ
bmp
i )− (T −Q∗

i,T−1)− δ(T −Q∗
iT )
]

s.t. Si,T−1 = Si,T−2 −Q∗
i,T−2 + (Y − YT−2)

Si,T = Si,T−1 −Q∗
i,T−1 + (Y − YT−1)

FOC: π′(Y ∗
i,T−2, θ

bmp
i ) = −δE

[
∂Q∗

i,T−1

∂Yi,T−2

]
− δ2E

[
∂Q∗

iT

∂YiT−2

]
(A.16)

A pattern starts to emerge where FOC at any period t is

π′(Y ∗
it , θ

bmp
i ) = −

T∑
k=t+1

δk−t
E

[
∂Q∗

ik

∂Yit

]
(A.17)

Thus we have (A.11). Q.E.D.
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B.1 General Figures and Tables

Figure B.1: Best Response Function for Pollution
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Figure B.2: Two-Player Best Response Functions (perfectly set t)
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Figure B.3: Two-Player Best Response Functions (too strict of t)
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Figure B.4: 2 Player Example Model
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Figure B.5: Free-Riding Potential, m = 1 and Heterogeneity Case
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Figure B.6: Free-Riding Potential, m > 1 and Homogeneity Case
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Chapter 3 Appendix

C.1 General Figures

Figure C.1: Iso-G and Iso-X Curves
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Figure C.2: Simple Example: Pivotal Agent’s Indiffernce Curves
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Table C.1: Risk Aversion and Value Added

Estimated risk aversion Value added (%)

Overall best practice 3.73 18.75

Economics literature 1.24 5.56

Finance literature 7.16 42.5

US 5.81 32.56

EU 1.57 5.56

Stockholder 1.49 5.56

GMM 3.79 18.75

Quarterly data 6.33 35.71

Estimated risk aversion values are taken from Table 6 of Elminejad, Havranek and

Irsova (2022).

Table C.2: Simulation Parameters

Parameter Value

Number of agents 100

Probability of shock 0.10

Cost shock (e) 25.35

Budget 1000
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Figure C.3: Randomly Generated Distribution of g and ω
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Figure C.4: Additionality Increasing in Wealth
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Figure C.5: Additionality Decreasing in Wealth

ω

x∗

xbau

C.2 Slopes of dG and dX Curves

For tractability but without loss of generality, we assume agents are homogeneous so

that
∂X

∂I
= n

∂x

∂I
.

dG Curve:

Total differentiation of budget from (3.4) and setting equal to zero gives

0 =

(
∂x

∂I
dI +

∂x

∂p
dp

)
(p+ µϵI) + x(dp+ µϵdI)
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rearranging and solving for dp/dI gives

dp

dI
= −

∂x
∂I
(p+ µϵI) + xµϵ

∂x
∂p
(p+ µϵI) + x

Then rearranging (3.10) and plugging in gives

dp

dI
= −

[
µϵ +

σ̃
E[u′(c)(1−Rδ)]

∂x
∂p
(p+ µϵI)

∂x
∂p
(p+ µϵI) + x

]
(C.1)

dX Curve:

Total differentiating X and setting equal to zero and rearranging gives

dp

dI
=
∂x/∂I

∂x/∂p

then plugging in (3.10) gives

dp

dI
= −

[
σ̃

E[u′(c)(1−Rδ)]
+ µϵ

]
(C.2)

Since,

∂x
∂p
(p+ µϵI)

∂x
∂p
(p+ µϵI) + x

∈ (0, 1), then the slope of the dX curve is always steeper than

the slope of the dG curve.

C.3 Lower Bound for R

Start with the definition of AΓ

AΓ = −µu′′Γ

µu′
= −Cov(u

′′,Γ) + µu′′µΓ

µu′
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Using definition of covariance gives

AΓ =
−σu′′σΓ
µu′

+ AµΓ

AΓ < AµΓ

AΓ

µΓ

< A

where A = −µu′′

µu′
. Further we have

A = R
E[c−1−R]

E[c−R]

Therefore,
AΓ

µΓ

< A < R

C.4 Application of Slutsky

Let e(I, p, u) denote the expenditure function defined in (C.3)

e = min
x

g(x, ω)− xp+ xϵ(1− I)

s.t. u(c) ≥ u

(C.3)

The solution to (C.3) is known as the compensated (Hicksian) ES input supply func-

tion h. Applying the Envelope Theorem gives Sheppard’s Lemma.

∂e

∂p
= −xc
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Making use of the duality at the optimum produces the equality

h(I, p, u) = x(I, p, e)

Hence

∂h

∂p
=
∂x

∂p
− ∂x

∂ω
x

Q.E.D.
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