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What Can Deep Neural Networks
Teach Us About Embodied Bounded
Rationality
Edward A. Lee*

Electrical Engineering and Computer Sciences, University of California, Berkeley, Berkeley, CA, United States

“Rationality” in Simon’s “bounded rationality” is the principle that humans make

decisions on the basis of step-by-step (algorithmic) reasoning using systematic rules

of logic to maximize utility. “Bounded rationality” is the observation that the ability of a

human brain to handle algorithmic complexity and large quantities of data is limited.

Bounded rationality, in other words, treats a decision maker as a machine carrying

out computations with limited resources. Under the principle of embodied cognition, a

cognitive mind is an interactivemachine. Turing-Church computations are not interactive,

and interactive machines can accomplish things that no Turing-Church computation

can accomplish. Hence, if “rationality” is computation, and “bounded rationality” is

computation with limited complexity, then “embodied bounded rationality” is both more

limited than computation and more powerful. By embracing interaction, embodied

bounded rationality can accomplish things that Turing-Church computation alone cannot.

Deep neural networks, which have led to a revolution in artificial intelligence, are both

interactive and not fundamentally algorithmic. Hence, their ability to mimic some cognitive

capabilities far better than prior algorithmic techniques based on symbol manipulation

provides empirical evidence for the principle of embodied bounded rationality.

Keywords: bounded rationality, embodied cognition, neural networks, artificial intelligence, computation

1. INTRODUCTION

From a computer science perspective, a rational process is step-by-step reasoning using clearly
explicable rules of logic. Intractability arises when the number of steps or the amount of data that
has to be stored gets too large. Simon’s bounded rationality (Simon, 1972) can be interpreted as a
recognition of the difficulty that the human mind has in carrying out such rational processes.

Computers, on the other hand, are superbly matched to this sort of rational process. When
a decision problem can be formulated as an optimization problem with a clearly defined cost
function, an algorithm can often be devised to make an optimal decision. These algorithms are
rational in the same sense; they are step-by-step procedures where each step is justified using
explicable rules of logic. Such algorithms have repeatedly proven tractable to computers even when
hopelessly intractable to humans. When they prove intractable to computers as well, we can often
refine them with heuristics and approximations that lead to close to optimal solutions, but even
these heuristics are explicable and hence rational.

Among the successes of such computer-driven decision-making are those that lie in the field of
optimal control, where a machine makes decisions in response to sensor inputs, and these decisions
are used to drive actuators that change the physical world in such a way as to feed back into the
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sensors. Self-driving cars, industrial robots, automated trains,
and the electric power grid are all examples of such systems.
The algorithmic decision-making in these systems interacts with
the physical world in such a tight feedback loop that the
behavior of the computer cannot be decoupled from the behavior
of its physical environment. A whole branch of engineering
called “cyber-physical systems” (CPS) has arisen to address
the technological problems around such embodied robots (Lee,
2008).

Today, to the surprise and, in some cases, extreme frustration
of many researchers, many optimization solutions in engineering
are being routinely outperformed by deep neural networks
(DNNs). While DNNs are often described as “algorithms,” they
do not rise to the level of “rational decision making” in the same
sense. Although DNNs are typically realized algorithmically on
computers, when a DNN produces a result, e.g., classifying an
image as a Stop sign, there is no sequence of logical steps that
you can point to that rationally leads to the classification. The
classification is more like intuition than rationality.

The AlphaGo project (Silver et al., 2016) conclusively
demonstrated this principle. The game of Go is notoriously
intractable as an optimization problem, and heuristics lead to
amateurish play. The best players do not arrive at their moves
using a sequence of logical steps, and neither does AlphaGo.
More precisely, although AlphaGo is realized as a computer
program, that program does not describe any rational decision-
making that has anything at all to with the game of Go. Instead,
it describes how to build and use a very large data set, refining
it by having computers play millions of games of Go with each
other. The ability of the program to beat the best Go Masters lies
much more in the learning process and the resulting data than
in the sequence of rational steps that make and make use of the
data. The data has been cultivated in much the same way that a
Go Master builds expertise, by practicing.

The centrality of data here is easily and frequently
misunderstood. The mantra that “data is the new oil” suggests
that data is a resource lying all around us waiting to be exploited.
Suppose, for example, that we had stored on disk drives
somewhere a record of all the Go games ever played by Go
Masters. This would certainly be valuable, but the AlphaGo team
did not have such a data set, and their result would likely have
been less spectacular had they trained their DNNs on that data
set. If they had such a data set, they could have trained a DNN
easily because each move in each board position is clearly labeled
as a “winning” or “losing” move by the final outcome of the game.
But that is not what they did. Instead, they programed their
machines to play against each other. The first few million games
were amateurish, but through the magic of backpropagation,
each game refined the data driving the decisions such that each
game got better. The data was not mined, it was created.

The process of training the AlphaGo machines is interactive,
not observational. It is first person, not third person. By analogy,
a human will never acquire the ability to outperform Go Masters
by just watching masters play Go. The human has to interact with
GoMasters to become a GoMaster. Interaction is more powerful
than observation. Not only do humans learn better by doing, so
do machines.

The principle of embodied cognition puts interaction front-
and-center. The mind is not a process in a brain observing
the world through sensors. Instead, the mind is an interaction
between processes in a brain and the world around it (Thelen,
2000). The kinds of problems that DNNs excel at are precisely
those where interaction is front-and-center. And the decisions
made by DNNs are frustratingly inexplicable, resisting any label
as rational decisions.

In this article, I will show from several perspectives that
interaction is more powerful than observation. There are things
that can be accomplished through interaction that are impossible
through observation. I will give technical and mathematical
examples that are not possible without interaction.

I will also show that interaction can occur without
algorithms. Although DNNs can be realized by computers,
these realizations are brute-force simulations of processes that
are not fundamentally algorithmic. The field of reservoir
computing (Tanaka et al., 2019), for example, offers very
different architectures that have little resemblance to Turing-
Church computations and would be hard to describe as rational
decision makers in the sense considered here. The field of
feedback control, which is fundamentally about interaction, does
not fundamentally need computers nor algorithms. Indeed, its
earliest applications in the 1920s through the 1950s predate
digital computers.

Proponents of embodied cognition often use the term
“computation” much more broadly than I am using it
here to mean any sort of information processing (Dodig-
Crnkovic and Giovagnoli, 2013; Müller and Hoffmann, 2017;
Dodig-Crnkovic, 2018). Any dynamic process that reacts to
sensed information about its environment is capable of such
“morphological computing” (Pfeifer and Bongard, 2007) or
“natural computing” (Müller and Hoffmann, 2017). Such
computation is performed by every living organism (Maturana
and Varela, 1980; Stewart, 1995) and many non-living organisms
(a thermostat, for example), and hence is much too broad to
bear much if any relationship to bounded rationality in the
sense of Simon (1972). In this article, “computation” will be
limited to the meaning given by Turing and Church, as done for
example by Piccinini (2007), and I will show in Section 4 that
this meaning is not the same as information processing. I will
argue that the Turing-Church meaning of “computation” does
not even include many of the processes we accomplish today
using digital computers. But it is this sense that matches the
bounded rationality of Simon.

In the prevailing philosophy of science, observation trumps
interaction. We are taught that the best science is objective, not
subjective. Let the data speak for itself. Design your instruments
to minimally disrupt what you are observing. But science also
teaches us that observation without interaction is impossible. My
claim is that it is also undesirable.We can accomplishmuchmore
if we embrace feedback and interaction.

The main contributions of this article are to point out
that Turing-Church computations are objective, observational,
and non-interactive processes; to clarify that an algorithm is
the specifications of what a Turing-Church computation does;
to show in several ways that first-person interaction, i.e., a
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feedback system, can accomplish things that no Turing-Church
computation can; to argue that deep neural networks are
feedback systems and are not fundamentally algorithmic; and
to argue that the efficacy of DNNs on certain cognitive tasks
provides empirical support for the thesis of embodied bounded
rationality.

2. BOUNDED RATIONALITY

In the 1970s, Herbert Simon challenged the prevailing dogma
in economics, which assumed that agents act rationally. His key
insight, for which he got the Nobel Prize in economics, was
that those agents (individuals and organizations) do not have the
capability to make the kinds of rational decisions that economists
assumed they would. In his words:

Theories that incorporate constraints on the information-

processing capacities of the actor may be called theories of

bounded rationality (Simon, 1972).

He identified three limitations: uncertainty about the
consequences that would follow from alternative decisions,
incomplete information about the set of alternatives, and
complexity preventing the necessary computations from being
carried out. He argued that “these three categories tend to
merge,” using the game of chess as an example and saying
that the first and second, like the third, are fundamentally an
inability to carry out computation with more than very limited
complexity:

What we refer to as “uncertainty” in chess or theorem proving,

therefore, is uncertainty introduced into a perfectly certain

environment by inability—computational inability—to ascertain

the structure of that environment (Simon, 1972).

Three decades later, he reaffirmed this focus on the process of
reasoning:

When rationality is associated with reasoning processes, and not

just with its products, limits on the abilities of Homo sapiens to

reason cannot be ignored (Simon, 2000).

Reasoning and rationality as computation are central to his
theory, and he argued that economists’ assumptions that agents
would maximize expected utility was unrealistic in part because
that maximization is intractable to a human mind.

3. ALGORITHMS AND COMPUTATION

What is an algorithm? Merriam-Webster gives this definition: “a
step-by-step procedure for solving a problem or accomplishing
some end.” Despite the simplicity of this definition, the term is
widely used more broadly. Domingos (2015), for example, in his
book The Master Algorithm, states that Newton’s second law is an
algorithm. Often expressed as F = ma, force equals mass times
acceleration, Newton’s second law is not an algorithm. There are
no steps, there is no procedure, and there is no end. Instead,

Newton’s second law is a relation between two continuously
varying quantities, force and acceleration, where the latter
quantity expresses a rate of change of velocity, which in turn
expresses a rate of change of position. Domingos seems to use the
word “algorithm” to mean anything that is formally expressible.
In this article, I will use the term “algorithm” in a narrower
manner consistent with the Merriam-Webster definition.

Newton’s second law is a differential equation. Acceleration
is the second derivative of position. Not only is a differential
equation not an algorithm, but many differential equations
express behaviors for which there is no algorithm. Every algorithm
that attempts to simulate a process described by such a differential
equation is flawed. Newton’s second law is a linear differential
equation for which, for many input force functions, we can
find a closed-form solution. Once we have such a solution, we
can devise an algorithm that gives the position at any chosen
point in time. However, for non-trivial force inputs, and for
most non-linear differential equations, there is no such closed-
form solution, and every algorithmic approximation exhibits
arbitrarily large errors. Non-linear differential equations, in
particular, often exhibit chaotic behavior, where arbitrarily small
errors at any step become arbitrarily large errors in future steps.
The discovery of such chaotic behavior is attributed to Lorenz
(1963), who was frustrated by the inability of computer models to
predict weather more than a few days in advance. The differential
equations modeling the thermodynamics of weather are chaotic,
and every algorithmic approximation develops arbitrarily large
errors over time.

While time is central to differential equations, it is irrelevant
to algorithms. The steps of an algorithm are discrete, entirely
separable from one another, and the time it takes to complete
a step is irrelevant to whether the algorithm is being correctly
carried out. In contrast, in an interactive system or a feedback
system where part of the interaction is a physical process, time
plays a major role. Hence, under the principle of embodied
cognition, time is central to cognition, a point forcefully made
by Esther Thelen:

It is precisely the continuity in time of the embedded and coupled

dynamic systems essential for fluid, adaptive behavior that gives

meaning to the notion of an embodied cognition (Thelen, 2000).

What is the relationship between algorithms and computation?
Here again, I will stick to a rigorous use of this term, adopting
the meaning established by Turing (1936) and Church (1932). In
this meaning, a computation is a step-by-step procedure (i.e., a
carrying-out of an algorithm) operating on digital information
that terminates and gives an answer. What is now called the
Church-Turing thesis states that every such computation can
be computed by a Turing machine, a machine that realizes
the algorithm. Turing showed that there is a particular Turing
machine, or, equivalently, a particular algorithm, that can realize
any other Turing machine. This machine is called a “universal
Turing machine.” Given enough time and memory, any modern
computer can realize a universal Turing machine.

Unfortunately, many people misrepresent the universal
Turing machine, calling it simply a “universal machine,” and
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stating that it can realize any other machine. For example, in his
book Tools for Thought, Howard Rheingold states,

The digital computer is based on a theoretical discovery known as

“the universal machine,” which is not actually a tangible device but

amathematical description of amachine capable of simulating the

actions of any other machine (Rheingold, 2000, p. 15).

Rheingold misleads by speaking too broadly about machines.
There is no universal machine, mathematical or otherwise. A
universal Turing machine can only perform computations.1

With regard to computation, humans are much more limited
than computers. Computers have no difficulty taking billions
of steps in an algorithm to solve a problem, whereas humans
struggle with a few dozen. Algorithmic reasoning may seem like
the epitome of thought, but if it is, then humans fall far short
of that epitome. So far short, in fact, that Simon may have not
gotten it quite right. If human decisions are the result of a limited
amount of computation, then it is an extremely limited amount.
What if they are not the result of computation at all?

Kahneman, in his book, Thinking Fast and Slow, identifies
two distinct human styles of thinking, a fast style (System
1) and a slow style (System 2). The slow style is capable of
algorithmic reasoning, but the fast style, which is more intuitive,
is responsible for many of the decisions humans make. It
turns out that many of today’s artificial intelligences (AIs) more
closely resemble System 1 than System 2. Even though they are
realized on computers, they do not reach decisions by algorithmic
reasoning.

4. INFORMATION PROCESSING IS NOT
(NECESSARILY) COMPUTATION

“Computation,” in the sense that I am using the term in
this article, is not the same as information processing, in the
sense used in Dodig-Crnkovic and Giovagnoli (2013), Müller
and Hoffmann (2017), and Dodig-Crnkovic (2018). In this
article, computation is (a) algorithmic (consisting of a sequence
of discrete steps, where each step is drawn from a finite
set of possible operations); (b) terminating; (c) operating on
discrete data (the inputs, outputs, and intermediate states are
all drawn from countable sets); and (d) non-interactive (inputs
are available at the start and outputs at termination). Turing-
Church computation has all four of these properties. Under this
definition, the set of all possible computations is countable. The
core results in the theory of computation (e.g., undecidability,
complexity measures, and the universality of Turing machines)
all depend on this countability.

In Lee (2017) (Chapter 7), I define “information” as
“resolution of alternatives.” Using Shannon information theory, I
point out that information need not be discrete. The alternatives
may lie in a finite, countable, or uncountable set. I show that
measurements of information (entropy) are incomparable when
the alternatives lie in a finite or countable set vs. when they lie in

1Copeland (2017) has a nice section on common misunderstandings of the

Turing-Church thesis.

an uncountable set. There is an infinite offset between these two
measures of information. In particular, if the set of alternatives is
countable, then entropy gives the expected number of bits needed
to encode a selected alternative. This number of bits is a measure
of the amount of information gained by observing a selected
alternative. However, if the set of alternatives is uncountable,
then entropy can still be finite, but it no longer represents
a number of bits needed to encode a selected alternative. In
fact, an infinite number of bits is required. Nevertheless, this
entropy can still be interpreted as a measure of the amount
of information in an observation of an alternative, and these
amounts can be compared with each other, but these amounts
are always infinitely larger than the amount of information in an
observation drawn from a countable set of alternatives.

Many mistakes are made in the literature by ignoring this
infinite offset. For example, Lloyd (2006) says about the second
law of thermodynamics, “It states that each physical system
contains a certain number of bits of information—both invisible
information (or entropy) and visible information—and that the
physical dynamics that process and transform that information
never decrease that total number of bits.” But the second
law works absolutely unmodified if the underlying random
processes are continuous, in which case the set of alternatives
is uncountable, and the information is not representable in
bits. The same mistake is made by Goyal (2012), who states
“The fact that [the entropy of a black hole] is actually finite
suggests that the degrees of freedom are not non-denumerably
infinite.” But the entropy of a black hole given by Bekenstein
(1973) is based on a continuous probability density, so its
finiteness does not imply countable degrees of freedom. Goyal
(2012) continues, stating for example that in quantum physics,
“the number of possible outcomes of a measurement may
be finite or countably infinite” (emphasis added), and then
implying that it is always finite or countably infinite. Goyal
(2012) goes on to assert that “this stands in contrast with
the classical assumption that all physical quantities (such as
the position of a particle) can take a continuum of possible
values.” There are some physical measurements that have
only a finite or countable number of outcomes, such as the
spin of an electron, but position of a particle is not one
of them. The Schrödinger equation operates in a time and
space continuum and the wave function describing position
is reasonably interpreted as a probability density function
governing an uncountable number of possible alternatives. The
discreteness of time and space is a later overlay on quantum
theory that remains controversial and is not experimentally
supported. Goyal takes a leap of faith, concluding “hence,
discreteness challenges the classical idea that the continua of
space and time are the fundamental bedrock of physical reality.”
In contrast, Dodig Crnkovic (2012) observes that “information is
both discrete and continuous.”

Information that lies in a continuum of alternatives can
be operated on by processes that are neither algorithmic
nor terminating. Ordinary differential equation models of the
physical world can be interpreted as performing such operations.
Such information processing is not, however, computation.
Chaos theory shows that such information processing cannot
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even be approximated with bounded error by computation (Lee,
2017, Chapter 10).

Given these facts, we are forced to make one of two choices:
either (A) information processing is richer than computation, or
(B) the physical world does not have uncountable alternatives,
Hypothesis (B) is sometimes called “digital physics” (Lee,
2017, Chapter 8). Some physicists and computer scientists
go further and claim that everything in the material world
is actually a Turing-Church computation.2 I have previously
shown, however, that hypothesis (B) is not testable by experiment
unless it is a priori true (Lee, 2017, Chapter 8). Specifically,
the Shannon channel capacity theorem tells us that every
noisy measurement conveys only a finite number of bits
of information, and therefore can only distinguish elements
from a countable set of alternatives. Hence, hypothesis (B)
is scientific, in the sense of Popper (1959), only if it is a
priori true. Hence, hypothesis (B) is a matter of faith, not
science.

If anything in the physical world forms a continuum
(time or space, for example), then noise in measurements
remains possible, no matter how good the measurement
apparatus becomes. This follows from the incompleteness of
determinism (Lee, 2016). A noiseless measurement of some
physical system would have to be deterministic, in the sense
that the same physical state should always yield the same
measurement result. However, I have shown in Lee (2016)
that any set of deterministic models of the physical world
that includes both discrete and continuous alternatives and
that is rich enough to include Newton’s laws is incomplete.
It does not contain its own limit points. Non-determinism,
therefore, is inescapable unless digital physics is a priori true
and there are no continuous alternatives. This means that at
least some measurements will always be vulnerable to noise
unless the hypothesis to be tested experimentally is already
true. Hence, hypothesis (B) can only be defended by a circular
argument.

Hypothesis (B) is not only a matter of faith, but it
also a poor choice under the principle of Occam’s razor.
As I point out in Lee (2020) (Chapter 8), models based
only on countable sets may be far more complex than
models based on continuums. Diophantine equations, for
example, which are widely used in physics, for example
to describe the motions of bodies in gravitational fields,
are chaotic and exhibit weird gaps when defined over
countable sets. A more defensible position, therefore, is
hypothesis (A), which allows for information processing as
a reasonable model of the physical world without insisting
that information processing have the form of computation.
This position is also supported by Piccinini (2020) who
states, “information processing may or may not be done by
computing” (Chapter 6).3

2For a particularly bad exposition of this hypothesis, full of pseudo science and

misinformation, see Virk (2019).
3Piccinini (2020) nevertheless defends a “computational theory of cognition”

(CTC), though his use of computation is again broader than mine here, and even

then, he admits that this theory may not provide a complete explanation.

5. DEEP NEURAL NETWORKS

Deep neural nets (DNNs), which have transformed technology by
enabling image classification, speech recognition, and machine
translation, to name a few examples, are inspired by the tangle of
billions of neurons in the brain and rely on the aggregate effect
of large numbers of simple operations. They are, today, mostly
realized by computers, and hence are composed of “algorithms”
and “computation.” However, to view these realizations as
Turing-Church computations is to ignore the role of feedback,
a property absent in the Turing-Church model. This role is not
incidental. Moreover, it also ignores the possibility that today’s
realizations of neural networks are brute force computational
approximations of information processing that is not, at its root,
computational.

A frustrating result of the recent successes in deep neural
nets is that people have been unable to provide explanations
for many of the decisions that these systems make (Lee, 2020,
Chapter 6). InMay 2018 a new European Union regulation called
the General Data Protection Regulation (GDPR) went into effect
with a controversial provision that provides a right “to obtain an
explanation of the decision reached” when a decision is solely
based on automated processing. Legal scholars, however, argue
that this regulation is neither valid nor enforceable (Wachter
et al., 2017). In fact, it may not even be desirable. I conjecture that
sometime in the near future, someone will figure out how to train
a DNN to provide a convincing explanation for any decision.
This could start with a generative-adversarial network (GAN)
that learns to provide explanations that appear to be generated
by humans.

Humans are very good at providing explanations for our
decisions. But our explanations are often wrong or at least
incomplete. They are likely to be post hoc rationalizations,
offering as explanations factors that do not or cannot account
for the decisions we make. This fact about humans is well-
explained by Kahneman, whose work on “prospect theory,”
like Simon’s bounded rationality, challenged utility theory. In
prospect theory, decisions are driven more by gains and losses
rather than the value of the outcome. Humans, in other words,
will make irrational decisions that deliver less value to them in
the end. In Thinking Fast and Slow, Kahneman offers a wealth
of evidence that our decisions are biased by all sorts of factors
that have nothing to do with rationality and do not appear in any
explanation of the decision.

Kahneman reports, for example, a study of the decisions
of parole judges in Israel by Danziger et al. (2011). The
study found that these judges, on average, granted about
65 percent of parole requests when they were reviewing
the case right after a food break, and that their grant
rate dropped steadily to near zero during the time until
the next break. The grant rate would then abruptly
rise to 65 percent again after the break. In Kahneman’s
words,

The authors carefully checked many alternative explanations. The

best possible account of the data provides bad news: tired and

hungry judges tend to fall back on the easier default position of
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denying requests for parole. Both fatigue and hunger probably

play a role (Kahneman, 2011).

And yet, I’m sure that every one of these judges would
have no difficulty coming up with a plausible explanation
for their decision for each case. That explanation would
not include any reference to the time since the last
break.

Taleb, in his book The Black Swan, cites the propensity
that humans have, after some event has occurred, to “concoct
explanations for its occurrence after the fact, making it
explainable and predictable” (Taleb, 2010). For example, the news
media always seems to have some explanation for movements in
the stock market, sometimes using the same explanation for both
a rise and a fall in prices.

Taleb reports on psychology experiments where subjects are
asked to choose among twelve pairs of nylon stockings the one
they like best. After they had made their choice, the researchers
asked them for reasons for their choices. Typical reasons included
color, texture, and feel, but in fact, all twelve pairs were identical.

Taleb also reports on some rather dramatic experiments
performed with split-brain patients, those who have undergone
surgery where the corpus callosum connecting the two
hemispheres of the brain has been severed. Such surgery has
been performed on a number of victims of severe epilepsy
that have not responded to less aggressive treatments. These
experiments support the hypothesis that the propensity for post
hoc explanations has deep biological roots. An image presented
to the left half of the visual field will go to the right side of the
brain, and an image presented to the right half of the visual field
will go to the left side of the brain. In most people, language is
centered in the left half of the brain, so the patient will only be
able to verbalize the right field experience. For example, a patient
with a split brain is shown a picture of a chicken foot on the right
side and a snowy field on the left side and asked to choose the
best association with the pictures. The patient would correctly
choose a chicken to associate with the chicken foot and a shovel
to associate with the snow. When asked why the patient chose
the shovel, the patient would reply that was “for cleaning out the
chicken coop.” Taleb concludes,

Our minds are wonderful explanation machines, capable of

making sense out of almost anything, capable of mounting

explanations for all manner of phenomena, and generally

incapable of accepting the idea of unpredictability (Taleb, 2010).

Demanding explanations from AIs could yield convincing
explanations for anything, leading us to trust their decisions too
much. Explanations for the inexplicable, nomatter how plausible,
are simply misleading.

Given that humans have written the computer programs
that realize the AIs, and humans have designed the computers
that execute these programs, why is it that the behavior of
the programs proves inexplicable? The reason is that what the
programs do is not well-described as algorithmic reasoning, in
the same sense that an outbreak of war is not well-described
by the interactions of protons and electrons. Explaining the
implementation does not explain the decision.

Before the explosive renaissance of AI during the past two
decades, AI was dominated by attempts to encode algorithmic
reasoning directly through symbolic processing. What is now
called “good old-fashioned AI” (GOFAI) encodes knowledge as
production rules, if-then-else statements representing the logical
steps in algorithmic reasoning (Haugeland, 1985). GOFAI led to
the creation of so-called “expert systems,” which were sharply
criticized by Dreyfus and Dreyfus (1986) in their book, Mind
Over Machine. They pointed out, quite simply, that following
explicit rules is what novices do, not what experts do. Dreyfus
and Dreyfus called the AI practitioners of the time,

false prophets blinded by Socratic assumptions and personal

ambition—while Euthyphro, the expert on piety, who kept giving

Socrates examples instead of rules, turns out to have been a true

prophet after all (Dreyfus and Dreyfus, 1984).

Here, Dreyfus and Dreyfus are reacting (rather strongly) to what
really was excessive hyperbole about AI at the time. They were
just the tip of a broad backlash against AI that came to be called
the “AI winter,” where funding for research and commercial AI
vanished nearly overnight and did not recover until around 2010.

DNNs work primarily from examples, “training data,” rather
than rules. The explosion of data that became available as
everything went online catalyzed the resurgence of statistical and
optimization techniques that had been originally developed in
the 1960s through 1980s but lay dormant through the AI winter
before exploding onto the scene around 2010.

DNNs particularly excel at functions that, in humans, we call
perception, for example the ability to classify objects in an image.
Stewart (1995) attributes to the Chilean biologist and philosopher
Maturana the perspective that, “perception should not be viewed
as a grasping of an external reality, but rather as the specification
of one.” Indeed, the supervised training process that for a DNN
such as Inception, which is distributed by Google as part of their
open-source TensorFlow machine learning toolkit, results in a
network that specifies a taxonomy rather than recognizing an
objectively existing one. Because training images are labeled by
humans, the resulting taxonomy is familiar to humans.

The techniques behind the AI renaissance are nothing
like the production rules of GOFAI. A central one of these
techniques, now called backpropagation, first showed up in
automatic control problems quite some time ago. Kelley (1960)
describes a controller that would carry a spacecraft from Earth’s
orbit to Mars’s orbit around the sun using a solar sail. His
controller, a feedback system, bears a striking resemblance to
backpropagation, although his formulation is more continuous
than the discrete form used in machine learning today. His
formulation did not require a digital computer to realize it, and in
fact, any computer realizationwould have been an approximation
of his specification.

Based in part on Kelley’s work, Bryson et al. (1961) describe
a feedback system to control a spacecraft that is re-entering the
earth’s atmosphere to minimize heating due to friction. They
adapted Kelley’s method into a multistage technique that closely
resembles the backpropagation technique used for DNNs today.
The Kelley-Bryson technique was restated in a form closer to its
usage today by Dreyfus (1962).
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Backpropagation can be thought of as a technique for a
system to continuously redesign itself by probing its environment
(including its own embodiment) and adapting itself based on
the reaction. DNNs realized in software are better thought of
as programs that continuously rewrite themselves during their
training phase. Today, it is common to freeze the program after
the training phase, or to update it only rarely, but this practice is
not likely to persist for many applications. Continuing to learn
proves quite valuable.

There have been attempts to use machine learning techniques
to learn algorithmic reasoning, where the result of the training
phase is a set of explicable production rules, but these have
proven to underperform neural networks. Wilson et al. (2018)
created a program that could write programs to play old Atari
video games credibly well. Their program generated random
mutations of production rules, and then simulated natural
selection. Their technique was based on earlier work that evolved
programs to develop certain image processing functions (Miller
and Thomson, 2000). The Atari game-playing programs that
emerge, however, are far less effective than programs based on
DNNs. Wilson et al. (2018) admit this, saying that the main
advantage of their technique is that the resulting programs are
more explainable. The learned production rules provide the
explanations.

In contrast, once a DNN has been trained, even a deep
understanding of the computer programs that make its decisions
does not help in providing an explanation for those decisions.
Exactly the same program, with slightly different training,
would yield different decisions. So the explanation for the
decisions must be in the data that results from the training.
But those data take of the form of millions of numbers that
have been iteratively refined by backpropagation, a feedback
system. The numbers bear no resemblance to the training
data and have no simple mapping onto symbols representing
inputs and possible decisions. Even a deep understanding of
backpropagation does little to explain how the particular set of
numbers came about and why they lead to the decisions that
they do. Fundamentally, the decisions are not a consequence of
algorithmic reasoning.

Today, implementations of DNNs are rather brute force, using
enormous amounts of energy and requiring large data centers
with a great deal of hardware. The energy consumption of a
human brain, in contrast, is quite modest. In an attempt to
come closer, there is a great deal of innovation on hardware
for machine learning. Some of this hardware bears little
resemblance to modern computers and has no discernible
roots in Turing-Church computation, using for example analog
circuits. Reservoir computing (Tanaka et al., 2019) is a rather
extreme example, where a fixed, non-linear system called a
reservoir is used as a key part of a neural network. The reservoir
can be a fixed physical system, such as a random bundle of carbon
nanotubes and polymers. These innovations demonstrate that
DNNs are not, fundamentally, Turing-Church computations,
and they may eventually be realized by machines that do not
resemble today’s computers.

Simon developed his theory of bounded rationality well before
DNNs, at a time when AI was all about symbolic processing.

Newell and Simon (1976) say, “symbols lie at the root of
intelligent action, which is, of course, the primary topic of
artificial intelligence.” They add, “a physical symbol system has
the necessary and sufficient means for general intelligent action.”
They go further and commit to the universal machine hypothesis:

A physical symbol system is an instance of a universal machine.

Thus the symbol system hypothesis implies that intelligence will

be realized by a universal computer (Newell and Simon, 1976).

We now know that this hypothesis is false. DNNs outperform
symbolic processing on many problems, particularly on more
cognitively difficult problems. Although their realizations in
computers arguably use symbols (0 to represent “false” and 1 to
represent “true,” for example), those symbols have no relationship
to the problem they are solving.

6. INTERACTION AND FEEDBACK

In the thesis of embodied cognition, the mind “simply does
not exist as something decoupled from the body and the
environment in which it resides” (Thelen, 2000). The mind is
not a computation that accepts inputs from the environment
and produces output, but rather the mind is an interaction of a
brain with its body and environment. A cognitive being is not an
observer, but rather a collection of feedback loops that include
the body and its environment. Fundamentally, under this thesis,
a cognitive mind is an interactive system.

If “rationality” is computation, and “bounded rationality” is
computation with limited resources, then “embodied bounded
rationality” is both more limited than computation and
more powerful. By embracing interaction, embodied bounded
rationality can accomplish things that bounded rationality or
even unbounded rationality alone cannot.

Turing-Church computation is not interactive. There is no
part of the theory that includes effects that outputs from the
computation may have on inputs to the computation. Central to
what a computation is, in this theory, is that the inputs are fully
available at the start, and that the outputs are available when the
computation terminates. If the computation does not terminate,
there is no output and the process is not a computation. There
is nothing in the formalism that enables the machine to produce
intermediate outputs, allow the environment to react and provide
new inputs, and then continue by reacting to those new inputs.
The “universal” Turing machine proves to be far from universal
because it does not include any such interactive machines.

To understand this point, it is critical to realize that the
behavior that emerges from an interactive machine is not
just a consequence of what the machine does, but also of
what the machine’s environment does. Hence, the only way to
make Turing-Church computations truly “universal,” including
interactive machines, is to ensure that their environment is part
of the Turing-Church computation. To do this in general, you
have to assume digital physics, something you can only do on
faith.

The biggest breakthroughs in AI replace the prior open-
loop good old-fashioned AI (GOFAI) techniques with interaction
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and feedback. Here, I use the term “feedback” for interaction
where one part of the system provides a stimulus to another
part, measures its response, and adjusts its actions to make
future responses more closely resemble its goals. Deep neural
networks are, fundamentally, feedback systems in this sense, and
they yield results of such complexity as to be inexplicable (Lee,
2020, Chapter 6). The algorithms by which they are realized on
computers are simply not good descriptions of what they do.

In this section, I will go through a series of illustrations of
what can be accomplished with interaction and feedback that is
not possible with Turing-Church computation alone. Some of
these are quite technical and serve as proofs of the limitations
of computation, while others are just better explanations of what
is really going on.

6.1. Driving a Car
Wegner (1998) gives a simple example that illustrates the
limitations of non-interactive machines, driving a car. Consider a
cruise control system, which maintains the speed of a car close to
a specified setpoint. In an interactive solution, the inputs to this
system are measurements of the speed of the car, and the system
simply accelerates (opens the throttle) if the speed is too low
and decelerates if the speed is too high. The system continuously
watches the effects of its actions and continuously corrects by
adjusting the throttle. The system automatically compensates for
changes in the environment, such as climbing a hill. This is a
tight feedback loop, an embodied solution where the “smarts”
of the cruise control is in its interaction with its body (the car)
and its environment (the roadway). This solution is extremely
simple, a feedback control system realizable with technology that
was patented back in the 1930s (Black, 1934), well before digital
computers.

Now, consider solving this problem as a Turing-Church
computation without interaction. First, in order to terminate, the
problem will only be able to be solved for a finite time horizon,
and, to be algorithmic, time will need to be discretized. Assume a
car is driven for no more than 2 h on each trip, and that we will
get sufficient accuracy if we calculate the throttle level that needs
to be applied each 100 ms. The output, therefore, will be a trace of
72,000 throttle levels to apply. What is the input? First, we need
as input the elevation gains and losses along the trajectory to be
taken by the car during all segments where the cruise control is to
be active. We will also need a detailed model of the dynamics of
the car, including its weight, the weight of each of the passengers
and the contents in the trunk, and how the car responds to
opening and closing the throttle. The computation will now need
to solve complex differential equations governing the dynamics
to calculate what throttle to apply to the car as it moves over the
specified trajectory. The simple problem has become a nightmare
of complexity requiring a great deal of prior knowledge and most
likely yielding a lower quality result.

The reader may protest that what the cruise control
actually does is rather simple computation. It takes as input a
measurement of the current speed, subtracts it from the desired
speed, multiplies by a constant, and adds the result to the current

throttle position.4 But is this a good description of what the
machine does? By analogy, does a human mind take as input
a grunt or squeal and produce as output a grunt or squeal? Or
does it engage in conversation?Which is a better description? The
latter is a description of what the brain, body, and environment
accomplish together, whereas the former is a description only of
what the brain does. The cruise control system includes the car,
and what it accomplishes is not arithmetic but rather keeping a
constant speed.

The cruise control system considered previously could be
made more “intelligent” by endowing it with additional feedback.
It could check, for example, that when it issues a command to
further open the throttle that the car does indeed accelerate.
This is a check for fault conditions that might prevent the cruise
control system from operating properly. In a way, this check
makes the system more “self aware,” aware of its own body
and the expected effects that its actions have on that body.
Indeed, there is a fledgling subfield of engineering concerned with
“self-aware systems,” with a number of workshops worldwide
addressing the question of how to design systems that gather
and maintain information about their own current state and
environment, reason about their behavior, and adapt themselves
as necessary. Active interaction with the environment is an
essential tool for such systems. The cruise control system has to
open the throttle to perform the test to determine whether it is
working correctly. Such interaction is a first-person activity, not
a third-person observation, and it is a central principle behind
embodied robots, which I consider next.

6.2. Embodied Robots
Clark and Chalmers (1998) used the term “cognitive extension”
for the idea that the mind is not something trapped in the head
but rather is spread out into the body and the world around it.
Clark’s work centers on the processes where the brain tries to
predict what the senses will sense and then uses the differences
between the predictions and what is sensed to improve the
predictions. These feedback loops extend out into the world,
encompassing the body and its physical environment so that they
become an intrinsic part of thinking. In his words, “certain forms
of human cognizing include inextricable tangles of feedback,
feed-forward, and feed-around loops: loops that promiscuously
crisscross the boundaries of brain, body, and world” (Clark,
2008). If Clark is right, then cognition in machines will not much
resemble that in humans until they acquire ways to interact with
the world like humans. Some computer programs are already
starting to do this, particularly those that control robots.

Robots are, in a sense, embodied computers, but for the most
part, they have not been designed in an embodied way. Clark
(2008) compares Honda’s Asimo robot to humans, observing that
Asimo requires about sixteen times as much energy as humans to
walk, despite being shorter and lighter. He attributes this to the
style of control:

4What I have just described is the simplest form of a negative feedback controller,

which is known as a proportional controller. A modern cruise control would

more likely realize a PID controller (proportional, integral, derivative), but the

computation would only be a slightly more complicated.
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Whereas robots like Asimo walk by means of very precise,

and energy-intensive, joint-angle control systems, biological

walking agents make maximal use of the mass properties and

biomechanical couplings present in the overall musculoskeletal

system and walking apparatus itself (Clark, 2008).

Clark points to experiments with so-called passive-dynamic
walking (McGeer, 2001). Passive-dynamic robots are able to walk
in certain circumstances with no energy source except gravity
by exploiting the gravitational pull on their own limbs. You can
think of these robots as performing controlled falling. McGeer’s
robots did not include any electronic control systems at all, but
subsequent experiments have shown that robots that model their
own dynamics in gravity can be much more efficient.

Conventional robotic controllers use a mechanism called a
servo, a feedback system that drives a motor to a specified angle,
position, or speed. For example, to control a robot arm or leg,
first a path-planning algorithm determines the required angles
for each joint, and then servos command the motors in each
joint to move to the specified angle. The servos typically make
little use of any prior knowledge of the physical properties of
the arm or leg, their weight and moment of inertia, for example.
Instead, they rely on the power of negative feedback to increase
the drive current sufficiently to overcome gravity and inertia. It’s
no wonder these mechanisms are not energy efficient. They are
burning energy to compensate for a lack of self-awareness.

Brooks (1992) articulates a vision of “embodied robots” that
learn how to manipulate their own limbs rather than having
hard-coded, preprogrammed control strategies. Gallese et al.
(2020) observe,

Newell and Simon’s physical symbol system hypothesis was

questioned when the “embodied robots” designed by Rodney

Brooks proved able to simulate simple forms of intelligent

behavior by externalizing most of cognition onto the physical

properties of environments, thus dispensing with abstract

symbolic processing” (Brooks, 1991, p. 377).

Brooks’ vision was perhaps first demonstrated in real robots by
Bongard et al. (2006). Their robot learns to pull itself forward
using a gait that it develops by itself. The robot is not even
programmed initially to know how many limbs it has nor
what their sizes are. It makes random motions initially that are
ineffective, much like an infant, but using feedback from its
sensors it eventually puts together a model of itself and calibrates
that model to the actual limbs that are present. This resembles
the learning process in DNNs, where initial decisions are random
and feedback is used to improve them. When a leg is damaged,
the gait that had worked before will no longer be effective, but
since it is continuously learning, it will adapt and develop a new
gait suitable for its new configuration. If one of its legs “grows”
(someone attaches an extension to it, for example), the robot will
again adapt to the new configuration.

Pfeifer and Bongard (2007) assert that the very kinds of
thoughts that we humans are capable of are both constrained
and enabled by the material properties of our bodies. They
argue that the kinds of thoughts we are capable of have their
foundation in our embodiment, in our morphology and the

interaction between the brain, the body, and its environment.
Pfeifer and Bongard argue that fundamental changes in the
field of artificial intelligence over the past two decades yield
insights into cognition through “understanding by building.” If
we understand how to design and build intelligent embodied
systems, they reason, we will better understand intelligence in
general. Indeed, DNNs are teaching us that intelligence is not
necessarily rational.

The classical servo-based robot control systems are simple
feedback control loops like those developed by Black (1934).With
a servo, the controller plans a path, and the mechanism forces
the motion to match that path. Only recently have servos been
realized using computers. In embodied robots, a second feedback
loop is overlaid on this first one. In this second loop, the robot
learns its own morphology and dynamics.

Higher-order cognitive feedback loops also enable humans
to recognize flaws in our plans and attempt to improve them.
Supporting Clark’s argument, in I Am a Strange Loop, Hofstadter
states:

You make decisions, take actions, affect the world, receive

feedback, incorporate it into your self, then the updated

“you” makes more decisions, and so forth, round and

round (Hofstadter, 2007).

Hofstadter emphasizes that feedback loops create many if not
all of our essential cognitive functions. These feedback loops are
entirely absent in Turing-Church computation.

6.3. Solving Undecidable Problems
Although it is complex, given good enough models, the
cruise control and robotics problems are solvable, at least
approximately, by a Turing-Church computation. Hence, these
arguments do not, by themselves, speak to any fundamental
limitations of Turing-Church computations.

Interactive systems, however, can sometimes solve problems
that are provably unsolvable by Turing-Church computations.
Back in the 1990s, a Ph.D. student of mine, Thomas Parks,
surprised me by showing how to solve an undecidable problem
(Parks, 1995). The problemwas to determine whether a particular
network of communicating processes built in a particular style
due to Kahn and MacQueen (1977) can be executed for an
unbounded amount of time using only a bounded amount of
memory. Parks proved that the problem is undecidable, meaning
that there is no Turing-Church computation that can yield an
answer for all possible such networks. He then proceeded to
solve the problem with an interactive solution. He provided a
policy that provably uses bounded memory for any such network
that can be executed in bounded memory.5 Parks’ solution is
interactive, in that his scheduling policymakes decisions, watches
how the program responds, and makes additional decisions
accordingly. Such a strategy does not fit the Turing-Church
model.

Strictly speaking, Parks doesn’t really solve an undecidable
problem, but rather solves a different but related problem. The
question he answers is not whether a Kahn-MacQueen program

5This work was later generalized by Geilen and Basten (2003).
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can execute in bounded memory, but rather how to execute a
Kahn-MacQueen program in bounded memory. Computation
plays a rather small role in the solution compared to interaction.
By analogy, an automotive cruise control is not performing
arithmetic; it is keeping the speed of the car constant.

Just as with the cruise control, computation forms a part
of the interactive machine. Parks’ solution performs a Turing-
Church computation for each decision. Computers are used this
way all the time. A user types something, the machine performs
a computation and presents a resulting stimulus to the user,
then the user types something more, and the machine performs
another computation. Each computation is well-modeled by the
Turing-Church formalism, but the complete closed-loop system
is not.

6.4. Reasoning About Causation
Rational decision making frequently involves reasoning about
causation. I do not smoke because smoking causes cancer. I click
on Amazon’s website because it causes goods to appear at my
door. Pearl and Mackenzie (2018) show that it is impossible
to draw conclusions about causation in a system by objectively
observing the system. One must either interact with the system
or rely on prior subjective assumptions about causation in the
system.

A Turing-Church computation is an objective observer. It
does not affect its inputs, as it would if it were an interactive
system. To reason about causation, therefore, it can only encode
the prior subjective assumptions of its designer. It cannot test
those assumptions through interaction. Hence, it is unable to
reason about causation.

To understand how interaction helps with reasoning about
causation, suppose that we are interested in evaluating whether
a particular drug can cause improvements in patients with some
disease. In other words, we wish to measure the strength of
a hypothesized causal relationship from treatment (whether a
treatment is administered) to some measure of health. Suppose
that there is risk of some factor that causes a patient to be
more or less likely to take the treatment and also affects the
patient’s health. Such a factor is called a “confounder” in statistics.
The confounder could be, for example, gender, age, or genetics.
To be specific, suppose that the treatment for some disease is
more appealing to women than men, and that women tend to
recover more from the disease than men. In that case, gender is a
confounder and failing to control for it will invalidate the results
of a trial.

In many cases, however, we don’t know what confounders
might be lurking in the shadows, and there may be confounders
that we cannot measure. There might be some unknown genetic
effect, for example. We can’t control for confounders that we
can’t measure or that we don’t know exist. Is it hopeless, then,
to evaluate whether a treatment is effective?

To guard against the risk of hidden confounders, Pearl and
Mackenzie (2018) point out, active intervention is effective (when
active intervention is possible), underscoring that interaction is
more powerful than observation alone. We must somehow force
the treatment on some patients and force the lack of treatment on

others. Then controlling for the confounding factor is no longer
necessary.

Randomized controlled trials (RCTs), are the gold standard
for determining causation in medical treatments and many other
problems. The way an RCT works is that a pool of patients is
selected, and within that pool, a randomly chosen subset is given
the drug and the rest are given an identical looking placebo.
Ideally, both the patients and the medical personnel are unaware
of who is getting the real drug, and the choice is truly random,
unaffected in any way by any characteristic of the patients. The
system is now interactive because we have forced the value of one
of the variables, whether the drug is taken, for each of the patients,
and then we observe the results.

RCTs are actually routinely used in software today. It is
common at Facebook, for example, when considering a change
to the user interface, to randomly select users to whom a variant
of the user interface is presented. The reactions of the users,
whether they click on an ad, for example, can be measured and
compared to a control group, which sees the old user interface. In
this way, Facebook software can determine whether some feature
of a user interface causes more clicks on ads. This process can be
automated, enabling the software to experiment and learn what
causes users to click on ads. This is a much more powerful form
of reasoning than mere correlation, and it can result in software
designing and refining its own user interfaces. The software can
even learn to customize the interface for individual users or
groups of users. This software is not realizing a Turing-Church
computation because it is interactive. The users are an intrinsic
part of the system.

It is not always possible or ethical to conduct an RCT. Pearl
and Mackenzie (2018) document the decades-long agonizing
debate over the question of whether smoking causes cancer. Had
it been possible or ethical to randomly select people and make
them smoke or not smoke, the debate may have been over much
earlier. Instead, we were stuck with tragic observation, watching
millions die.

6.5. Act to Sense
Two of the three limitations in human rationality identified by
Simon (1972), uncertainty about the consequences that would
follow from alternative decisions and incomplete information
about the set of alternatives, reflect limited information about the
environment. Simon zeroed in on the limited ability humans have
to process information from the environment, but there are also
limitations in our ability to sense, to gather information from the
environment.

Goddfrey-Smith (2016) tells us that sensing is greatly
enhanced by feedback. He points out that you need not just sense-
to-act connections, which even bacteria have, but also act-to-
sense. To have cognitive function, you have to affect the physical
world and sense the changes. Sense-to-act is open loop; you sense,
you react. Combine this with act-to-sense, and you close the loop,
creating a feedback system.

Goddfrey-Smith (2016) gives a rather nice example of act-
to-sense in cephalopods, such as cuttlefish and octopuses,
which can change the color of their skin for camouflage and
communication. It turns out that cuttlefish are colorblind,
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having only a single type of photoreceptor molecule. But these
molecules are also found in the skin, and by modulating the
chromatophores to change the color of the skin, the cephalopod
creates a color filter for the light that enters the skin. Dynamically
varying the filter reveals the color distribution of the incoming
light. They “see” color through their skin via a sense-to-act,
act-to-sense feedback loop.

Turing-Church computations can only sense-to-act. The
formalism does not include any mechanism by which the
computation can affect its own inputs.

6.6. Efference Copies
Sense-to-act and act-to-sense feedback loops are present in
many higher level cognitive functions. Since at least the 1800s,
psychologists have studied the phenomenon that the brain can
internally synthesize stimulus that would result from sensing
some action commanded by the brain. This internal feedback
signal is called an “efference copy.” In speech production, for
example, while the body is producing sounds that the ears are
picking up, at the same time, the brain generates an efference
copy, according to this theory, which is fed back into a different
part of the brain that calculates what the ears should be hearing,
an “expected reafference.” The brain then compensates, adjusting
the motor efference to make the speech sound more closely
resemble the expectation.

Many psychologists today believe that efference copies help
distinguish self-induced from not self-induced sensory stimulus.
All animals with sensors have evolved some form of efference
copymechanism because otherwise they would react to their own
actions as if those actions were imposed by their environment.

The importance of the efference copy has been understood at
some level since the nineteenth century. Grüsser (1995) gives a
history, crediting a book by JohannGeorg Steinbuch (1770–1818)
that illustrated the essential concept with a simple experiment. He
noticed that if you hold your hand still and roll an object around
in it, say, a spoon, you will not be able to recognize the object
from the sensations coming from your hand. But if you actively
grasp and manipulate the object, you will quickly recognize it
as a spoon. The motor efference, therefore, must play a role in
recognition, which implies that the motor efference must be fed
back to the sensory system.

Central to this thesis is that our knowledge of the world
around us is not solely determined by stimulus that happens to
arrive at our sensory organs, but rather is strongly affected by
our actions. Without these feedback loops, we would not only
suffer limited ability to perform the information processing on
our inputs, but we would also have fewer and less meaningful
inputs. Turing-Church computations have no efference copies
and hence no mechanisms for gathering these more meaningful
inputs.

6.7. Indiscernable Differences
Lest the reader assume that act-to-sense only makes sensingmore
efficient, I will now give two rather technical demonstrations
that act-to-sense enables making distinctions that are not
discernible without feedback. The first of these is the Brock-
Ackerman anomaly, a well-known illustration in computer

FIGURE 1 | A system with two variants that cannot be distinguished without

feedback.

science that observation alone cannot tell the difference between
two significantly different systems.

Consider the system shown Figure 1. This system has two
inputs at the left that can accept sequences of numbers and one
output at the right that produces a sequence of numbers. The
subsystems labeled “Repeat” take each input number and repeat it
twice on their outputs. For example, if the input to the top Repeat
is the sequence (1, 2), the output will be the sequence (1, 1, 2, 2).
The subsystem labeled “Merge” arbitrarily interleaves the input
sequences it receives on its two inputs. For example, given the two
input sequences (1, 2) and (3, 4), it can produce any of (1, 2, 3, 4),
(1, 3, 2, 4), (1, 3, 4, 2), (3, 4, 1, 2), (3, 1, 4, 2), or (3, 1, 2, 4). If merge
receives nothing on one of its inputs, then it will simply produce
whatever it receives on the other input. The subsystem labeled
“FirstTwo” simply outputs the first two inputs it receives. For
example, given (1, 2, 3, 4), it will produce (1, 2).

Brock and Ackerman (1981) then gave two subtly different
realizations of the FirstTwo subsystem:

1. The first realization produces outputs as it receives inputs.
That is, as soon as it sees a 1 on its input, it will produce 1
on its output.

2. The second realization waits until there are two inputs
available before producing any output. That is, it will not
produce any output until both 1 and 2 are available, at which
point it will produce the sequence (1, 2).

To an outside observer that can only passively watch the behavior
of this system, these two realizations are indistinguishable. The
possible output sequences are exactly the same for the same input
sequences. For example, if the system is presented with inputs (5)
and (6), i.e., two sequences of length one, the possible outputs for
either realization are (5, 5), (5, 6), (6, 5), and (6, 6). The choice of
realization has no effect on these possibilities.

Nevertheless, the two realizations yield different behaviors
in some circumstances. Consider the system in Figure 2.
The subsystem labeled “Increment” simply adds one to each
input. For example, given the input sequence (1, 2), it will
produce (2, 3). In this usage, it makes a difference which of
the two realizations of FirstTwo is used. Suppose that the
subsystem labeled “Source” provides on its output the length-
one sequence (5). Under realization (1) of FirstTwo, there are
two possible outputs from the BrockAckerman subsystem, (5, 5)
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FIGURE 2 | A use of the system in Figure 1 where the two variants of the FirstTwo subsystem yield different behaviors.

and (5, 6). But under realization (2), there is only one possible
output, (5, 5).

With this example, Brock and Ackerman (1981) proved that
two systems that are indistinguishable by a passive observer
cannot be substituted one for the other without possibly changing
the behavior. They are not equivalent. The feedback of Figure 2
can be thought of as an “embodiment,” where, by interacting with
its environment, an otherwise indiscernible difference becomes
evident.

Note that the Brock-Ackerman system is not a Turing-Church
computation because of the non-deterministic Merge subsystem.
The Turing-Church theory admits no such non-determinism. In
Chapter 12 of Lee (2020), I show that a passive observer, one
that can only see the inputs and outputs of a system, cannot tell
the difference between such a non-deterministic system and a
deterministic one (a deterministic onewould be a Turing-Church
computation). Only through interaction with the system is
it possible to tell the difference. That argument depends on
another celebrated result in computer science, Milner’s concept
of bisimulation.

6.8. Milner’s Bisimulation
Milner (1980) developed a relation between systems that he called
“simulation,” where one system A “simulates” another B if, given
the same inputs, A can match the outputs that B produces. Park
(1980) noticed that there exist systems where A simulates B and
B simulates A, but where the two systems are not identical. As
with the Brock-Ackerman anomaly, the difference between the
two systems is indiscernible to a passive observer, but discernible
if you can interact with the system. This prompted (Milner, 1989)
to revamp his system of logic and develop a stronger form of
equivalence that he called “bisimulation.” He then proved that
any two systems that are “bisimilar” are indistinguishable not
only to any observer, but also to any interactor. Sangiorgi (2009)
gives an overview of the historical development of this idea,
noting that essentially the same concept of bisimulation had also
been developed in the fields of philosophical logic and set theory.

In Chapter 12 of Lee (2020), I give two possible models of tiny
universes, the smallest imaginable universes where one entity in
the universe is capable of modeling another entity in the same
universe. I show two variants of entities in such a tiny universe,
one where it is possible that the entity has free will, and one where

the entity cannot possibly have free will. I then show that by
passive observation alone, it is impossible to tell which entity you
are modeling. But if interaction is allowed (using a bisimulation
relation), the difference between the two entities can eventually
become discernible to any desired degree of certainty. The two
entities are not bisimilar. Without detailed knowledge of the
inner structure of the entity being modeled, it is not possible to
achieve 100% confidence in any conclusion about which entity is
being modeled, but through repeated experiments, it is possible
to get as close to 100% as you like.

Milner’s simulation and bisimulation relations are relations
between the possible states of two systems. Stretching a bit, one
can imagine using these concepts to more deeply understand the
relationship between mental states in a cognitive mind and the
outside world that those states refer to. Philosophers use the term
“intentionality” for such relationships, “the power of minds to
be about, to represent, or to stand for, things, properties and
states of affairs” outside the mind (Jacob, 2014). Searle (1983)
argues that intentionality is central to cognition. Intentionality
is about models of the universe that we construct in our brains.
Dennett (2013) suggests the less formal term “aboutness” for
intentionality. The relationship between mental states and the
things that those states are about is essentially a modeling
relationship. Milner shows us that such modeling works better
when there is dialog, bidirectional interaction, or feedback. It may
be that intentionality would likely not arise in a brain that can
only observe the world. It must also be able to affect the world.

7. CONCLUSIONS

In Simon’s “bounded rationality,” rationality is the principle that
humansmake decisions on the basis of step-by-step (algorithmic)
reasoning using systematic rules of logic to maximize utility.
It becomes natural to equate rationality with Turing-Church
computation. However, Turing-Church computation provides
no mechanism for interaction or feedback, where the process
provides outputs to its environment that then affect its inputs.
The principle of embodied cognition suggests that human
decision makers make use of feedback mechanisms for many
of our cognitive functions, including rational decision making.
Embodied bounded rationality, therefore, suggests that a rational
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decision maker goes beyond Turing-Church computation, even
if the ability to handle computational complexity is limited.

I have given a series of illustrations that show that
interaction enables capabilities that are inaccessible to Turing-
Church computation, including controlling a system in an
uncertain environment, reasoning about causation, solving some
undecidable problems, and discerning distinctions between
certain kinds of systems. Bounded rationality, therefore, is not
the same as a limited capacity to carry out Turing-Church
computations because rational processes with feedback are
capable of things that Turing-Church computations are not.

Interaction is the core idea in embodied cognition, which
posits that a cognitive mind is an interaction of a brain
with its body and environment. So, while it is true that
the human brain has limited Turing-Church computational
capability, it also transcends such computation by interacting
with its body and environment. Key features of cognition, such
as the ability to distinguish self from non-self and the ability
to reason about causation, depend on such interaction. Since

such interaction is missing from the Turing-Church theory of
computation, the “universality” of such computation falls far
short of true universality.

Deep neural networks, which have led to a revolution in
artificial intelligence, are both interactive and not fundamentally
algorithmic. Their ability to mimic some cognitive capabilities
far better than prior algorithmic techniques based on symbol
manipulation (“good old-fashioned AI”) provides empirical
evidence for the power of embodied bounded rationality.
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