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A B S T R A C T

Background. Chronic kidney disease (CKD) is frequently ac-
companied by thyroid hormone dysfunction. It is currently un-
clear whether these alterations are the cause or consequence of
CKD. This study aimed at studying the effect of thyroid

hormone alterations on renal function in cross-sectional and
longitudinal analyses in individuals from all adult age groups.
Methods. Individual participant data (IPD) from 16 independ-
ent cohorts having measured thyroid stimulating hormone, free
thyroxine levels and creatinine levels were included. Thyroid
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hormone status was defined using clinical cut-off values.
Estimated glomerular filtration rates (eGFR) were calculated by
means of the four-variable Modification of Diet in Renal
Disease (MDRD) formula. For this IPD meta-analysis, eGFR at
baseline and eGFR change during follow-up were computed by
fitting linear regression models and linear mixed models in each
cohort separately. Effect estimates were pooled using random
effects models.
Results. A total of 72 856 individuals from 16 different cohorts
were included. At baseline, individuals with overt hypothyroid-
ism (n¼ 704) and subclinical hypothyroidism (n¼ 3356) had a
average (95% confidence interval) �4.07 (�6.37 to �1.78) and
�2.40 (�3.78 to �1.02) mL/min/1.73 m2 lower eGFR as com-
pared with euthyroid subjects (n¼ 66 542). In (subclinical)
hyperthyroid subjects (n¼ 2254), average eGFR was 3.01 (1.50–
4.52) mL/min/1.73 m2 higher. During 329 713 patient years of
follow-up, eGFR did not decline more rapidly in individuals
with low thyroid function compared with individuals with nor-
mal thyroid function.
Conclusions. Low thyroid function is not associated with a de-
terioration of renal function. The cross-sectional association
may be explained by renal dysfunction causing thyroid hor-
mone alterations.

Keywords: chronic renal failure, CKD, creatinine clearance,
epidemiology, thyroid function

I N T R O D U C T I O N

The prevalence of chronic kidney disease (CKD) is globally in-
creasing, reaching endemic levels [1]. Since this growth is ac-
companied by a substantial increase in cardiovascular
morbidity and mortality [2, 3], prevention of CKD and its sec-
ondary complications are of increasing importance. To date,
however, aggressive management of known risk factors such as
blood pressure, albuminuria and glucose control has not re-
sulted in a clear reduction of this trend. These observations
stress the need for further studies on other risk factors being
amenable for treatment.

In cross-sectional studies, lower renal function is accompa-
nied by reductions in free thyroxine (fT4) and triiodothyronine
(T3) and an elevation in serum thyroid stimulating hormone
(TSH) levels [4–6]. This finding can be interpreted in two ways:
first, CKD (similar to other chronic illnesses) induces a systemic
lowering of the hypothalamic–pituitary–thyroid (HPT) axis,
known as ‘non-thyroidal illness’ [7]. Alternatively, primary hypo-
thyroidism could be the cause of a reduction in renal function.
Indeed, studies in patients with severe primary hypothyroidism
show a consistent reduction in renal function, which resolves af-
ter initiation of thyroid hormone supplementation [8, 9].

Although large-scale observational studies show clear associ-
ations between subclinical hypothyroidism and an increased
risk for heart failure [10], coronary heart disease and mortality
[11] findings are not consistent with the association between
subclinical hypothyroidism and lower renal function [12–14].
In an observational study in patients with CKD Stages 2–4 and
subclinical hypothyroidism, subjects not being prescribed

thyroid hormone treatment showed a more rapid decline of re-
nal function as compared with patients who received thyroid
hormone supplementation [12, 13]. However, no association
between thyroid hormone status and a decline in renal function
was observed in a population-based study of the oldest old [14].

In light of these conflicting findings, this study sets out to
evaluate the association between thyroid hormone status and
renal function cross-sectionally and longitudinally by perform-
ing an individual patient data (IPD) meta-analyses on data
from 16 independent cohorts participating in the Thyroid
Studies Collaboration.

M A T E R I A L S A N D M E T H O D S

Data from 16 different cohorts (four from the Netherlands,
three from Italy, two from USA, two from Japan (and partly
Brazil), and one from Germany, Norway, Belgium, Australia
and Ireland), providing measures of thyroid and renal function
were used for our analyses [11]. Nine of these cohorts [15–23]
were also included in an earlier study evaluating the association
between thyroid function and cardiovascular mortality [11].
Details of these cohorts have been described previously. In add-
ition to these nine cohorts, seven cohorts [24–30] with data on
thyroid and renal function were added to the collaboration. Six
out of these seven cohorts were population-based studies; two
comprising individuals from all age categories [27, 30], two having
included those with an average age �70 years [28, 29] and two
other studies included specifically the oldest [25, 26]. The seventh
study was comprised of patients with chronic heart failure [24].

Thyroid function

Thyroid function tests were measured at baseline in each co-
hort. We used common definitions to define thyroid hormone
groups by using cohort-specific cut-off values which are summa-
rized in Supplementary data, Appendix S1: (i) overt hypothyroid-
ism was defined as elevated TSH levels in combination with
reduced fT4 levels; (ii) subclinical hypothyroidism was defined as
an elevated serum TSH level with a normal fT4 concentration;
(iii) subjects were categorized in the euthyroid group when hav-
ing TSH levels within the specific reference range; and (iv) those
with lowered TSH levels with or without elevated fT4 levels were
categorized as (subclinically) hyperthyroid. Subjects with subclin-
ical hyperthyroidism and overt hyperthyroidism were combined
because of low numbers in each group.

Renal function

Creatinine levels were measured according to each cohort’s
protocol. Differences exist in their methodology; five cohorts uti-
lized colorimetric assessments [15–17, 22, 25], five cohorts utilized
the traditional Jaffé method [19, 21, 26, 27, 29] and the newer en-
zymatic method was applied in four cohorts [20, 23, 28, 30]. In
the Bari cohort [24], creatinine levels were measured with both
the Jaffé and colorimetric method. In the Nord-Trøndelag Health
(HUNT) study [18], the baseline examination (HUNT2) was per-
formed using the Jaffé method and subsequently adjusted by
means of a validated calibration formula [31]. The alkaline picrate
methodology was used for the follow-up examination (HUNT3) .
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Estimated glomerular filtrations rate (eGFR) was assessed by
means of the four-variable Modification of Diet in Renal
Disease (MDRD) formula [32]. For sensitivity analyses, eGFR
was calculated on basis of the Chronic Kidney Disease
Epidemiology Collaboration (CKD-EPI) formula [33]. The
MDRD formula was used as primary outcome instead of the
CKD-EPI because not all creatinine measurements were based
on traceable isotope dilution mass spectrometry [34].

Statistical analyses

Baseline characteristics for each cohort are presented as means
with SDs or numbers with percentages (%), as appropriate. To
analyse the association between thyroid hormone status and renal
function, a two-stage IPD meta-analysis was used as previously
specified [11]. First, effect estimates were calculated at a cohort
level. Thereafter, they were pooled at a meta-analysis level.

For the cross-sectional associations between thyroid hor-
mone status and renal function, linear regression analyses were
fitted. Thyroid hormone groups were entered as categorical
variables with the euthyroid group serving as the reference.
Effect estimates (betas) represented the difference in eGFR
(mL/min/1.73 m2) at baseline for the specific thyroid hormone
group with respect to the euthyroid group. The same concept
was applied to TSH and fT4 groups, again those with normal
levels serving as the reference category. TSH and fT4 were also
entered as continuous variables in which effect estimates illus-
trated an increase in eGFR per 1 mIU/L and per 1 pmol/L in-
crease in serum TSH and fT4 levels, respectively.

For the longitudinal analyses, examining the association be-
tween thyroid hormone status at baseline and the change in re-
nal function over time, linear mixed models were fitted in each
cohort separately. Because of the large variability in the number
and timing of measurement points within cohorts and between
cohorts, we chose to adopt random effects models. An average
change in eGFR (mL/min/1.73 m2/year) for each cohort was
calculated and presented in a figure. Slopes were not pooled be-
cause of large heterogeneity in effect estimates and participant
characteristics. As for the linear regression analyses, thyroid
hormone groups were entered as categorical variables. In addi-
tion, an interaction term of thyroid hormone group and time
was included to allow for dependence of the slope on thyroid
hormone status. Effect estimates obtained from these models
indicated the additional change in eGFR per year as compared
with the change in the euthyroid group. All models were ad-
justed for age, sex, cardiovascular disease and when available,
for thyroid hormone supplementation and/or anti-thyroid
medication. In sensitivity analyses, models were rerun also ad-
justing for diabetes mellitus, if available.

Outcomes obtained from linear regression analyses (cross-
sectionally) and from linear mixed models (longitudinally)
were pooled by means of random effects models assuming the
variance model as proposed by DerSimonian and Laird [35].
Sensitivity analyses were performed by rerunning all previous
models in subgroups of sex and age. Another sensitivity analysis
was performed excluding the HUNT study because creatinine
measurements at baseline and follow-up were performed with
different assays. The same was done for the Health, Aging and

Body Composition (Health ABC) study. Also, sensitivity ana-
lyses were done by excluding all cohorts with positive changes
in eGFR over time [22, 26, 27, 29]. To further examine the po-
tential of selection/publication bias, funnel plots were created.
Bubble plots were created plotting the effect size against mortal-
ity rates in each cohort.

For differences, a 95% confidence interval (CI) not including
zero was considered to indicate statistical significance. For all
other tests, a P-value <0.05 was adopted as cut-off. Stata 12.1
(StataCorp LP, Texas, USA ) was used to perform all analyses.
Figures were created using Stata and Prism 5.02 (GraphPad
Software Inc., La Jolla, CA, USA; 1992).

R E S U L T S

This study included data from 16 cohorts, comprising a total of
72 856 individuals of whom 704 were hypothyroid, 3356 sub-
clinically hypothyroid, 66 542 euthyroid and 2254 (subclini-
cally) hyperthyroid. Baseline characteristics of the different
cohorts are presented in Table 1. As illustrated, the average age
at baseline ranged from 49 to 85 years and the proportion of in-
dividuals with pre-existing cardiovascular disease from 1.9% to
100%. Within the different cohorts, 0–9.9% of subjects were
prescribed thyroid hormone replacement therapy and 0–4.7%
used antithyroid medication. Usage of thyroid hormone supple-
mentation was more common in the subclinical hypothyroid
and hypothyroid groups, whereas more individuals in the hyper-
thyroid group used antithyroid medication (Supplementary
data, Appendix S2).

Cross-sectional analyses

In Figure 1, the average eGFR per cohort is shown with
mean (SD) values ranging from 59.0 (14.4) mL/min/1.73 m2 in
the Leiden 85-plus study to 102.6 (26.7) mL/min/1.73 m2 in
Radiation Effects Research Foundation (RERF). Figure 2 details
forest plots presenting the differences in eGFR at baseline be-
tween the hypothyroid, subclinical hypothyroid and subclinical
hyperthyroid group versus euthyroid group for each cohort sep-
arately. Pooled estimates show that eGFR was on average�4.07
(95% CI: �6.37 to �1.78) mL/min/1.73 m2 lower in the hypo-
thyroid and �2.40 (�3.78 to �1.02) mL/min/1.73 m2 lower in
the subclinical hypothyroid group as compared with the euthyr-
oid group. Conversely, average eGFR was 3.01 (1.50–4.52) mL/
min/1.73 m2 higher in (subclinical) hyperthyroid subjects.

Longitudinal analyses

Of the 16 cohorts, 13 contributed a total of 113,670 measure-
ments during 329 713 patient-years of follow-up. Figure 3 de-
picts adjusted average annual changes in eGFR (mL/min/
1.73 m2/year) per cohort, showing a range in annual change
from �1.43 (0.06) to þ 8.98 (1.05) mL/min/1.73 m2/year.
Figure 4 demonstrates the pooled differences in eGFR change
per year within the different thyroid hormone groups as com-
pared with the euthyroid group. The change in eGFR was 0.35
(0.07–0.64) mL/min/1.73 m2 per year higher in the overt hypo-
thyroid compared with the euthyroid group. No significant dif-
ferences in eGFR change over time were noted in the other
thyroid hormone groups as compared with euthyroid subjects.
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All analyses were repeated cross-sectionally and longitudinally
in subgroups of sex (Supplementary data, Appendices S3 and S5)
and age (<50, 50–65, 65–80 and>80 years) (Supplementary
data, Appendices S4 and S6) rendering no differences in results.
When models were adjusted for diabetes mellitus, results were
not substantially different (Supplementary data, Appendices S7
and S8). Using the CKD-EPI formula instead of the four-variable
MDRD formula, findings were comparable (data not shown).
When pooling was repeated excluding the HUNT and Health
ABC studies, similar results were found. The same held for the
analyses excluding cohorts with positive changes in eGFR over
time. Finally, analyses were repeated in individuals not using thy-
roid hormone supplementation or antithyroid medication, with
no effect on the findings (data not shown).

To examine the possibility of selection bias as a consequence
of death, study-specific effect estimates were regressed on mor-
tality incidence rates for each study, showing no statistically sig-
nificant association (data not shown). Finally, a funnel plot did
not show evidence of publication bias (data not shown).

D I S C U S S I O N

In this IPD meta-analysis comprising data from 72 856 individ-
uals out of 16 independent cohorts, we found a positive cross-
sectional association between thyroid function and renal
function in which those with low thyroid function had lower
eGFR values as compared with euthyroid and (subclinical)
hyperthyroid subjects. During follow-up, low thyroid function
was not associated with an additional decline in renal function
as compared with the euthyroid group.

The presence of a cross-sectional association between low
thyroid function and renal dysfunction aligns with findings in
several previous cohorts [14, 36, 37], two of which were also in-
cluded in this meta-analysis [14, 36]. Also compatible with our
previous report, low thyroid function did not associate with an
additional decline in renal function versus a euthyroid state
[14]. Rather, we observed a relative increase in renal function in
subjects with overt hypothyroidism as compared with individ-
uals with thyroid hormone concentrations within the reference
range. Three potential clarifications should be considered: first,
whereas those with hypothyroidism have a lower eGFR at base-
line, the observation of an increase in eGFR values over time
relative to the euthyroid group may be explained by the concept
of ‘regression to the mean’. Regression to the mean implies that
when a variable has extreme values at a certain measurement, a
second measurement will tend, by chance, to show a value
closer to the true mean. In case of an extremely high value, the
second measurement tends to be lower and vice versa, in case of

Table 1. Baseline characteristics of the different cohorts

Cohort Country Total no. of participants/
mean years of follow-up
per individual/no. of
serum measurements
per individual

Percentage
of men

Average
age (SD), years

Part with
CVD (%)

Part with
hypo/subcl
hypo/(subcl)
hyper (%)

Part using
thyroxine/anti-
thyroid
medication at
baseline (%)

CHS [15] USA 3112/6.7/4 40.0 72.6 (5.6) 1.9 1.2/15.9/0.4 0/0
Health ABC study [16] USA 2776/4.5/3 48.9 74.7 (2.9) 30.3 0.9/4.5/0.4 9.9/0
EPIC study [17] UK 9869 43.5 59.0 (9.2) 4.6 1.8/5.6/4.5 na
Bari study [24] Italy 338/2.4/3 76.9 64.3 (13.0) 100 0/12.1/3.3 5.0/1.8
HUNT study [18] Norway 33927/11.2/2 31.4 58.6 (13.4) 10.6 0.6/4.1/1.7 5.0/0.2
BELFRAIL study [25] Belgium 542/1.7/2 37.3 84.8 (0.4) 58.7 3.9/2.2/4.0 9.7/0.0
Leiden 85-plus study [19] The Netherlands 558/3.9/6 33.9 85 48.6 7.2/6.1/5.3 2.9/0.7
Pisa study [20] Italy 2260 65.3 65.8 (13.0) 98.5 0.1/5.2/6.3 0
PROSPER study [26] The Netherlands 5794/0.3/2 48.3 75.3 (3.3) 43.9 0.6/3.7/3.4 4.4/0.1
SHIP study [27] Germany 4236/9.3/3 49.2 49.7 (16.3) 6.1 0.3/2.8/8.5 6.3a

Busselton Health study [22] Australia 832/13.0/2 46.8 52.8 (10.3) 5.8 0.9/4.9/3.7 1.1/0.0
Japanese-Brazilian Thyroid study [20] Japan/Brazil 1110 46.8 56.5 (12.5) 14.1 1.0/8.9/11.2 0/0
RERF [23] Japan 1730/7.5/7 32.9 69.0 (8.8) na 3.9/6.6/3.2 3.8/0.2
Rotterdam study [28] The Netherlands 1875/4.7/2 38.3 68.8 (7.5) 27.8 2.0/3.1/6.7 2.5
InCHIANTI [29] Italy 1209/8.9/4 43.5 69.0 (0.4) 12.4 0.8/2.7/10.2 2.1/0.7
PREVEND [30] The Netherlands 2688/3.4/6 48.4 48.5 (12.6) 9.1 1.0/1.5/2.7 na

aCombined thyroid supplementation/antithyroid medication.
CHS, Cardiovascular Health Study; EPIC, European Prospective Investigation into Cancer and Nutrition Study; SHIP, Study of Health in Pomerania; InCHIANTI, Invecchiare in
Chianti; PREVEND, Prevention of Renal and Vascular End-Stage Disease; na, not available; subcl, subclinical; hypo, hypothyroidism.

FIGURE 1: Mean (SD) eGFR (mL/min/1.73 m2) at baseline in the
different cohorts.
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an extremely low value, the second measurement will tend to por-
trait a higher value. Secondly, as overt hypothyroidism is generally
considered an indication for thyroid hormone supplementation, the
relative rise in eGFR over time could be the resultant of treatment ra-
ther than due to hypothyroidism itself. Yet, sensitivity analyses ex-
cluding subjects on thyroid medication did not reveal differential
findings. Nevertheless, changes in thyroid status and medication
during follow-up could have translated into different outcomes.
Finally, patients with hypothyroidism could be more inactive result-
ing in a lower muscle mass, thereby lowering creatinine levels.

We did not observe a difference in eGFR change over time
in the subclinical hypothyroid group as compared with euthyr-
oid subjects. Because subclinical hypothyroidism is not a strict
indication for thyroid hormone supplementation, thyroid hor-
mone supplementation likely did not play an interfering role.
Results of a previous non-randomized study suggest that thy-
roxine supplementation preserves renal function over time in
patients with CKD Stages 2–4 [12]. Findings from that study
are, however, hampered by several limitations. First, in the ab-
sence of a randomized design and/or appropriate adjustment,

A

B

FIGURE 2: Forest plots providing the pooled differences in eGFR (mL/min/1.73 m2) at baseline in each thyroid group as compared with the
euthyroid group.
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confounding by indication may have imposed systematic error.
Patient characteristics and physician preferences likely influ-
enced the decision to initiate treatment. The non-treatment
group indeed seemed overall less healthy than the treatment
group. Secondly, 49 out of 358 individuals were excluded from
the analyses because of a follow-up duration <12 months. This
loss to follow-up may have been dependent on treatment status
and outcome, and as a result, have introduced selection bias.
Therefore, in addition to previous literature, current findings
do not support a causal relationship between subclinical hypo-
thyroidism and a decline in renal function over time.

It is of interest to speculate why eGFR increased over time in
cohorts with an average higher age [25, 26]. One of the explan-
ations may be that those individuals with more rapid declines
in renal function died sooner. Alternatively, as muscle metabol-
ism and habitus change in old age, conventional equations for
assessing eGFR are poorly validated in elderly individuals [38].
Nevertheless, in the Leiden 85-plus study, comprising

individuals in similar age categories as PROSPER (Prospective
Study of Pravastatin in the Elderly at Risk) and BELFRAIL (the
Belgian cohort of the Very Elderly), average annual change in
eGFR was considerably lower. When repeating our analyses ex-
cluding cohorts with positive changes in eGFR, results did not
change, leading us to believe that this paradoxical increase in
eGFR would not have translated into bias. Given the absence of
a longitudinal association, the concept of reversed causation
(CKD causing thyroid hormone abnormalities) may explain the
observed cross-sectional association between low thyroid and
renal function in our study. CKD, and especially end-stage renal
disease, is frequently accompanied by abnormal TSH, low tri-
iodothyronine (fT3) and fT4 levels fitting the spectrum of so-
called ‘non-thyroidal illness’ [39]. In the absence of primary dis-
ease in the HPT axis, its pathogenesis is multifactorial and
occurs at multiple levels including peripheral deiodinase-de-
pendent conversion defects and central alterations in thyroid
hormone signalling [40]. It could be speculated that deiodinase
defects in early phases prevail over central mechanisms, leading
to a compensatory increase in TSH secretion. Further studies
on this hypothesis could include (free) T3 measurements to
study effects of deiodinase subtypes.

To our knowledge, this is the first IPD meta-analysis
studying the association between thyroid hormone status and
renal function. Findings from our study are strengthened by
the large population size, its global representativeness and
availability of IPD, making it possible to standardize defin-
itions, statistical models and outcomes. Several limitations
need to be discussed. First, methodology of creatinine meas-
urements was not similar across studies. Since differences in
renal function were calculated between groups and individ-
uals on a study level, this cannot have resulted in systematic
error. For some studies, different assays were used between

C

FIGURE 2: Continued.

FIGURE 3: Mean (SD) changes in eGFR (mL/min/1.73 m2/year) in
the different cohorts.
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the visits in the longitudinal analyses, which may have re-
sulted in dilution of the results to the null. For example, in the
HUNT study and Health ABC, different assays were used at
baseline and during follow-up. However, sensitivity analyses
excluding results from the HUNT study and Health ABC did
not change our findings. Also, eGFR is an approximation of
renal function. Determining measured GFR would benefit
classification of individuals in their outcome. Nevertheless,
estimation equations have been shown to be accurate for fol-
lowing changes in GFR over time [41]. Secondly, our study
was not specifically designed to study the impact of overt
hypothyroidism on renal function. Only a minority of indi-
viduals in our study had TSH levels >20 mIU/L. Also, thyroid
hormone usage was more prevalent in the hypothyroid and
subclinically hypothyroid groups and could have prevented
its downstream effects on renal function. However,

adjustment for thyroid medication revealed no differences in
findings suggests that overt hypothyroidism is not associated
with an additional decline in renal function over time.
Potential confounding effects of other drugs such as amiodar-
one, glucocorticoids and lithium could not be determined be-
cause these parameters were not available in most cohorts.
Since relatively few individuals in the general population use
these medications, effects on parameters are likely small.
Finally, censoring due to events of death could have caused se-
lection bias. Meta-regression analyses did, however, not reveal
an association between the proportion of mortality and the ef-
fect estimate in the studies included. Also, estimation equa-
tions have been shown to be accurate for assessing GFR slopes
over time and its determinants [42, 43], which supports the le-
gitimacy of studying thyroid dysfunction as a risk factor for
changes in renal function in these cohorts.

FIGURE 4: Forest plots providing the pooled additional changes in eGFR (mL/min/1.73 m2/year) per year in each thyroid group as compared
with the euthyroid group. n ¼ number of observations.
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Overall, we found that, cross-sectionally, low thyroid func-
tion was associated with lower eGFR values as compared with
euthyroid subjects. During follow-up, subjects with low thyroid
function did not have a more pronounced decline in renal func-
tion over time than euthyroid subjects. We conclude that low
thyroid function, and especially subclinical hypothyroidism, is
not associated with deterioration in renal function and specu-
late that cross-sectional findings may be explained by renal dys-
function causing thyroid hormone alterations. Further studies
should shed light on the link between thyroid and renal func-
tion and possible differences among causes of thyroid disease.
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A B S T R A C T

Background. To examine the association between plasma uric
acid (UA) and the presence of diabetic complications including
diabetic nephropathy and cardiovascular risk factors in patients
with type 1 diabetes.
Methods. This study, which is cross-sectional in design, in-
cluded 676 Caucasian type 1 diabetes patients from the Steno
Diabetes Center Copenhagen. Participants with UA within the
three lowest sex-specific quartiles were compared with partici-
pants with levels in the highest quartile. Unadjusted and adjusted
linear regression analyses were applied. Adjustment included
sex, age, diabetes duration, body mass index, high-density
lipoprotein cholesterol, smoking, haemoglobin A1c, 24-h pulse
pressure, urinary albumin excretion rate (UAER), estimated
glomerular filtration rate (eGFR) and treatment with renin–
angiotensin–aldosterone system blockers.
Results. Of the 676 patients, 372 (55%) were male, mean 6 SD
age was 55 6 13 years and eGFR was 82 6 26 mL/min/1.73 m2.
The median UA was 0.30 (interquartile range 0.23–0.37) mmol/
L. UA in the upper sex-specific quartile was associated with
lower eGFR, higher UAER and carotid–femoral pulse wave vel-
ocity and lower 24 h and daytime diastolic blood pressure (BP)
in unadjusted analyses (P< 0.001). Moreover, UA in the upper
sex-specific quartile was associated with higher nighttime
systolic BP and the presence of cardiovascular disease in
unadjusted analyses (P� 0.01), but significance was lost after
adjustment (P� 0.17). UA was higher across the retinopathy

groups [nil (n¼ 142), simplex (n¼ 277), proliferative (n¼ 229)
and blind (n¼ 19)] in unadjusted analyses (P< 0.0001), but
not after adjustment (P¼ 0.12). Patients with an accelerated de-
cline in eGFR (�3 mL/min/year) had significantly higher UA at
baseline (P¼ 0.006) compared with slow decliners (<3 mL/
min/year), but significance was lost after adjustment (P¼ 0.10).
Conclusions. In type 1 diabetes patients, higher UA was associ-
ated with lower kidney function and other diabetic complica-
tions. The association between higher UA and lower eGFR and
lower diastolic BP was independent of traditional risk factors.

Keywords: coronary artery, diabetes mellitus, diabetic kidney
disease, disease uric acid, GFR

I N T R O D U C T I O N

The complex pathogenesis of diabetic complications is not fully
understood [1, 2] and so far many risk factors have been pro-
posed. One of these is uric acid (UA). Elevated levels of UA
have been proposed as a risk factor for chronic kidney disease
(CKD), hypertension and cardiovascular disease in people with
as well as without diabetes [3–7].

In the clinical setting, the majority of observational studies
have shown that higher UA is associated with the incidence and
development of CKD in patients with type 1 diabetes independ-
ent of other risk factors [5, 6, 8–10]. Prospective data from the
Second Joslin Kidney Study showed that higher UA is one of the
strongest risk factors for early loss of renal function (measured by
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