Lawrence Berkeley National Laboratory

Recent Work

Title
THE REACTION 12C(160, 12C) 160

Permalink
https://escholarship.org/uc/item/6m55s83x

Authors
Harvey, B.G.
Mahoney, J.
Faivre, J.-C.

Publication Date
1971-04-01
THE REACTION $^{12}\text{C}(^{16}\text{O}, ^{12}\text{C})^{16}\text{O}$

B. G. Harvey, J. Mahoney, J. -C. Faivre, J. R. Meriwether, and D. L. Hendrie

April 1971

AEC Contract No. W-7405-eng-48

TWO-WEEK LOAN COPY

This is a Library Circulating Copy which may be borrowed for two weeks. For a personal retention copy, call Tech. Info. Division, Ext. 5545

Submitted to Physical Review Letters
THE REACTION $^{12}\text{C}(^{16}\text{O},^{12}\text{C})^{16}\text{O}$

B. G. Harvey, J. Mahoney, J.-C. Faivre †, J. R. Meriwether † †, and D. L. Hendrie

Lawrence Radiation Laboratory
University of California
Berkeley, California 94720

April 1971

Abstract:

The transfer reaction $^{12}\text{C}(^{16}\text{O},^{12}\text{C})^{16}\text{O}$ and the scattering reaction $^{12}\text{C}(^{16}\text{O},^{16}\text{O})^{12}\text{C}$ were studied simultaneously at $E(^{16}\text{O}) = 69.45$ MeV (lab). The levels of ^{16}O and ^{12}C which were excited suggest that at forward angles of ^{12}C the reaction is a four-nucleon transfer, while at backward ^{12}C angles inelastic scattering of ^{16}O predominates. The $Q=0$-MeV angular distribution is in qualitative agreement with these conclusions.

The $(^{16}\text{O},^{12}\text{C})$ reaction has recently been used to excite four-particle (quartet) states in a variety of nuclei between ^{40}Ti and ^{68}Zn. Since four-particle levels resembling those postulated in this work are well-known in ^{16}O (supposed to be the members of the rotational band based on the 6.05-MeV 0^+ level), we studied the reactions $^{12}\text{C}(^{16}\text{O},^{16}\text{O})^{12}\text{C}$ and $^{12}\text{C}(^{16}\text{O},^{12}\text{C})^{16}\text{O}$ (elastic and inelastic scattering of ^{16}O by ^{12}C, and four-nucleon transfer respectively). The reactions have been studied previously but there is little published information about precisely which levels of ^{16}O are excited by the two reactions.

The experiment was done with 69.45-MeV ^{16}O (3^+) ions accelerated in the third harmonic mode by the Berkeley 88-inch cyclotron. Reaction products were
detected in a $\Delta E(11\mu) - E(250\mu)$ counter telescope at a resolution of about 400 keV. They were identified by computing for each event the function $\Delta E(E + E_0 + K\Delta E)$, where E_0 and K are adjustable constants. With so thin a ΔE counter, separation of adjacent masses of a given Z was not possible, but adjacent elements were completely resolved. Isotopes of C and Ne were much more abundant than N or F.

Examination of the C and O spectra as a function of angle showed that no peaks could be attributed to ^{11}C, ^{13}C, ^{14}C, ^{14}O, ^{15}O, or ^{17}O or to any excited states of these nuclei.

In the ^{12}C spectra, peaks corresponding to levels of ^{16}O and the ground state of ^{12}C are narrow. Decay in flight causes the peak corresponding to excitation of ^{12}C to the 4.439-MeV level to be broadened to a width of about 1 MeV. Since all other $T = 0$ excited states of ^{12}C decay predominantly by particle emission, the 4.439-MeV level is the only ^{12}C excited state that should be observed in the ^{12}C spectra. This is confirmed experimentally.

In the ^{16}O spectra, on the other hand, peaks due solely to excitation of ^{12}C cannot be broadened by decay in flight, while peaks corresponding to γ-decaying levels of ^{16}O should be broad. Particle-decaying levels of ^{16}O should be absent. Again these expectations are confirmed by the experiment.

Figure 1 shows a spectrum of ^{12}C. A preliminary energy scale was constructed by least-squares fitting the peak centroids for the $Q = 0$ and $Q = -4.439$-MeV levels and the corresponding calculated particle energies at all measured angles. This scale permitted assignment of $Q = -6.917$ and -10.34 MeV to two additional peaks. A second least squares fit including these levels was then made to 51 pairs of centroid-energy values. The fit included a small second order term. The standard deviation was 0.18%. The accuracy was
insufficient to determine whether the peak at \(Q \approx -6 \, \text{MeV} \) is due to the 6.052-MeV 0+ level of \({}^{16}O \) or to the 6.131-MeV 3- level. The experimental value was \(Q = -6.08 \pm 0.04 \, \text{MeV} \). However, the 6.917-MeV 2+ member of the \({}^{16}O \) band is strongly excited. The peak at \(Q = -10.34 \pm 0.04 \, \text{MeV} \) could be either the 10.342-MeV 4+ member of the rotational band or the 10.351-MeV \({}^{16}O \) level.\(^9\) From its observed energy and small width, it cannot be due to the double excitation \({}^{12}C(4.439 \, \text{MeV}) + {}^{16}O(6.052 \, \text{MeV}), \, Q = -10.491 \, \text{MeV} \).

At just a few angles, peaks appeared in the \({}^{12}C \) spectrum corresponding to \(Q = -10.95 \pm 0.09 \) and \(-14.7 \, \text{MeV} \). The former is visible only in the neighborhood of 30° (lab). At other angles it is replaced by a broad structure which is probably due to the double excitations \({}^{12}C(4.439 \, \text{MeV}) + {}^{16}O(6.052, 6.131 \, \text{MeV}) \). The only \({}^{16}O \) levels near the observed energy are the 10.952-MeV 0- and 11.080-MeV 3+, neither of which can be excited in first order by \(\alpha \)-transfer or inelastic scattering of \({}^{16}O \). The double excitation could be responsible for the sharp peak in the vicinity of 30° if there were a sufficiently strong correlation between the motion of the \({}^{12}C \) excited nucleus and its decay \(\gamma \)-ray to suppress the broadening.

The peak at about \(Q = -14.7 \, \text{MeV} \) could be either the 14.82-MeV 6+ or the 14.80-MeV 0+, 1- levels of \({}^{16}O \). At most angles it is replaced by a broad structure that is probably due to the double excitation \({}^{12}C(4.439 \, \text{MeV}) + {}^{16}O(10.34 \, \text{MeV}) \). A strong peak at \(\sim 14.8 \, \text{MeV} \) has been previously observed in the \({}^{14}N(\alpha,d){}^{16}O \) (Ref. 10), \({}^{12}C(Li^7,t) \) (Ref. 11), \({}^{12}O({}^{16}O,{}^{12}C){}^{16}O \) (Ref. 7) and \({}^{12}C(\alpha,\alpha){}^{12}C \) (Ref. 6) reactions. The level, if the same in all cases, must have considerable 2p-2h and 4p-4h strength.

The 6+ member of the \({}^{16}O \) band, at 16.2 MeV, was not observed at any angle, probably because the energy of the outgoing \({}^{12}C \) ion would be substantially
below the $^{12}\text{C} + ^{16}\text{O}$ coulomb barrier. However, it is not strong even at an oxygen bombarding energy of 97 MeV (lab).\(^7\)

The ^{16}O levels observed in the ^{12}C spectra appear to be excited by the α-transfer mechanism rather than by inelastic scattering. The ^{16}O levels most strongly excited by (α,α') are (in decreasing order of cross section) the $6.131 \text{ MeV } 3^-$, $6.917 \text{ MeV } 2^+$ and the $7.119 \text{ MeV } 1^-$.\(^{12}\) In the present experiment the energy scale based on the $Q=0$ and -4.439 MeV peaks gave $Q = -6.902 \pm 0.018 \text{ MeV}$ for the peaks in this region. Furthermore, the peak was always symmetric and as narrow as the peak at $Q = -6.1 \text{ MeV}$. Thus the 7.119-MeV level must be very weak, whereas in (α,α') its cross section is about half that of the 6.92-MeV level.

In (α,α'), the level at 10.34 MeV is excited only about one tenth as strongly as the 6.92 MeV level, whereas in the ^{12}C spectra it is at least as strong and usually much stronger. The 14.7-MeV level observed in the ^{12}C spectra is weak or absent in (α,α') spectra. The elastic angular distribution shown in Fig. 2 shows a rise towards forward ^{12}C angles which may be indicative of a transfer mechanism at small ^{12}C angles. There is a typical elastic scattering diffraction pattern at large ^{12}C angles (small ^{16}O angles).

The ^{16}O spectra are less useful since most of the peaks are broadened by decay in flight. An energy scale was constructed by least square fit to the $Q=0$ and $Q = -4.439 \text{ MeV}$ peaks. The standard deviation was 0.15%. Apart from the $Q=0$ and $Q = -4.439 \text{ MeV}$ peaks, there was a broad intense peak at $Q = -6.36 \pm 0.04 \text{ MeV}$ corresponding to excitation of the unresolved ^{16}O levels between 6.05 and 7.12 MeV. The $^{12}\text{C} 3^-$ level at 9.64 MeV was observed: it is strongly excited by $^{12}\text{C}(\alpha,\alpha')^{12}\text{C}$.\(^{12}\) A strong broad peak at $Q = -10.72 \pm 0.13 \text{ MeV}$
can only correspond to $^{12}\text{C}(4.439 \text{ MeV}) + ^{16}\text{O}(6.05 + 6.13 + 6.92 + 7.12 \text{ MeV})$. The 14.7-MeV ^{16}O level was not visible in the ^{16}O spectra at any angle; it is presumably particle-unstable, as are the 10.34- and 10.35-MeV ^{16}O levels.

The cross sections for the $Q=0$- and $Q = -4.439$-MeV levels in the ^{12}C spectra are about equal. However, excitation of the $^{12}\text{C} 4.439$-MeV level was not observed in any (^{16}O,^{12}C) reactions with medium weight targets. This could be due to the presence of a continuum of ^{12}C ions (arising perhaps from three-body break-up of ^{16}O and from the high level density), and the broadening and lowering of the ^{12}C excited state peaks by γ-decay. Furthermore, the weakness of the sum peaks in Fig. 1 shows that while the residual system $^{12}\text{C}(4.439 \text{ MeV}) + ^{16}\text{O}(0 \text{ MeV})$ is more probable than $^{12}\text{C}(0 \text{ MeV}) + ^{16}\text{O}(0 \text{ MeV})$, residual systems containing $^{12}\text{C}(4.439 \text{ MeV}) + ^{16}\text{O}(\text{excited})$ are less visible than $^{12}\text{C}(0 \text{ MeV}) + ^{16}\text{O}(\text{excited})$.
FOOTNOTES AND REFERENCES

* Work performed under the auspices of the U. S. Atomic Energy Commission.
† Permanent address: CEN Saclay, B. P. No. 1, 91-Gif-sur-Yvette, France.
‡‡ Permanent address: Physics Dept., University of Southwestern Louisiana, Lafayette, La.

FIGURE CAPTIONS

Fig. 1. Energy spectrum of ^{12}C ions at 30° (lab).

Fig. 2. Angular distributions of ^{12}C particles for $Q = 0$– and $Q = -4.439$-MeV.

Cross sections forward of 85° (c.m.) were obtained from ^{12}C spectra, those backward of 85° (c.m.) from ^{16}O spectra.
Fig. 1

Counts / channel

Channel number

000 600 050 400 300 200 100 0

Channel number

12C gs. + 16O gs
12C 4.439 MeV
16O 0.6052 + 6.131 MeV
16O 10.34 MeV 4+
16O 10.95 MeV 2+
16O 14.7 MeV

ΔE counter (+)
cut-off

300° LAB
160° (8+)

XRL-713-3015
Fig. 2

- Elastic scattering
- Q = 4439 MeV x 10
- Transfer
- Q = 0 MeV
- Elastic scattering

\(\frac{d\sigma}{d\Omega} \) (mb/sr)

\(\theta_{\text{c.m.}} \) (deg) of \(^{12}\text{C}\)
This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Atomic Energy Commission, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights.