
UCSF
UC San Francisco Previously Published Works

Title
Multi-omic longitudinal study reveals immune correlates of clinical course among 
hospitalized COVID-19 patients

Permalink
https://escholarship.org/uc/item/6m67c638

Journal
Cell Reports Medicine, 4(6)

ISSN
2666-3791

Authors
Diray-Arce, Joann
Fourati, Slim
Jayavelu, Naresh Doni
et al.

Publication Date
2023-06-01

DOI
10.1016/j.xcrm.2023.101079
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/6m67c638
https://escholarship.org/uc/item/6m67c638#author
https://escholarship.org
http://www.cdlib.org/


Article
Multi-omic longitudinal stu
dy reveals immune
correlates of clinical course among hospitalized
COVID-19 patients
Graphical abstract
Highlights
d Distinct baseline and temporal patterns are associated with

the clinical course

d Persistent viral levels, despite high antibody titers, are

associated with severity

d Severity is linked to reduced cytotoxic NK cells, increased

inflammation, and thrombosis

d Myocardial damage markers distinguish critical patients who

recover from those who die
Diray-Arce et al., 2023, Cell Reports Medicine 4, 101079
June 20, 2023 ª 2023 The Authors.
https://doi.org/10.1016/j.xcrm.2023.101079
Authors

Joann Diray-Arce, Slim Fourati,

Naresh Doni Jayavelu, ..., Leying Guan,

Bjoern Peters, Steven H. Kleinstein

Correspondence
joann.arce@childrens.harvard.edu (J.D.-
A.),
steven.kleinstein@yale.edu (S.H.K.)

In brief

Diray-Arce et al. conduct deep

immunophenotyping of acute COVID-19

infection using more than 15,000

longitudinal samples from 540

hospitalized patients in the IMPACC

cohort. The study comprehensively

defines baseline and longitudinal

immunologic states that are associated

with mild to fatal disease trajectory

groups.
ll

mailto:joann.arce@childrens.harvard.edu
mailto:steven.kleinstein@yale.edu
https://doi.org/10.1016/j.xcrm.2023.101079
http://crossmark.crossref.org/dialog/?doi=10.1016/j.xcrm.2023.101079&domain=pdf


OPEN ACCESS

ll
Article

Multi-omic longitudinal study reveals immune
correlates of clinical course among
hospitalized COVID-19 patients
Joann Diray-Arce,1,7,* Slim Fourati,2,16 Naresh Doni Jayavelu,3,16 Ravi Patel,4 Cole Maguire,5 Ana C. Chang,1

Ravi Dandekar,4 Jingjing Qi,6 Brian H. Lee,6 Patrick van Zalm,7 Andrew Schroeder,4 Ernie Chen,8 Anna Konstorum,8

Anderson Brito,9 Jeremy P. Gygi,8 Alvin Kho,1 Jing Chen,1,7 Shrikant Pawar,8 Ana Silvia Gonzalez-Reiche,6

Annmarie Hoch,1,7 Carly E. Milliren,1 James A. Overton,10 Kerstin Westendorf,11 IMPACC Network, Charles B. Cairns,12

Nadine Rouphael,2 Steven E. Bosinger,2 Seunghee Kim-Schulze,6 Florian Krammer,6 Lindsey Rosen,13

Nathan D. Grubaugh,9 Harm van Bakel,6 Michael Wilson,4 Jayant Rajan,4 Hanno Steen,7 Walter Eckalbar,4

Chris Cotsapas,8,15 Charles R. Langelier,4 Ofer Levy,7,15 Matthew C. Altman,3 Holden Maecker,14 Ruth R. Montgomery,8

Elias K. Haddad,12 Rafick P. Sekaly,2 Denise Esserman,9 Al Ozonoff,1,7,15 Patrice M. Becker,13 Alison D. Augustine,13

Leying Guan,9 Bjoern Peters,11 and Steven H. Kleinstein8,17,*
1Clinical and Data Coordinating Center, Boston Children’s Hospital, Boston, MA 02115, USA
2Emory School of Medicine, Atlanta, GA 30322, USA
3Benaroya Research Institute, University of Washington, Seattle, WA 98101, USA
4University of California San Francisco, San Francisco, CA 94115, USA
5The University of Texas at Austin, Austin, TX 78712, USA
6Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
7Precision Vaccines Program, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
8Yale School of Medicine, New Haven, CT 06510, USA
9Yale School of Public Health, New Haven, CT 06510, USA
10Knocean, Inc., Toronto, ON M6P 2T3, Canada
11La Jolla Institute for Immunology, La Jolla, CA 92037, USA
12Drexel University, Tower Health Hospital, Philadelphia, PA 19104, USA
13National Institute of Allergy and Infectious Diseases, National Institute of Health, Bethesda, MD 20814, USA
14Stanford University School of Medicine, Palo Alto, CA 94305, USA
15Broad Institute of MIT & Harvard, Cambridge, MA 02142, USA
16These authors contributed equally
17Lead contact

*Correspondence: joann.arce@childrens.harvard.edu (J.D.-A.), steven.kleinstein@yale.edu (S.H.K.)
https://doi.org/10.1016/j.xcrm.2023.101079
SUMMARY
The IMPACC cohort, composed of >1,000 hospitalized COVID-19 participants, contains five illness trajectory
groups (TGs) during acute infection (first 28 days), ranging frommilder (TG1–3) tomore severe disease course
(TG4) and death (TG5). Here, we report deep immunophenotyping, profiling of >15,000 longitudinal blood and
nasal samples from 540 participants of the IMPACC cohort, using 14 distinct assays. These unbiased ana-
lyses identify cellular and molecular signatures present within 72 h of hospital admission that distinguish
moderate from severe and fatal COVID-19 disease. Importantly, cellular andmolecular states also distinguish
participantswithmore severe disease that recover or stabilize within 28 days from those that progress to fatal
outcomes (TG4 vs. TG5). Furthermore, our longitudinal design reveals that these biologic states display
distinct temporal patterns associated with clinical outcomes. Characterizing host immune responses in rela-
tion to heterogeneity in disease course may inform clinical prognosis and opportunities for intervention.
INTRODUCTION

Throughout the COVID-19 pandemic, scientists worldwide have

characterized immune responses and host-pathogen interac-

tions to severe acute respiratory syndrome coronavirus 2

(SARS-CoV-2) infection to gain insight into disease pathogenesis

and identify potential interventions for COVID-19. Studies as-

sessing distinct elements of viral variants and cellular and hu-
Cell
This is an open access article und
moral immunity from different participant populations have

greatly improved our understanding of SARS-CoV-2 pathogen-

esis.1–6 However, to design and deploy precision prognostics

and therapeutics, it is essential to address the heterogeneity in

clinical outcomes of COVID-19 and precisely define correlates

of host immune responses to that heterogeneity.

The clinical manifestations of COVID-19 are diverse, ranging

from asymptomatic disease to hospitalization and death.7–9
Reports Medicine 4, 101079, June 20, 2023 ª 2023 The Authors. 1
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Even among hospitalized patients, who are at the highest risk for

death, clinical courses are highly variable. To provide a compre-

hensive and unbiased study of the clinical course, immunology,

virology, and genetics of acute COVID-19, we established a

geographically diverse US consortium of 15 centers and 20 hos-

pital recruitment sites (Immunophenotyping Assessment in a

COVID-19 Cohort, or IMPACC).10 IMPACC analyzed participant

characteristics to capture the dynamics of clinical course and

defined five disease course trajectories spanning rapid recovery

through fatal outcomes.11

Here, we carried out deep immunophenotyping of 15,193 lon-

gitudinal samples from 540 IMPACC adult participants with a

confirmed positive SARS-CoV-2 PCR over the first 28 days after

hospital admission. To define the immune status of the study

participants, we employed six core immunophenotyping ap-

proaches on blood samples: serology (anti-SARS-CoV-2-spe-

cific and anti-interferon [IFN] antibodies), proteomics (circulating

markers from serum and plasma reflecting immune status from

protein states), metabolomics (metabolites and lipids), CyTOF

(leukocyte frequency and phenotype), gene expression (host

bulk RNA sequencing [RNA-seq] andmetagenomics), and geno-

mics (DNA sequence, genome-wide association study [GWAS]).

In addition, we analyzed the nasal epithelium, the port of entry of

SARS-CoV-2 infection, for viral load and viral sequences and

host transcriptomic profiles. Overall, we identified biologic states

associated with the five COVID-19 disease trajectory groups

defined by IMPACC, revealing potential determinants of clinical

heterogeneity and potential actionable targets for prognostic

biomarkers and therapeutic intervention.

RESULTS

Immunophenotyping of participants within five clinical
trajectory groups
We carried out deep immunophenotyping on longitudinal data

and samples over the initial 28 days post-hospital admission of

540 adult participants with PCR-confirmed SARS-CoV-2 infec-

tion enrolled in the IMPACC cohort between May 6, 2020 and

December 9, 2020 (Table S1). Five illness trajectory groups

were identified previously11 using clinical data from the entire

IMPACC cohort (1,164 participants) and latent class modeling

of longitudinal observation of a modified ordinal score,12 reflect-

ing both the degree of respiratory support required and the pres-

ence or absence of activity limitations or oxygen requirement at

discharge.11 The model classified each participant into one of

five groups: trajectory group 1 (TG1; n = 119) was characterized

by relatively mild respiratory disease and a brief hospital stay

(median [interquartile range (IQR)] 3 [2] days) with no limitations

at hospital discharge; TG2 (n = 149) generally required more res-

piratory support than TG1 and had a longer length of hospital

stay (LOS) (median [IQR] 7 [4] days) but no limitations at

discharge; and TG3 (n = 110) was characterized by roughly

similar respiratory support requirements and LOS (median

[IQR] 7 [7] days) as TG2 but generally had limitations at

discharge. Two additional groups had overall higher respiratory

support requirements during their hospital stay: TG4 (n = 106)

generally received more aggressive respiratory support and

experienced a prolonged LOS (median [IQR] 20 [12] days), and
2 Cell Reports Medicine 4, 101079, June 20, 2023
TG5 (n = 56) was characterized by high respiratory support re-

quirements and fatal illness by day 28 (Figure 1A). Detailed clin-

ical characteristics for the entire IMPACC cohort based on TG

assignment have been previously reported.11 Participant demo-

graphics, comorbidities, time from symptom onset to hospitali-

zation, and baseline clinical respiratory status, radiographic find-

ings, and clinical laboratory data for the 540 participants with

deep immunophenotyping data analyzed here reflect character-

istics of the entire IMPACC cohort (Table S1).

Clinical laboratory values were collected both at baseline and

at scheduled visits during the hospital stay if ordered by the clin-

ical care team.10 Longitudinal multi-omics profiles were gener-

ated for each participant employing 14 distinct assays on blood

and nasal swab samples at each visit. In total, 15,193 biological

samples were processed and analyzed from 540 participants

(Figure 1B; Table S1). These assays included nasal viral load

and sequence, serology, blood cytometry, plasma proteomics,

serum cytokine/chemokine, plasma metabolomics, nasal and

peripheral blood mononuclear cell (PBMC) transcriptomics,

nasal metagenomics, and genetics (Figure 1C).

A common analytic framework to identify associations
with clinical severity
We developed a common analytic framework for all assays (Fig-

ure 1D; STAR Methods). Briefly, this framework included a

dimensionality reduction step followed by mixed-effects

modeling for association with the five clinical trajectory groups,

with confounding effects properly adjusted in this process. For

assay readouts with >50 features, we identified correlated

feature modules (referred to here as ‘‘modules’’) using weighted

gene co-expression network analysis (WGCNA).13 For a given

module in an assay, we define the module values across sam-

ples as the first principal component constructed using features

included in this module. We investigated the behavior of each

feature (or module) both at visit 1 (within 72 h of hospital admis-

sion) and longitudinally (up to 28 days post-hospital admission)

and correlated it with clinical outcomes. More specifically, we

tested both if a feature exhibited a monotonic trend from the

mildest (TG1) tomost severe (TG5) disease course at visit 1 using

mixed-effect ordinal regression (clmm) and if a feature showed

differential kinetics over the whole time course (visits 1–6) via a

generalized additive model with mixed effects (gamm4) where

we examined if the average (referred to as intercept in the

gamm4 documentation) or shape (referred to as the smoothing

term in the gamm4 documentation) differs across the clinical tra-

jectory groups. Features with a false discovery rate (FDR) <5%

were considered significant based on the adjusted p value

(referred to as adj.p).14 For both analyses, significant features

were further tested for differences between each pair of TGs to

facilitate interpretation.15,16

Viral loads and antibody responses associated with
disease trajectory
Viral loads and antibody responses are key aspects of host-

pathogen interactions that relate to disease severity.17–19 We as-

sessed nasopharyngeal viral loads by RT-PCR, viral variants by

whole-genome sequencing, anti-receptor binding domain (RBD)

and anti-spike immunoglobulin G (IgG) antibodies by ELISA, and
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C

D

Figure 1. Overview of IMPACC cohort, sample collection, and immunophenotyping

(A) Clinical trajectory group assignment of IMPACC cohort participants (N = 1,164).10–12

(B) The total number of collected tissues (whole blood, serum, plasma, and nasal swab samples) for all acute visits (up to day 28 post-admission, including

escalation visits). A total of 15,193 samples were profiled from 540 participants across 20 hospital recruitment sites from 15 biomedical centers.

(C) The total number of participants profiled by 14 different immunophenotyping assays over the course of the scheduled acute visits (visits 1–6).

(D) Data analysis involved a rigorous data quality and confounder analysis, dimensionality reduction to combine features intomodules, and association of module

levels at visit 1 and their longitudinal pattern with the clinical trajectory group. Expression levels of modules at visit 1 are depicted as boxplots, while longitudinal

patterns are shown as line graphs.
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antibodies targeting the entire SARS-CoV-2 linear peptidome by

programmable phage display.20

Whole-genome viral amplification generated complete viral

genomes from 316 nasopharyngeal swab samples collected

from 221 participants. Genotyping identified 60 lineages from

Phylogenetic Assignment of Named Global Outbreak21,22

(PANGO) across the cohort (Figure 2A). All viral genomes were

of the Wuhan strain. No variants of interest or concern, such as

Delta or Omicron variants, were detected as the samples were

collected prior to the occurrence of these variants. Clinical tra-

jectory group was not associated with any of the 9 lineages

that were detected across at least 3 recruitment sites or with

participant-specific mutations (Figure 2B).

SARS-CoV-2 viral loads were measured on 1,174 nasopharyn-

geal swab samples collected from 474 participants. We did not

detect associations between viral load and sex, age, enrollment

site, and other sample metadata and demographic variables.

However, the RT-PCR median cycle threshold (Ct) values for

bothSARS-CoV-2nucleocapsidproteingenesN1andN2differed

significantly among the five clinical trajectory groups at hospital

admission (visit 1) (N1 Ct, adj.p = 0.04, and N2 Ct, adj.p = 0.04;

Figures 2C and S1A). The median viral loads were lowest (higher

Ct values) in the participant group with mildest disease (TG1)

and highest in the groupwithmost severe disease (TG5). Longitu-

dinal analysis identified additional significant differences in the

shape of the viral loads across time (N1 Ct, adj.p = 0.001, and

N2Ct, adj.p = 0.0003, Figures 2D andS1B).While a decline in viral

loads was observed for all of the trajectory groups, viral loads in

participants with the most severe disease (TG5) plateaued after

the first week of hospitalization at a Ct value still <30, suggesting

persistent viral RNA throughout the 28 days (Figure 2D).

Antibody titers against SARS-CoV-2 RBD IgG and spike IgG

were measured in 1,335 serum samples collected from 489 par-

ticipants. Anti-RBD and anti-spike IgG values at visit 1 were

quantitatively lowest in participants with themost severe disease

(TG5), but no significant difference was detected among the five

clinical trajectory groups (anti-RBD IgG, adj.p = 0.68, and anti-

spike IgG, adj.p = 0.68; Figures 2E and S1C). In contrast, the

average (anti-spike IgG, adj.p = 0.07) and shape (anti-spike

IgG, adj.p = 0.01, and anti-RBD IgG, adj.p = 0.07; Figures 2F

and S1D) of the longitudinal responses were different across

the trajectory groups, with TG4 showing the highest values of

anti-spike and anti-RBD IgG.
Figure 2. SARS-CoV-2 viral loads and antibody responses were assoc

(A) Viral sequencing identified 60 PANGO lineages across the cohort.

(B) The clinical trajectory group was not associated with any of the 9 lineages de

(C) Viral loads (SARS-CoV-2 N1 gene Ct values) measured from samples collecte

0.037]). For each boxplot, the vertical line indicates the median, the box indicate

range.

(D) Viral loads (SARS-CoV-2 N1 gene Ct values) from samples collected during t

(E) Anti-RBD IgG area under the curve (AUC) values measured from samples col

indicates the median, the box indicates the interquartile range, and the whiskers

(F) Anti-RBD IgG AUC values from samples collected during the acute visits (sha

(G) Seroreactivity (log10 summed RPK across SARS-CoV-2 regions) across samp

regions (highlighted in gray within spike and N annotations): decreased seroreacti

overall seroreactivity in the LINK domain of the nucleoprotein (shape: adj.p = 0.0

(C and D) Because lower Ct values indicate higher viral loads, the y axis is reverse

IQRs (whiskers), as well as all individual points.
Proteome-wide, linear peptide SARS-CoV-2 (and other human

coronaviruses [CoVs]) antibody profiling with VirScan23 (i.e.,

serum phage immunoprecipitation sequencing [PhIP-seq]) was

performed on 1,312 serum samples from 496 participants. No

batch effects were observed using principal-component anal-

ysis (PCA) (Figure S2A) and principal variance component anal-

ysis (PVCA) (Figure S2B). Visit 1 pan-SARS-CoV-2 antibody pro-

files (Figure S2C) did not show any significant association

between clinical trajectory group and seroreactivity to any viral

protein or region. Focusing on seroreactivity to the spike

(S) protein and nucleoprotein (N), the longitudinal analysis iden-

tified 323 significant 20 amino acid (aa) windows that were signif-

icantly associated with clinical trajectory groups and that map-

ped to 8 antigenic regions (Figures 2G and S2D; Table S2). In

addition, baseline cross-reactivity to human seasonal CoVs did

not correlate with the trajectory group (Figure S2E). Most

notably, more severe disease (TG5) was associated with

increased seroreactivity to the N-terminal domain (NTD) of S

and decreased antibody seroreactivity to the LINK domain of N

(adj.p = 0.023) (Figure S2D).

Serum samples from 489 participants were screened for auto-

antibodies against type I IFNs (a, b, and u) that may enhance

susceptibility to severe SARS-CoV-2 infection.2 A higher per-

centage of individuals with more severe disease (TG4, 9.6%,

and TG5, 7.8%) had functional blocking anti-IFN antibodies

than seen in mild disease (<5% for each of TG1–3; Table S3;

p = 0.001). Overall, these data show that viral loads along with

anti-SARS-CoV-2 and anti-IFN antibody levels (all lowest in

TG1) are significantly associated with clinical disease trajectory,

suggesting an important role for antibodies in the host responses

and clinical outcomes.

Analysis of serum and plasma proteomics identifies
modules related to natural killer (NK) cells and
coagulation pathways associated with severe disease
Soluble proteins are key effectors of immunity in blood. Cyto-

kines, chemokines, and secreted receptors mediate a fast

response and short-lived signaling, leading to slower but

also longer-lasting changes in plasma protein abundances.

Two complementary methodologies were used to investigate

the link between protein markers and the clinical trajectory

groups. A Proximity Extension Assay (PEA)-based technology

(Olink) was used to quantify 92 inflammatory cytokines,
iated with clinical trajectory group

tected.

d at visit 1 (significantly higher in participants with more severe disease [adj.p =

s the interquartile range, and the whiskers indicate 1.5 times the interquartile

he acute visits (shape: adj.p = 0.001, average: adj.p = 1.68e�5).

lected at visit 1 (lower in TG5 [adj.p = 0.68]). For each boxplot, the vertical line

indicate 1.5 times the interquartile range.

pe: adj.p = 0.07, average: adj.p = 0.3).

les collected from the acute visits were measured longitudinally in two distinct

vity in the NTD (shape: adj.p = 6.78e�6, average: adj.p = 0.058) and decreased

23).

d. (C and E) Shown are median values (horizontal lines), IQRs (boxes), and 1.5
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chemokines, and soluble receptors in serum; liquid chroma-

tography/mass spectrometry (LC/MS) was used to monitor

241 selected classical plasma proteins in a targeted fashion

and 508 plasma proteins that were detected and quantified

in discovery mode. The rationale for this 3-pronged approach

was to increase the coverage of the serum/plasma proteome

by using dedicated workflows for chemokines, cytokines, and

secreted receptors and two different fractions of the plasma

proteome before and after depletion of the most abundant

plasma proteins.24

Olink-link based cytokine, chemokine, and secreted
receptor analysis
Olink was generated and analyzed on 1,386 serum samples from

517 participants. The Olink assay detects and quantifies cyto-

kines, chemokines, and secreted receptors (for brevity, all

referred to as ‘‘soluble proteins’’). No batch effect was observed

using PCA (Figure S3A) and PVCA (Figure S3B). WGCNA identi-

fied six modules ranging from 6 to 30 soluble proteins (Fig-

ure S3C; Table S4). The ImmuneXpresso25 database, associ-

ating cytokines, chemokines, and secreted receptors to their

action on immune cells, was used to label the six Olink modules.

At visit 1, five of thesemoduleswere significantly associated with

clinical outcome (Table S4).

One of these five modules (Olink.mod3, annotated as ‘‘activa-

tors of NKs’’) was higher in participants who recovered relatively

quickly (TG1–3) (adj.p = 8.85e�11). This module, composed of

11 soluble proteins, was enriched for features related to acti-

vating cytotoxic NK cells and included molecules such as

CD244 and interleukin 12B (IL-12B) (Figure 3A). Six out of the

11 proteins were annotated to ‘‘activator of lymphocytes’’ based

on ImmuneXpresso25 and a literature search.26–29 This module

had an increased expression in milder trajectory groups, sug-

gesting a role in disease recovery (Figure 3B). Consistent with

this hypothesis, the expression of this module increased across

time in groups TG1 through TG4, but not in the fatal trajectory

group (TG5), where the opposite trend was observed (shape:
Figure 3. Association of serum proximity extension assay (Olink) and p

(A–F) Analysis of serum Olink data identified significant associations in the expres

groups. ImmuneXpresso,25 a text-mining tool linking cytokines/chemokines to c

Olink.mod2 (pro-inflammatory cytokines).

(A and D) Significant enrichments (i.e., Fisher’s exact test p % 0.05) are present

while red arrows indicate positive correlation/production/activation.

(B and C) Levels of Olink.mod3 (B) at visit 1 and (C) over time.

(E and F) Levels of Olink.mod2 (E) at visit 1 and (F) over time.

(G–O) Analysis of targeted and global mass spectrometry-based plasma proteom

Targeted.Prot.mod3, and (M–O) Global.prot.mod4 with the clinical trajectory gro

(G) MSigDB hallmark pathway analysis of the 58 proteins of Targeted.Prot.mod1

(H and I) Levels of Targeted.Prot.mod1 (H) at visit 1 and (I) over time.

(J) MSigDB hallmark pathway analysis of the 26 proteins of Targeted.Prot.mod3 i

(K and L) Levels of Targeted.Prot.mod3 at (K) visit 1 and (L) over time. Analysis of

associations of Global.prot.mod4 with the clinical trajectory group.

(M) MSigDB hallmark pathway analysis of the 54 proteins of Global.prot.mod

mesenchymal transition.

(N and O) Levels of Global.prot.mod4 at (N) visit 1 and (O) over time.

(B, E, H, K, and N) For each boxplot, the vertical line indicates the median, the

interquartile range.

(B, C, E, F, H, I, K, L, N, and O) Each point is a sample from an individual participan

correspond to a smooth spline fit for all participants in each trajectory group.
adj.p = 4.44e�12, average: adj.p = 3.39e�18; Figure 3C).

Notably, participants in TG4 that presented with severe disease

but survived past day 28 started with lower levels of ‘‘activators

of NKs’’ but exhibited an increase of those markers over time to

levels comparable to TG1–3. In contrast, four modules (Olink.-

mod1 [adj.p = 4.01e�6] annotated as ‘‘cytokines produced by

neutrophils’’ including the cytokine tumor necrosis factor [TNF]

and IL-17A; Olink.mod2 [adj.p = 3.55e�18] annotated as ‘‘pro-

inflammatory’’; Olink.mod4 [adj.p = 4.08e�4] including the

ADA deaminase; and Olink.mod6 [adj.p = 2.38e�5] annotated

as ‘‘activators of macrophages’’) were higher at visit 1 in partic-

ipants with a more severe disease course (Table S4). The most

significant module, Olink.mod2, was composed of pro-inflam-

matory cytokines and chemokines, including IL-6, CXCL-8 (IL-

8), and CXCL-10 (IP10) (Figure 3D) (13/17 proteins) annotated

as ‘‘produced by monocytes.’’30–32 Baseline (Figure 3E) and lon-

gitudinal analyses revealed that this pro-inflammatory module

persisted at elevated levels in participants that ultimately died

(TG5), while it decreased over time in participants in the other tra-

jectory groups (TG1–4) (shape adj.p = 4.70e�10, average adj.p =

4.40e�42; Figure 3F). In addition, cytokines in the pro-inflamma-

tory modules were directly induced by SARS-CoV-2 infection

(Figure S3D). Overall, these results identified early cytokines

and chemokines as well as an NK cell link that are associated

with clinical trajectories that distinguish fatal from non-fatal

disease.

Targeted mass spectrometry-based classical plasma
proteomics analysis
In total, 1,302 plasma samples from 500 participants were sub-

jected to a targeted LC/MS-based proteomics assay. Using the

multiple reaction monitoring (MRM) data acquisition mode, we

tracked 241 classical plasma proteins, many of which have im-

mune modulatory roles and thus are important for a more com-

plete molecular immunophenotyping. PVCA (Figure S4A) and

PCA (Figures S4B and S4C) indicated batch effects based on

the two phases in which the samples were processed and
lasma proteomics modules with clinical trajectory groups

sion levels of (A–C) Olink.mod3 and (D–F) Olink.mod2 among clinical trajectory

ells, was used to annotate (A) Olink.mod3 (activator of cytotoxic NKs) and (D)

ed in the network. Blue arrows correspond to negative correlation/repression,

ics data identified significant associations of (G–I) Targeted.Prot.mod1, (J–L)

up.

identified an association with coagulation.

dentified an association with coagulation and complement hallmark gene sets.

global mass spectrometry-based plasma proteomics data identified significant

4 identified an association with apical junctions, myogenesis, and epithelial

box indicates the interquartile range, and the whiskers indicate 1.5 times the

t. Light gray lines connect samples from the same participant. Thick black lines

Cell Reports Medicine 4, 101079, June 20, 2023 7
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analyzed, which were corrected for using the ComBat algo-

rithm.33 For this targeted dataset of classical plasma proteins,

WGCNA resulted in 7 modules ranging in size from 16 to 62 pro-

teins. Two of the seven modules (Targeted.Prot.mod1 and Tar-

geted.Prot.mod3) showed significant differences across the

five clinical trajectory groups (Figure S4D).

Targeted.Prot.mod1 was enriched for proteins annotated to

the ‘‘coagulation’’ pathway (14/62 proteins), including the fibri-

nolysis stimulator plasma kallikrein (KLKB1) (Figure 3G). Its

expression differed significantly between TGs at visit 1 (adj.p =

2.19e�3; Figure 3H) and longitudinally (shape adj.p =

3.06e�14, average adj.p = 1.61e�14; Figure 3I). Participants in

the mild to moderate clinical trajectory groups (TG1–3) started

out with increased levels of Targeted.Prot.mod1 relative to par-

ticipants from the more severe trajectory groups (TG4–5). In

addition to starting at higher levels (Figure 3H), participants in

TG1–3 showed a steady increase in their abundance levels

over time (Figure 3I). In contrast, participants in TG4–5 showed

a clear downward pattern during their hospital stays, highlighting

the prognostic nature associated with the dynamics and direc-

tionality of the proteins in Targeted.Prot.mod1. Interestingly, par-

ticipants that ultimately died (TG5) continued to show a down-

ward trend, while the expression leveled off after 10–15 days in

severely ill participants who eventually recovered or stabilized

(TG4) (Figure 3I; Table S5).

Targeted.Prot.mod3 also contained proteins associated with

the ‘‘coagulation’’ pathway (9/33 proteins) including the fibrino-

lysis inhibitor carboxypeptidase B2 (CPB2) in addition to pro-

teins from the complement pathway (8/33 proteins) (Fig-

ure 3J). Like Targeted.Prot.mod1, the expression of Targeted.

Prot.mod3 also differed significantly between TGs at visit 1

(adj.p = 1.32e�7; Figure 3K) and longitudinally (shape adj.p =

5.52e�15, average adj.p = 8.90e�25; Figure 3L). However, the

abundance levels of the proteins in Targeted.Prot.mod3 at visit

1 and their dynamics were the opposite of those observed in

Targeted.Prot.mod1, i.e., lower levels were associated with

less severe disease manifestations and faster recovery (TG1–3)

(Figure 3K). The lower abundances at visit 1 were followed by

a steady decrease in their abundance in plasma over time (Fig-

ure 3L; Table S5). In contrast, the plasma concentrations from

participants in TG5 showed a steep increase over time, demon-

strating the importance of trajectory analyses to leverage the full

prognostic value of plasma proteins. The plasma from partici-

pants in TG4 showed an intermediate trajectory: an elevated

level near the time of hospital admission (visit 1) was followed

by a slight decrease. However, concentrations diminish about

3 weeks after hospitalization, consistent with the delayed recov-

ery of these severely ill COVID-19 participants (Figure 3L).

Longitudinal analysis of the proteins associated with Targeted.

Prot.mod1 and Targeted.Prot.mod3 showed opposing temporal

trajectories for the different clinical trajectory groups as one

would expect for stimulators and inhibitors of the same biological

process such as fibrinolysis.

Global mass spectrometry-based plasma proteome
analysis
To increase the depth of the plasma proteome, we biochemi-

cally depleted the most abundant plasma proteins from 1,309
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plasma samples associated with 497 participants. The

depleted plasma samples were trypsinized and analyzed using

LC/MS-based shotgun proteomics (henceforth called ‘‘global’’

proteomics). We did not observe any batch effect using PVCA

(Figure S5A) and PCA (Figure S5B) in this global proteomics da-

taset. We identified 2,109 proteins in total, 508 of which were

present in at least 50% of the samples. WGCNA of the expres-

sion levels of these 508 proteins identified seven modules

ranging in size from 23 to 89 proteins. With the exceptions of

Global.prot.mod2 and Global.prot.mod7, the other five mod-

ules were significantly associated with clinical trajectory groups

at visit 1 (Figure S5C).

The 27 proteins associated with Global.prot.mod4 were en-

riched in proteins associated with apical junctions (6/27 pro-

teins), including myosins of cardiac (MYH7) as well as musculo-

skeletal origin (MYH1) (Figure 3M). Interestingly, the majority of

the proteins in this module were exclusively observed after

biochemical depletion of the most abundant proteins. Without

such depletion of the most abundant plasma proteins, the pro-

teins in Global.prot.mod4 would not be observable using the

same analytical instrumentation.

Participants with mild to moderate disease course (TG1–3)

started out with significantly lower levels of Global.prot.mod4

than the participants with more severe disease trajectories

(TG4–5) (adj.p = 2.68e�19, Figure 3N; Table S6). In addition, par-

ticipants in TG1–3 showed a clear downward trend during recov-

ery, i.e., further reduction of thesemarkers for cardiac injury. This

longitudinal pattern of Global.prot.mod4 proteins differentiated

severely ill participants that eventually recovered (TG4), who

shared a downward trend, from those with fatal outcomes

(TG5), who had a continuous upward trend (shape adj.p =

4.53e�11; Figure 3O; Table S6). These trends suggest signifi-

cant involvement and damage of heart and lung in the acute

phase of the disease. Worsening myocardial injury is associated

with increased epithelial damage, as indicated bymarkers of api-

cal junction damage34 and epithelial-mesenchymal transition.35

This is consistent with the higher cardiac troponin levels, associ-

ated with myocardial injury, previously observed for the partici-

pants in the most severe trajectory group in the IMPACC

cohort.11

Plasma global metabolomics reveals metabolic
dysregulation in hospitalized participants
Untargeted metabolomics using mass spectrometry (LC-MS)

was performed on 1,275 plasma samples from 486 partici-

pants. After quality control and assurance procedures

(Figures S6A–S6C), we identified 1,017 metabolite features

based on their m/z ratio and retention time. PCA (Figure S6D)

and PVCA identified event location (outpatient vs. inpatient,

11.5% variance for baseline, 10.5% variance for longitudinal

analysis; Figure S6E) and body mass index (BMI; 14% vari-

ance for visit 1 analysis; Figure S6F) as accounting for a signif-

icant fraction of the variance. These factors were subsequently

included as covariates in the longitudinal models. WGCNA

identified 42 modules ranging from 5 to 296 metabolites

(Figures S7A and S7B). Eighteen out of 42 modules measured

at visit 1 were significantly associated with clinical outcome

(Table S7). Seven of these modules demonstrated higher



Figure 4. Association of plasma metabolomics modules with clinical trajectory groups

(A–F) Analysis of plasma metabolomics data identified significant levels of (A–C) globalmet.mod6 and (D–F) globalmet.mod8 among clinical trajectory groups.

(A–C) Levels of globalmet.mod6, comprised of mostly branched amino acid and urea cycle metabolites, (A and B) at visit 1 and (C) over time.

(D–F) Levels of globalmet.mod8, which is comprised of phospholipid metabolites, were associated with severity at (D and E) visit 1 (adj.p = 7.33e�5) and

(F) longitudinally.

(B and E) For each boxplot, the vertical line indicates the median, the box indicates the interquartile range, and the whiskers indicate 1.5 times the interquartile

range.
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levels in participants with mild disease, while 11 modules were

associated with severe disease (TG5). This included branched-

chain aa and urea cycle metabolites (globalmet.mod6), phenyl-

alanine and tyrosine metabolism (globalmet.mod35), and

monoacylglycerol metabolism (globalmet.mod24). Interest-

ingly, one of these modules, globalmet.mod6, consisted of

branched aa and urea cycle metabolites (Figure 4A) and had

a higher level in the more severe trajectory groups (Figure 4B;

adj.p = 2.87e�13) raising the possibility of a role in disease

severity. Consistent with this hypothesis, the module levels

eventually decreased over time in the milder trajectory groups

(TG1–4) but significantly increased across time in the most se-

vere trajectory group (TG5) (shape adj.p = 2.95e�9, average

adj.p = 4.3e�29) (Figure 4C). Longitudinal analysis also identi-

fied 26 additional modules with average or shape having a sig-

nificant association with clinical trajectory group (Table S7).

Among the most significant modules associated with trajectory

groups, we identified globalmet.mod8, composed of many

phospholipid metabolites including arachidonic acids (Fig-

ure 4D), as having higher concentration in participants with

mild disease at hospital admission (Figure 4E; adj.p =

7.33e�5). This module also increased over time in all but the

fatal group (TG5), where levels eventually decreased over

time (Figure 4F; shape adj.p = 7.98e�4, average adj.p =

3.11e�8). We identified additional pathways such as histidine

metabolism (globalmet.mod3) and glycerophospholipids (glob-

almet.mod21) that demonstrated the same decreasing pattern.
Overall, this analysis identified significant dysregulation of the

plasma metabolome associated with disease severity. In-

creases in plasma concentrations of branched-chain aa me-

tabolites, including those within the histidine, lysine, urea,

and tryptophan pathways, were associated with more severe

disease trajectories (Figure S7C). In contrast, severe disease

was also associated with lower and decreasing concentrations

of phospholipid metabolites (Figure S7D).

Cell frequencies in blood of severe hospitalized COVID-
19 participants show high frequencies of neutrophils
and monocytes, with decreased cytotoxic NK cells
CyTOF profiling was performed on 811 blood samples collected

from 371 participants. We used a panel of 43 antibodies designed

to identify cell lineages and intracellular markers of functional sta-

tus. Sixty-five cell subsets were identified in whole blood using a

semi-automated gating strategy (Figure S8A). We did not detect

any batch effect using PCA (Figure S8B) and PVCA (Figure S8C).

The frequencies of 9 cell subsets measured at visit 1 were signif-

icantly associated with clinical outcome. Specifically, higher fre-

quencies of lymphocytes, including T cells and NK cells, were

associated with mild disease trajectories (TG1–3). In addition,

higher frequencies of neutrophils, hematopoietic progenitor cells

(adj.p = 6.34e�3; Figure 5A), and CD14+CD16� classical

monocytes (CD14+CD16�: adj.p = 3.83e�4, CD14+CD16+:

adj.p = 3.73e�4; Figure 5B) were associated with more severe

disease trajectories. Some of these cell subsets also showed
Cell Reports Medicine 4, 101079, June 20, 2023 9
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significant changes over time that were associated with clinical

trajectory groups. Indeed, participants in the most severe trajec-

tory group (TG5) had a higher frequency of neutrophils at admis-

sion (primarily driven by CD16hi neutrophils). While this subset

tended to decrease over time, the CD16low neutrophils increased

over time in the severe trajectory group (TG5) (Figure 5C). This

contrasts with participants that recovered, who had either con-

stant or decreasing frequencies of neutrophils (both CD16hi and

CD16low) over time (CD16hi, average adj.p = 1.08e�3, shape

adj.p = 6.62e�3; CD16low, average adj.p = 0.0113, shape

adj.p = 0.0317; Figure 5C). The frequency of total CD4 and CD8

T cells increased over time in all trajectory groups except for the

most severe trajectory group (CD4, average adj.p = 4,18e�9,

shape adj.p = 0.0251; CD8, average adj.p = 1.15e�4, shape

adj.p = 0.0105; Figure 5D; Table S8), which saw instead an in-

crease of myeloid cells over time (Figure S8D). The increase of

CD4 and CD8 T cells in those aforementioned trajectory groups

was driven by increases among many of the CD4 and CD8 cell

subsets including CD4 and CD8 naive T cells, effector memory

CD4 and CD8 T cells, and regulatory T cells (Tregs). Longitudinal

analysis also revealed that the frequency of cytotoxicNKcells pro-

ducing granzyme B (CD56low, CD16hi, CD57low) increased over

time in participants in TG1–4, while in the most severe trajectory

group (TG5), cytotoxic NK cell frequencies decreased over time

(shape adj.p = 7.08e�7; Figure 5E; Table S8). Altogether, we iden-

tified immune cells distinguishing the five clinical trajectory groups

including an increase in hematopoietic progenitor cells and clas-

sical monocytes that was persistent over time in participants

with the most severe disease course. The heightened frequency

of hematopoietic progenitor cells may reflect the emergency he-

matopoiesis that occurs in the most severe participants, while

heightened pro-inflammatory monocytes may reflect the sus-

tained and uncontrolled inflammation exacerbated by severe

COVID-19. We also identified lymphopenia, neutrophilia, and a

decrease in cytotoxic NK cells as associated with COVID-19 dis-

ease severity.

Analysis of PBMC transcriptomics highlights modules
related to inflammation and immune cell differentiation
We generated transcriptional profiles by RNA-seq for 1,033

PBMC samples from 429 participants. Batch effects were as-

sessed using PCA (Figures S9A and S9B) and PVCA (Fig-

ure S9C). WGCNA identified 40 modules ranging from 86 to

1,676 genes. Twenty-one of these modules measured at visit 1

were significantly associated with clinical trajectory groups (Fig-

ure S9D). Among these 21 modules, PBMC.mod2 (containing

802 genes) was enriched for several pathways that have previ-

ously been associated with COVID-19, including TNF-a signaling

via nuclear factor kB (NF-kB) inflammatory response,36 IFN-g

response,37 and IL-6/JAK/STAT3 signaling38 (Figure 6A). This
Figure 5. Association of cell subset frequencies with clinical trajectory

(A) Visit 1 analysis identified the frequency of hematopoietic progenitor cells (HPCs

6.34e�3), with higher average expression in the more severe groups.

(B) The frequencies of CD14+CD16�, CD14+CD16+, and CD14dimCD16+ monocyt

vertical line indicates the median, the box indicates the interquartile range, and t

(C–E) Longitudinal analysis of (C) neutrophil subset frequencies (CD16hi, averag

shape adj.p = 0.0310), (D) T cell frequencies (average adj.p = 6.01e�7, shape ad
module showed higher expression at visit 1 in participants

from the more severe trajectory groups (TG4-5; adj.p =

7.99e�3; Figure 6B; Table S9) and showed a statistically signif-

icant change in the shape of expression over time between the

trajectory groups (shape adj.p = 0.025, average adj.p =

1.33e�10; Figure 6C).

A module with high statistical significance, both at visit 1

(adj.p = 1.78e�8) and longitudinally (shape adj.p = 1.64e�7,

average adj.p = 2.77e�20), was PBMC.mod14, containing 356

genes. Enriched pathways for PBMC.mod14 included Th17

cell differentiation, Th1 and Th2 cell differentiation, T cell

receptor signaling, and IL-2/STAT5 signaling36 (Figure 6D).

PBMC.mod14 showed decreasing expression at visit 1 with

increasing disease severity (Figure 6E). Additionally, this module

showed increasing expression over time in trajectory groups that

ultimately recovered (TG1–4) but decreasing expression in par-

ticipants in the fatal trajectory group (TG5), suggesting a role in

disease recovery (Figure 6F).37 PBMC.mod29 also contained

genes relating to T cell receptor signaling (Figure 6D).38

PBMC.mod8 consisted of 416 genes with functions relating to

TNF-a signaling via NF-kB and transforming growth factor b

(TGF-b) signaling (Figure 6G). Higher expression of PBMC.mod8

(Table S9) at visit 1 was associated with milder disease trajec-

tories (adj.p = 2.76e�4; Figure 6H). Like PBMC.mod14, the

expression of PBMC.mod8 generally increased over time in all

but the most severe trajectory group (TG5) with decreasing

expression over time (shape adj.p = 0.03, average adj.p =

1.39e�9; Figure 6I).

Interestingly, in multiple cases, the same pathway was found

to be enriched in modules with opposing associations with tra-

jectory group. For example, the TNF-a via NF-kB, IL-2/STAT5,

and TCR signaling pathway genes that were part of PBMC.mod2

generally increased with trajectory group (at visit 1 and longitudi-

nally). These same pathways have genes that were decreasing in

PBMC.mod8 (TNF-a via NF-kB) and PBMC.mod14 (IL-2/STAT5

and TCR signaling). The genes driving each of these enrichments

were distinct, as each gene is only associated with a single mod-

ule (Figure S9E), and also reflected different biological mecha-

nisms. Genes belonging to TNF-a via the NF-kB pathway in

PBMC.mod2 were downstream of signaling from TNFR1 (TNF

receptor 1), including the receptor itself, while only PBMC.mod8

genes were downstream of TNFR2 (Figure S10A). Overall, these

results identify gene expression changes in multiple pathways

associated with disease severity at both visit 1 and over time.

Genetic associations with severe disease overlap
previously reported Human Genome Initiative
association
To identify genetic determinants of severe disease, we gener-

ated a high-quality dataset of 466 participants genotyped at
groups

) among non-granulocytes as different among clinical trajectory groups (adj.p =

e subsets among parental monocytes at visit 1. (A and B) For each boxplot, the

he whiskers indicate 1.5 times the interquartile range.

e adj.p = 9.76e�4, shape adj.p = 6.74e�3; CD16low, average adj.p = 0.0109,

j.p = 0.0123), and (E) cytotoxic NK cell frequencies among non-granulocytes.
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Figure 6. Association of PBMC transcriptomic and nasal transcriptomic modules with clinical trajectory groups

(A–I) Analysis of PBMC transcriptomic data identified 21 modules with significant differences in expression levels between clinical trajectory groups at visit 1,

including (A–C) PBMC.mod2, (D–F) PBMC.mod14, and (G–I) PBMC.mod8. (A, D, and G) These modules were interpreted using the top 10 enriched terms by

MSigDB Hallmark,39 Reactome,40 and KEGG41 pathway databases ranked by p value after filtering for significant pathways with p <0.05. (B, E, and H) Module

expression over trajectory groups at visit 1. (C, F, and I) Module expression by trajectory group over time.

(J–O) Analysis of nasal transcriptomic data identified 7 modules with significant differences in expression levels among clinical trajectory groups, including (J–L)

module 3 (NasalRNAseq.mod3) and (M–O) module 4 (NasalRNAseq.mod.4). Networks of protein-protein interactions among genes in (J) module 3

and (M) module 4 were retrieved from STRINGdb.42 Size of a node denotes degree, and edge thickness denotes strength of interaction as provided by

STRINGdb.42 (B, E, H, K, and N) For each boxplot, the vertical line indicates the median, the box indicates the interquartile range, and the whiskers indicate 1.5

times the interquartile range.
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1,060,358 common variants across the genome, including the X

and Y chromosomes. After controlling for population stratifica-

tion (genomic inflation factor l = 0.98) and other quality assess-

ment measures (Figures S11A–S11E), we performed a GWAS of

severe illness (TG4–5 vs. TG1–3). Given the sample size and

modest effect sizes of common variants, no marker reached

the genome-wide significant threshold of p < 5 3 10�8 (Fig-

ure S11F). We were, however, able to replicate one of ten asso-

ciations with COVID-19 hospitalization previously reported by

the Human Genome Initiative43 (11-34528766-C-T, p = 0.03;

Table S10), which was linked to a role for ELF5, a transcription

factor active in epithelial cells. This observation suggested that

the genetic basis of severe disease in our cohort is similar to

that reported by the HGI.44

Dysregulated airway epithelial barrier functions relate
to disease severity and mortality
We generated host transcriptional profiles from nasal swab

samples to assess the upper airway mucosal responses, the

initial site of SARS-CoV-2 infection and first line of barrier and

immunologic defense to the virus. RNA-seq data was generated

for 1,078 nasopharyngeal swab samples collected from 451

participants. After correcting for technical covariates (plate

and median CV), PCA (Figure S12A) and PVCA did not reveal

any batch effects (Figures S12B and S12C). WGCNA identified

eight modules with size ranging from 92 to 1,761 genes (Fig-

ure S12D). Overall, the expressions of three out of eight

modules were significantly associated with clinical outcome at

visit 1, and six modules were associated with clinical outcome

on the longitudinal pattern. NasalRNASeq.mod1 was enriched

for genes related to multiple innate immune signaling pathways

including neutrophil activation, IL-6, IL-1, TNF-a, Toll-like re-

ceptors, and type 1 and type 2 IFN signaling, among others,

and was higher in participants with more severe disease trajec-

tories (TG4–5) (Figure S12E). The NasalRNASeq.mod3 was

enriched for genes involved in extracellular matrix forma-

tion including fibronectin 1 (FN1), periostin (POSTN), and 16

collagen genes and also enriched in genes associated with

cell-cell adhesion and epithelial mesenchymal transition (Fig-

ure 6J). Expression of this module was increased in more se-

vere trajectory groups (TG4 and TG5) at visit 1 (Figure 6K)

and decreased over time in all groups but the most severe

trajectory group (TG5), where the opposite pattern was

observed (shape adj.p = 0.004, average adj.p = 3.08e�13; Fig-

ure 6L; Table S11), suggesting a role in disease severity.

NasalRNASeq.mod4 was enriched for genes involved in epithe-

lial cornification including filaggrin (FLG), SPINK5, and 11 kera-

tin genes and was also enriched in serine-type peptidases

including tissue kallikreins (Figure 6M). In contrast, the expres-

sion of NasalRNASeq.mod4 was lower in participants in the

more severe trajectory groups (TG4 and TG5) (Figure 6N) and

decreased over time, specifically in TG5 (shape adj.p = 0.018,

average adj.p = 0.07; Figure 6O; Table S11). Overall, this anal-

ysis identified significant dysregulation of airway epithelial bar-

rier responses that were associated with disease severity and

mortality. In particular, a multi-faceted inflammatory response

occurs directly in the airway in severe COVID-19 as well as

increased expression of extracellular matrix, adhesion, and
collagen genes that may represent the initial cellular damage

driving severe inflammation.

Analysis of upper airway metagenomics reveals
abundance in anaerobes in more severe trajectory
group
In our previous publication describing clinical features of the

entire IMPACC cohort, we noted differences in bacterial infec-

tions based on trajectory group, with bacteremia clinically re-

ported in a higher proportion of participants in TG4 (45/212,

21%) and TG5 (28/108, 26%) than TG1–3 (40/844, 4.7%).

Here, we performed meta-transcriptomic analysis on the same

host nasal RNA-seq data generated from 1,077 nasopharyngeal

samples collected from 451 participants. PCA (Figures S13G

and S13H), non-metric Bray-Curtis dissimilarity analysis, and

PVCA did not reveal any batch effects (Figure S13I). There was

no significant association of bacterial abundance (Figure S13A)

or a diversity (Figure S13B) with clinical trajectory either at visit

1 or longitudinally. The relative abundance of bacterial genera

at visit 1 also showed no significant associations with clinical tra-

jectory. However, the longitudinal patterns of 22 bacterial genera

were significantly associated with clinical outcome (Table S12).

The relative abundance of anaerobic bacteria including Bacter-

oides spp. (shape adj.p = 0.038, average adj.p = 5.4e�4; Fig-

ure S13C), Fusobacterium spp. (shape adj.p = 0.25, average

adj.p = 0.001; Figure S13D), and Prevotella spp. (shape adj.p =

0.0501, average adj.p = 5.4e�4; Figure S13E) was higher overall

in more severe trajectory groups, and the expression of these

bacterial genera increased over time in the most severe trajec-

tory group (TG5). In contrast, the relative abundance of 10 bac-

terial genera, including the well-known commensal Cutibacte-

rium spp., was lower overall and further decreased over time in

the most severe trajectory group (TG5) (shape adj.p = 0.16,

average adj.p = 1.7e�5; Figure S13F). Overall, this analysis iden-

tified temporal changes in the relative abundance of multiple

bacterial taxa that were associated with disease severity and

mortality. These changes in upper airway microbial communities

may influence inflammatory signaling or viral replication.

Overlap across data types reveals consistent pathways
associated with disease severity
The analysis of each assay identified many modules that were

significantly associated with clinical TG, both at visit 1 and longi-

tudinally. We assessed the overlap of pathways that were en-

riched in these modules to identify common biological pro-

cesses across data types (e.g., mRNA and protein) and tissues

(i.e., blood and upper airways). Among the modules that were

significantly associated with TGs at visit 1, 37 pathway annota-

tions were enriched in multiple data types (Figure 7A). The

most overlapping annotation was related to monocytes/macro-

phages and was associated with PBMC transcriptomics and

blood CyTOF as well as Olink. This included genes coding for

myeloid cell-specific markers CD93 and Toll-like receptor 4

(TLR4) and the soluble proteins CCL4 (MIP-1b) and TNFSF14

(LIGHT), known to activate macrophages and abrogate T cell re-

sponses, as well as elevated frequencies of monocytes among

the most severe COVID-19 cases.45–47 In general, overlapping

annotations were shared between PBMC and upper airway
Cell Reports Medicine 4, 101079, June 20, 2023 13



Figure 7. Markers of disease severity overlapping across assays

Overlapping pathways associated with more moderate or more severe trajectory groups (A) at the time of hospitalization (visit 1; left) or (B) during the longitudinal

follow up during the acute phase of the disease (right). For each overlapping pathway (row), the assays contributing to its identification as a marker of COVID-19

disease severity (column) are indicated. The color of each cell reflects whether the pathway is associated with moderate (blue) or severe (red) disease or both

(purple). Pathways were manually separated into groups of biologically related processes based on their names.
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transcriptional responses. Pathways related to cell cycle and cell

migration were perturbed in both tissue compartments. In the

upper airway, higher expression of these modules was generally

associatedwithmore severe disease trajectory groups, suggest-

ingmore active, localized responses in severe disease. Common

pathways enriched among modules identified in the longitudinal

(shape) analysis highlighted additional disease-associated per-

turbations (Figure 7B). In particular, inflammatory responses

and T cell-associated pathways were observed in both PBMC

and upper airway transcriptomics assays. The positive and

negative associations of T cell-associated pathways with severe

disease in the upper airways and blood, respectively, may reflect
14 Cell Reports Medicine 4, 101079, June 20, 2023
the migration of these subsets out of the blood. Two pathways

(xenobiotic metabolism and complement) were observed in

four separate assays: PBMC and upper airway transcriptomics

along with targeted and global proteomics. The association of

xenobiotic metabolism was driven by multiple genes (CYP1B1,

ALDH2, and CES1 were part of PBMC.mod18) and proteins

(APOE part of Targeted.Prot.mod4 and CRP part of the Global.

prot.mod3) in the pathway. The association of xenobiotic meta-

bolism with increased severity is likely a reflection of the large

metabolomic reprogramming experienced by severe COVID-19

participants. The association of complement was driven by mul-

tiple genes (CR1, C5AR2, C5AR1 part of the PBMC.mod2 and
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genes CD40LG part of the NasalRNAseq.mod6) and proteins

(CP, CFB, C9 part of the Targeted.Prot.mod3 and Global.prot.

mod3). Complement activation products orchestrate a pro-in-

flammatory environment that contributes to the maintenance of

a severe inflammatory response to SARS-CoV-2 and is likely to

cause several of the symptoms observed after infection.

DISCUSSION

For a comprehensive profile of acute COVID-19, we have under-

taken unbiased large-scale transcriptomic, proteomic, metabolo-

mic, cytometric, serologic, genomic, microbiome, and viral state

analyses of 540 hospitalized COVID-19 participants, recruited

from 20 hospitals associated with 15 biomedical centers, who

were longitudinally followed up to 28 days post-admission. Major

advantages of IMPACC include the prospective enrollment of

diverse adult populations from across the US and sample sparing

assays of blood and tissue/fluids using comprehensive molecular

omics methods. Additionally, the collection of extensive clinical

data allows for identification of five distinct clinical trajectories

that discriminated ranges of respiratory disease severity.11 This

clinical phenotyping has advantages over conventional cross-

sectional assessments by fully leveraging longitudinal data indic-

ative of respiratory illness severity to characterize a participant’s

outcomes during hospitalization, from mild respiratory disease

(TG1) to severe respiratory disease ending in death (TG5). Using

this systems analysis approach, we both confirm the findings of

immune dysregulation from smaller, cross-sectional cohorts as

well as identify cellular and soluble factors, at hospital admission

and longitudinally, that are associated with disease severity and

death from SARS-CoV-2 infection. Higher viral load and elevated

inflammatory pathways in the airway are linked to more severe

COVID-19 in this cohort.

Further characterization of molecular factors that are associ-

ated with disease trajectories enable identification of distinct

cellular and molecular mechanisms that contribute to a fatal

outcome. A primary finding is the association of delayed viral

clearance with death, despite detectable antibody responses,

which suggests ongoing viral replication and potential differ-

ences in antibody quality or functionality in those with fatal out-

comes. While antibody quality and functionality were not directly

assessed, individuals who died exhibited increased seroreactiv-

ity to the NTD of S and decreased reactivity to the LINK domain

of N. In addition, consistent with prior studies,2 participants with

more severe COVID-19 had neutralizing autoantibodies (auto-

Abs) against type I IFNs (TG4 = 9.6%, TG5 = 7.8%) that may

contribute to the severity of disease in these individuals.

Lack of direct correspondence between viral loads and anti-

viral antibody response suggests that dysregulation in other ele-

ments of the immune response plays a role in fatal cases.2

Immuno-profiling of innate and adaptive leukocyte subsets in

blood using CyTOF and RNA-seq reveals that the most severe

trajectory group (TG5) had a lower frequency of granzyme

B-producing cytotoxic NK cells and lower expression of cyto-

toxic gene pathways. NK cells kill virally infected cells,48 and

reduced levels of these cells may contribute to the viral persis-

tence in TG5. Notably, analysis of cytokine/chemokine expres-

sion (Olink) identified a significant increase of activators of cyto-
toxic NK cells, including IL-12B and the immunoregulatory

signaling molecule CD244, in less severe infection.49 We also

found decreased phospholipid components, including phospha-

tidylcholines, associated with more severe disease trajectories.

Phosphatidylcholines contribute to the formation of the immuno-

logical synapse, macrophage activation, NK cell function and T

and B cell activity50,51 underlying severe/fatal disease,49,50 sug-

gesting a role for these metabolites in regulating anti-viral immu-

nity and promoting protection from severe disease. In summary,

our results identified a deficiency of NK cell subsets and activity

that could lead to impaired viral clearance as a mechanism un-

derlying severe/fatal COVID-19.

More severe disease trajectories were associated with the ac-

tivity of multiple pro-inflammatory pathways at baseline, and this

activity persisted in people who did not survive the infection

(TG5). Active pathways include TNF-a signaling via NF-kB, IL-6

signaling, and the IL-6/Jak/STAT3 pathway as noted previously

in smaller cross-sectional studies.52 Genes contained within

the TNF-a signaling pathway that displayed both increased

gene expression at the initial visit and increasing expression

over time in TG5 were found exclusively in genes known to be

downstream of the TNFR1, but not TNFR2, including TNFR1 it-

self. Among genes downstream of TNFR1, c-FLIP, which func-

tions to inhibit apoptosis and stimulate inflammatory compo-

nents of the TNF-a signaling pathway,53 was also increased in

expression in TG5. Inflammatory cell death induced by TNF

and IFN-g signaling has been linked to COVID-19 mortality.54

Supporting this pro-inflammatory role of the TNF signaling

pathway is the combined expression of leukocyte recruitment

factors CXCL1/2/3. Additionally, contained in PBMC.mod8

(showing decreasing expression in TG5) is c-Jun, a transcription

factor that activates pro-apoptotic genes. These key compo-

nents of the TNF pathway, though enriched in modules showing

opposite expression trajectories, show that anti-apoptosis and

pro-inflammatory mechanisms are activated in more severe tra-

jectory groups. These inflammatory cytokines can recruit pro-in-

flammatory innate immune cells including monocytes and neu-

trophils, which will amplify inflammatory pathways leading to a

‘‘cytokine storm.’’

Our results reveal a hyperinflammatory state across the airway

and systemically as a correlate of severe infection and death.

CyTOF analysis also shows a greater frequency of neutrophils

in the more severe trajectory groups 4 and 5, a marker of severe

COVID-19 outcome as noted previously55,56 and possibly re-

flecting secondary bacterial infection.57 Neutrophil influx into

the lung may damage lung epithelial cells and contribute to

lung pathology, which may be amplified by release of NETs

and neutrophil granule contents. In addition, cytokine/chemo-

kine assays (Olink) identified multiple modules associated with

disease severity including cytokines produced by neutrophils,

pro-inflammatory modules, and activators of macrophages. In-

flammatory biomarkers, including IL-6, were higher at baseline

in both TG4 and TG5 compared with milder disease, similar to

previous findings.58 Longitudinal Olink measurements suggest

a clear association between resolution of inflammation in

28-day survivors (TG1-4) vs. non-survivors (TG5), confirming

the value of evaluating both clinical outcomes and measures of

inflammation over time rather than in a cross-sectional fashion.
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Elevated products of neutrophils identified by nasal and blood

RNA-seq are all associated with TG4 and TG5 and remained

elevated over time. Examining metabolite profiles, we identified

plasma branched-chain aa (BCAA) and urea components as

significantly elevated at baseline and further increased over

time with severe trajectories. Increased BCAA components

enhance reactive oxygen species (ROS) production, endothelial

cell pro-inflammatory activities,59,60 and insulin resistance.61

Histidine and lysine residues, often found in viral envelope pro-

teins, play roles in the activation of serine proteases assisting

viral entry to host cells.62,63 RNA-seq analysis of upper airway

samples identified that severe/fatal disease is associated with

higher initial and increased subsequent expression of genes

related to extracellular matrix formation and cell adhesion,

including fibronectin.64,65 These findings suggest a potential eti-

ology for our plasma proteome results that demonstrated throm-

bosis.64,65 Our data suggest that in severe COVID-19, adverse

remodeling of the airway epithelium, the first line of barrier and

immunologic defense against respiratory viruses and the initial

site of infection for SARS-CoV-2, may initiate a prothrombotic

state systemically.53–55

Increased plasma concentrations of various myosin chains of

cardiac and/or musculoskeletal origin were detected in the most

severely ill COVID-19 participants. This provides evidence for

damage to skeletal and cardiac muscle tissues in severe

COVID-19 and might reflect damage to the blood vessels and

myocardium, as well as muscle breakdown from a catabolic

stress response. Muscle damage is associated with a poor prog-

nosis in COVID-19.66 In our study, all COVID-19 participants that

eventually recovered (TG1–4) show a slight increase or steady

state of plasma fibrinolysis stimulators and coagulation inhibi-

tors. Coagulation is a carefully balanced counterplay of throm-

bosis (blood clot formation) and fibrinolysis (breakdown of blood

clots). The observed relationship between a massively dysregu-

lated coagulation cascade and disease severity is consistent

with the widely reported blood clotting complications in

COVID-19 participants. For example, elevated plasma levels of

D-dimer, a fibrin-degradation product, are a marker of increased

risk of severe disease and mortality.67

Changes in the respiratory microbiome may moderate inflam-

matory gene expression, immune signaling, and viral replication.

We found an enrichment of anaerobes in the genera Prevotella

and Bacteroides in the upper airways of participants with more

severe trajectories. Conversely, we found that commensal C.

spp. were enriched in participants with milder trajectories,

whereas loss of these species over time was associated with

fatal disease. These results suggest a possible role for some

taxa in disease pathogenesis, or alternatively, they may reflect

disruption of the upper airway microbiome resulting from the

host immune response to SARS-CoV-2 infection. The observa-

tions may also, in part, reflect greater exposure of those with

more severe COVID-19 to antibiotics.68 Future work can extend

these observations to both build improved prognostic models

and understand the specific contributions of these taxa to respi-

ratory tract inflammation and viral replication.

Our study also identified elements that may be protective from

severe disease. Notably, in the upper airway epithelium, mild dis-

ease was associated with higher expression of genes related to
16 Cell Reports Medicine 4, 101079, June 20, 2023
epithelial cornification typically seen in squamous epithelium,

whereas this pathway declined significantly in fatal disease. Given

that SARS-CoV-2 does not replicate significantly in squamous

epithelium and that multi-ciliated cells are the primary site of

SARS-CoV-2 infection,69,70 this finding suggests a protective

response mediated via epithelial reprogramming toward squa-

mous cells that can generate local anti-viral responses.68 This

finding is also consistent with the higher viral load and prolonged

viral shedding associatedwith fatal disease. Additionally, we iden-

tified genes from PBMC pathways related to T cell receptor

signaling, in which Th1, Th2, and Th17 cell differentiation was

increased in disease recovery groups (TG1–4). These findings

are consistent with observations of lymphopenia in COVID-19

cases71 and later findings that altered T cell activity anddecreased

abundance were also associated with severe disease.3

Overall, our study featured multiple strengths, including (1)

a large, geographical diverse cohort compared with most

COVID-19 studies employing omics approaches, (2) longitudinal

design with extensive clinical data capture, (3) immunopheno-

typing employing 14 assay types, and (4) rigorous data manage-

ment, quality control and assurance, and a standardized analysis

pipeline. This comprehensive approach enabled deep immuno-

phenotyping of the acute phase of COVID-19 from 540 hospital-

ized participants enrolled in the IMPACC cohort and identified

several significant associations with clinical course. Specifically,

we identified decreases in activators of NK cells and phospho-

lipid metabolites, increased blood neutrophils, increased circu-

lating myosins that may indicate muscle damage, changes in

the cells that line the airways (epithelial reprogramming), and

an increased abundance of anaerobes in the airway of partici-

pants the succumbed to SARS-CoV-2 infection. Broadly, these

results point to heightened levels of viremia driving an inflamma-

tory response locally and systemically, leading to impaired anti-

viral innate and adaptive immunity as well dysregulation in meta-

bolic pathways in participants with severe disease trajectories.

While many of the perturbed pathways were observed inmultiple

assays, most were unique to a single assay, highlighting the util-

ity of a multi-omics approach.

Limitations of the study
While featuring multiple strengths, potential limitations of our

study include (1) the identification of associations but not

cause-effect relationships, (2) the lack of immunophenotyping

of the pre-infection biologic state, which could influence disease

progression, or healthy control participants for comparison, (3)

the exclusion of pregnant women and children,10 and (4)

the timing of cohort enrollment before vaccination or the wide-

spread circulation of important variants, including SARS-CoV-2

B.1.617.2 (Delta) and B.1.1.529 (Omicron). While this study em-

ployed a common analytic strategy across modalities and tis-

sues, allowing the identification of likely shared biological drivers,

modules were defined separately for each assay and were

analyzed independently. An alternate analysis that starts by

definingmulti-omicsmodules as the unit for analysis would allow

for the direct identification of correlations between features and

associated pathways. In some cases where common pathways

were identified by multiple assays (Figure 7), their association

with severe disease was discordant. In these cases, it is possible
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that distinct components of the pathway drive significance in

each assay (e.g., up-regulation of inhibitory cytokines and

down-regulation of the associated pathway) or that the changes

reflect cell migration (e.g., migration of activated cells from blood

to the upper airways). Some of the associations with COVID-19

disease severity may also be confounded by clinical treatment

(e.g.,medications administered tomanageCOVID-19).However,

the analysis of the entire IMPACC cohort did not detect any

impact of either remdesivir or systemic corticosteroid use on

nasal viral load or SARS-CoV-2 serology titers.11 Future analysis

of the full IMPACC cohort with deep immunophenotyping data

may allow for an assessment of the effect of medications.
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Paraformaldehyde (PFA), 16% w/v aqueous,
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heat-inactivated
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Maxpar MCP9 Antibody

Labeling Kit, 111Cd

Fluidigm Cat#201111A

Maxpar MCP9 Antibody

Labeling Kit, 112Cd

Fluidigm Cat#201112A

Maxpar MCP9 Antibody

Labeling Kit, 114Cd

Fluidigm Cat#201114A

Maxpar MCP9 Antibody

Labeling Kit, 116Cd

Fluidigm Cat#201116A

Maxpar� X8 Antibody

Labeling Kit, 142ND

Fluidigm Cat#201142B

Maxpar� X8 Antibody

Labeling Kit, 159Tb

Fluidigm Cat#201159B

Maxpar� X8 Antibody

Labeling Kit, 162Dy

Fluidigm Cat#201162B

Maxpar� X8 Antibody

Labeling Kit, 165Ho

Fluidigm Cat#201165B

Maxpar� X8 Antibody

Labeling Kit, 169Tm

Fluidigm Cat#201169B

Maxpar� X8 Antibody

Labeling Kit, 142Nd—4 Rxn

Fluidigm Cat#201142A

Maxpar� X8 Antibody

Labeling Kit, 148Nd—4 Rxn

Fluidigm Cat#201148A

Maxpar� X8 Antibody

Labeling Kit, 155Gd—4 Rxn

Fluidigm Cat#201155A

Maxpar� X8 Antibody

Labeling Kit, 166Er—4 Rxn

Fluidigm Cat#201166A

Maxpar� X8 Antibody

Labeling Kit, 169Tm—4 Rxn

Fluidigm Cat#201169A

Maxpar� X8 Antibody

Labeling Kit, 172Er—4 Rxn

Fluidigm Cat#201172A

Maxpar� X8 Antibody

Labeling Kit, 173Yb—4 Rxn

Fluidigm Cat#201173A

Maxpar� X8 Antibody Labeling Kit,

174Yb—4 Rxn

Fluidigm Cat#201174A

Maxpar� X8 Antibody Labeling Kit,

175Lu—4 Rxn

Fluidigm Cat#201175A

Maxpar� X8 Antibody Labeling Kit,

176Yb—4 Rxn

Fluidigm Cat#201176A

Cell-IDTM Cisplatin Fluidigm Cat#201064

Cell-IDTM Intercalator Fluidigm Cat#201192A

Cell-IDTM 20-Plex Pd Barcoding Kit Fluidigm Cat#201060

Maxpar� Water—500 mL Fluidigm Cat#201069
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Maxpar� Cell Staining Buffer Fluidigm Cat#201068

Maxpar� PBS Fluidigm Cat#201058

EQ Four Element Calibration Beads Fluidigm Cat#201078

Bond-Breaker TCEP Solution, Neutral pH Thermo Fisher Cat#77720

PFA EMC 50-980-487

Osmium tetroxide ACROS ORGANICS 319010050

Recombinant SARS-CoV-2 receptor

binding domain (RBD)

Krammer Laboratory at the Icahn

School of Medicine at Mount Sinai

https://labs.icahn.mssm.edu/

krammerlab/reagents/

Recombinant SARS-CoV-2 spike protein (S) Krammer Laboratory at the Icahn

School of Medicine at Mount Sinai

https://labs.icahn.mssm.edu/

krammerlab/reagents/

SIGMAFASTTM OPD (o-Phenylenediamine

dihydrochloride)

Sigma-Aldrich Cat#P9187

3-molar hydrochloric acid Thermo Fisher Scientific Cat#S25856

Tween 20 Fisher Bioreagents Cat#BP337-100

Non-fat dry milk Omniblok AmericanBio Cat#AB10109-01000

Bovine Serum Albumin Fraction V Roche Cat#10735078001

Protein A conjugated magnetic beads Invitrogen Cat#10008D

Protein G conjugated magnetic beads Invitrogen Cat#10009D

T4 ligase New England Biolabs Cat#M0202S

Phusion DNA Polymerase New England Biolabs Cat# M0530L

Urea Sigma-Aldrich

Ammonium Bicarbonate Sigma-Aldrich 09830-1KG

Iodoacetamide Sigma-Aldrich I1149-25G

Dithiothreitol Sigma-Aldrich D9779-10G

LC/MS grade Formic Acid Thermo Scientific A117-50

Perchloric Acid Sigma-Aldrich 311421-50ML

1-Propanol Sigma-Aldrich 34871-1L

Sera-Mag Speed Beads 65 Sigma-Aldrich 65152105050250

Sera-Mag Speed Beads 45 Sigma-Aldrich 45152105050250

HPLC grade Water Fisher chemical W5-4

LC/MS grade Water Fisher chemical W6-1

LC/MS grade Acetonitrile Fisher chemical A955-1

HPLC grade Methanol Fisher chemical A452-4

LC/MS grade Methanol Fisher chemical A456-4

LC/MS grade Isopropanol Fisher chemical A461-1

Sequence grade Porcine Trypsin Promega V5117

K562 Cell Line Tryptic Peptide

Mixture Standard 100 mg

Promega V6951

Trifluoroacetic acid Sigma-Aldrich T6508-100ML

Ambion Nuclease-Free Water Invitrogen Cat#AM9937

Recombinant human IFNa R&D Cat#11101-2

Recombinant human IFNb Peprotech Cat#300–02BC

Recombinant human IFNw Peprotech Cat#300-02J

Sulfo-NHS ThermoScientific Cat#A39269

EDC ThermoScientific Cat#77149

Critical commercial assays

Quick-DNA/RNA Pathogen MagBead Zymo Research R2146

RNase-Free DNase Set Qiagen 79254

NEBNext Ultra II Directional RNA

Library Prep Kit for Illumina

New England Biolabs E7760
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AMPure XP Beads Beckman-Coulter A63882

Quick-RNA MagBead Kit Zymo Research R2133

SMART-Seq v4 Ultra Low Input

RNA Kit for Sequencing

Takara Bio 634894

Nextera XT DNA Library Preparation Kit Illumina FC-131-1096

DNA Prep, Tagmentation Illumina 20018705

Chemagic Blood 400 (96) kit Perkin Elmer CMG-1091

Global Diversity Array (GDA) Illumina 20031810

Covaris E210 Covaris, LLC. 10521

T7 Select 10-3b Cloning kit EMD Millipore EMD Millipore

AMPure XP Beads Beckman Coulter Cat#A63881

Olink Target 96 Inflammation

Reagent Kit

Olink Proteomics Cat#95302, Lot#B02101

Deposited data

IMPACC cohort data files ImmPort Database SDY1760

IMPACC Genomic and transcriptomics data dbGAP phs002686.v1.p1

Tables S1–S10 and Figures S1–S13 This paper

Mendeley data

Mendeley Data: https://doi.org/

10.17632/vcskpv8tjk.1

Public databases

Genome Reference Consortium

Human Build 3872
Genome Reference Consortium

Schneider et al.72
GRCh38

https://www.ncbi.nlm.nih.gov/

assembly/GCF_000001405.26/

Ensembl release 9173 European bioinformatics institute

Cunningham et al.73
https://www.ebi.ac.uk/about/news/

updates-from-data-resources/

ensembl-release-91/

SARS-CoV-2 ref. 74 GenBank

Wu et al.74
NCBI strain GenBank: MN908947.3

https://www.ncbi.nlm.nih.gov/

nuccore/MN908947.3

SARS-CoV-2 lineages22 Phylogenetic Assignment of

Named Global Outbreak

(PANGO)

Rambaut et al.22

https://cov-lineages.org/

KEGG Pathway41 Kyoto Encyclopedia of

Genes and Genomes

Kanehisa et al.41

https://www.genome.jp/kegg/

MSigDB Hallmark39 Gene Set Enrichment Analysis

Molecular Signatures Database

Liberzon et al.39

https://www.gsea-msigdb.org/

gsea/msigdb/

Reactome40 Reactome Pathways Database

Gillespie et al.40
https://reactome.org/

STRINGdb42 STRING Database

Szklarczyk et al.42
https://string-db.org/

ImmuneXpresso25 ImmuneXpresso Knowledgebase

Kveler et al.25
http://immuneexpresso.org/

immport-immunexpresso/

public/immunexpresso/search

COVID-19 Drug and Gene Set Library75 Kuleshov et al.75 https://maayanlab.cloud/covid19/

Experimental models: Cell lines

Expi293F cells Thermo Fisher Cat#A14528

Oligonucleotides

2019-nCOV_N1-F GAC CCC AAA

ATC AGC GAA AT

Integrated DNA technologies Cat#10006713
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2019-nCOV_N1-R TCT GGT TAC

TGC CAG TTG AAT CTG

Integrated DNA technologies Cat#10006713

2019-nCOV_N1-P ACC CCG CAT

TAC GTT TGG TGG ACC

Integrated DNA technologies Cat#10006713

2019-nCOV_N2-F TTA CAA ACA

TTG GCC GCA AA

Integrated DNA technologies Cat#10006713

2019-nCOV_N2-R GCG CGA CAT

TCC GAA GAA

Integrated DNA technologies Cat#10006713

2019-nCOV_N2-P ACA ATT TGC

CCC CAG CGC TTC AG

Integrated DNA technologies Cat#10006713

RP-F AGA TTT GGA CCT GCG

AGC G

Integrated DNA technologies Cat#10006713

RP-R GAG CGG CTG TCT CCA

CAA GT

Integrated DNA technologies Cat#10006713

RP-P TTC TGA CCT GAA GGC

TCT GCG CG

Integrated DNA technologies Cat#10006713

SARS-CoV-2 tilling oligonucleotides

for whole genome amplification76
Gonzalez-Reiche et al.76 https://doi.org/10.1126/

science.abc1917

Recombinant DNA

Vector pCAGGS Containing the

SARS-Related Coronavirus 2,

Wuhan-Hu-1 Spike Glycoprotein

Gene (soluble, stabilized)

BEI Resources Cat#NR-52394

Vector pCAGGS Containing the

SARS-Related Coronavirus 2,

Wuhan-Hu-1 Spike Glycoprotein

Receptor Binding Domain (RBD)

BEI Resources Cat#NR-52309

Human Coronavirus Synthetic DNA Twist Bioscience https://www.twistbioscience.com

Software and algorithms

CZID Pipeline Chan Zuckerberg Initiative www.czid.org

bcl2fastq v2.20.0.422 Illumina https://support.illumina.com/

sequencing/sequencing_software/

bcl2fastq-conversion-software.html

FastQC_v0.11.577 Andrew S. https://github.com/s-andrews/FastQC

STARv2.4.2a78 Dobin et al.78 https://github.com/alexdobin/STAR

Qualimap79 Okonechnikov et al.79 http://qualimap.conesalab.org

Cutadapt_v3.780 Martin, Marcel

https://doi.org/10.14806/ej.17.1.200

https://cutadapt.readthedocs.

io/en/stable/

Preseq_v3.1.181 Daley and Smith81 https://github.com/smithlabcode/preseq

MultiQC82 Ewels et al.82 https://multiqc.info

WGCNA R package (version 1.69–81)13 Langfelder, Peter, and Steve Horvath.

"WGCNA: an R package for weighted

correlation network analysis."

BMC bioinformatics 9,

no. 1 (2008): 1–13.

https://cran.r-project.org/web/

packages/WGCNA/index.html

lme4 R package (version 1.1–27.1)83 Bates, Douglas, Deepayan Sarkar,

Maintainer Douglas Bates,

and L. Matrix. "The lme4 package."

R package version 2,

no. 1 (2007): 74

https://cran.r-project.org/web/

packages/lme4/index.html

(Continued on next page)
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Ordinal R package (version 2019.12–10)84 Christensen, Rune Haubo B.

"Cumulative link models for

ordinal regression with the R

package ordinal." Submitted

in J. Stat. Software 35 (2018).

https://cran.r-project.org/web/

packages/ordinal/index.html

gamm4 R package (version 0.2–6)85 Wood, Simon, Fabian Scheipl, and

Maintainer Simon Wood.

"Package ‘gamm4’." Am Stat 45,

no. 339 (2017): 0–2.

https://cran.r-project.org/web/

packages/gamm4/index.html

ComplexHeatmap R package

(version 2.6.2)86
Gu Z, Eils R, Schlesner M (2016).

‘‘Complex heatmaps reveal

patterns and correlations in

multidimensional genomic

data.’’ Bioinformatics.

https://www.bioconductor.org/

packages/release/bioc/html/

ComplexHeatmap.html

pvca R package (version 1.30.0)87 Bushel P.88 pvca: Principal

Variance Component Analysis

(PVCA). R package

version 1.34.0.

https://www.bioconductor.org/

packages/release/bioc/

html/pvca.html

SamTools (v1.1, 1.2, 1.4)89 Danecek et al.90 http://samtools.sourceforge.

net RRIF:SCR_002105

Trimmomatic-toolkit (v0.36.5)91 Bolger, A. M., Lohse, M., &

Usadel, B.91; Trimmomatic:

A flexible trimmer for

Illumina Sequence Data.

Bioinformatics, btu170.

RRID:SCR_011848

HTSeq-count (v0.4.1)92 Anders et al.9215 RRID:SCR_011867

Picard (v1.134)93 Broad Institute RRID:SCR_006525

FASTQC (v0.11.3)77 Babraham Institute RRID:SCR_014583

Data.table R package 1.14.294 Dowle, M et al.94

Data.table R package version 1.14.2

https://cran.r-project.org/web/

packages/data.table/index.html

DT R package 0.2195 Xue, Yihui et al.95; DT: A Wrapper

of the JavaScript Library

DataTables R package version 0.21

https://cran.r-project.org/web/

packages/DT/index.html

E1071 R package96 Meyer, D et al.,97 e1071: Misc

Functions of the Dept of Statistics,

Probability Theory Group. R package

version 1.7–9.

https://cran.r-project.org/web/

packages/e1071/index.html

Metabolon Laboratory Information

Management System (LIMS)

Metabolon https://www.metabolon.com/

MassFragment Application Manager Waters Waters MassLynx v.4.1 Waters

Corp Milford, USA

https://www.waters.com/waters/

en_US/MassFragment-/nav.htm?

locale=/&cid=1000943

MetaboAnalyst 5.098 MetaboAnalyst https://www.metaboanalyst.ca/

Cytutils R package v0.1.097 Amir et al.97 https://github.com/ismms-himc/cytutils

Fluidigm software-acquisition,

normalization,

concatenation v7.0.8493

Fluidigm https://www.fluidigm.com/

products-services/software

Cytobank99 Beckman Coulter https://premium.cytobank.org

Prism 9 GraphPad https://www.graphpad.com/

R v4.0.2 The Comprehensive

R Archive Network

https://cran.r-project.org/

FLASH v1.2.11100 Magoc and Salzberg100 https://ccb.jhu.edu/software/FLASH/

(Continued on next page)
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Bowtie2 v2.2.7101 Langmead and Salzberg102 http://bowtie-bio.sourceforge.net/

bowtie2/index.shtml

NCBI BLAST v2.11.0103 Altschul et al.103 https://blast.ncbi.nlm.nih.gov/Blast.cgi

CD-HIT104,105 Li and Godzik104

Fu et al.105
http://weizhong-lab.ucsd.edu/

cd-hit/download.php

COVID_pipe (https://github.com/

mjsull/COVID_pipe)76
Gonzalez-Reiche et al.76 https://doi.org/10.5281/zenodo.3775031

Minimap2 v2.17-r941106 Li106 https://doi.org/10.1093/bioinformatics/bty191

Shovill v1.1.0107 Kwong, Gladman and

Goncalves da Silva

https://github.com/tseemann/shovill

Pilon v1.24108 Walker et al.137 http://doi.org/10.1371/journal.pone.0112963

Canu v2.2109 Koren et al.109 http://doi.org/10.1101/gr.215087.116

Prokka v1.14.6110 Seeman110 http://doi.org/10.1093/bioinformatics/btu153

Seqkit v2.1.0111 Shen et al.111 http://doi.org/10.1371/journal.pone.0163962

Kraken2 v2.1.2112 Wood et al.112 https://doi.org/10.1186/s13059-019-1891-0

Skyline v.21.2.1.377113 MacCossLab http://skyline.ms

LabSolutions v.5.97 Shimadzu Scientific Instruments https://www.ssi.shimadzu.com/

products/informatics/labsolutions.html

Perseus114 Tyanova et al.146 https://maxquant.org/perseus//

Fluidigm Real-Time PCR Analysis v4.7.1 Fluidigm https://www.fluidigm.com/

products-services/software

Olink NPX Manager v3.3.2.434 Olink Proteomics https://www.olink.com/products-

services/data-analysis-products/

npx-manager/

Nextstrain v. 3.2.0115 Hadfield et al.115 https://github.com/nextstrain/ncov

Nextclade v. 1.11.0115 Aksamentov et al.116 https://doi.org/10.21105/joss.03773

Pangolin v. 1.11.021 O’Toole et al.21 https://doi.org/10.1093/ve/veab064

Baltic v.0.1.6117 Dudas117 https://github.com/evogytis/baltic

IQ-TREE2 v.1.6.12118 Minh et al.118; Hoang et al.119 https://doi.org/10.1093/molbev/msaa015,

https://doi.org/10.1093/molbev/msx281

Other

Turbovap Evaporator Biotage Zymark TurboVap Cat#Z-TLVE

Waters Acquity UPLC Waters Waters Acquity

BEH C18 columns Waters Waters Acquity 2.1 3 100 mm,

1.7 mm columns

Q-Exactive with Orbitrap mass analyzer Thermo Scientific Cat#IQLAAEGAAPFALGMBDK

HILIC columns Waters UPLC Waters UPLC BEH Amide

2.1 3 150 mm, 1.7 um

Hamilton MicroLab Star Liquid

Handling Robotic System

Hamilton Company https://www.hamiltoncompany.com/

automated-liquid-handling/

platforms/microlab-star

Geno/Grinder 2000 SPEX Sample Prep Geno/Grinder 2000

NovaSeq 6000 Illumina N/A

0.45mm filter plates Arctic White AWFP-F20022

1000 ml Pipette Tips Opentrons 991–00005

300 ml Pipette Tips Opentrons 991–00008

20 ml Pipette Tips Opentrons 999–00014

10 ml Pipette Tips Opentrons 999–00014

20 ml Pipette Tips Axygen T-20-R-S

200 ml Pipette Tips Axygen T-200-C-L-R-S

Sealing tape 96-well Plates 4titude 4ti-0581

(Continued on next page)
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25mL Reservoir Argos B3125-100

4-well Reservoir Axygen RES-MW4-HP

12-well Reservoir Axygen RES16MC-12-N

0.5 mL 96-well Plates VWR 76210–520

0.8 mL 96-well Plates VWR 76210–524

MACROSpin C18 plates The Nest Group Inc. SNS SS18VL

EvoTip Evosep EV2008

PepSep LC 8cm column Pepsep PSC-8-150-15-UHP-nC - 8 cm

nanoConnect

column

Shimadzu LC column Shimadzu 227-32100-02

Captive Spray Emitter (ZDV) 20 mm Bruker 1865710

Combitips� advanced,

Eppendorf QualityTM, 0.5 mL

Eppendorf 0030089421

Combitips� advanced,

Eppendorf QualityTM, 2.5 mL

Eppendorf 0030089448

Combitips� advanced,

Eppendorf QualityTM, 5 mL

Eppendorf 0030089448

Combitips� advanced,

Eppendorf QualityTM, 10 mL

Eppendorf 0030089464

EvoSep One Evosep EV-1000

Thermomixer Eppendorf N/A

timsTOF Pro Bruker Daltonik GmBH N/A

Column Oven Sonation PRSO-V2 Sonication lab solutions PRSO-V2

Nexera Mikros Shimadzu Scientific Instruments N/A

LCMS 8060 Shimadzu Scientific Instruments N/A

Fluidigm Dynamic Array 96.96 GE IFC Fluidigm Cat#BMK-M-96.96

Fluidigm Ctril Line Fluid,150ul Fluidigm Cat#89000021

Magnetic COOH Beads Region 34 BioRad Cat#MC10034-01

Magnetic COOH Beads Region 43 BioRad Cat#MC10043-01

Magnetic COOH Beads Region 63 BioRad Cat#MC10063-01

Amine coupling kit BioRad Cat#171406001
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RESOURCE AVAILABILITY

All requests for information regarding reagents and resources should be directed to the lead contact and will be fulfilled by the lead

contact or corresponding authors.

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by Dr. Steven Kleinstein

(steven.kleinstein@yale.edu).

Materials availability
This study did not generate new unique reagents.

Data and code availability
Data files are available at ImmPort under accession number SDY1760 and dbGAP accession number phs002686.v1.p1. Accession

numbers are listed in the key resources table. Additional supplementary items are available fromMendeley Data at https://doi.org/10.

17632/vcskpv8tjk.1.

All analysis codes have been deposited at Bitbucket: https://bitbucket.org/kleinstein/impacc-public-code120 and are publicly

available as of the date of publication. DOIs are listed in the key resources table.
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Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.

EXPERIMENTAL MODEL AND STUDY SUBJECT DETAILS

IMPACC cohort characteristics
The IMPACC cohort enrolled participants from 20 hospitals affiliated with 15 geographically distributed academic institutions across

the U.S. Eligible participants were patients hospitalized with symptoms or signs consistent with COVID-19, which had SARS-CoV-2

infection confirmed by RT-PCR to remain in the study. The detailed study design, schedule for clinical data, biological sample collec-

tion and demographic information about the participants were previously described.10,11 Briefly, detailed clinical assessments and

nasal, blood, and endotracheal aspirates (intubated participants only) were collected within 72h of hospitalization (visit 1) and on days

4, 7, 14, 21, 28 after hospital admission (visits 2–6, respectively). If a participant required escalation of care or was re-admitted to the

hospital prior to Day 28, additional samples were collected within 24 and 96 h of care escalation or readmission. If participants were

discharged prior to day 14 or 28, attemptsweremade to collect limited clinical information and biologic samples on days 14 and/or 28

in outpatients. Disease severity was assessed using a 7-point ordinal scale based on degree of respiratory illness,10 modified from

Beigel et al.

Cell culture conditions
Expi293F cells (Gibco #A14527) used for antibody titer assay were cultured in Expi293 Expression Medium before transfection as

described previously121 and in SARS-CoV-2 recombinant RBD and spike proteins method section.

METHOD DETAILS

Sample processing and batch randomization
Biological sample collection and processing followed a standard protocol utilized by every participating academic institution. The

complete IMPACC sample processing protocol was published previously.10 To mitigate potential batching effects, a randomization

procedure was developed to help ensure that longitudinal samples from the same individuals were run on the same plates and were

randomly distributed across the plates. We stratified this randomization by disease severity (mild/moderate versus severe) and age

(younger versus older) with the representation of these strata across plates. In addition, we verified that race, ethnicity, gender, and

site were well represented across the plates.

Nasal viral PCR, host transcriptomics, and metagenomics
RNA preparation

Inferior nasal turbinate swabs were collected and placed in 1mL of Zymo-DNA/RNA shield reagent (Zymo Research). RNA was ex-

tracted from 250 mL of sample and eluted into a volume of 50ul using the KingFisher Flex sample purification system (ThermoFisher)

and the quick DNA-RNA MagBead kit (Zymo Research) following the manufacturer’s instructions. Each sample was extracted twice

in parallel. The 2 eluted RNA samples were pooled and aliquoted into 20 mL aliquots using a Rainin Liquidator 96 pipettor for down-

stream RT-qPCR, RNA-sequencing, and viral sequencing.

RealTime quantitative polymerase chain reaction
Master mixes containing nuclease-Free water, combined primer/probe mixes, and One-Step RT-qPCR ToughMix (Quantabio) were

prepared on ice, and 15 mL was dispensed in each well of a 384-reaction plate (Thermofisher) CoV-2 was quantitated using the CDC

qRT-PCR assay (primers and probes from IDT). Briefly, this comprises two reactions targeting the CoV-2 nucleocapsid gene (N1 and

N2) and one reaction targeting RPP30 (RP). Each batch included positive controls of plasmids containing N1/N2 and RP target

sequence (2019-nCoV_N_Positive Control and Hs_RPP30 Positive Control, IDT) to allow quantitation of each transcript. Primer/

probe sequences were: 2019-nCOV_N1-F GAC CCC AAA ATC AGC GAA AT, 2019-nCOV_N1-R TCT GGT TAC TGC CAG TTG

AAT CTG, 2019-nCOV_N1-P ACC CCG CAT TAC GTT TGG TGG ACC, 2019-nCOV_N2-F TTA CAA ACA TTG GCC GCA AA,

2019-nCOV_N2-R GCG CGA CAT TCC GAA GAA, 2019-nCOV_N2-P ACA ATT TGC CCC CAG CGC TTC AG, RP-F AGA TTT

GGA CCT GCG AGC G, RP-R GAG CGG CTG TCT CCA CAA GT and RP-P TTC TGA CCT GAA GGC TCT GCG CG. After RNA ex-

tracts were gently vortexed and added 5 mL per sample. Plates were centrifuged for 30 s at 500 3 g, 4C. Quantitative polymerase

chain reaction was performed using a Quantstudio5 (Thermo Fisher) with cycling conditions:1 cycle 10 min at 50�C, followed by

3 min at 95�C, 45 cycles 3 s at 95�C, followed by 30 s at 55.0�C.

RNA-sequencing cDNA library production
From each nasal RNA sample, 10ul was aliquoted to a library construction plate using the Perkin Elmer Janus Workstation (Perkin

Elmer, Janus II). Ribosomal depletion, cDNA synthesis, and library construction steps were performed using the Total Stranded

RNA Prep with Ribo-Zero Plus kit, following the manufacturer’s instructions (Illumina). All steps were automated on the Perkin Elmer

Sciclone NGSx Workstation to reduce batch-to-batch variability and increase sample throughput. Final cDNA libraries were quan-

tified using the Quant-it dsDNA High Sensitivity assay, and library insert size distribution was checked using a fragment analyzer
Cell Reports Medicine 4, 101079, June 20, 2023 e10
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(Advanced Analytical; kit ID DNF474). Samples, where adapter dimers constituted more than 4% of the electropherogram area, were

failed before sequencing. Technical controls (K562, Thermo Fisher Scientific, cat# AM7832) were compared to expected results to

ensure that batch to batch variability was minimized. Successful libraries were normalized to 10nM for sequencing.

RNA-sequencing clustering and sequencing
Barcoded libraries were pooled using liquid handling robotics prior to loading. Massively parallel sequencing-by-synthesis with flu-

orescently labeled reversibly terminating nucleotides was carried out on the NovaSeq 6000 sequencer using S4 flowcells with a

target depth of 50 million 100 base-pair paired-end reads per sample (25 million read pairs).

Nasal viral genome sequencing and assembly
For viral genome sequencing,76 cDNA synthesis was performed with random hexamers and ProtoScript II (New England Biolabs,

E6560) starting from 7 mL of total RNA extracted from clinical specimens. The SARS-CoV-2 genome was then amplified with Q5

Hot Start High-Fidelity DNA polymerase (New England Biolabs, cat. M0493) using two sets of custom-designed tiling primers gener-

ating overlapping amplicons of �1.5 and 2 kb. The PCR amplification parameters were: 1 min at 98C, 35 cycles of 15 s at 98C and

5 min at 63C, and final extension for 10 min at 65C. After equivolume pooling of the amplicons and cleanup with 1.8X volume of Am-

pure XT beads, libraries were prepared using the Nextera XT DNA Sample Preparation kit (Illumina, FC-131-1096), followed by

paired-end sequencing (2 3 150nt) on the Illumina MiSeq platform. A custom reference-based analysis pipeline, https://github.

com/mjsull/COVID_pipe, was used to assemble SARS-CoV-2 genomes. Whole-genome viral amplification was initially conducted

on 1,154 nasopharyngeal swab samples collected from 474 participants, of which 531 samples had a detectable PCR band to

attempt sequencing. Of these samples, 316 yielded complete viral genomes from 221 participants.

Antibody correlates: titers
Enzyme-linked immunosorbent assay (ELISA)

Antibodies antibody levels against the recombinant receptor-binding domain (RBD) and full-length spike were measured using a

research-grade ELISA as described.122,123 Briefly, samples were heat-inactivated at 56�C for 1 h. 96-well plates (Thermo Fisher

Lot # 4199147) were coated with 50 mL/well of RBD or spike proteins at 2 mg/mL concentration in phosphate-buffered saline

(PBS; Gibco lot # 2388102) and incubated overnight at 4�C. Plates were washed 33 in an automatic plate washer (BioTek) with

PBS 0.01% Tween 20 (Fisher Scientific, Cat#BP337-100, TPBS) and blocked for 1 h with 200 mL/well of 3% non-fat dry milk

(Cat#AB10109-01000) prepared in TPBS. Serum samples were serially diluted (3-fold starting at 1:80 dilution) in 1% non-fat dry

milk in TPBS. The blocking solution was removed, and 100 mL/well of serially diluted samples were added to the plates and incubated

for 2h at 20�C. Plates were washed 33with TPBS, and 50 mL/well of the corresponding secondary antibody, prepared in 1% non-fat

dry milk in TPBS, were added for 1h at RT: Anti-human IgG (Fc specific)-Peroxidase antibody produced in goat (Sigma-Aldrich

Cat#A0170); Goat anti-human IgM-HRP (SouthernBiotech Cat#2020–05); Anti-human IgA (a-chain specific)-Peroxidase antibody

produced in goat (Sigma-Aldrich Cat#A0295). Plates were washed 33 with TPBS, and 100 mL/well of peroxidase substrate

(SigmaFAST o-phenylenediamine dihydrochloride, Sigma-Aldrich Cat#P9187) were added for 10 min 50 mL/well of 3M hydrochloric

acid (HCl, Thermo Fisher Scientific, Cat#S25856) was added to stop the reaction. Optical density (OD) was measured in a Synergy 4

(BioTek) plate reader at 490 nm. The area under the curve was calculated, considering 0.15 OD as the cutoff. Data were analyzed

using Graphpad Prism 9.

SARS-CoV-2 recombinant RBD and spike proteins
Recombinant RBD and spike proteins of SARS-CoV-2 were generated and expressed as previously described.124 Briefly, constructs

consisted of mammalian-cell codon-optimized nucleotide sequences for RBD (amino acids 319–541), including a signal peptide and

hexahistidine tag, or the soluble version of the spike protein (amino acids 1–1,213) with a signal peptide, C-terminal thrombin

cleavage site, T4 fold-on trimerization domain, and hexahistidine tag. These sequences were cloned into the mammalian expression

vector pCAGGS. The nucleotide sequence of the spike protein was additionally modified to remove the polybasic cleavage site, and

two stabilizing mutations (K986P and V987P) were introduced. The expression plasmids are available at BEI Resources Repository

(https://www.beiresources.org/). Recombinant proteins were produced in Expi293F cells (Thermo Fisher) using the ExpiFectamine

293 Transfection Kit (Thermo Fisher) according to the manufacturer’s instructions. Expi293F cells (Gibco #A14527) were cultured in

Expi293 Expression Medium before transfection as described previously121 and in SARS-CoV-2 recombinant RBD and spike pro-

teins method section. Expi293F cells were not authenticated and tested negative for mycoplasma. Proteins were purified by gravity

flow using Ni-NTA Agarose (Qiagen) and concentrated in Amicon centrifugal units (EMDMillipore). Purified proteins were analyzed by

reducing sodium dodecyl sulfate–polyacrylamide gel electrophoresis (SDS–PAGE), and correct folding was confirmed by performing

ELISAs with RBD-specific monoclonal antibody CR3022.

Autoantibody screening assay
Samples were screened for autoantibodies2 against type I IFNs in amultiplex, particle-based assay, in which differentially fluorescing

magnetic beads were covalently coupled to recombinant human proteins (2.5 mg/reaction). Beads were combined and incubated

with 1:100 diluted serum samples for 30 min. Each sample was tested once with a random assortment in each plate tested in
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duplicate to ensure minimal intra-assay variability. Beads were washed then incubated with PE-labeled goat anti-human IgG (1ug/

mL) for an additional 30 min. Beads were washed again and run on a BioPlex X200 instrument in a multiplex assay. Participant sam-

ples with a fluorescence intensity greater than 3 standard deviations above themean of 1099 healthy controls at the earliest timepoint

received (>1310 FI for IFNa; >386 FI for IFNb; >1387 for IFNw) were tested for blocking activity in the pSTAT1 functional assay.

pSTAT1 functional assay
The blocking activity of anti-IFN-containing serum was determined by assessing STAT1 phosphorylation in healthy control cells

following stimulation with the appropriate cytokine in the presence of 10% healthy control or participant serum.2 Surface-stained

healthy control PBMCs (350,000/reaction) were cultured in serum-free RPMI medium with 10% healthy control (pooled human AB

serum) or participant serum and were either left unstimulated or stimulated with IFNa, IFNw, or IFNb (10 ng/mL) for 15 min at

37�C. Cells were fixed, permeabilized, and stained for intranuclear phopsho-STAT1 (Y701). Cells were acquired on a BD LSR For-

tessa cytometer with gating on CD14+ monocytes and analyzed with FlowJo software. A stimulation index was calculated for

each sample by dividing the geometric mean fluorescence for the pSTAT1 channel for each stimulated condition by that of the un-

stimulated condition. The stimulation index for each cytokine was then normalized to that of the healthy control serum from the same

assay, generating a normalized stimulation index (where >65%pSTAT1 = NOT blocking; 20–65%pSTAT1 = partially blocking; <20%

pSTAT1 = blocking). Statistical analyses were performed using Fisher’s exact test of the overall association of autoantibodies among

all 5 TGs.

Antibody correlates: coronavirus phage display (VirScan)
Coronavirus library design and cloning

As described previously,125 RefSeq sequences for SARS-CoV-2 (NC_045512), SARS-CoV-1 (NC_004718), and 7 other coronavi-

ruses known to infect humans, including beta coronavirus England 1 (NC_038294), HuCoV 229E (NC_002645), HuCoV HKU1

(NC_006577), HuCoV NL63 (NC_005831), HuCoV OC43 (NC_006213), Infectious Bronchitis virus (NC_001451), and MERS CoV

(NC_019843) were downloaded from the National Center of Biotechnology Information (NCBI). All open reading frames for each virus

were divided into sequences of 38mer peptides, with consecutive peptides sharing a 19 amino acid overlap. All peptide sequences

were collapsed on 99% amino acid sequence identity using cd-hit. A subsequent patch of spike peptides was added to the library to

account for variation in the spike protein. All spike protein sequences present in NCBI databases, including the SARS-CoV-2 allele

used to generate the initial library, were downloaded (as of 10/02/2020), aligned, and divided into 38mers with a 19 amino acid over-

lap as already described. Only peptides with >3 amino acid differences (<92% sequence similarity) were retained and added to the

library. The combined set of peptide sequences was converted to DNA sequences using an R language script, randomizing codon

selection. Twenty-one (21) nucleotide 50 linker sequences, as well as a nucleic acid sequence encoding an FLAG tag (DYKDDDDK) at

the 30 end of each oligonucleotide sequence, were added. The final oligonucleotide sequences were 159 nucleotides in length,

outputted to a FASTA file, and sent to Twist Biosciences for synthesis. A single vial of 10pmoles of lyophilized DNA was received

from Twist. The lyophilized oligonucleotides were resuspended in 10mM Tris/1mM EDTA (TE) to a final concentration of 0.2nM

and PCR amplified for cloning into T7 phage vector arms (Novagen/EMD Millipore, Inc).

Preparation of phage libraries
Phage libraries were prepared and amplified fresh from packaging reactions. To prepare phage libraries, a 300 mL culture of E. coli

BLT5403 was incubated at 37�C with shaking until the mid-log phase, defined as OD600 = 0.4. The culture was then inoculated at a

multiplicity of infection (MOI) of 0.001 and incubated at 37�C for 2.5 h or until complete lysis was observed, after which 5M NaCl was

added to the lysate for stabilization, and the lysate was placed on ice. The lysate was then spun at 8000 g for 15 min to pellet cellular

debris. The phage-containing supernatant was 0.2uM filtered, and 5X PEG/NaCl (PEG-8000 20%, NaCl 2.5 mM) added to a final 1X

concentration and incubated overnight at 4�C. The PEG-phage lysate mix was centrifuged for 15 min at 4000 g at 4�C, and the pellet

was resuspended in storage media (20 mM Tris-HCl, pH 7.5, 100 mM NaCl, 6 mM MgCl2) before 0.22mM filtration. Phage libraries

were titered by plaque assay and adjusted to a working concentration of 1010 pfu/mL before incubation with participant sera. All

VirScan experimental procedures and data analysis are described fully.10,125

Serum proximity extension assay (olink)
Study samples were assayed in plate batch layouts following a centralized randomized scheme described above. Three samples

(IMPACC_Serum, IMPACC_Plasma, and IMPACC_Plasma_Stim) were used as IMPACC inter-plate references (Reference samples)]

in every plate. All samples (participant sera and reference) were subjected to PEA (Olink) multiplex assay Inflammatory panel (Olink

Bioscience, Uppsala, Sweden), according to the manufacturer’s instructions. This inflammatory panel included 92 proteins associ-

ated with human inflammatory conditions. An incubation master mix containing pairs of oligonucleotide-labeled antibodies to each

protein was added to the samples and incubated for 16 h at 4�C. Each protein was targeted with two different epitope-specific an-

tibodies, increasing the assay’s specificity. The presence of the target protein in the sample brought the partner probes in close prox-

imity, allowing the formation of a double-strand oligonucleotide polymerase chain reaction (PCR) target. On the following day, the

extension master mix in the sample initiated the specific target sequences to be detected and generated amplicons using PCR in

96 well plates. For the detection of the specific protein, Dynamic array integrated fluidic Circuit (IFC) 963 96 chip was primed, loaded
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with 92 protein-specific primers, and mixed with sample amplicons, including three inter-plate controls (IPS) and three negative con-

trols (NC). Real-time microfluidic qPCR was performed in Biomark (Fluidigm, San Francisco, CA) for the target protein quantification.

Plasma global proteomics
Fifty microliters of neat plasma samples were diluted with 450 mL of water, and 25 mL of perchloric acid was added.126 After vigorous

agitation, the suspension was kept at �20�C for 15 min, then centrifuged for 60 min (4�C, 3200 3g). 390 mL of the supernatant was

mixedwith 40 mL of 1% trifluoroacetic acid and loaded onto a mSPEHLBplate, previously conditioned oncewith 300 mLmethanol and

twice with 500 mL of 0.1% trifluoroacetic acid. Proteins were eluted from the mSPE HLB plate with 100 mL of 90% acetonitrile and

0.1% trifluoroacetic acid. After elution, the samples were dried with a Speedvac, resuspended with 35 mL of 50 mM ammonium bi-

carbonate, and digestedwith 10 mL trypsin (500 ng) overnight at 37�C. Digestionwas stopped by the addition of 5 mL 10% formic acid.

The samples were stored at �80�C before LC/MS analysis. Two microliters of tryptic peptides were loaded onto Evotips and

analyzed using an Evosep ONE liquid chromatography system (EVOSEP, Odense, Denmark) connected to a timsTOF Pro mass

spectrometer (Bruker Daltonics, Billerica, MA, USA). The Evosep ONE was set to 60 samples per day, and the mass spectrometer

was operated in DDA-PASEFmode. DDA-PASEF parameters were set as follows:m/z range 100–1700, themobility (1/K0) range was

set to 0.70–1.45 Vs./cm2, and the accumulation time was set to 100 ms.

Plasma targeted proteomics
All chemicals and reagents were purchased at the highest purities available. Solvents used in this study were LC/MS grade and were

purchased from Fisher Chemicals (Thermo Fisher Scientific). Briefly, a volume of 10 mL of 10-fold diluted plasma was mixed with

60 mL of urea buffer (8M urea in 50 mM ammonium bicarbonate, Sigma Aldrich) and 15 mL of dithiothreitol buffer (DTT, 50 mM in

urea buffer, Sigma Aldrich) before incubated 30 min on a thermomixer (800 rpm, room temperature). The samples were alkylated us-

ing iodoacetamide buffer (IAA, 375 mM in urea buffer, Sigma Aldrich) and incubated for 30 min (800 rpm, room temperature, and

dark). A volume of 10 mL of DTT buffer was added to quench the alkylation. The samples were transferred to the SP3 beads mixture

(Sera-Mag SpeedBeads, 1:1 v/v, GE Healthcare) previously washed with HPLCwater (scale 1:10 protein to beads). Then a volume of

150 mL of absolute ethanol (Supelco) was added, and the mix was incubated for 15 min on a thermomixer (1,000 rpm at room tem-

perature). The samples were placed on the magnetic rack, and the clear supernatant was removed. The beads were washed in three

cycles in 200 mL of 80% ethanol. After the final washing step, the samples were trypsinized using 100 mL of trypsin buffer (Promega,

20 mg/mL in 50 mM ammonium bicarbonate) and placed on a thermomixer (1,000 rpm, 2 h, 37�). After digestion, the samples were

centrifuged to pulldown the liquid and placed on a magnetic rack to collect the supernatant and were then acidified with 2% v/v for-

mic acid in HPLC water (Sigma Aldrich). The C18 cleanup was performed using a 96-well MACROSPIN C18 plate (TARGA, The

NestGroup Inc.), and the tryptic peptides were eluted off the C18 particles using 40% ACN/0.1% FA. The samples were dried

and stored at �20�C until LC/MS analysis.127 The samples were analyzed using an LC system (Nexera Mikros, Shimadzu) equipped

with a Capillary C18 column (0.2 3 100mm, 2.7um particle diameter, Shimadzu) coupled online to an 8060 triple quadrupole mass

spectrometer instrument (Shimadzu). From each sample, 1 mg peptide quantity was separated using a non-linear gradient over a

15-min run time operated at 10 mL/min (5% solvent B for 0.2 min; 5 to 40%B for 10.3 min; 85%B for 1.5 min and 5% for 3 min).

The final scheduling method was performed using the following parameters: 1.2 s of maximum loop time with minimum dwell

time of 2 msec and pause time of 1 msec, Q1 and Q3 resolution set at the ‘unit’ level.

Plasma global metabolomics
Plasma metabolite profiling was conducted by Metabolon using in-house standards.128,129 The samples were divided into random-

ized sample batches, extracted, and prepared for analysis using Metabolon’s solvent extraction method (Evans, 2008). Recovery

standards were added to the first step in the extraction process to ensure proper quality control. Protein was removed by methanol

precipitation under vigorous shaking for 2 min (Glen Mills GenoGrinder 2000) and then by centrifugation. The supernatants were

divided into five fractions: two for analysis by two separate reverse phases (RP)/UPLC-MS/MSmethods with positive ion mode elec-

trospray ionization (ESI); one for analysis by RP/UPLC-MS/MS with negative ion mode ESI; one for analysis by HILIC/UPLC-MS/MS

with negative ionmode ESI; and one sample was reserved for backup analysis usingWaters ACQUITY ultra-performance liquid chro-

matography (UPLC) and a Thermo Scientific Q-Exactive high resolution/accurate mass spectrometer interfaced with a heated elec-

trospray ionization (HESI-II) source and Orbitrap mass analyzer operated at 35,000 mass resolution. Metabolites were identified by

comparison to Metabolon library entries of standard metabolites128 based on three criteria: retention index (RI) within a narrow RI

window of the proposed identification; accurate mass match to the library ±10 ppm; and the MS/MS forward and reverse scores

between the experimental data and authentic standards. Compounds were categorized according to reporting standards set by

the Chemical Analysis Working Group of the Metabolomics Standards Initiative,130–132 and appropriate orthogonal analytical tech-

niques were applied to the metabolite of interest and a chemical reference standard. Metabolites were reported that had their cor-

responding accurate mass confirmed via MS with retention index, chemical, and composition ID.

Blood CyTOF
Samples from a given batch were acquired on the Fluidigm Helios mass cytometer in multiple acquisitions. The PROT-1 fixed whole

blood samples were processed in batches of 20 samples. Due to sample quality issues, some samples remained pink or red after the
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barcoding step; those samples were discarded, and the remaining samples were pooled for the remaining staining steps. After stain-

ing was completed, the pooled sample was counted and split into 2–3 subsamples to be frozen as FBS/DMSO samples stored at

�80C until the day of acquisition. On the day of acquisition, the Helios instrument was tuned according to the manufacturer’s soft-

ware standards; if the signal of Tb159 or Tm169 from the Fluidigm Tuning Solution was more than 10% lower than previous days, the

process was repeated until the margin was achieved. The final Tuning results were exported as a CSV from the software for the

record.

One FBS/DMSO subsample was thawed, washed once with Fluidigm Cell Staining Buffer, and then counted on a Bio-Rad TC20

cell counter. If necessary, the sample was split into subsamples of 2 3 106 cells, centrifuged, and the resulting pellet was left with a

minimal overlay of CSB. One CSB subsample was washed twice in MilliQ water, or Fluidigm Cell Acquisition Solution then resus-

pended to 7–8 x 105/mL in CAS or MilliQ containing a 10-fold dilution of Fluidigm EQ 4-Element normalization beads and acquired

on the tunedHelios instrument using either the PSI or SuperSampler for sample introduction. This dilution was chosen to give approx-

imately 250–350 events/sec acquisition rate. The next CSB subsample or FBS/DMSO subsample was processed when the previous

sample had less than 1mL of sample remaining. The instrument was cleaned with Fluidigm Wash Solution whenever clogging

occurred, or approximately every 2 3 106 cell events were acquired. These cleaning steps resulted in multiple FCS files per pooled

sample acquisition. Pooled samples were acquired until a total of 63 106 cell events had been collected, or all FBS/DMSO samples

were collected, whichever occurred first. This corresponds to an average target event number of 3 3 105 events per original donor

subsample.

Peripheral blood mononuclear cell transcriptomics
RNAwas extracted from cells (2.53 105 PBMCs) homogenized in 200 mL of Buffer RLT (Qiagen) and then extracted using the Quick-

RNA MagBead Kit (Zymo) with DNase digestion. RNA quality was quantitated using Qubit HS RNA assays and assessed using a

Fragment Analyzer (Agilent). Library preps were performed using the SMART-Seq v4 Ultra Low Input RNA Kit (Takara Bio) to synthe-

size full-length cDNA from an input of 10ng of RNA. After a bead-based clean-up to purify the cDNA, the Nextera XT kit was used to

create libraries through a process of tagmentation and fragment amplification and appended with dual-indexed bar codes using the

NexteraXT DNA Library Preparation kit (Illumina). Libraries were validated by capillary electrophoresis on a Fragment Analyzer (Agi-

lent), pooled at equimolar concentrations, and sequenced on an Illumina NovaSeq6000 (Emory) at 100 bp, paired-end read length

targeting �25 million reads per sample. Repeated measures from a group of PBMC samples collected from healthy controls and

repeatedmeasures of a subset of IMPACC samples were used across library prep and sequencing batches to assess inter-site batch

effects throughout the study. Universal Human References controls were included to assess intra-site batch variation.

Genetics
DNA was extracted using the Chemagic 360 system (PerkinElmer Inc), DNA preparations with low yield or fragmented samples (de-

tected on 1% agarose gel) were removed. These samples were genotyped on the Illumina Global Diversity Array per the manufac-

turer’s protocol [Illumina’s LCG protocol] (support.illumina.com/downloads/infinium-lcg-assay-reference-guide-15023139.html" ti-

tle = "https://support.illumina.com/downloads/infinium-lcg-assay-reference-guide-15023139.html">https://support.illumina.com/

downloads/infinium-lcg-assay-reference-guide-15023139.html). Briefly, genomic DNA was normalized to 200ng in 4 mL 1XTE buffer

using pico green quantification. Samples were whole genome amplified for 22 h, fragmented, precipitated, resuspended, and then

hybridized to arrays for 18 h. Arrays were then washed, stained, dried, and scanned to produce raw iDat files, from which variants

were called using Illumina’s Genome Studio v.2.0.5. Data were then exported in vcf format and converted to plink ped/map format for

further analysis.133,134

QUANTIFICATION AND STATISTICAL ANALYSIS

OMIC-specific preprocessing from raw to computable matrices
Nasal host transcriptomics read processing and alignment

Base calls were generated in real-time on the NovaSeq6000 instrument (RTA 3.1.5). Demultiplexed, unaligned BAM files were pro-

duced by Picard93 ExtractIlluminaBarcodes, and IlluminaBasecallsToSam were converted to FASTQ format using SamTools

bam2fq89 (v1.4). The sequence read, and base quality were checked using the Trimmomatic-toolkit91 (v0.36.5). Reads were pro-

cessed using workflows managed on the Galaxy platform. Reads were trimmed by 1 base at the 30 end, then trimmed from both

ends until base calls had a minimum quality score of at least 30. Any remaining adapter sequence was removed as well. The

STAR aligner78 (v2.4.2a) with the GRCh3872 reference genome and gene annotations from Ensembl release 9173 was used to align

the trimmed reads. Gene counts were generated using HTSeq-count (v0.4.1).92 Quality metrics were compiled from Picard93

(v1.134), FASTQC77 (v0.11.3), Samtools (v1.2),89 and HTSeq-count (v0.4.1)94. Failed samples were identified as median cv gene

coverage >0.8 and Aligned Counts <1 million. These samples were removed from further downstream analyses.

Nasal metagenomics
Taxonomic alignments were obtained from raw fastq files using the ID-seq pipeline,135 which first removes human sequence via sub-

tractive alignment against human genome build 38, followed by quality and complexity filtering. Subsequently, reference-based
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taxonomic alignment at both the nucleotide and amino acid levels against sequences in the National Center for Biotechnology Infor-

mation (NCBI) nucleotide (NT) and non-redundant (NR) databases, respectively, is carried out, followed by assembly of the reads

matching each taxon. Taxa were aggregated at the genus level for analyses. Mapped taxa obtained from the ID-seq pipeline

were then filtered to retain taxa with >0.1 reads per million reads sequenced (rpM) in both the NT and NR database alignments. Sub-

sequently, a subset of previously reported common next-generation sequencing reagent contaminants136 (Sphingomonas, Bradyr-

hizobium, Ralstonia, Delftia, Propionibacterium, Methylobacterium, and Acidovorax) was filtered from the dataset. Finally, total bac-

terial abundance per sample was calculated by summing the rpM of all bacterial taxa present, and the Shannon Diversity Index was

calculated using the vegan package v.2.6 in R.

Antibody titers peptide-based PhIP-seq bioinformatics analysis
For all VirScan libraries, the null distribution of each peptide’s log10 (rpK) was modeled using a set of 71 pre-pandemic healthy con-

trols sera collected from the New York Blood Center.137 Peptide counts were computed for all control samples, then were converted

into proportions relative to the sum of sample counts. Each sample was downsampled by 1,500,000 weighted by the proportion

values. The down-sampled counts produced were then converted to rpK values. Multiple distribution fits were examined for these

data, including Poisson, Negative Binomial, and Normal distributions. Quantile-quantile plots for each distribution demonstrated that

the Normal distribution had the best fit across all peptides, as the median linear correlation coefficient across all peptides was the

highest for this distribution. These null distributions were used to calculate p values for the observed log10(rpK) of each peptide within

a given sample. For peptides with less than 10 unique values across all 71 controls, the background model was substituted with a

peptide whose counts closely match the median. The calculated p values were corrected for multiple hypotheses using the

Benjamini-Hochberg (BH) method. Any peptide with a corrected p value of <0.001 was considered significantly enriched over the

set of pre-pandemic blood center serum controls.

To identify regions targeted by host antibodies, all library peptides were aligned to the SARS-CoV-2 reference genome, concat-

enating all of its open reading frames (ORFS) into a single sequence. This reference sequence was used to generate a blastp data-

base, and all peptides in the library were aligned to it using NCBI blastp (v2.11.0). Using these data, the summation of enrichment

relative to the healthy background was calculated at each position across SARS-CoV-2 for all significant peptides for each exper-

imental sample. Finally, the results were summed at each position across all experimental samples, and the summed enrichment

was plotted by position using the R ggplot2 library. Only full-length alignments (38 amino acids) were included in this analysis.

To identify clusters of peptides, CD-HIT was used to group together peptides with at least 70% AA sequence identity. Annotation

categories were defined based on the composition of each cluster. Clusters containing peptides exclusive to SARS-CoV-2 or SARS-

CoV1 were defined as SARS clusters. All remaining clusters were defined as Non-SARS clusters. Alphavirus strains were omitted

from the downstream analysis. Only peptides significantly enriched above the control background (adj.p < 0.001) were used in

this analysis. In addition, only peptides that fell into the SARS peptide clusters and aligned at full length to the SARS-Cov-2 protein

reference were kept for further analysis. A sliding window algorithm, with a window size of 20 and a step size of 1, was used to

sequentially sum the rpK values for every window across both the Spike and N region of the SARS-CoV-2 proteome.

Antibody peptide (PhIP-Seq) data pre-processing
Sequencing reads from 1,318 samples were aligned to a reference database of the full coronavirus peptide library, which consisted of

3,745 peptides, using the Bowtie2 aligner v2.2.7.102 Prior to the alignment, paired R1 and R2 reads from each sample were stitched

together using FLASH (v1.2.11). All SAM format files outputted from Bowtie2 were converted to BAM using the samtools (v1.11)89

view command. The CIGAR string was examined for each aligned sequence, and all alignments where the CIGAR string did not indi-

cate a perfect match were removed. The filtered set of aligned sequences was then translated, and only translated peptides that

matched perfectly to the input library were retained for subsequent analysis. The final set of aligned peptides was tabulated to

generate counts for each peptide in each individual sample. All of this analysis was automated using an R language script. Peptide

counts were normalized for read depth by dividing them by the total number of peptides in the sample and multiplying by 100,000,

resulting in a reads/100,000 reads (rpK) for each peptide.102,138–140

Serum proximity extension assay (olink) data processing
Data were analyzed using Real-time PCR analysis software via theDDCtmethod and Normalized Protein Expression (NPX) manager.

NPX is calculated in three steps from the Cq-values: (i) DCqsample = Cqsample � Cqextensioncontrol, (ii) DDCq = DCqsample �
DCqinterplatecontrol, (iii) NPX = Correction factor � DDCqsample. Data were normalized using internal controls in every sample, in-

ter-plate control (IPC) and negative controls, and correction factor and expressed as Log2 scale proportional to the protein concen-

tration. One NPX difference equals to the doubling of the protein concentration.

Batch normalization was performed to account for potential batch effects caused by re-assayed samples which were not able to

adhere to the study randomization scheme or assay condition changes including those due to assay kit lot# changes or differences in

study collection phases. Olink Data Analysis Normalization employed identical reference samples in all plates. NPX value for each

analyte was adjusted based on the adjust factor that makes the median of all reference samples the same for all plates. Sequential

steps included: 1) the reference sample the-inter-plate-median was calculated; 2) for each assay, the pairwise difference from the

inter-plate median was calculated in first step 1 for each of the reference sample on all plates; 3) plate- and assay-specific differences
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in step 2 were used as normalization factors; and 4) plate- and assay-specific normalization factors were added from step 3 to each

value for each assay and plate.

Plasma global proteomics data processing and quality control
All raw timsTOF data were searched on a high-performance computing environment where Fragpipe (including MSFragger, Philos-

opher, and IonQuant141–144) was run to identify and quantify peptides and protein throughout the data.145 MSFragger 3.4 was run

using the standard settings without the fixed modification of carboxylmethylation and with the variable modification’s oxidation

and N-term acetylation. Data were scored against a human FASTA file without isoforms where SARS-COV-2 proteins were manually

added. Philosopher 4.1.1 was used where PeptideProphet was used for statistical validation of identified peptides. IonQuant 1.7.17

was used for quantification, where a minimum of 1 ion was used for peptide quantification.

Geneswere first filtered based on ‘‘HomoSapiens’’ and ‘‘Homo sapiensOX= 9606’’. For each sample, the ‘‘Total intensity’’ column

was selected. Then Genes without any values across the samples were removed. Finally, sample outliers were removed. A sample is

considered an outlier if its total number of quantified proteins is more than 3 standard deviations below the mean of quantified pro-

teins of all samples. In brief, the number of proteins quantified for each sample was calculated, and log2-transformed. Then themean

and standard deviation of quantified proteins across all sampleswas calculated, and any samples outside 3 standard deviationswere

considered an outlier and removed. Finally, a protein had to be identified and quantified in at least half of all samples to be analyzed in

any of the downstream analyses. We identified 508 proteins that were present in at least 699 (50%) of the samples (out of 2109 pro-

teins in total).

Plasma targeted proteomics data processing
The raw data were exported into Skyline software (v20.2.1.315)113 for peak area and retention time refinement. The peptide intensity

(average of transition pairs) and the protein abundance (average of peptide intensities) in all samples were exported from Skyline.

These effects were corrected using Combat33 The means of the peptide intensities were used for the different protein abundances,

which were exported for further analysis using RStudio Pro Server.

Plasma global metabolomics data processing and quality control
Rawdata weremeasured based on LC-MS peak areas proportional to feature concentration. For quality control, missing values were

imputed with half the minimum detected level for a given metabolite. Metabolites with an interquartile range of 0 were excluded from

the analysis, as previously described.146 All features were log-transformed, normalized then Pareto-scaled to reduce variation in fold-

change differences between features (Figures S5A and S5B). After pre-processing, 5 metabolites were filtered out with zero inter-

quartile range, yielding 1012 remaining metabolites (Figure S5C). Statistical analyses for univariate, chemometrics, and clustering

analysis used in-house algorithms, R statistical packages, and MetaboAnalyst 5.0.98,147

Blood CyTOF data processing and demultiplexing
Samples from a given batch were acquired on the Fluidigm Helios mass cytometer in multiple acquisitions. The resulting FCS files

were normalized and concatenated using Fluidigm’s CyTOF software. The FCS file was further cleaned using the Human Immune

Monitoring Center at Mt. Sinai’s internal pipeline. The pipeline removed any aberrant acquisition time windows of 3 s where the

cell sampling event rate was too high or too low (2 standard deviations from the mean). EQ normalization beads that were spiked

into every acquisition and used for normalization were removed, along with events that had low DNA signal intensity.

The pipeline was also used to demultiplex the cleaned and pooled FCS files into single sample files. The cosine similarity of every

cell’s Pd barcoding channels to every possible barcode used in a batch was calculated and then was assigned to its highest similarity

barcode. Once the cell had been assigned to a sample barcode, the difference between its highest and second highest similarity

scores was calculated and used as a signal-to-noise metric. Any cells with low signal-to-noise were flagged as multiplets and

removed from that sample. Finally, acquisition multiplets were removed based on the Gaussian parameters Residual and Offset ac-

quired by the Helios mass cytometer.

Cells from a single biological sample were clustered into 1000 K-means clusters. A subset of samples was then selected and

manually annotated into cell types using Clustergrammer2’s widget interface (https://github.com/ismms-himc/clustergrammer2)

to create a training dataset (n x n matrix of cell types by median marker intensities) for each manually annotated sample.

To annotate a given sample’s 1000 K-means clusters, the cosine similarity of every cluster to all possible cell types within the

training datasets was calculated, and that cluster was assigned to either its highest similarity score cell type or the greatest

consensus cell type across the training datasets. Finally, the cluster cell-type annotation was assigned back to the single cells within

that cluster, and the number of cells was calculated for a cell type within a given single sample.

Blood CyTOF count normalization
To account for differences in cell events acquired for each sample, the cell population count matrix was converted into cell fre-

quencies.We first processed immune cell frequencies of themore broadly defined cell subsets (e.g., CD4 T cells, B cells, monocytes,

etc.) as a percentage of total CD45+ immune cells by excluding debris, RBCs, platelets, and multiplets. Next, we processed the

broadly defined cell subsets as a percentage of all non-granulocytes by further excluding eosinophils, neutrophils, and basophils.
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We also processed immune cell frequencies of the more granularly defined subsets (e.g., CD4 effector memory T cells, Naive B cells,

CD14+CD16�classical monocytes, etc.) as a percentage of total CD45+ immune cells and as a percentage of non-granulocytes.

PBMC transcriptomics data processing and quality control
Processing and quality control was performed using an internal Snakemake workflow for RNA-Seq analysis (Github: https://github.

com/yerkes-gencore/IMPACC-RNA_Seq). Reads were trimmed for adapter sequence and quality score with cutadapt v1.14112.

Reads were aligned with STAR v2.4.2a91 to a composite reference of human (GRCh38)72 reference sequence with gene annotations

from Ensembl release (release 91)73 and SARS-CoV-2 (NCBI strainMN908947.3).74 Transcript abundance estimates were calculated

internal to the STAR aligner91 using the algorithm of htseq-count94. Sequencing quality metrics were determined using FastQC77

(v0.11.5), alignment quality metrics with Picard tools (v2.22)93 and STAR91logs and gene counts, including average quality per

read > Q30, percent and absolute counts of reads uniquely mapped to annotated transcripts.

Genetics data processing and quality control
Genotype data were processed as previously described.148 Briefly, it was required that samples had genotyping rate >95%; and

markers had minor allele frequency >1% and were within Hardy-Weinberg equilibrium (p < 1e-6). After removing 8 sample outliers

in a heterozygosity/missingness space, 483 samples remained.

Chromosomal sex was then inferred from rates of X chromosome homozygosity (XHE), using 26,051 X chromosome markers. As

expected, two clear clusters of individuals were found, corresponding to males (one X chromosome, high XHE) and females (two X

chromosomes, low XHE). 5 samples where genetically determined sex was discordant with physician-reported sex at birth in the

clinical database were removed from the subsequent genetics analysis.

Duplicate samples were also removed to prevent bias in downstream genetic association testing. Using all autosomal markers, the

proportion of identity by descent (IBD, the sharing of DNA segments from common ancestors) was calculated between all pairs of

individuals. A value near 1 denotes that the entire genome is identical and inherited from the same common ancestor: the pair of

samples are therefore either from the same person or from monozygotic twins. 12 samples with an IBD greater than 0.98, denoting

duplication, were removed leaving 466 participants for genetic association testing.

Data quality assurance
Data quality assurance (QA) refers to the curation of raw datasets from their generation by an assay core to the production of their

canonical forms as the bases for analyses within the IMPACC network. A typical assay core-generated raw dataset is comprised of

two components: [1] a ‘‘Counts’’ matrix of samples (as rows) and assay features (as columns) values, and [2] a ‘‘Metadata’’ matrix of

the sample identifiers and assay-core specific processing and quality control features for each sample in the ‘‘Counts’’ matrix. Each

IMPACC sample has a unique global sample identifier (sample_id) associated with the subject and biosample extraction time in the

study. Assay feature valuesmay be continuous real numbers, categorical variables, or character strings of nucleotides, depending on

the assay type. Assay core-specific processing features may include technical quality control metrics of the sample assay. First,

sample identifiers are checked for concordance between ‘‘Counts’’, ‘‘Metadata’’ and the central IMPACC database of sample iden-

tifiers, clinical and assay core processing parameters. Second, depending on the assay type, the sample-wise distributions of Counts

values are qualitatively investigated for technical anomalies. For the genetics association testing, the sex/kinship of a participant

derived from their sample Counts variables are compared with their clinical records. Lastly, for downstream analyses, canonical

and cumulative ‘‘Counts’’ and ‘‘Metadata’’ matrices with the well-defined and standardized assay, technical, and additional QA

feature annotations are generated for each assay type.

Data preparation and batch effect evaluation
Samples included for analysis have undergone prior core internal and assay-specific quality control steps. In addition, proper pro-

cedures for quality assurance outlined previously were performed to ensure the data standards for each assay were met. Table S13

provides information on additional steps adopted to prepare the data for statistical analysis.

For each assay, we first filtered out samples using the sample filtering criterion and followed by a filtration on features based on the

feature filtering criteria, we performed data imputation and data transformation as indicated in the table. N/A: no additional step

taken. Half-min: replacing missing value using half of the minimum of observed values for the corresponding feature. Impute.knn:

using impute.knn function from R package impute. Pareto-Scaling: in-house function of dividing each variable by the square root

of the standard deviation. We evaluated the influence of potential batch effects on different assays using Principal variance compo-

nent analysis (PVCA) or PCA.

Common statistical analyses framework
Overview of common analyses framework

Data from each assay were pre-processed to a counts matrix as described in the section ‘‘OMIC-specific preprocessing from raw to

computable matrices’’. Then for each of the omics assays, we used Principal Variance Component Analysis (PVCA) to identify co-

variates to include in the models. These included participant enrollment site, elapsed time from self-reported disease onset, sex,

age, ethnicity, race, and core lab site. Covariates that explained >10% of the variance were either used for batch correction of
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the data (RNA-seq) or as covariates in the models as detailed shortly after in the section ‘‘data preparation and batch effect evalu-

ation’’. To reduce the dimensionality of assay readouts with >50 features for analysis, we utilized all available samples to identify

feature correlated modules (referred to here as ‘‘modules’’) for each assay using WGCNA.13 The number of modules ranged from

six modules in the Olink assay to 41 modules in the global plasma metabolomics assay. Details of tuning parameters used in

WGCNA are given in the section ‘‘weighted gene correlation network analysis (WGCNA)’’. For a given module in an assay, we define

themodule values across samples as the first principal component constructed using features included in this module. To aid in inter-

pretation, the features in each module were annotated to biological processes by performing an enrichment analysis leveraging bio-

logical knowledge bases, such as MSigDB Hallmark.39 Olink WGCNA modules were annotated by testing the overlap between the

soluble proteins in amodule with the cytokine annotations in ImmuneXpresso25 and the COVID-19 Drug andGene Set Library75 using

Fisher’s exact test.

We investigated the behavior of each feature (or module) both at visit 1 (within 72 h of hospital admission) and longitudinally for

scheduled visits (visits 1–6, up to 28 days post-hospital admission) and correlated it with clinical outcomes. We first tested whether

the value of each feature at visit 1 exhibited a monotonic trend from mildest (TG1) to most severe (TG5) disease course using mixed

effect ordinal regression (clmm). Features with false discovery rate (FDR) < 5%were considered significant based on adjusted p value

(referred to as adj.p) (Chen et al., 2021). To identify longitudinal associations, we next tested if feature kinetics across the whole time-

course (visits 1–6) were different across the clinical trajectory groups via a generalized additive model with mixed effects (gamm4).

Features for which the average (referred to as intercept in the gamm4 documentation) or shape (referred to as the smoothing term in

the gamm4 documentation) differed between the clinical trajectory groups at FDR<5%were considered significant. For both the visit

1 and longitudinal analyses, significant features were further tested for differences between each pair of TGs to facilitate interpreta-

tion. More details on the association tests are given in the section ‘‘visit 1 and longitudinal model analysis’’.

Weighted gene correlation network analysis (WGCNA)
We used R package Weighted Gene Coexpression Network Analysis (WGCNA) (v1.71)13 to identify modules of correlated features

from high throughput assays, specifically, RNA-seq, proteomics, metabolomics, Olink. We used the data as input to WGCNA after

following assay specific QC/QA steps and additional data preparation steps as described in Table S14. For each assay, we first

computed optimum soft-thresholding power parameter using ‘pickSoftThreshold‘ function. Then, we built modules using ‘blockwi-

seModules‘ function with the selected power parameter. When building the modules, we set networkType = ’’signed’’, TOMType =

’’unsigned’’, maxPOutlier = 0.1. Details of the other assay-specific parameters are provided below. Note that escalation samples

were included in the WGCNA module creation, while only samples from scheduled visits were part of the visit 1 and longitudinal

modeling.10

Visit 1 and Longitudinal Model Analysis
We performed a mixed effect analysis using module levels from baseline visit samples and investigated (1) if there is an ordinal trend

from trajectory group 1 to trajectory group 5 and (2) if any pair of groups exhibit significant differences. This analysis included enroll-

ment sites as a random effect, and age group, and sex as fixed effects, and tested for the ordinal trend with the R package clmm and

pairwise difference with the R package lmer. We identified significant WGCNA modules whose adjusted p values are below 0.05.

Significant modules can potentially be used for separating clinical groups at hospital admission.

We next moved to longitudinal analysis for scheduled visits (visits 1–6) to identify WGCNA modules whose trajectories differ for

different clinical groups. We performed a mixed generalized additive modeling analysis and modeled the module levels as a smooth

function of admission time using the R package gamm4. For each pair of groups, we tested if the two groups have different longi-

tudinal trends for the WGCNA modules after including the participant ID and enrollment site as random effects along with sex and

age group as fixed effects. We claimed significance when the adjusted p value is below 0.05, and significant modules could indicate

interesting molecular dynamics across clinical groups. Physician-reported sex at birth was used in all analyses except genetic as-

sociation testing.

Identification of overlap between assays’ annotations
For each assay, geneset set analysis was used to identify pathways overrepresented among feature (WGCNA modules or individual

features) associated with the trajectory groups. To identify pathways enriched in two assays or more, the name/label of the pathways

werematched across assays based on the similarity of the name using fuzzymatching (match allowing formismatches characters) as

implemented in the function stringdist_join of the R package fuzzyjoin (with default parameters). Incorrect matches were filtered out

manually.

ADDITIONAL RESOURCES

Clinical trials number: NCT04378777.

Link: https://clinicaltrials.gov/ct2/show/NCT04378777?term = IMPACC&draw = 2&rank = 1.
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