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A B S T R A C T   

Individual demand for emerging technologies can be influenced by the demand of other individuals within 
defined peer groups. These so-called peer effects have been demonstrated in emerging clean energy technologies 
such as rooftop solar. To date, peer effects have disproportionately driven solar adoption among relatively 
affluent households. Here, we use household-level income estimates of rooftop solar adopters to explore how 
peer effects drive adoption for low-income households. We find evidence of peer effects for both high- and low- 
income households and find that peer effects are generally stronger within than across income groups. Our re
sults indicate that peer effects translate to adoption less frequently among low-income households. These results 
suggest that low-income peer effects are mitigated by barriers to low-income adoption. Heterogeneous peer 
influence is another demand shifter that explains the inequitable adoption of emerging technologies.   

1. Introduction 

Small-scale consumer technologies such as rooftop solar photovol
taics (PV) could play key roles in electric grid decarbonization and 
climate change mitigation (Dietz et al., 2009; O'Shaughnessy et al., 
2022b). Rooftop PV deployment depends on the idiosyncratic adoption 
decisions of millions of individual households. Understanding the fac
tors that shape rooftop PV demand and adoption has thus driven a 
growing body of research (Sintov and Schultz, 2015; Alipour et al., 
2020; Schulte et al., 2022). Most of this work applies a rational actor 
model, modeling PV demand as a function of various incentives that 
drive adoption decisions. Another prominent adoption model is based 
on interpersonal influence within peer groups, or simply peer influence 
(Axsen and Kurani, 2012; Xiong et al., 2016; Wolske et al., 2020). Peer 
influence plays a prominent role in models of how technologies diffuse 
into society (Rogers, 2003; Van den Bulte and Stremersch, 2004). The 
literature has identified numerous potential mechanisms through which 
peers can influence technology diffusion, such as through sharing 
experience (i.e., learning) (Foster and Rosenzweig, 1995), reducing the 
uncertainty associated with new products (Van den Bulte and Stre
mersch, 2004), word-of-mouth communication, persuasion (Wolske 
et al., 2020), and visible adoption actions (e.g., PV systems installed on 
street-facing rooftops) (Bollinger et al., 2022). In practice, peer influence 

is identified through peer effect models estimating the impacts of peer 
demand on individual demand (Pratkanis, 2007; Graf-Vlachy et al., 
2018). Several studies find evidence of peer effects in early rooftop PV 
adoption (Bollinger and Gillingham, 2012; Graziano and Gillingham, 
2015; Moezzi et al., 2017; Palm, 2017; Mundaca and Samahita, 2020; 
Balta-Ozkan et al., 2021; Bollinger et al., 2022). 

More recently, an emerging body of research explores the factors that 
explain heterogeneous rooftop PV adoption across income levels (Sunter 
et al., 2019; O'Shaughnessy et al., 2021). As is common for emerging 
technologies, low- and moderate-income (LMI) customers adopt rooftop 
PV less frequently than more affluent customers (Attanasio and Pista
ferri, 2016; Forrester et al., 2022). Inequitable PV adoption could pose 
challenges to long-term deployment (Welton and Eisen, 2019), and 
policymakers are increasingly exploring ways to drive LMI adoption 
(Carley et al., 2021). LMI PV adoption research has largely focused on 
socioeconomic barriers that prevent LMI households from adopting 
clean energy technologies (Mueller and Ronen, 2015; Lukanov and 
Krieger, 2019; Brown et al., 2020). Some previous work posits a po
tential role for peer influence in LMI adoption (Wolske, 2020; Wolske 
et al., 2020), and potential differences in peer influence according to 
area income levels (Bollinger and Gillingham, 2012). No study, to our 
knowledge, quantifies peer influence on LMI adoption based on 
household-level income estimates. 
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In this paper, we fill this gap by exploring the role of peer influence in 
rooftop PV adoption for low-income households. Filling this gap is 
important for three reasons. First, of economic interest, peer influence 
represents an under-studied factor shaping customer demand. Insofar as 
peer influence varies across income levels, heterogeneous influence 
could provide an additional factor to explain consumption inequality. 
Second, peer influence research based on early adoption may mischar
acterize the long-term role of influence during mass diffusion, given that 
early adopters tend to be more affluent than later adopters (Van den 
Bulte and Stremersch, 2004; Attanasio and Pistaferri, 2016), and that 
social influence tends to be stronger among groups with shared char
acteristics (Marsden and Friedkin, 1993; Wolske et al., 2020). Third, 
heterogeneous peer effects could have implications for LMI PV policy. 
Specifically, peer effects have been used to argue for seeding policies: 
interventions to support early adoptions to foment peer-influenced 
deployment (Zhang et al., 2016). Seeding deployment among LMI 
households may be one approach for promoting LMI adoption of 
emerging clean energy technologies (Sunter et al., 2019; Carley and 
Konisky, 2020). However, the potential efficacy of LMI seeding may be 
over- or under-estimated based on peer effects for mostly affluent early 
adopters. An accurate understanding of LMI peer influence requires 
confirming results from prior research hold across income levels or 
differentiating peer effects across income levels. 

2. Theoretical background 

The peer concept can be applied to any group with shared social 
bonds. Clean energy peer effects research most frequently defines peer 
groups in spatial terms by analyzing adoption within defined geographic 
areas (Wolske et al., 2020). Our model will similarly define peers as 
households living in the same Census tracts, as discussed further in 
Section 3. 

In economic terms, the theory of peer influence asserts that indi
vidual demand curves are a function of the demand of other individuals 
within a defined peer group, that is: 

Qj,g = D
(
p,Q∕=j,g,X

)
(1) 

Where Qj,g is the demand of individual j in peer group g, D is a de
mand function, p is the price of a good, Q∕=j,g is the demand of other 
individuals in the peer group, and X is a set of other relevant demand 
shifters. The estimated impacts of Q∕=j,g on Qj,g is known as a peer effect. 

Bollinger and Gillingham (2012) (B&G) develop an approach to 
consistently estimate rooftop PV peer effects while addressing common 
identification challenges such as self-selection into peer groups. The 
approach leverages the fact that PV system installations occur days, 
weeks, or months after an adoption decision. That is, an installation at 
time t represents an adoption that occurred at time t − l, where l is the 
lag between adoption and installation. Under the assumption that 
rooftop PV peer influence occurs for installed systems, B&G model 
adoption decisions as a function of cumulative installations, also known 
as the installed base: 

agt = α+ βbgt +Xγgt + εgt (2) 

Where agt is adoption in group g at time t, β is the coefficient of in
terest estimating peer effects, bgt is the installed base, and X is a vector of 
relevant price and demand shifters. Importantly, the installed base is 
itself effectively a lagged version of adoption: 

bgt =
∑t

t=0

∑J

j=1
ajt− l (3) 

Where J is the total number of potential adopters in group g. Given 
the structure of bgt, serial autocorrelation in the error term could bias the 
estimator β. To see why, suppose that the error term is autocorrelated 
with an order v ≥ l, so that at is a function of εt− l. Given that bt =

∑t
0
∑J

0ajt− l, bt is correlated with εt− l, such that E
[
bgt, εgt

]
∕= 0∀v ≥ l. As a 

result, an identifying condition in this model is that the lag l exceeds the 
order of autocorrelation. Fortunately, lag times between PV adoption 
and installation are substantial, taking around 39 days at the median 
according to data described further below. B&G find that PV installation 
lags easily satisfy this condition in their sample, as we likewise 
demonstrate in our sample. 

Note that the theoretical model does not identify a specific influence 
mechanism. For instance, rooftop PV peer effects can occur because 
adopters actively share information about PV with peers or because non- 
adopters passively observe their peers install PV (Xiong et al., 2016; 
Bollinger et al., 2022). Similarly, while we discuss potential mecha
nisms, our empirical model is not based on a specific influence 
mechanism. 

3. Data & methods 

Our primary data source is a set of United States rooftop PV instal
lation records compiled by BuildZoom, an online platform connecting 
households with service contractors. To analyze peer effects across in
come levels, we use customer addresses to match the PV records to 
modeled household-level income estimates generated by Experian. We 
define peer groups at the U.S. Census tract level, that is, we measure how 
installations within Census tracts affect adoption decisions in the same 
tracts. We use data from the U.S. Census American Community Survey 
for Census tract population estimates. We eliminate tracts with daily 
adoption rates of >10% as extreme outliers or possible data errors. Our 
analysis data set comprises 801,534 records for systems installed from 
2010 to 2020 with valid observations for permit application and issu
ance dates in 20,624 tracts (see Fig. 1) that could be matched to 
household-level income estimates,1 or N = 82,867,232 tract-day ob
servations. Table 1 provides summary statistics for adoption rates and 
installations in the tract-level panel data. 

The BuildZoom data include dates for when each record applied for 
and received applicable local permits. The B&G model and similar ap
proaches use these or similar dates (e.g., incentive reservation dates) to 
proxy adoption decision and installation dates. Recent research suggests 
that these proxies misrepresent adoption timelines (O'Shaughnessy 
et al., 2020; O'Shaughnessy et al., 2022a). We use data compiled by the 
National Renewable Energy Laboratory (NREL) (NREL, 2023) to 
extrapolate more accurate PV adoption and installation dates from the 
permit application and issuance dates, respectively, from the BuildZoom 
data sample. We implement two approaches to extrapolate more accu
rate adoption and installation dates. 

3.1. Discrete dates 

Our first approach uses discrete daily adoption and installation dates, 
largely building on the B&G specification. We use median timelines from 
the NREL data to identify imputed dates for adoption decisions and in
stallations based on permit application and issuance dates, respectively, 
from the BuildZoom data. Under this approach, an adoption occurs in 
tract g on day d if a household applied for a PV permit in tract g on date 
d+ 16, and an installation occurs if a PV permit was issued on date d −
23. We define the adoption rate agd as the percentage of households 
adopting as a share of households in tract g that had not yet adopted as of 
date d, and we define the installed base bgd as the cumulative number of 
installations in tract g as of date d. 

Following B&G, we implement another discrete date approach based 
on the first difference of the installed base, which equates to the daily 

1 Income estimates were available for about 98% of all BuildZoom records 
with valid addresses, permit application, and permit issuance dates that met the 
defined tract criteria. 
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installed rate. However, one issue with differencing daily adoption rates 
is that most days have no adoptions, such that differencing adoption 
rates yields many negative values following adoptions. As a result, 
models with first-differenced daily adoption rates are sensitive to the 
assumptions used to impute adoption and installation dates. Instead, we 
model daily adoption rates as a function of daily installations (see Sec
tion 3.3). For simplicity we refer to models using the first-differenced 
installed base (daily installs) as discrete date deltas models to distin
guish these from the discrete date installed base approach and from a 
pure first-differenced model. 

3.2. Continuous probabilities 

As an alternative to the discrete dates approach we build continuous 
probability distributions for the expected number of daily adoptions and 
installations. The benefit of the continuous probability approach is that 
it captures the impacts of installations on adoption decisions over the 
course of the ensuing days and weeks. 

The NREL data suggest that contract signature to permit application 
(contract-apply) timelines are roughly described by a left-skewed beta 
distribution, and that permit issuance to installation (issue-install) 
timelines are described by a right-skewed beta distribution. The beta 
distributions are highly skewed. To reduce the impacts of extreme du
rations, we cap each distribution based on the 95th percentiles of 
contract-apply and issue-install durations, 79 and 129 days respectively. 
With this restriction, NREL provided beta distribution parameters for 
both durations, using observations for 276,215 contract-apply durations 
and 297,630 issue-install durations. The contract-apply durations are 
described by the beta distribution α = 0.94, β = 2.76, and the issue- 
install durations are described by the distribution α = 0.67, β = 2.14. 
We use these distributions to calculate the expected number of adoption 
decisions and installations for any given day at the Census tract level, 
using observed dates for permit applications and issuance from Build
Zoom. We then sum all probabilities at the tract level to derive expected 
values for the number of adoptions and installations in a tract on any 
given day: 

âgd =
∑D

d=1

∑H

h=1
p(a)hd, Δ̂bgd =

∑D

d=1

∑H

h=1
p(Δb)hd (4) 

Where âgd and Δ̂bgd are the expected number of adoption decisions 
and installations in tract g on day d, respectively, p(a)hd is the probability 
that household h decided to adopt on day d, p(Δb)hd is the probability 
that household h installed a PV system on day d, and H is the total 
number of households in tract g. 

3.3. Model specifications 

We implement three variations of the following basic model struc
ture, using fixed effects to identify the impact of the installed base on 
adoption rates: 

agd = α+ βbgd + Tg +GQgd + ζd + εgd (5) 

Where agd is the observed adoption rate based on imputed dates 
(discrete dates) or the expected number of adoption decisions (contin
uous probabilities), bgd is the observed installed base (discrete date 
base), the observed daily installs (discrete date deltas), or the expected 
daily installs (continuous probabilities), Tg is a tract fixed effect, GQgd is 
an area-quarter fixed effect, and ζd is a set of time fixed effects for year- 
month, day-of-month, and day-of-week. The area-quarter fixed effect is 
defined at the Census place level, a geographic area roughly the size of a 
city. The tract fixed effects are included to control for demand shifters 
that vary across tracts, such as area income levels and rates of home 
ownership. The area-quarter fixed effect controls for exogenous regional 
covariation between adoption and installation rates unrelated to peer 
influence, such as the introduction of new local incentives or the 
opening of a new installation business. Note that we exclude the tract 
fixed effect from the discrete date deltas model given that the tract and 
area-quarter fixed effects statistically absorb most of the tract-level 
variation in daily adoption and installation rates (Δbgd). Including 
both fixed effects depletes the statistical power of the model and renders 
most coefficients insignificant. Still, the coefficient signs robustly sup
port the two primary conclusions discussed in Section 5 using any 
combination of tract and area-quarter fixed effects (see Supplementary 
Table S1). 

We test peer effects within and across individual income levels by 
identifying records associated with LMI and non-LMI households. In 
social assistance programs, LMI households are typically identified using 
thresholds based on area median incomes defined by the Department of 
Housing and Urban Development. For our purposes, we identify LMI 
households as those earning <100% of area median income. We chose 
the 100% threshold for statistical purposes given that we cannot simi
larly bifurcate the total number of households in tracts by area median 
incomes. By using 100% as a threshold, roughly half of households are 
defined as LMI and half as non-LMI, allowing for easier comparison 

Fig. 1. Census tracts in study sample with cumulative rooftop PV adoption rates (per 1000 households).  

Table 1 
Summary statistics for tract-level panel data (N = 82,867,232).  

Variable Mean SD. Min Max 

Adoption rate (per household in 10− 6) 5.92 83.99 0 83,333.3 
LMI adoption rate (10− 6) 1.78 43.97 0 82,987.6 
Non-LMI adoption rate (10− 6) 4.14 68.21 0 68,376.1 
Installs 0.01 0.13 0 113 
LMI installs 0.003 0.06 0 112 
Non-LMI installs 0.007 0.10 0 72 

All units are at the tract-day level. 
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across LMI and non-LMI adoption rates. The results are robust to alter
native criteria for identifying LMI households (see Supplementary 
Table S2). We then implement the following specifications: 

aigd = α+ωbigd +Ttg +GQgd + ζd + εgd (6)  

aigd = α+ γbigd + μb∕=igd +Tg +GQgd + ζd + εgd (7) 

Where aigd is the observed (discrete dates) or expected (continuous 
probabilities) adoption rate among households in income group i (LMI 
or non-LMI), bigd is the observed or expected install variable for income 
group i, and b∕=igd is the observed or expected install variable for the 
opposite income group. Note that the coefficient ω reflects peer effects 
from installs at all income levels on adoption rates in a specific income 
group, γ reflects within-group peer effects (e.g., LMI on LMI), and μ re
flects across-group peer effects. 

In Eq. (7), the hypothesis is that within-group peer effects are 
stronger than across-group effects, i.e., γ > μ. We do not specify the 
mechanism through which within- and across-group effects vary. Under 
peer influence theory, the hypothesis γ > μ stems from the idea that 
individuals are more strongly influenced by peers with shared identities. 
For instance, LMI households may be more strongly influenced by in
stallations by other LMI households facing comparable budget con
straints. Another factor that could explain γ > μ is the local clustering of 
households with comparable income levels, also known as income 
segregation (Reardon and Bischoff, 2011). Spatial income segregation is 
largely a macro-scale phenomenon, such that income is mostly segre
gated over broad geographic areas (e.g., between neighborhoods) and 
less segregated over small geographic areas (e.g., between blocks) 
(Reardon and Bischoff, 2011). Still, income segregation within tracts 
(our geographic unit of analysis) means that peer effects among 
households with similar income levels may be stronger because those 
households tend to live closer to one another. This second mechanism 
establishes an indirect effect of income on peer effects due to proximity. 

3.4. Identification 

Breusch-Godfrey tests show that serial autocorrelation exists in all 
specifications, but F-test comparisons of models in tracts with large 
markets show that the order of autocorrelation is substantially shorter 
than the minimum imputed lag time of 39 days, thus satisfying the 
identification condition. 

3.5. Robustness checks 

We implement robustness checks to explore two sources of uncer
tainty in our models. First, our models are built on uncertain assump
tions for contract-apply and issue-install timelines. For simplicity, our 
preferred specifications use national median durations and probability 
distributions for these timelines. The NREL data show that these time
lines vary substantially over space, partly due to differences in state and 
local permitting regulations. To test the robustness of our results to our 
timeline assumptions we implement separate models in the five states 
with the most coverage in the NREL data: Arizona, California, Massa
chusetts, Nevada, and New York. We estimate separate models based on 
state-level median durations and probability distributions. The esti
mates of these robustness checks are provided in Supplementary Infor
mation, Tables S3-S7. Second, our models use fixed effects to control for 
other PV demand shifters, consistent with the approach first developed 
by B&G. As a robustness check, we implement alternative specifications 
that directly control for three demand shifters: local income levels, rates 
of home ownership, and the PV hosting capacity of rooftops. We present 
the results of the models with direct controls for demand shifters in 
Supplementary Information, Table S8. 

4. Results 

We use our data and refined peer effects models to explore three 
research questions treated in the three following sub-sections. First, we 
estimate population-level peer effects regardless of household income 
levels. Second, we explore the relative magnitudes of peer effects in 
different income groups to understand whether LMI peer effects are 
quantitatively distinct from non-LMI peer effects. Third, we explore peer 
effects within income groups (e.g., the effects of LMI installations on LMI 
adoption rates) and across income groups (e.g., the effects of non-LMI 
installations on LMI adoption rates). Specifically, we explore the hy
pothesis that within-group peer effects are stronger than across-group 
peer effects. 

The coefficients in the discrete date specifications can be interpreted 
as an increase in probability (x10− 6) of adoption per household in a tract 
given a unit-change in the installed base (base model) or an additional 
installation on the same day (deltas model). The coefficients in the 
continuous probability model can be interpreted as changes in the 
number of adoptions per additional installation in a tract on any given 
day. For simplicity, we convert some discrete date results into estimated 
impacts in terms of percentage point changes in the probability of 
adoption based on an average-sized tract (1780 households). For 
instance, a discrete date coefficient of 9 × 10− 6 equates to a roughly 1.6 
point change in the probability of adoption in an average-sized tract (9 
× 10− 6 × 1780). We present the percentage point results in brackets in 
the result tables. All results are presented with tract-clustered standard 
errors. 

4.1. Rooftop solar peer effects at all income levels 

Table 2 presents estimated impacts of peer effects for all income 
levels, based on Eq. (5) in Section 3.3. The discrete date base model 
suggests that an additional installation increases the probability of 
adoption by around 0.1 × 10− 6, comparable to a coefficient of 0.13 ×
10− 6 from a similar specification in B&G. The discrete date deltas model 
suggests that an installation on a given day increases the probability of 
adoption on that day by around 10.3 × 10− 6 per household, or an 
increased adoption probability of around 1.8 percentage points in an 
average-sized tract. For comparison, B&G estimated an effect of around 
0.8 percentage points. The difference may be partly due to differences in 
model specifications and our assumptions around imputed dates as well 
as sample differences. B&G study peer effects from 2001 to 2011, a 
period when the PV industry operated at a significantly smaller scale 
than during our study period (2010− 2020). 

Table 2 
Rooftop solar peer effects for all households.   

Discrete Date 
Base 
(x10¡6) 

Discrete Date 
Deltas 
(x10¡6) 

Continuous 
Probability 

Installed base 0.11* 
(0.01) 
[0.02] 

10.38* 
(0.72) 
[1.8] 

0.50* 
(0.01) 

Tract FE X  X 
Area-quarter 

FE 
X X X 

Year-month FE X X X 
Day-of-month 

FE 
X X X 

Day-of-week 
FE 

X X X 

N 82,867,232 82,867,232 82,867,232 
Adjusted R2 0.04 0.02 0.65 

(tract-clustered standard errors in parentheses) [discrete date coefficients con
verted to percentage point terms based on average-sized tracts presented in 
brackets]. 

* p < 0.05. 
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The continuous probability model suggests that every two in
stallations spawn roughly one peer-influenced adoption. The continuous 
probability peer effect is orders of magnitude greater than the discrete 
date effects. The greater magnitude was expected due to the structure of 
the continuous probability model, which better captures lagged peer 
effects. Still, the magnitude of the continuous probability coefficient 
merits a closer examination of what is being measured. We posit that the 
relatively large continuous probability peer effects reflect the central 
role of customer referrals in the U.S. rooftop PV industry. Customer 
referrals—financial incentives paid by installers to adopters who refer 
other customers—are the most common method of customer acquisition 
in the U.S. rooftop PV industry (Sigrin et al., 2022). Available data 
suggest that around half of rooftop PV sales derive from referrals (Mond, 
2017) and that >70% of installers offer referral incentives (EnergySage, 
2022). Assuming that most referrals occur locally and occur after sys
tems have been installed, the peer effect coefficients include referral- 
driven adoptions. Valid arguments could be made for and against 
whether referrals reflect peer influence. On one hand, some referrals 
likely accelerate peer interactions that would have happened later, such 
that referrals are a form of subsidized influence. On the other hand, at 
least some referral-driven adoptions may not have occurred absent the 
referral incentive, such that the estimated peer effects overstate the true 
role of peer influence in driving adoption. The continuous probability 
results therefore provide an intuitive alternative metric for measuring 
peer influence, but the magnitudes of these “peer” effects are likely 
biased by financial incentives for referrals. 

4.2. Rooftop solar peer effects by income level 

Table 3 presents results for peer effects separately for LMI and non- 
LMI households, based on Eq. (6) in Section 3.3. All specifications sug
gest that peer effects are weaker for LMI than for non-LMI households. 
The discrete date deltas models, for instance, indicate that an additional 
installation increases the probability of an LMI adoption by around 1.3 
× 10− 6 or about 0.2 percentage points for an average-sized tract, 
compared to 9.1 × 10− 6 or about 1.6 percentage points for non-LMI 
households. The continuous probability model similarly suggests that 
non-LMI peer effects are about twice as strong as LMI peer effects. 

4.3. Rooftop solar peer effects within and across income levels 

Table 4 provides results for estimated peer effects within and across 
income groups, based on Eq. (7) in Section 3.3. The models support the 
hypothesis that within-group peer effects are stronger than across-group 
effects. For instance, the discrete date deltas model suggests that within- 
group peer effects are about twice as strong than across-group peer ef
fects. Specifically, an additional LMI installation is associated with a 0.5 
percentage point increase in the probability of an LMI adoption, 
compared to a 0.1 point increase from non-LMI installations in average- 

sized tracts. Fig. 2 illustrates these results, showing how within-group 
peer effects are stronger than across-group effects, and that all effects 
are smaller for LMI than for non-LMI adoption. 

All models suggest that peer effects from installs at any income level 
are weaker on adoption decisions among LMI than non-LMI households. 
Relatively weak LMI peer effects at least partly reflect the fact that LMI 
adoption rates are lower overall (see Table 1). To compare relative 
changes in adoption rates, Fig. 3 depicts the peer effect coefficients as 
ratios of background LMI and non-LMI adoption rates. That figure shows 
how the differences in results across income groups relative to back
ground adoption rates are smaller than the unadjusted differences. 
Though the total relative effects remain substantially lower for LMI 
adoption, estimated within-group peer effects are more comparable 
across income groups when adjusting for background adoption rates. 

5. Discussion & conclusions 

We use household-level income estimates for rooftop PV adopters to 
explore whether peer effects vary across household income levels. Our 
two primary conclusions are that 1) peer effects are generally weaker 
among LMI households and that 2) peer effects are stronger within in
come groups, such that LMI installations have greater impacts on LMI 
adoption rates than do non-LMI installations. 

The first conclusion requires a nuanced interpretation. Peer effect 
models only measure influence that results in adoption decisions. As a 
result, peer effects are partly a function of pre-influence adoption 
probabilities. Households with low pre-influence adoption probabilities 
require stronger influence to adopt and thus register peer effects than 
households with higher pre-influence adoption probabilities. All else 
equal, LMI households have lower pre-influence adoption probabilities 
due to various LMI adoption barriers, particularly budget constraints. 
Lower pre-influence adoption probabilities reduce LMI relative to non- 
LMI peer effects. Hence, our results should be interpreted to mean that 
peer influence is less likely to translate to adoption among LMI house
holds, not that LMI households are less susceptible to influence. Indeed, 
a plausible hypothesis is that LMI households are more susceptible to 
influence. Starting from lower pre-influence adoption probabilities, peer 
influence may have relatively greater impacts on LMI households than 
on non-LMI households who may already be inclined to adopt PV. 
Future research could explore methodologies to measure influence more 
directly and how the magnitude of influence—not necessarily man
ifested in adoption—may vary across income levels. 

Our second conclusion provides a rationale for targeted policies to 
seed PV installations on LMI rooftops. That is, insofar as enabling LMI PV 
adoption is a policy objective, our results suggest that seeding programs 
would be more effective if designed to seed installations on LMI rooftops 
or in LMI areas, specifically. Still, the fact remains that peer influence is 
less likely to translate to LMI adoption. The relative weakness of LMI 
peer effects shows the limitations of influence as a policy tool to promote 

Table 3 
Rooftop solar peer effects across at different income levels.   

Discrete Date Base (x10¡6) Discrete Date Deltas (x10¡6) Continuous Probability  

Y ¼ LMI Y¼Non-LMI Y ¼ LMI Y¼Non-LMI Y ¼ LMI Y¼Non-LMI 

Installed base 0.01* 
(0.001) 
[0.002] 

0.10* 
(0.006) 
[0.02] 

1.29* 
(0.13) 
[0.2] 

9.09* 
(0.67) 
[1.6] 

0.10* 
(0.004) 

0.40* 
(0.01) 

Tract FE X X   X X 
Area-quarter-year FE X X X X X X 
Year-month FE X X X X X X 
Day-of-month FE X X X X X X 
Day-of-week FE X X X X X X 
Adjusted R2 0.01 0.03 0.01 0.02 0.38 0.63 
N 82,867,232 82,867,232 82,867,232 82,867,232 82,867,232 82,867,232 

(tract-clustered standard errors in parentheses) [discrete date coefficients converted to percentage point terms based on average-sized tracts presented in brackets]. 
* p < 0.05. 
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LMI adoption. Influence-driven policies such as seeding could prime LMI 
households to consider adoption. However, such interventions do not 
address LMI barriers to adoption such as budget constraints. To the 
extent that policymakers seek to accelerate LMI adoption of PV and 
other clean energy technologies, our results provide a rationale to pair 
targeted influence-driven policies with interventions that directly 
address LMI adoption barriers, such as incentives or access to low-cost 
financing. 

Finally, from an economic perspective, our results further confirm 
that peer influence plays a role in shaping customer demand curves for 
emerging technologies. Peer influence is effectively a demand-shifter 
that, we have shown, itself varies with customer income levels. Het
erogeneous peer effects provide one more mechanism to explain con
sumption inequality. More formally, returning to the theoretical model, 
we could write customer demand as a function of income: 

Qj,g = D
(
p, β(i)Q∕=j,g ,X(i)

)
(8) 

Where β(i) is a peer effect that is itself a function of income and X(i) is 
a vector of demand shifters that are likewise functions of or correlate 
with income. For most emerging technologies, including rooftop PV, 
both β(i) and X(i) shift low-income demand curves to the left, 

constraining low-income consumption. Future work could consider the 
role of peer effects in explaining the inequitable adoption of other 
emerging products and consumer technologies. 

We conclude with a suggestion for further research. As noted 
throughout this paper, peer effect models generally do not specify the 
mechanism of peer influence. Heterogeneous influence mechanisms 
provide one potential explanation for differing magnitudes of peer ef
fects across income levels. For instance, Wolske (2020) finds descriptive 
evidence that panel visibility and word-of-mouth communication may 
be more influential for LMI households than for higher-income house
holds. If so, heterogeneous peer effects could be partly explained by 
heterogeneous building and urban designs in LMI areas. Further, insofar 
as influence mechanisms differ across income levels, policymakers could 
focus on the influence interventions that are most effective for LMI 
adoption decisions. The possibility of heterogeneous influence mecha
nisms is an area for further research. 
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Table 4 
Rooftop solar peer effects across and within income levels.   

Discrete Date Base (x10¡6) Discrete Date Deltas (x10¡6) Continuous Probability  

Y ¼ LMI Y¼Non-LMI Y ¼ LMI Y¼Non-LMI Y ¼ LMI Y¼Non-LMI 

LMI installed base 0.10* 
(0.01) 
[0.02] 

− 0.02 
(0.02) 
[− 0.004] 

2.99* 
(0.30) 
[0.5] 

1.87* 
(0.41) 
[0.3] 

0.23* 
(0.01) 

0.15* 
(0.007) 

Non-LMI installed base − 0.005* 
(0.002) 
[− 0.001] 

0.12* 
(0.01) 
[0.02] 

0.69* 
(0.14) 
[0.1] 

11.64* 
(0.83) 
[2.1] 

0.06* 
(0.003) 

0.48* 
(0.01) 

Tract FE X X   X X 
Area-quarter FE X X X X X X 
Year-month FE X X X X X X 
Day-of-month FE X X X X X X 
Day-of-week FE X X X X X X 
Adjusted R2 0.01 0.03 0.008 0.02 0.39 0.63 
N 82,867,232 82,867,232 82,867,232 82,867,232 82,867,232 82,867,232 

(tract-clustered standard errors in parentheses) [discrete date coefficients converted to percentage point terms based on average-sized tracts presented in brackets]. 
* p < 0.05. 

Fig. 2. Peer effects within and across income groups. Figure depicts per
centage point increases in probabilities of adoption for peer effects across and 
within income groups. Estimates based on coefficients from discrete date deltas 
model and assuming a typical Census tract of 1650 households. 

Fig. 3. Estimated peer effects at different income levels relative to back
ground adoption rates. Plot depicts ratios between peer effect coefficients and 
background adoption rates as defined by a mean daily adoption from Table 1. 
Estimates based on coefficients from discrete date deltas model. 
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