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Abstract

Many psychology researchers have shown that hu-
mans do not process probabilistic information in a
manner consistent with Bayes’ theory [9, 10, 16,
24, 23, 27). Robinson and Hastie (24, 23] showed
that humans made non-compensatory probability up-
dates, produced super-additive distributions, and re-
suscitated zero probability possibilities. While most
researchers have classified these behaviors as non-
normative, we found that the Dempster-Shafer theory
could model each of these behaviors in a normative
and theoretically sound fashion. While not claiming
that the theory models human processes, we claim
that the similarities should aid user acceptance of
Dempster-Shafer based decision systems.

1 Introduction

Due to the inherent uncertainty of evidence and con-
clusions in the world, decision support systems (in-
cluding artificial intelligence systems) must often use
methods for representing and reasoning under un-
certainty. There are a number of possible methods.
Each method has a different effect on the three ma-
jor expert system stages: 1) acquisition, 2) inferenc-
ing, and 3) user interpretation of the results. While
many products and papers downplay the importance,
the choice is difficult and important. The chosen
paradigm can mitigate or exacerbate errors in any
of the stages thus making the system’s results mean-
ingless.

There are a number of results supporting each
reasoning method. One attribute of comparison is
theoretical soundness [6, 17, 18, 19, 2]. Most of
these comparisons uphold the theoretical foundation
of probability theory and particularly of Bayes’ the-
orem. Another attribute is empirical performance
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(8, 1, 29, 22, 17, 20, 21]. These studies support a va-
riety of conclusions. Dawes [8], for example, shows
that using a simple, yet incorrect, linear model is
often better than a theoretically sound probabilistic
model when they are both based on the same error-
prone human estimates. In this paper, we argue for a
third attribute—user interpretation and acceptance.

When consulting a decision support system, a hu-
man’s ability to understand the computer’s beliefs
and decisions is important. Early research on au-
tomated tools showed that users more readily ac-
cept systems if they understand the systems’ behav-
lors (4, 5, 11, 14, 25]. This understanding can result
from any of three processes: 1) training the human
to understand the theoretical correctness of the rea-
soning processes, 2) using a reasoning process that
directly corresponds to the human’s or 3) using a
process whose observable behavior corresponds to the
human’s. The first process is apt to meet with resis-
tance and makes general distribution and acceptance
difficult. The second process, while of great potential,
is difficult to accomplish due to the hidden nature of
human decision-making processes. The third process
corresponds directly to the way that most collabo-
rative human decision-making works: when humans
defend their reasoning, they refer to the evidence that
caused them to increase or decrease their belief and
not to their reasoning mechanisms.

This paper uses experimentally observed similari-
ties between the Dempster-Shafer theory of evidence
[26] and humans solving a probabilistic updating task
to argue that humans may more readily understand
Dempster-Shafer based systems. The paper does not
directly address user acceptance in that it does not
involve actual users of a system, but it indirectly ad-
dresses acceptance through the ability of humans to
empathize with the behavior.



2 The task and human data

This paper reports an experiment that compared the
behavior of an automated Dempster-Shafer evidence
accumulation system with the behavior of humans
performing the same evidence accumulation task.
The task and human experimental results come from
a study by Robinson and Hastie [24, 23].

In an effort to find out whether humans followed
Bayesian probabilistic reasoning principles, Robinson
and Hastie asked human subjects to solve a murder
mystery. The subjects saw a series of clues. After
each clue, the subjects stated their beliefs about the
guilt of each suspect in terms of probability. Robin-
son and Hastie found that the humans did not follow
probabilistic principles. We will explain the exact
form of the discrepancy when we describe the behav-
1or of the Dempster-Shafer system.

Before describing the Dempster-Shafer system, we
will address two concerns with the Robinson and
Hastie data. Some may argue that Robinson and
Hastie’s subjects did not have adequate training in
the probabilistic concepts. To test this hypothesis,
Robinson and Hastie explicitly taught the fundamen-
tals of probability to some of the subjects. Depending
on the subject, the training led to either the same be-
havior as those without training or a behavior that
did not reflect any evidence accumulation. Robinson
and Hastie conjectured that the cognitive overhead
prevented the subjects from applying the learning.

Another objection may be that one study makes
an insufficient basis for concluding that humans are
not Bayesian decision makers. Robinson and Hastie,
however, are not the only researchers to show that
humans make poor Bayesian probabilistic informa-
tion processors. Many other psychology researchers
have shown the non-Bayesian character of human in-
formation processing [9, 10, 16, 24, 23, 27].

3 Dempster-Shafer
predictions

To test the predictions of the Dempster-Shafer [26]
theory, we developed a straight-forward implementa-
tion of the theory [20] and then submitted the clues to
it as a series of consonant belief functions. Although
many artificial intelligence researchers (3, 7, 13, 12]
have restricted their Dempster-Shafer representations
to simple and dichotomous belief functions, we chose
consonant belief functions because they are the form
that Shafer says most naturally represent inferential
evidence [26, pp. 223-229]. The reason other arti-
ficial intelligence researchers have ignored this repre-
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Figure 1: Venn graph of the vacuous function: there
has been no evidence.

sentation is that it can result in exponential computa-
tional time requirements. For the sake of this study,
computational time was not of direct concern.’

While it is not the intent of this paper to fully in-
troduce the Dempster-Shafer theory, we will briefly
describe belief functions. A belief function is the as-
signment of probabilities to sets of conclusions. This
assignment differs from standard probabilistic theo-
ries in that it uses sets rather than single hypotheses.
All probability theories can use sets to represent mul-
tiple simultaneously true hypotheses; however, the
Dempster-Shafer system uses sets to indicate lack of
differentiation in the evidence for mutually exclusive
hypotheses. The interpretation of this assignment is
that some element of the set is true but the evidence
does not provide fine enough granularity to directly
point to one hypothesis.

A consequence of this representation for belief is
that there is a clear distinction between the inability
to decide due to lack of evidence and the inability
to decide due to too much conflicting evidence. In
the Dempster-Shafer theory, a believer represents the
lack of evidence as the assignment of all probability
to the undifferentiated set of all possible hypotheses
(e.g. figure 1), whereas the representation for con-
flicting evidence is the assignment of roughly equal
amounts of probability to many separate singleton
sets of hypotheses (e.g. figure 2). For example, in a
well-matched musical competition, the judge’s initial
belief should be no one has evidence in their favor and
all contestants can fight for the prize like a pie ready
to be divided: there is no conflicting beliefs concern-
ing the outcome. After listening to everyone perform

INote, however, that (20, 15] both show linear complexity
when applying the theory to naturally constrained problems.
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Figure 2: Venn graph of a maximally conflicting belief
function: there has been evidence supporting each
hypothesis equally.
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Figure 3: Venn graph of the consonant belief function:
Pr(H, .1, Pr(H, vV Hy V Hs) = .3, and Pr(H, Vv
--+Hp) = .6.

well, the judge should have belief in each contestant
individually with little or no residual belief: each con-
testant has claims to more pie than is available. The
evidence causes conflicting beliefs.

More generally, assigning non-zero probabilities to
sets of hypotheses that don’t subsume one-another
represents conflicting belief. The common Dempster-
Shafer representation used in artificial intelligence of
assigning belief to a hypothesis and its negation, thus,
directly encodes conflict. Individual pieces of evi-
dence, however, should not show any conflict with
themselves, and, therefore, this dichotomous repre-
sentation is usually inaccurate. The consonant belief
function is the non-conflicting alternative.

Figure 3 depicts a consonant belief function. In this
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example, some evidence supports hypothesis H3. The
same evidence has less direct support for hypotheses
H, and H; and also has some residual uncertainty.
This belief function is represented by assigning non-
zero probabilities to the sets Hi, H,, Hq, Ha, and fi-
nally to H, ... H,. This gradual focusing of probabil-
ities on progressive subsets is the definition of a con-
sonant belief function. A consonant belief function
18 consonant with itself: that is, it shows no conflict
with itself.

The consonance of an individual piece of evidence
with itself implies nothing about consonance between
pieces of evidence. Different pieces of evidence can
conflict with each other. The detective story used
in this experiment, for example, shows considerable
conflict between clues. While each clue might be
self-consistent and therefore consonant, that does not
imply that all clues agree. The result of combining
these disagreeing but self-consonant belief functions
will not be consonant.

To make a choice among the hypotheses requires
comparing the beliefs assigned to each hypothesis. In
the Dempster-Shafer theory, there is not a single mea-
sure of belief for individual hypotheses. Shafer pro-
vides several measures. The most important ones are
the Bel function that indicates the lower bound of be-
lief and the P! plausibility function that indicates the
upper bound. This experiment uses both of these to
compare the Dempster-Shafer system’s results with
the human subjects’ guilt estimates.

4 Comparisons of behavior

One way in which the humans did not follow proba-
bilistic principles was that they usually changed only
the probability of the suspect directly impugned by
the clue without making compensatory changes to the
other suspects. Because probability requires that the
sum of the probabilities over suspects equals 1.0, each
change must be balanced with an equal change in the
opposite direction for the other suspects. Bayesian
probability requires proportionately equal changes in
the non-impugned hypotheses. Robinson and Hastie
termed their subjects’ omission of this required com-
pensation “non-compensatory probability updating.”

Although subjects in general did not compensate,
there were two conditions under which they did, at
least partially: 1) when a clue had an extreme im-
pact on the guilt of one suspect, and 2) after a large
number of clues had already been processed. In the
first case—extreme impact—the clue often contra-
dicted prior belief: that is, it indicated that a sub-
ject’s favorite suspect was actually innocent or that
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Figure 4: Dempster-Shafer Bel score guilt ratings for
each suspect after each clue.

a long-shot was guilty.

Figure 4 shows the Dempster-Shafer system’s Bel
function assignment of guilt to each suspect after each
clue. Each point on the abscissa is a separate clue.
The first initial of the suspect mentioned by the clue
marks each point. Some of the clues indicate guilt,
some indicate innocence, and some are neutral. Like
the human subjects, most of the Dempster-Shafer
system’s belief changes were non-compensatory. The
only strong demonstration of compensation occurred
in reaction to the two strong clues regarding Fraw-
son and the clues eliminating Reardon and Kitty.
This behavior corresponds exactly with Robinson and
Hastie's descriptions of their subjects.

As an explanation for the humans’ behavior, this
result suggests that the humans may not fully parti-
tion their belief before collecting evidence. The hu-
mans may take an approach that is analogous to the
Dempster-Shafer system’s approach: that is, slowly
portion out belief and only when there is a prepon-
derance of evidence for one hypothesis do they take
back belief from other hypotheses. We are not, how-
ever, claiming that the Dempster-Shafer system liter-
ally models the individual subjects. There was far too
much variance between subjects to even attempt to
analyze the system’s ability to model the individuals.

Robinson and Hastie found two other aspects
of the human data that conflicted with probabil-
ity: probabilities usually added to over one—"“super-
additivity”—and some humans sometimes gave non-
zero probability ratings to suspects after giving them
zero ratings— “resuscitation.”

If the Dempster-Shafer upper-bound probability
measure Pl is used, then most of the probabilities
add to over one thus qualitatively modeling the super-
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additivity. The interpretation in this case is that the
subjects were sensitive to their residual uncertainty
about the suspects and felt that the lower-bound es-
timates made them look overly convinced of the sus-
pect’s innocence. Assigning probabilities as low as
the Bel scores in figure 4 might look like an admission
of implausibility that did not correspond to the sub-
jects’ beliefs. The scoring mechanism did not give the
subjects any way to indicate the suspects’ potential
guilt, and, therefore, the subjects may have blended
the plausibility score with the actual belief.

Because the Bel measure naturally increases from
zero to some non-zero value as evidence is collected,
the Bel score could model the resuscitation. To
use this explanation in conjunction with the super-
additivity explanation requires the assumption that
the subjects were somehow sensitive to both the Bel
and P! and chose to respond in some hybrid manner
that sometimes allowed the Bel score to override the
Pl score.

Simultaneously using the Bel and Pl measures to
explain the human behavior 18 not adequately con-
vincing especially because there are other possible ex-
planations for the super-additivity and resuscitation.
Explanations based on the input scale and human
understanding seem more appealing than an expla-
nation based on the Dempster-Shafer theory. For
example, there are some problems with Robinson
and Hastie's method of soliciting probability ratings.
They used a scale marked into 0.05 probability inter-
vals. The subjects may not have realized that posi-
tion within an interval was significant. This expla-
nation could explain the resuscitation effect because
no suspect resuscitated to more than a probability of
0.1.

While the Dempster-Shafer system does provide
an explanation of these anomalies, we feel that the
major contribution of this work is to propose a be-
havior with which decision system users could em-
pathize. The similarity is especially strong for the
non-compensatory behavior. Because the Dempster-
Shafer system is theoretically sound, system develop-
ers can feel secure using it.

5 Conclusion

If, as previous work has suggested [4, 11, 14, 28, 25],
user acceptance depends on the ability of the user to
empathize with system behavior, and if humans are
particularly poor at understanding Bayesian proba-
bilistic notions, then this result showing the simi-
larity between human and Dempster-Shafer updat-
ing behaviors encourages further exploration of the



use of the Dempster-Shafer theory in automated rea-
soning. These results combined with the Dempster-
Shafer theory’s theoretical soundness and Mitchell’s
results (20, 21] concerning acquisition and computa-
tional requirements are a strong argument in favor of
the Dempster-Shafer theory.
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