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A Resource-Rational Approach to the Causal Frame Problem
Thomas F. Icard, III (icard@stanford.edu), Noah D. Goodman (ngoodman@stanford.edu)

Departments of Philosophy and Psychology, Stanford University

Abstract

The causal frame problem is an epistemological puzzle about
how the mind is able to disregard seemingly irrelevant causal
knowledge, and focus on those factors that promise to be use-
ful in making an inference or coming to a decision. Taking
a subject’s causal knowledge to be (implicitly) represented in
terms of directed graphical models, the causal frame problem
can be construed as the question of how to determine a rea-
sonable “submodel” of one’s “full model” of the world, so as
to optimize the balance between accuracy in prediction on the
one hand, and computational costs on the other. We propose a
framework for addressing this problem, and provide several il-
lustrative examples based on HMMs and Bayes nets. We also
show that our framework can account for some of the recent
empirical phenomena associated with alternative neglect.
Keywords: frame problem, bounded-resource-rationality,
causal reasoning, alternative neglect.

Introduction
To any inference or decision problem there is no a priori
bound on what aspects of a person’s knowledge may be use-
fully, or even critically, applied. In principle, anything could
be related to anything. This challenge is sometimes referred
to as the frame problem, characterized by Glymour (1987)
as: “Given an enormous amount of stuff, and some task to be
done using some of the stuff, what is the relevant stuff for the
task?” (65). The question is foundational to reasoning and ra-
tionality. Part of what makes people so smart is the ability to
solve the frame problem, ignoring those aspects of the world
(and one’s knowledge of it) that are irrelevant to the problem
at hand, thereby simplifying the underlying reasoning task,
turning an intractable problem into a tractable one.

Not all of the psychological literature paints a picture of
human reasoners as so adept at disregarding only the irrele-
vant, however. In the literature on causal reasoning, there is
a robust empirical finding that subjects often neglect causal
variables, including those that are in principle accessible to
the subject, which would sometimes allow the subject to
make better, more accurate inferences. So called alterna-
tive neglect is an especially well documented phenomenon,
in which subjects ignore alternative possible causes of some
event (Fischhoff et al. 1978; Klayman and Ha 1987; Fern-
bach et al. 2011, inter alia), even when doing so leads to
incorrect inferences. More generally, at least in the causal
domain, subjects seem to consider “smaller” models of the
world than would be relevant to the task at hand, given the
subject’s knowledge and reasoning abilities. This has led
many to criticize the behavior as normatively objectionable.
Perhaps people are ignoring too much of their knowledge.

We would like to suggest that alternative neglect and re-
lated phenomena may be natural consequences of a general
mechanism for sifting the most pertinent information from
all other knowledge—that is, for solving the frame problem

with regard to causal knowledge. Assuming a person’s causal
knowledge can be represented (at least implicitly) in terms
of a very large directed graphical model (or Bayes net), the
causal frame problem arises because computations involv-
ing the entire model promise to be intractable. Somehow the
mind must focus in on some “submodel” of the “full” model
(including all possibly relevant variables) that suffices for the
task at hand and is not too costly to use. In as far as a proper
submodel may nonetheless neglect relevant causal informa-
tion, this may lead to inaccuracy. We suggest that perhaps
the mind tolerates local and occasional inaccuracy in order to
achieve a more global efficiency. To substantiate this claim,
we need a better understanding of what it is for a submodel
to be more or less apt for a task, from the perspective of a
reasoner with bounded time and resources. It is clear that hu-
man reasoners cannot consult an indefinitely detailed mental
model of the world for every inference task. So what kind of
simpler model should a reasoner consult for a given task?

This work follows a line of research in cognitive science
concerned with bounded or resource rationality (Simon 1957;
Gigerenzer and Goldstein 1996, inter alia), and specifically
in the context of probabilistic models, and approximations
thereto (Vul et al., 2014). In addition to inherent interest, it
has recently been suggested that considerations of bounded
rationality may play a methodological role in sharpening the
search for reasonable accounts of the cognitive processes
underlying inductive inference (Griffiths et al., 2014; Icard,
2014). However, in this tradition there has been more of a
focus on the algorithm used for inference in a given model,
and less attention paid to questions of model selection.

In this largely programmatic paper we offer a framework
for addressing the causal frame problem by selecting rational
submodels, provide several illustrative examples, and address
some of the empirical findings concerning alternative neglect.

Resource-Rational Submodels
Let P(X) be a joint probability distribution over random vari-
ables X = X1,X2, . . . , and define a query to be a partition
〈Xq;Xl ;Xe〉 of X into query variables, latent variables, and
evidence variables, respectively. A typical query task is to
find values of Xq that maximize the conditional probability
P(Xq | Xe = v), marginalizing over Xl . Clearly, the difficulty
of this and related tasks scales with the number of variables.
We will be interested in smaller models with fewer variables:
a sublist X∗ of X with associated distribution P∗(X∗), and par-
tition 〈Xq;X∗l ;X∗e〉, so that only latent and evidence variables
are ignored. The intention is for P∗ to be close in structure
to P but without the neglected variables. In each of the cases
considered here (HMMs and Noisy-Or Bayes nets), there will
be a canonical way of choosing P∗ given X∗.
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Given P(X) and P∗(X∗), there are at least two kinds of
questions we would like to ask. The first of these captures
how well an agent will fare by using the approximate sub-
model, as compared with the full model, holding fixed a pro-
cedure for using this model to choose an action. For instance,
the agent might use this distribution to compute expected util-
ity, or to sample from the model in order to approximate ex-
pected utility (see, e.g,. Vul et al. 2014). The second question
asks how far off the approximate model is from the “true”
model in its probabilistic predictions.1

1. Given a decision problem with action space A and utility
function U : Xq×A→R, and assuming fixed a (stochastic)
choice rule ΨQ taking a distribution Q over Xq to a distri-
bution on actions, what are the respective expected utilities
of using P and P∗ under (assumed “true”) distribution P?
That is, how great is the following difference ∆P,P∗?

∆P,P∗ = Ex∼P EA∼ΨP U(x,A) − Ex∼P EA∼ΨP∗ U(x,A)

2. How far is P∗ from P in information distance, for the vari-
ables Xq of interest? That is, what is the Kullback-Leibler
(KL) divergence between P and P∗ with respect to Xq?

KL(P ||P∗)=∑
x

P(Xq = x |Xe = v) log
P(Xq = x | Xe = v)

P∗(Xq = x | X∗e = v∗)

In general we will expect that KL(P || P∗)> 0, and ∆P,P∗ > 0,
indicating that the full model yields more accurate results.
However, in line with other work on resource rationality, as-
suming the requisite computations using distribution P come
with a greater cost than when using P∗, this difference in cost
may well be worth the difference in accuracy or utility.

Suppose we have a cost function c : P → R+, assigning a
real cost to each approximation P∗ ∈ P . For instance, c may
simply charge a constant amount for each variable used in
the associated submodel, or may be proportional to a graph
property such as tree width of the corresponding graphical
model. Given a set P of approximations, we can then ask for
the resource-optimal approximation in either of the above two
senses. For instance, with KL-divergence the distributions of
interest include any P̃ that optimally trades off cost against
KL-distance from the true distribution P:

P̃ = argmin
P∗∈P

KL(P || P∗)+ c(P∗) . (1)

Notice the immediate result that any node X that is screened-
off from Xq by Xe should be eliminated: doing so will not
reduce the KL, but will improve the efficiency of inference.

In what follows we illustrate these ideas with three exam-
ples using familiar graphical models. The first example, of
an HMM, demonstrates an extreme case of the frame prob-
lem in which the initial model is infinite. We show that the
resource-optimal submodel is not only finite, but often quite
small, and in many instances includes just a single node. The

1Strictly speaking, the second can be seen a special case of the
first, with a logarithmic scoring rule (Bernardo and Smith, 1994).

second example, of a causal Bayes net, shows that under a
sampling scheme for decision making, the submodel actually
outperforms the “ideal” full model in many cases, even with-
out taking costs into account. Finally, the third example re-
veals that certain kinds of inferences may be subject to greater
information loss resulting from neglect than others. Recent
empirical literature shows that people respect this difference,
suggesting that there may indeed be an element of resource
rationality in alternative neglect behavior.

Hidden Markov Models
A Hidden Markov Model is given by a time-labeled sequence
of state variables . . . ,X−1,X0,X1, . . . , with transition proba-
bilities P(Xt+1 | Xt), and a sequence of evidence variables
. . . ,Y−1,Y0,Y1, . . . , with emission probabilities P(Yt | Xt). In a
typical inference task, after observing values of Y (blue), we
are interested in the value of Xt+1 (beige) at time t +1:

. . .

For instance, variables X might be whether there is high or
low air pressure, while observations Y are of sun or clouds.
While in principle determining X0—today’s weather—could
depend on indefinitely earlier observations and states at times
t =−1,−2, . . . , one has the intuition that “looking back” only
a few days should be sufficient for typical purposes.

For a first illustration, consider a simple HMM with binary
variables Xt and Yt , and probabilities as follows:

P(Xt+1 = 1 | Xt = 1) = P(Xt+1 = 0 | Xt = 0) = 0.9

P(Yt = 1 | Xt = 1) = P(Yt = 0 | Xt = 0) = 0.8

Our class P of approximate distributions includes all trun-
cations of the model at variable Xt−N , in which case we as-
sume the distribution P∗(Xt−N) is uniform. In Figure 1 is a
graph showing the KL-distance between the full model and
a submodel with only N previous time steps included. We

0
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Figure 1: Dropoff in KL as function of number of nodes.
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chose this particular model for illustration because the KL-
distance is relatively high for the submodel with only one
node. Nonetheless, even for this model, the value drops off
rather dramatically with only a few additional nodes.

This model has a low mixing rate, as measured by the sec-
ond eigenvalue (λ2) of the transition matrix for the underly-
ing Markov model (the transition probabilities). In general, a
higher λ2 value means a lower mixing rate, which means the
past provides more information about the present. One might
expect that in such cases it is more detrimental to ignore pre-
vious state variables. If we look at the graph (Figure 2) of
KL-distances as a function of λ2, holding fixed the observa-
tion probabilities as above, we see that this model (for which
λ2 = 0.8) is indeed near the higher end.

0

0.15

0.3

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

second eigenvalue

K
L

Figure 2: KL-distance for an approximate model with only
one state variable, as a function of second eigenvalue λ2.

If we now factor in the cost of including more nodes in the
approximate HMM, we can determine, for different values of
λ2, and for different assumptions about cost of a node, what
the optimal number of nodes to include will be, in line with
Equation (1) above. To give one (arbitrary, but illustrative)
example, let us assume the cost of an additional node to be
0.02, i.e., that this cost is equivalent to the utility of 1

50 more
bits of information. For relatively low values of λ2, it is not
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Figure 3: Optimal number of nodes, given a cost of 0.02 per
node, as a function of second eigenvalue λ2.

worth the cost to include more than a single state variable in
the model (see Fig. 3). This is perhaps not surprising, given
the low KL-values in Fig. 2. However, even in models with
significantly higher KL-distances in general, it does not pay
to include more than one or two additional nodes. As we
increase or decrease the cost c of a node, the graph becomes
less flat and flatter, respectively. For instance, provided that
c> 0.148, the optimal number is 1 for all these values of λ2 =
0.1, . . . ,0.9. Decreasing the cost would increase the optimal
number for larger values of λ2, but for any c > 0 this number
is of course still finite.

As Fig. 3 indicates, the optimal number of nodes to include
in an HMM is not only finite, but can typically be quite small,
in line with ordinary intuition.

Neglecting Alternative Causes
We next consider a simple causal model under a so called
Noisy-Or parameterization (Cheng, 1997), in which each
cause has independent causal power to bring about the effect.
Suppose we have binary causal variables X, taking on values
0 or 1, and conditional probabilities given in terms of weights
θY,X codifying the influence of parent Y on a variable X—in
particular θY,X gives the probability of Y causing X when Y is
active—and a “background bias” parameter β:

P
(
X | pa(X)

)
= 1−

(
(1−β) ∏

Y∈pa(X)

(1−θY,X )
Y
)

This model has the convenient property that deleting nodes
from the graph still leaves us with a well-defined distribution.
Hence the family of submodels is immediate from the full
model (without having to introduce a proxy uniform distribu-
tion as in the previous example).

Suppose in particular we have variables A,B,C,D with
weights θ1,θ2, and θ3, as depicted on the left in Figure 4.

C A

B D

θ1 θ2 θ3

C

B D

θ1 θ2

Figure 4: Full Model versus Partial Submodel

Imagine, for instance, a simple scenario in which these vari-
ables correspond to:

A: “Mary has lost her usual gloves”

B: “Mary has her bicycle with her”

C: “Mary is going cycling”

D: “Mary is wearing cycling gloves”

Observing that Mary is wearing cycling gloves makes it more
likely that she is going cycling, and therefore that she has
her bike with her. But this is attenuated by the alternative
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possible cause, that she lost her other gloves. Our question in
this case is, how much worse will a reasoner fare by ignoring
alternative cause A (that Mary has lost her gloves), that is, by
using the smaller submodel in Figure 4, on the right?

To assess this question, we can look at both the difference
in expected utility and the KL-divergence between using the
“true” distribution P and the approximate distribution P∗, for
B given D= 1. Table 1 below presents example KL-values for
different settings of model parameters: the priors on C and A,
and the three weights θ1,θ2, and θ3 (here and throughout this
subsection, we set β = 0.05).

P(C) P(A) θ1 θ2 θ3 KL(P || P∗)
0.5 0.5 1 1 1 0.594
0.5 0.5 1 0.5 0.9 0.467
0.5 0.5 1 0.5 0.5 0.270
0.5 0.5 1 0.9 0.5 0.261
0.3 0.1 1 1 1 0.121
0.5 0.5 0.9 0.1 0.5 0.081
0.3 0.1 0.9 0.1 0.5 0.023
0.5 0.5 0.1 0.1 0.1 0.000

Table 1: Example KL-values, with β = 0.05.

Table 1 in fact shows settings near the higher end. We can
also calculate the approximate average KL-divergence, over
values of P(C) and P(A) at 0.1 intervals (0.1, 0.2, etc.), and
0.01 intervals for θ1,θ2,θ3 (thus, over 7 million parameter
settings): for this model, it is 0.060. Averaging over param-
eters with P(A) and P(C) fixed at 0.5 gives a similar average
KL-divergence of 0.059. Thus, the KL-value is typically well
under one-tenth of a bit of information lost. Nonetheless, if
confidence in estimation is important, or if very fine-grained
decisions are called for, using the submodel may be detrimen-
tal in this case.

However, following question 1 from above, we may also
consider how detrimental using a submodel will be for action
choice in specific decision problems. For the EU calculation,
suppose our agent is making a guess based on a single sample
from either distribution P or P∗,2 and that utility 1 is achieved
for a correct response, 0 for incorrect. Example calculations
are summarized in Table 2. As with KL, we can also com-
pute the (approximate) average difference in EU, which for
this model is 0.024. That is, on average over all parameter
settings, a sampling agent will only suffer about 1

50 of a utile
by using the simpler submodel. The cost of including the ad-
ditional variable A would therefore need to be extremely low,
relative to utility in the given decision problem, to merit its
presence in the model.

Evidently, when making a binary, sample-based decision,
using the smaller submodel does not greatly reduce one’s suc-

2This assumption is more apt in more complicated models,
where computing exact estimates would be harder. We consider this
kind of rule simply for illustration, and contrast with information
distance, which would be more closely aligned with an agent (non-
noisily) maximizing expected utility across decision problems.

P(C) P(A) θ1 θ2 θ3 ∆P,P∗
0.5 0.5 1 1 1 −0.097
0.5 0.5 1 0.5 0.9 −0.074
0.5 0.5 1 0.5 0.5 −0.087
0.5 0.5 1 0.9 0.5 −0.096
0.3 0.1 1 1 1 −0.073
0.5 0.5 0.9 0.1 0.5 −0.007
0.3 0.1 0.9 0.1 0.5 0.011
0.5 0.5 0.1 0.1 0.1 0.006

Table 2: Example EU-values, with β = 0.05.

cess probability. In fact, as shown in Table 1, for many pa-
rameter settings the agent actually fares better by using the
simpler model (∆P,P∗ < 0). Take the first parameter setting,
for example. In this case P(B = 1 | D = 1)≈ 0.673, whereas
P∗(B = 1 |D = 1)≈ 0.955. The submodel drastically overes-
timates the probability of B by ignoring the alternative cause,
as reflected in the very high KL-value in Table 1. However,
insofar as the true probability is significantly above 0.5, if
the subject is going to make a decision by drawing a single
sample from this distribution, such overestimation turns out
to be advantageous, since the subject is more likely to choose
the more probable outcome. Such advantages would only be
compounded by the reduction in computational cost resulting
from the simpler model.

We can tentatively conclude from this small case-study
that alternative neglect—even when it results in less accu-
rate judgments, which it certainly does—can still be a very
reasonable, indeed resource-rational, strategy.

Predictive versus Diagnostic Reasoning
Resource-rational analysis of submodel choice and alterna-
tive neglect predicts these phenomena to occur, at least to
a first approximation, when they would result in an optimal
balance of outcome expected utility and computation cost, as
outlined above. To what degree is this prediction born out by
empirical data on alternative neglect?

One of the more robust recent findings in the causal reason-
ing literature is that subjects tend to neglect alternatives to a
much greater extent in predictive reasoning than in diagnos-
tic reasoning (Fernbach et al., 2011; Fernbach and Rehder,
2013). Most of the experiments in this work evince three
variables A,B,C as in Figure 5. The left diagram depicts a

C

B

A

θ1 θ2

C

B

A

θ1 θ2

Figure 5: Predictive versus Diagnostic Inference

predictive inference, where effect B is queried given evidence
that cause C is active. On the right is a diagnostic inference,

965



where the causal variable C is queried given evidence B. In
this simple model, we can fold P(A) and θB,A into a single pa-
rameter θ2, so that A effectively has prior probability 1, and
the resulting conditional probabilities can be simplified to:

P(B |C) = θ1 +θ2−θ1θ2

P(C | B) = 1−
(
1−P(C)

)(
θ2 /

(
P(C)θ1 +θ2−P(C)

))
The finding in Fernbach et al. (2011) is that subjects routinely
ignore variable A in predictive inference tasks, and thereby
consistently make low estimates of P(B |C). In diagnostic in-
ference tasks, however, subjects show sensitivity to strength
and number of alternatives, consequently making more accu-
rate judgments. Indeed, there is a longer reaction time for
diagnostic than for predictive inferences, and only in the di-
agnostic condition is there dependency of reaction time on
number of alternatives (Fernbach and Darlow, 2010). Fern-
bach and Rehder (2013) verified that this asymmetry between
diagnostic and predictive reasoning is robust; in particular, it
seems not to be due to availability or memory limitations.

In other words, subjects seem to be reasoning with a sub-
model (ignoring variable A) in the predictive case, but not
in the diagnostic case. How detrimental would it be to ne-
glect A for these two types of inference? Consider first KL-
divergence (question 2). Without a background bias term (as
in the previous example), for the diagnostic case ignoring
variable A will lead to the conclusion that C has probability
1, since it is the only possible cause. In that case, the KL-
divergence is infinite. With a positive bias term β, we can
make the KL-divergence finite, but it will still be large if the
bias is small. For instance, with 1% chance of B happening
spontaneously (β = 0.01), the average value of KL(P || P∗)
for the diagnostic inference is already 1.740, extremely high.
With β = 0.05, it is 0.916.

By contrast, the average value of KL(P || P∗) in the predic-
tive case (even without a bias term, which would further de-
crease the average KL value) is only 0.357. This is a general
observation about this particular small causal graph, which is
the one implicated in many studies of “elemental causal in-
duction.” While it may be difficult to assess these KL-values
absolutely, we can confirm that there is a substantial differ-
ence between the two types of inference. Indeed, on average
one can expect to make much worse predictions in the di-
agnostic case than in the predictive case; an agent balancing
computation cost with accuracy would then be expected to
neglect the alternative more in predictive reasoning than in
diagnostic reasoning.

How does this look from the perspective of expected utility,
again assuming a single-sample-based agent? Table 3 shows
the differences in expected utility for several parameter set-
tings between the EU of using the true distribution and the
approximate distribution (ignoring variable A), for both the
predictive and diagnostic cases. In some cases, ∆pred is in-
deed smaller than ∆diag, meaning that the agent suffers less
in expected utility when using the smaller submodel. How-
ever, there are also cases where ∆pred is greater than ∆diag.

P(C) θ1 θ2 ∆pred ∆diag
0.1 0.3 0.9 1.083 1.345
0.5 0.9 0.9 0.176 −0.041
0.5 0.5 0.1 0.010 −0.144
0.2 0.3 0.2 −0.034 0.345
0.1 0.3 0.1 −0.036 0.550

Table 3: Differences in expected utility between the true and
approximate distributions, for predictive and diagnostic infer-
ences (with β = 0.05 for diagnostic cases).

Indeed, the average ∆pred value, over 0.01 intervals for all pa-
rameters, is 0.198—relatively large, and significantly greater
than ∆diag, whose average is 0.044. Again, this means that a
subject drawing a single sample will on average lose about 1

5
of a utile for predictive inferences on this graph, versus only
about 1

25 for diagnostic inferences.

This is in sharp contrast to an agent that decides based
on exact inference (or equivalently, based on many samples).
Based on the earlier results for KL-distance, we can compare
action selection directly for agents that accurately maximize
expected utility from the full- or sub-model. It turns out that
for such agents the average difference in expected utility over
all parameter settings is indeed significantly greater in the di-
agnostic case (0.378, versus 0.174 in the predictive case). If
resource rationality is the correct explanation of these cases
of alternative neglect, we would then have to conclude that
participants are not using a single sample but rather many
(or more generally are using some algorithm for computing
closer approximations to the exact probabilities). Indeed, the
models in Fig. 5 are rather simple and one might expect that
inference for these models is relatively easy. At any rate,
positing that one can well-approximate the true probability
for a given model, if one were to ignore causal variables rou-
tinely in one type of case (diagnostic or predictive) but not
the other, it would be most rational to do so in the predictive
case, as subjects in fact do.

We might therefore tentatively conclude that, at a certain
level of grain, subjects are ignoring variables in a reasonable
way. However, this does not yet say anything about resource-
rationality at the level of individual inferences. In fact, Fern-
bach and Rehder (2013) have shown that subjects exhibit ne-
glect even in cases where the mistake is rather serious, result-
ing in egregiously wrong predictions. One possible expla-
nation is that subjects are optimizing grain of representation
only at a high level of abstraction, in terms of general features
of the inference problem (e.g., whether it is predictive or di-
agnostic). This hypothesis merits further empirical investiga-
tion, as well as further theoretical consideration, for instance,
by incorporating elements of metalevel control (Icard, 2014;
Lieder et al., 2014) into the framework. The analysis offered
here, we believe, promises a useful starting point for under-
standing how rational submodels might be selected online,
and for addressing this question of level of grain.
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Further Questions and Directions
The resource-rational submodel is that submodel of the true,
larger model which an agent ought to use for a given pur-
pose, balancing costs with accuracy. As we have seen, this
approach to the causal frame problem does already shed light
on a number of phenomena: it agrees with our pretheoretical
intuition that only a few previous time steps should matter in
an HMM; it interacts in subtle ways with different assump-
tions about choice rules, witness the single-sampling agent in
the second example; and it retrodicts general alternative ne-
glect patterns observed in human causal reasoning.

The claim we would like to make is that, somehow or other,
the mind is able to focus attention on the predicted submod-
els for the task at hand. Our analysis, however, is from a
“god’s eye” point of view, and leaves open how is the mind
able to select the right submodel online, at inference time.
There is relevant empirical work which might start to pro-
vide a process-level explanation of submodel selection. For
example, across many situations subjects seem to “add” a
new causal variable when faced with an apparent contradic-
tion (Park and Sloman, 2013). At the same time, work in AI
suggests useful heuristics for similar resource optimization
problems (e.g., Wick and McCallum, 2011).

A number of extensions to our analysis suggest themselves.
One could consider other types of submodels, e.g., not by
eliminating nodes, but by cutting links. One could also con-
sider more seriously the interaction of submodel choice with
inference algorithm choice. As hinted in the previous sec-
tion, it would be useful to consider what the optimal combi-
nation of submodel together with number of samples will be
for a given model (thus combining the analysis here with that
in Vul et al. 2014). Assuming smaller submodels will allow
for more samples per unit of time (or energy), and given that
more samples lead to more accurate predictions with respect
to that model, there is a substantive question of what combi-
nation is optimal in any case.

While many questions remain open, we hope to have made
some progress toward illuminating a general solution to the
causal frame problem. We believe the question is central to
our understanding of human reasoning. As Fodor remarked,
“The frame problem goes very deep; it goes as deep as the
analysis of rationality” (Fodor, 1987).
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