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Gene expressions
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Abstract

Motivation: The application of machine learning (ML) techniques in the medical field has demonstrated both
successes and challenges in the precision medicine era. The ability to accurately classify a subject as a potential
responder versus a nonresponder to a given therapy is still an active area of research pushing the field to create
new approaches for applying machine-learning techniques. In this study, we leveraged publicly available data
through the BeatAML initiative. Specifically, we used gene count data, generated via RNA-seq, from 451 individuals
matched with ex vivo data generated from treatment with RTK-type-III inhibitors. Three feature selection techniques
were tested, principal component analysis, Shapley Additive Explanation (SHAP) technique and differential gene ex-
pression analysis, with three different classifiers, XGBoost, LightGBM and random forest (RF). Sensitivity versus
specificity was analyzed using the area under the curve (AUC)-receiver operating curves (ROCs) for every model
developed.

Results: Our work demonstrated that feature selection technique, rather than the classifier, had the greatest impact
on model performance. The SHAP technique outperformed the other feature selection techniques and was able to
with high accuracy predict outcome response, with the highest performing model: Foretinib with 89% AUC using
the SHAP technique and RF classifier. Our ML pipelines demonstrate that at the time of diagnosis, a transcriptomics
signature exists that can potentially predict response to treatment, demonstrating the potential of using ML
applications in precision medicine efforts.

Availability and implementation: https://github.com/UD-CRPL/RCDML.

Contact: mferrato@udel.edu or erin.crowgey@incyte.com, schandra@udel.edu

Supplementary information: Supplementary data are available at Bioinformatics Advances online.

1 Introduction

The leukemia and lymphoma society (LLS) has established a novel
infrastructure for treating blood cancers through the BeatAML ini-
tiative. This approach relies on a collaborative concept for utilizing
personalized genomic data in the context of matching subjects to
targeted treatment strategies (Leukemia and Lymphoma Society,
2021). Recently, Tyner et al. (2018) published a comprehensive
overview of the functional genomic landscape of samples associated

with the BeatAML initiative. In these efforts, they conducted exten-
sive ex vivo drug testing, genomic sequencing and characterization
of patient responses to various therapeutic approaches. Over the
years, it has proven challenging to implement targeted therapies for
acute myeloid leukemia (AML), due to the complexities of genomic
alterations associated with this blood cancer and a high relapse oc-
currence (Estey et al., 2015).

In recent years, machine learning (ML) techniques have been
used as a potential solution for identifying or distinguishing
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responders versus non-responders, thereby helping to address preci-
sion medicine problems pertaining to complex diseases such as AML
(Eckardt et al., 2020). For example, gene expression data and the re-
gression algorithm LASSO have been used for classification of AML
versus other cancers for over 12 000 subjects across 105 different
studies (Warnat-Herresthal et al., 2020). However, regarding classi-
fication algorithms (CA) for predicting response to therapy, a scal-
able ML approach has not been efficiently identified. Recently,
investigators have reported on support vector machines (Castillo
et al., 2019; Gal et al., 2019; Lee et al., 2018), k-nearest neighbor
(Castillo et al., 2019; Gal et al., 2019; Lee et al., 2018), RF (Castillo
et al., 2019; Gal et al., 2019), artificial neural networks (Janizek
et al., 2021) and gradient boosting (Janizek et al., 2021) for con-
ducting these types of analysis.

In our research, we focused on using ensemble algorithms (RF
and gradient boosting that also include LightGBM) as classifiers.
Due to the high-dimensional structure of the data, identification of
gene markers is an important focus in the field as researchers look
for ways to reduce training time and minimize overfitting. Many
feature extraction algorithms, or rather feature selection techniques,
for gene expression data have been proposed, from the traditional
use of principal component analysis (PCA; Gal et al., 2019) to cus-
tomized techniques (Castillo et al., 2019; Lee et al., 2018). Some of
these works include the EXPRESS (Janizek et al., 2021) algorithm
that uses ensembles of XGBoost models and the Shapley Additive
Explanation (SHAP) package to calculate a global feature import-
ance ranking. Yap et al. (2021) used SHAP to explain a convolution-
al neural network to classify samples on 47 different tissues based
on RNA-seq count data and compared the genes identified by SHAP
with differential expression analysis. Johnsen et al. (2021) developed
a new method where they combine tree-ensemble methods
(XGBoost) and SHAP to identify potential (Single Nucleotide
Polymorphisms – SNPS) SNP–SNP interactions and tested it by ana-
lyzing the importance ranking generated by SHAP from the trained
classifiers using a UK Biobank dataset. Hathaway et al. (2019) used
SHAP in combination with Classification and Regression Trees to
classify type-2 diabetic patients versus non-diabetic patients based
on cardiac physiological, biochemical, genomic and epigenomic bio-
marker data. For this study, we focused on classifying patients as
responders versus non-responders, benchmarking a combination of
three different feature selection techniques and three classifiers, and
demonstrated that the SHAP feature selection technique combined
with a tree-based ensemble classifier is able to predict with high ac-
curacy a responder versus a non-responder using RNA-seq and ex
vivo drug response data.

2 Methods

2.1 The BeatAML dataset
The dataset utilized for this project was provided in the original
manuscript (Burd et al., 2020) and consists of the RNA-seq count
data and ex vivo drug response data. The RNA sequence dataset
contains gene counts count per million (CPM) of 22 844 genes for
451 clinical patients (Supplementary Table S1). The drug response
data matrix contains the area under the curve (AUC; from receiver
operator characteristic curves [ROCs]) and ic50 scores for samples
tested on 122 different drug inhibitors (Supplementary Table S2).
There are total of 528 overall samples, where each inhibitor contains
different subsets of patients. These drug subsets range in size from
100 to 510 patients.

2.2 Drug response distributions
For each of the drugs analyzed, a distribution plot of the AUC and
ic50 values was generated. For each distribution, the upper and
lower quartiles were determined, and subjects were divided into re-
sponder (>0.75 quantile) versus non-responder (<0.25 quantile).
These were the labels assigned to each subject for classification pur-
poses. Any subjects whose drug response fell between the first and
third quartiles were not assigned to a response group and therefore
not included in our responder versus non-responder analyses.

Figure 1 contains all the AUC distributions for the 24 drugs ana-
lyzed. A table that includes the number of samples per label (re-
sponder versus non-responder) used for each model developed is
available as Supplementary Table S3. All data handling and prepro-
cessing were done using the pandas (v1.3.5; McKinney, 2010; The
Pandas Development Team, 2021) python package.

2.3 ML workflow
Collectively, the ML workflow consisted of the following steps: (i)
data preprocessing, (ii) feature selection, (iii) classifier training and
(iv) validation (Fig. 2A).

2.3.1 Data preprocessing

To reduce the complexity of our initial work with the BeatAML
data, we focused our analyses on the RTK-type-III family of drug
inhibitors that had at least 300 patient observations, which yielded
24 drug inhibitors, patient subsets (Supplementary Table S4). For
each inhibitor, samples were matched between the drug response
data and the RNA-seq data to identify the available samples of each
experiment.

2.3.2 Training, validation and test dataset split

The dataset is randomly shuffled and split into two sets: Phase 1—
80% of the dataset, used for model optimization in a 5-fold cross-
validation (CV) approach. Phase 2—20% of the dataset, which is
hidden from the model, and used as the holdout/test. In Phase 1, the
dataset is broken down into five training/test pairs, and each of these
pairs is used as input for the next steps in the workflow. The model
evaluates all possible samples available as it iterates through each
fold. The model with the highest AUC score during Phase 1 (training
and test data) is selected for Phase 2, when the holdout dataset is
used as inference to evaluate the model selected. An overview of this
process is shown in Figure 2B.

2.3.3 Feature selection

After the training set is established, our pipeline performs feature se-
lection to identify a set of ‘likely’ informative gene markers (classifi-
cation signature) that each model will use to produce a response
categorization. For this workflow, three different feature reduction
approaches were selected: Shapley values (SHAP), differential gene
expression (DGE) analysis and PCA.

The SHAP (Lundberg and Lee, 2017) feature selection technique
was implemented using the SHAP package python and consisted of
using the TreeExplainer algorithm on a trained XGBoost model to
generate Shapley values using the shap_values() functions. When the
Shapley values are generated, each sample has a list of marginal con-
tribution values that explain its output. To acquire the ‘global’
Shapley value of the model, the absolute mean of these marginal
contributions is taken across the feature axis. Then, once we have
individual values for each feature, the values are sorted from highest
to lowest, and the top features are selected.

Using R statistical package LIMMA (v3.50.1; Ritchie et al.,
2015) a DGE analysis was conducted between responders versus
nonresponders (see Fig. 1 for quartile description). Genes which did
not have at least 1 CPM across either the responder or non-
responder group were removed before statistical testing. A false dis-
covery rate (FDR) threshold of 0.05 was used. Ensemble transcript
ids were mapped to a gene name using the UniProt.org (UniProt
Consortium, 2015) mapping tool.

The PCA technique was conducted using the implementation
found in the scikit-learn (v1.0.2; Pedregosa et al., 2011) python
package. The fit_transform() function is used to fit the PCA tech-
nique using the training data and applying the dimensionality reduc-
tion on it, then transform() is used to apply the decomposition on
the test data. The resulting matrices are then sliced to select number
of features.

The training set passes through one of these approaches and 30
features are selected. This number was chosen because it would be
smaller than the sample size of the training folds for all inhibitor
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models. The features selected represent the best candidates for classi-

fication based on the technique’s algorithm approach. The filtered
output is used as the training set for the classifiers.

2.3.4 Classifier training

For the classifiers, three ensemble-based algorithms were utilized:

RF (scikit-learn v1.0.2; Pedregosa et al., 2011; Ho, 1995) and two
implementations of the Gradient Boosting algorithm (LightGBM

v3.3.3; Ke et al., 2017) and (XGBoost v1.5.2; Chen and Guestrin,
2016). A random search hyperparameter approach was used where
different parameter combinations were tested using a 5-fold CV ap-

proach, and the best-performing parameter list (the ones with higher
ROC–AUC scores) was selected. The parameter lists for each classi-
fier are available in Table 1. In Phase 2, the classifiers with the best-

performing parameters selected are used to classify the holdout
samples.

2.3.5 Validation

At each inference operation, the validation dataset (Phase 1) or the

holdout dataset (Phase 2) is used to calculate confusion matrices,
sensitivity and specificity. Using these scores, the model generates

ROC–AUC curves. This is generated for each fold of the 5-fold CV
approach, and the results presented are the average of the results
across the CV folds as well as for the holdout model. An AUC score

that is higher than 0.50 means that the model had some predictive
power when assigning the samples into groups, with higher scores
corresponding to higher sensitivity and specificity scores.

2.4 Experimental setup
The code ran on the DARWIN cluster at the University of
Delaware. The specification for the node is CPU—AMD EPYC
7002 Series, 32 Cores (64 total dual-socket), Memory—512 GB
RAM. The list of software and versions used for the Python and R
environments is available as Supplementary Table S5.

2.5 Statistical analysis for analyzing the ML approach
All statistical procedures were performed using R (v4.1) as defined
scripts executed on either OSX or Linux (Ubuntu) platforms. The
first phase of compiling the dataframes for analysis used outlierTest
(package car), shapiro.test for assessing normality (package stats)
and the levene.test() for homogeneity of variance (package lawstat).
Analysis of the final dataframes used standard parametric proce-
dures via anova() for analysis of variance (ANOVA) and Tukey hon-
estly significant difference (HSD) test for identifying significant
mean differences (both in package stats).

Initial distributions of AUC values were non-normal across fea-
ture reduction tools (FRT) that include DGE, PCA and SHAP by CA
such as RF, XGBoost and LightGBM. A large source of variance
was the large difference in response rates (AUC) from different drug
inhibitors. Because we know that each drug is different—different
mode of action), different metabolic phenotype targets, thus differ-
ent genotypes—we focused on within a drug, how well does each
FRT perform to identify target transcript pattern differences. In es-
sence, we approached each drug as a paired or block variable and
expressed AUCs as a relative within-drug response measure. This
calculation was the signed deviation of an observed AUC value from

Fig. 1. Quartile analysis for responder versus non-responder. This figure shows the drug response AUC distribution of the 24 RTK-type-III inhibitors in the form of blue histo-

gram plots. Overlaid on top of the histogram is also green box-whisker plot of the same distribution. Each plot is titled with the name of its given inhibitor. The y-axis is the

drug response AUC score for the histogram bin, and the x-axis is the count, or number of samples that fall in the bin. We can see that some of the distributions are skewed.

The ones skewed towards the left correspond to drug therapies where most patients responded positively, whereas the ones skewed towards right are for drug therapies where

most patients did not respond. Some drug therapies have a normal distribution where there is no disproportion of patients that responded well or not. By focusing on the tails

of the distribution by looking at the box-whisker, the patients can be classified as low/high responders depending on which tail (low! right, high! left) side they fall into
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the mean AUC for that drug across FRT–CA, normalized to the
mean AUC value. The new ‘Divergence AUC’ scores allow for a dir-
ect comparison of performance across FRT–CA combinations with
the within-drug response variance now normalized.

2.6 Pathway analysis
Features selected in the RCDML process, genes with count data,
were uploaded into cystoscape (v3.9; Shannon et al., 2003) or the
Molecular Signature Database (v7.5.1) for analysis (Subramanian
et al., 2005). Networks were analyzed and filtered (P-value < 0.01)
based on their enrichment score (Fisher’s exact test) generated in the
reactomeFI application for cytoscape (Gillespie et al., 2022).

3 Results

Using the RNA-seq data and ex vivo drug response results from the
BeatAML initiative, subjects were divided into responders versus
non-responders using the lower and upper quartile approach
(Section 2.2) for 24 RTK-type III inhibitors. Per each inhibitor, a
5-fold iterative approach was performed to optimize and select the
RCDML models with highest AUC scores for 80% of the dataset.
The best-performing models for each inhibitor were then used to
calculate inference on the other 20% (holdout dataset). The full
workflow is performed 10 times and the average of the sensitivity
and specificity results for the holdout dataset are analyzed below.

3.1 Model performance
To evaluate the performance of the models tested (n¼9 per inhibi-
tor), ROC curves were plotted for each inhibitor (Fig. 3A), as well
as confusion matrices (CM) for each model combination (Fig. 3B) at
the CV stage. The highest performing model was for Foretinib with
89.73% AUC using the SHAP technique combined with the RF clas-
sifier, followed by Dovitinib, KW-2449, Crenolanib and Dasatinib.
For Foretinib, the false positive was 11 and the false negative was 7,
and the true positive 49 and true negative was 41 (Fig. 3B4).

Average of AUC, sensitivity and specificity of all RTK-type-III inhib-
itors can be found in Supplementary Table S6. The ROC–AUC
curves and confusion matrices are available in Supplementary Figure
S1. To compare the overall performance of these models and deter-
mine which approach was on average the most accurate, a
‘Divergence AUC’ score was analyzed by standard ANOVA (after
assumptions of normality and homogeneity of variance were veri-
fied) using the hold out stage results and the top performing models
from the CV stage. This enabled a comparison of the assessment of
the difference in computational performance of the FRT and CA
(Fig. 4). Comparing the results from all 24 inhibitors, the SHAP fea-
ture selection technique (purple box-whisker; Fig. 5A) out-
performed PCA, DGE and the random tool (ANOVA P<0.0001
and Tukey HSD, P<0.0001) regarding AUC for the ROC curves.
When analyzing the classifier (Fig. 5B), no statistical difference in
performance was found, indicating that the feature selection tech-
nique has the greatest impact on overall classification performance
than the use of either the RF or Gradient Boost classifier algorithm.

Additionally, we noted that there was a large difference across
drugs in the number of features that were conserved across all mod-
els within folds and replicates (Fig. 5A). We assessed the impact of
conserved feature selection on model performance as determined by
AUC (Fig. 5B). Using a dimensionless scaled measure of conserva-
tion, we assessed the number of drug AUC scores above and below
the mean AUC for each FRT–CA contrast. The conserved index was
divided into three bins (low, middle or high conservation). The top
conservation bin ‘>1.5’ for each FRT–CA contrast had significantly
higher drug AUC scores above versus below the median AUC
(prop.test() for equal proportions (Ho: Pr[‘>0.5 above median’] ¼
0.50, P¼0.0127, n¼9).

3.2 Random feature experiment
We conducted an experiment where we selected 30 features random-
ly as the baseline, to show the validity of the feature selection tools.
To do this, we used the python random package, generating 30 ran-
dom integers from the range of the total number of genes available

Fig. 2. Overview of the RCDML pipeline. (A) The RCDML pipeline is broken down into four main processing steps (diamonds): data preprocessing, feature selection, model

training and validation. For each step, there is an input and an output (square). The descriptions (ovals) are indicated per each corresponding workflow step. The final output

of the model consists of a confusion matrix that indicates the number of false positive, false negatives, true positives, and true negatives. (B) The training, validation, and test

dataset splitting are shown here. The original dataset is split into two sets, training and validation and the holdout dataset. The training and validation set is split into five folds,

where one of the folds at each iteration is used for validation. After the model is selected, the training and validation set is used for training the selected model and the holdout

dataset is used for testing
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and selecting genes that correspond to those indexes. We plotted
these results alongside the results generated for the other feature se-
lection techniques as seen on Figure 4A. The random feature selec-

tion tool (Fig. 4A) diverges negatively regarding AUC performance
within drug compared with the other results. This comparison reaf-

firms that feature selection techniques are important because they
help the classifiers make more informative decisions at the time of
making predictions.

3.3 Performance of models using features selected from

non-RTK-type-III inhibitors
To further evaluate model performance and specificity, we conducted

an experiment in which features were ‘swapped’ between the different
ML models developed. We used the features from two inhibitors of the

PI3K-AKT-MTOR family (GSK6900693 and TG100-115) to make
predictions for the 24 RTK-type-III inhibitor models.

When using the GSK6900693 features, 20 of the 24 models under-
performed compared with when used the features intended for the
models’ inhibitor (the baseline results). When using the TG100–T150,

23 of the 24 models underperformed. For the cases where the
‘swapped’ model performed better than the baseline, these models did

not originally have a strong accurate performance so it is possible that
by providing a different predictive signal these results could vary.

The full set of results can be found in Supplementary Table S7.

3.4 Analysis of feature importance
To assess the features (genes) being utilized in the various models
developed, we analyzed feature importance and the potential biol-
ogy using three different methods: (i) Feature importance based on
the frequency each feature is split on, (ii) Feature importance based
on SHAP contribution and (iii) Pathway analysis of the features
selected for the top performing inhibitor models.

3.4.1 Feature importance based on the frequency each feature is

split on and on SHAP contribution

Features were ranked on how many times a specific feature gets split
on as shown in Supplementary Figure S2, and on the overall impact
a feature has based on their SHAP contribution value, as shown in
Figure 6. From Figure 6, we can see that for each inhibitor there are
three to five features that are shared between analyses (Fig. 6 and
Supplementary Fig. S2) and have the strongest impact on the model.
The rest of the features have a much lesser impact on the classifica-
tion and seem to differ between runs. In the case for Crenolanib,
Dasatinib and Foretinib, the top feature selected was the same for
both analyses, whereas for Dovitinib the top feature found in the
SHAP analysis (Fig. 6C) was third in the model feature importance
plot (Supplementary Fig. 2c) and the top feature from this plot was
the second in the SHAP analysis. The SHAP contribution plot
(Fig. 6) gives us a bit more insight into how these features affected
classification, as having a low feature value for the top feature in
Crenolanib, Dasatinib and Foretinib has a strong correlation with
being classified as a low responder, whereas it is the opposite for
Dovinitib. By analyzing the model interpretability, we can identify
strong candidates that can be evaluated for biological significance
by performing a pathway analysis.

3.4.2 Pathway analysis of features (genes) selected for predicting

drug response

To evaluate the biology of the features (genes) selected for classifica-
tion, a pathway analysis was conducted for 5 models out of the top
10 performing models: Dasatinib, Dovitinib, Foretinib, KW-2449
and Sorafenib. In total, there were 877 unique genes utilized in these
models (Supplementary Table S8). Of those, 118 were assigned to a
MSigDB gene family (Supplementary Table S9). In summary across
the top 5 performing models, 21 of the key features were protein
kinases, 1 were tumor suppressors, 14 were oncogenes, 13 translo-
cated cancer genes, 14 cell differentiation markers, 36 transcription
factors, 6 homeodomain proteins and 13 cytokines and growth fac-
tors (Supplementary Table S9).

Next, a pathway enrichment analysis was conducted for 5 mod-
els out of the top 10 performing models and are summarized in
Table 2. Briefly, the features selected in the ML models were ana-
lyzed per drug. The top pathways were calculated and included:
MHC Class II antigen presentation (dasatinib), nucleotide excision
repair (dovitinib), g-protein signaling through tubby proteins (foreti-
nib), Wnt signaling pathway (KW-2449) and CXCR3-mediatated
signaling events (sorafenib). Of interest several of these pathways
have been previously linked to drug resistance, including CXCR sig-
naling for sorafenib (Ren et al., 2020), supporting that our ML fea-
ture selection technique (SHAP) is capable of identifying and
utilizing biological relevant gene features for classification.
Additionally, several of the ML models consistently identified the
same key features, including but not limited to HUS121 and
FBXO522, which are well-established drug resistance markers.

4 Discussion

The utilization of large-scale publicly available datasets is essential
in the quest to improve the outcomes for cancer patients. In this pro-
ject, we have leveraged an extensive resource established by the LLS,
the BeatAML initiative (Leukemia and Lymphoma Society, 2021).
Our work demonstrates that a robust feature selection technique
coupled with a classifier can predict whether a sample will respond
ex vivo to a given therapy with high accuracy. The extensive models

Table 1. Parameter list used to optimize the RF and gradient boost-

ing classifiers

Classifier List of parameters

RF (scikit-learn) ‘bootstrap’: [True, False],

‘max_depth’: [10, 20, 30, 40, 50, 60, 70, 80, 90,

100, 110, None],

‘max_features’: [‘auto’, ‘sqrt’],

‘min_samples_leaf’: [1, 2, 4],

‘min_samples_split’: [2, 5, 10],

‘n_estimators’: [100, 150, 200, 250, 500, 750,

1000]

Gradient boosting

(XGBoost)

‘max_depth’: [10, 20, 30, 40, 50, 60, 70, 80, 90,

100, 110, None],

‘learning_rate’: [0.001, 0.01, 0.1, 0.2, 0.3],

‘subsample’: [0.5, 0.6, 0.7, 0.8, 0.9, 1.0],

‘colsample_bytree’: [0.4, 0.5, 0.6, 0.7, 0.8, 0.9,

1.0],

‘colsample_bylevel’: [0.4, 0.5, 0.6, 0.7, 0.8, 0.9,

1.0],

‘min_child_weight’: [0.5, 1.0, 3.0, 5.0, 7.0,

10.0],

‘gamma’: [0, 0.25, 0.5, 1.0],

‘reg_lambda’: [0.1, 1.0, 5.0, 10.0, 50.0, 100.0],

‘n_estimators’: [100, 150, 200, 250, 500, 750,

1000]

Gradient boosting

(LightGBM)

‘max_depth’:[10, 20, 30, 40, 50, 60, 70, 80, 90,

100, 110, None],

‘learning_rate’: [0.001, 0.01, 0.1, 0.2, 0.3],

‘subsample’: [0.5, 0.6, 0.7, 0.8, 0.9, 1.0],

‘colsample_bytree’: [0.4, 0.5, 0.6, 0.7, 0.8, 0.9,

1.0],

‘min_child_weight’: [0.5, 1.0, 3.0, 5.0, 7.0,

10.0],

‘reg_lambda’: [0.1, 1.0, 5.0, 10.0, 50.0, 100.0],

‘n_estimators’: [100, 150, 200, 250, 500, 750,

1000]
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tested support that the feature selection technique, moreso than the
classifier, has a significant effect on model performance.
Collectively, we applied a novel application of SHAP values as a
feature selection process with genomic data.

In other research methods, SHAP has been applied after the
training phase to examine what was leveraged in a given model.
Instead, in our work, we apply the SHAP technique before the final
training phase and use it as a feature selection technique. The

Fig. 4. Evaluation of model performance. (A) Box-whisker plots for XGBoost (GB, top panel), LightGBM (LG, middle panel) and random forest (RF, bottom panel) were gen-

erated per each feature selection technique (PCA blue, DGE green, SHAP purple and random red) tested. The x-axis values are the AUC divergence score for the given feature

selection þ classifier combination of the 24 RTK-type-III inhibitors (red dots). (B) A linear regression was conducted to compare classifier 1 (x-axis) versus classifier 2 (y-axis)

for all 24 RTK-TYPE-III inhibitors tested. The AUC scores for the 24 RTK-type-III inhibitors are plotted in a scatter plot, where the scores for one classifier are plotted against

the scores of another classifier. The points in the graph are color coded to represent the different feature selection techniques according to the legend in the top left corner of

the graph. A red line is plotted across the graph to show the correlation between the two models, with the variance plotted along the line as a yellow overlay. We see that there

is a high correlation between the models, where the slope is not significantly different from 1 and the Intercept is not sig different from 0

Fig. 3. ROC–AUC curves and CM (SHAP þ RF) for the top 4 RTK-type-III Inhibitor models. The top 4 performing RTK-type-III inhibitor models are assigned to a number as

follows (1—Crenolanib, 2—Dasatinib, 3—Dovitinib, 4—Foretinib) (A) For each inhibitor, a ROC-AUC plot was generated. The ROC-AUC plots consist of ROC curves for

nine different feature selection þ classification combinations. The baseline (50% AUC) is represented with a blue-dashed line. For all the plots, the x-axis is 1—specificity, also

called the false positive rate or fall-out and the y-axis is the sensitivity, also known as true positive rate or recall. The performance for each given model varies depending on

the inhibitor chosen. (B) For each inhibitor, a CM plot was generated using the predicted outcomes from the SHAP þ RF model combination. The CM plots consist of (Read

from left to right, from top to bottom) the true negative, false negative, false positive and true positive values calculated by comparing the predicted classification assignments

(y-axis, ‘Predicted Label’) versus the true classification assignments (x-axis, ‘True Label’). The squares of the CM plots are color coded in blue, where the shade of the color

changes depending on the proportion of the samples that fall in the square (darker ¼ more samples, lighter ¼ less samples
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Fig. 6. Feature importance plots for the top 4 performing RTK-type-III inhibitor models based SHAP contribution. The top 4 performing RTK-type-iii inhibitor models are

assigned to a number as follows (A—Crenolanib, B—Dasatinib, C—Dovitinib and D—Foretinib). For each inhibitor a summed SHAP impact plot was generated. The y-label

represents the model features ranked on largest summed SHAP value, from high to low. The x-axis represents the SHAP value score each observation has within a feature.

Each observation is color coded based on the range of gene expression, where the closer the dot is to blue then the lower the gene expression value and the closer it is to red

then the higher the gene expression value is

Fig. 5. Analysis of feature conversation and model performance. (A) This plot shows the conservation index of the 24 RTK-type-III Inhibitor models. The y-axis corresponds

to the conservation index value, whereas the x-axis corresponds to each of the 24 inhibitors. The conservation index value is calculated by taking the product of the feature

counts divided by the sum squared. The higher the index value means the more features are shared across pipeline iterations. A low index value means that the features found

in each fold are more unique and overlap less with the other folds. (B) A box-whisker plot for each feature selection tool (PCA red, DGE yellow and SHAP blue) was plotted

for each model, top panel GB, middle panel LG and bottom panel RF. The random tool is omitted from this set of results because the features are assigned at random at each it-

eration so there is no conservation. Each box-whisker was generated using the AUC score for the given feature selection þ classifier combination of the 24 RTK-type-III inhibi-

tors. These scores are color coded (blue, green and orange) based on separating the conservation index (A) into three categorical bins: <0.5, 0.5–1.5 and >1.5

Machine learning classifier approaches for predicting response to RTK-type-III inhibitors 7



reasons to do so include: (i) the high dimensionality of genomic data
(feature size > sample size) that makes it a challenge to train certain
classifiers due to overfitting/the curse of dimensionality, (ii) by
reducing the number of features passed to the classifier we also re-
duce training time, (iii) we retain the ability to analyze the biological
relevance of features used in the models. In our approach, we are
determining a patient’s response to a drug therapy as a classification
problem. By making this, a classification problem instead of a re-
gression problem, new patients whose drug responses are unknown,
could be assigned/classified (responder/non-responder).

The approach developed for this project could potentially be
leveraged in real-time at the bedside at time of diagnosis, with a
transcriptional profile being used to determine the best treatment
options. Of interest, the pathway enrichment analysis of the top fea-
tures selected (genes) indicated several well-known molecules, like
HUS1, and signaling molecules like ERK as having the potential at
time of diagnosis to indicate whether a patient will respond to a
given drug. This type of analysis and data may help drive the identi-
fication of new therapeutic drug targets.

Future work that could improve performance of the models
would be to expose the existing model to clinical or other types of
data; however, the availability of such data is not common in the
publicly available domain, as is the case for the BeatAML initiative
used in this article.

In conclusion, this effort provides a comprehensive RNAseq
Count Drug Response Machine Learning (RCDML) workflow that
uses publicly available data, BeatAML, to classify patients as
responder/non-responder to a given drug therapy. The ML frame-
work is publicly available, https://github.com/UD-CRPL/RCDML,
and can be used agnostically across various projects with similar
data inputs. Collectively, the results and the divergence scores gave
insights into the combination of a given feature selection þ classifier
combination, with these combinations being applied across 24
RTK-TYPE-III inhibitors, and demonstrated that a feature selection
technique, in our case the SHAP technique, rather than the classifier
in related work, has the greatest impact on model performance.
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