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Developing and Validating Models to Predict
Progression to Proliferative Diabetic
Retinopathy

Yian Guo, MS,1,2 Sean Yonamine, BA,1,3 Chu Jian Ma, MD, PhD,1 Jay M. Stewart, MD,1

Nisha Acharya, MD, MS,1,2 Benjamin F. Arnold, PhD,1,2 Charles McCulloch, PhD,4 Catherine Q. Sun, MD1,2

Purpose: To develop models for progression of nonproliferative diabetic retinopathy (NPDR) to proliferative
diabetic retinopathy (PDR) and determine if incorporating updated information improves model performance.

Design: Retrospective cohort study.
Participants: Electronic health record (EHR) data from a tertiary academic center, University of California San

Francisco (UCSF), and a safety-net hospital, Zuckerberg San Francisco General (ZSFG) Hospital were used to
identify patients with a diagnosis of NPDR, age � 18 years, a diagnosis of type 1 or 2 diabetes mellitus, � 6
months of ophthalmology follow-up, and no prior diagnosis of PDR before the index date (date of first NPDR
diagnosis in the EHR).

Methods: Four survival models were developed: Cox proportional hazards, Cox with backward selection,
Cox with LASSO regression and Random Survival Forest. For each model, three variable sets were compared to
determine the impact of including updated clinical information: Static0 (data up to the index date), Static6m (data
updated 6 months after the index date), and Dynamic (data in Static0 plus data change during the 6-month
period). The UCSF data were split into 80% training and 20% testing (internal validation). The ZSFG data were
used for external validation. Model performance was evaluated by the Harrell’s concordance index (C-Index).

Main Outcome Measures: Time to PDR.
Results: The UCSF cohort included 1130 patients and 92 (8.1%) patients progressed to PDR. The ZSFG cohort

included 687 patients and 30 (4.4%) patients progressed to PDR. All models performed similarly (C-indicesw 0.70) in
internal validation. The random survival forest with Static6m set performed best in external validation (C-index 0.76).
Insurance and age were selected or ranked as highly important by all models. Other key predictors were NPDR
severity, diabetic neuropathy, number of strokes, mean Hemoglobin A1c, and number of hospital admissions.

Conclusions: Our models for progression of NPDR to PDR achieved acceptable predictive performance and
validated well in an external setting. Updating the baseline variables with new clinical information did not
consistently improve the predictive performance.

Financial Disclosure(s): Proprietary or commercial disclosure may be found after the
references. Ophthalmology Science 2023;3:100276 ª 2023 by the American Academy of Ophthalmology. This is
an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Supplemental material available at www.ophthalmologyscience.org.
Vision loss from diabetic retinopathy remains the leading
cause of preventable blindness in working-aged adults in the
United States.1 In many patients, blindness associated with
diabetic retinopathy can be prevented with appropriate and
timely diagnosis and treatment.2 There have been many
studies aimed at identifying risk factors associated with
progression of diabetic retinopathy. Large population-
based studies and randomized controlled trials, such as the
landmark ETDRS in the 1980s, informed us of the risk
factors for diabetic retinopathy progression and helped to
establish guidelines for screening and management.3-10

However, there have been improvements in screening,
diagnosis, and treatment for diabetes and diabetic retinop-
athy since many of those studies were first conducted, and
ª 2023 by the American Academy of Ophthalmology
This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/). Published by Elsevier Inc.
the risk factors for diabetic retinopathy progression should
be revisited.

In 2013, a study using health care claims data found that
6.7% of newly diagnosed nonproliferative diabetic retinopathy
(NPDR) patients progressed to proliferative diabetic retinop-
athy (PDR) with a median follow-up time of 1.7 years.11

Using a similar method to the ETDRS paper, they
determined the risk factors for progression to PDR at 5
years were hemoglobin A1c (HbA1c), diabetic nephropathy,
and non-healing ulcers.11 The investigators acknowledged
intrinsic limitations to claims data including no clinical
examination information (i.e., vitals, laboratory data, eye
examination), no information about disease severity and
duration using International Classification of Diseases (ICD)
1https://doi.org/10.1016/j.xops.2023.100276
ISSN 2666-9145/23
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9 codes, and the inclusion of only insured patients.11

Electronic health record (EHR) data can help overcome
many of these limitations. There has been significant
adoption of EHRs in the United States in the last decade;
they are used in nearly 90% of outpatient physician
offices.12 Concurrently, newer statistical and machine-
learning techniques have been developed, allowing re-
searchers to better utilize and analyze the massive amount of
EHR data available.13,14

The goal of this study was to use time-to-event models
with systemic and ocular data from EHRs to predict pro-
gression from NPDR to PDR. In contrast to treating the
primary outcome as a dichotomous outcome, as in the ma-
jority of predictive models for diabetic retinopathy, we used
time to PDR as the primary outcome so that time informa-
tion in the outcome was preserved and utilized, since time to
progression is indicative of levels of risk. Furthermore, we
wanted to determine if incorporating updated clinical in-
formation into the model could improve model perfor-
mance. Incorporation of updated clinical information helps
to simulate disease control and fluctuation to better represent
the natural course of disease. The goal is that these models
will help identify patients at high risk of progression and
allow for earlier intervention.15 We hypothesized that
incorporating updated clinical information could improve
model performance for prediction of progression to PDR.

Methods

Data Sources

We obtained data from the EHRs of two hospitals: University of
California San Francisco (UCSF), a tertiary academic center, and
Zuckerberg San Francisco General (ZSFG) Hospital, a safety-net
hospital. The UCSF EHR transitioned to Epic in June 2012. Data
were accessed from UCSF’s de-identified clinical data warehouse,
which is based on the Epic Caboodle Data Warehouse and is
updated monthly. Dates are shifted by up to 365 days in the de-
identified clinical data warehouse and protected health information
is removed according to the Safe Harbor Method. The ZSFG EHR
system for ambulatory care transitioned to Epic in August 2019.
Zuckerberg San Francisco General data were queried from Epic
Clarity by the UCSF Clinical and Translational Science Institute.
The UCSF data were last accessed on February 8, 2022 using SQL
(SQLPro for MSSQL), and the ZSFG data were extracted on
December 15, 2021. The Institutional Review Board at UCSF
approved this study and issued a waiver of informed consent for all
subjects. This study followed the tenets of the Declaration of
Helsinki.

Cohorts

Patients with a diagnosis of diabetic retinopathy based on ICD-9 and
10 codes (Table S1, available at www.ophthalmologyscience.org/)
who had � 1 completed, in-person visit with an eye provider
(optometrist or ophthalmologist) at UCSF after June 1, 2012 or at
ZSFG after August 1, 2019 were selected (Fig 1A). We included
patients who were age � 18 years, had � 1 coded diagnosis of
type 1 or 2 diabetes mellitus (DM), a diagnosis of NPDR coded
by an eye provider, and � 6 months of eye follow-up data before
progression or censoring. Patients with a prior diagnosis of PDR
before the index date (the date of first NPDR diagnosis in the EHR)
were excluded.
2

Disease Outcome

The primary event was the progression from NPDR to PDR.
Diagnosis of PDR was defined by ICD-9 or 10 code after the index
date and had to be coded by an eye provider. The primary outcome
was the time from the index date to the first PDR diagnosis for
patients who progressed, and time from the index date to the last
ophthalmology follow-up visit for patients who were censored.

Variables

We extracted variables from the following categories that were
available in the EHR: demographics, eye-related diagnoses and
procedures, systemic comorbidities, laboratory data, vital signs,
medications, and health care utilization (Table 2). The variables
were classified as time-constant or time-varying (Table 2 and
Table S3, available at www.ophthalmologyscience.org/). For
medications, procedures, and systemic diagnoses, we created
indicator variables based on the first occurrence, except for
myocardial infarction and stroke for which both indicators and
counts were created. Due to the high percentage of missing data
in laboratory values and vital signs (e.g., HbA1c, blood
pressure), these variables were categorized with missingness as
one of the subgroups.

To determine the impact of including updated information, we
used three variable sets that reflected different time-related data
(Fig 1B). The Static0 set contained variables that used data up to
the index date. The Static6m set contained the same variables that
were updated with data up to 6 months after the index date
(referred to as 6-month timepoint). The Dynamic set contained
the same variables as in Static0 (up to the index date) plus the
time-varying variables that represented the change from the index
date to 6 months (Table S3, available at www.ophthalmo
logyscience.org/).

Model Training and Validation

For each of the 3 variable sets, 4 survival models were con-
structed and trained: Cox proportional hazards regression (Cox),
Cox with backward selection (Cox-BW), Cox with LASSO
regression (Cox-LS), and random survival forest (RSF). For the
Cox model, variables were selected if they were significant (P <
0.05) in univariable Cox or if they had known clinical signifi-
cance in previous studies (i.e., sex, tobacco use, DM type, pres-
ence of nephropathy, presence of neuropathy).3,11 For the other 3
models, we allowed the models to perform feature selection on all
variables. For Cox-BW, we used Akaike information criteria for
backward selection (equivalent to dropping a variable when P �
0.157). For Cox-LS, we utilized a group lasso method to ensure
either all or no sublevels of a multicategorical variable were being
selected.16

The UCSF cohort was randomly split into a training set (80%)
and a test set (20%) with the same event and censoring proportion.
To train parameters in Cox-LS (regularizing parameter lambda)
and RSF (number of trees, number of random splits, number of
variables randomly selected for splitting a node and minimum size
of terminal nodes), a 10-by-10-fold cross-validation was applied.
The training set were divided into 10 folds and 10-fold cross-
validation was conducted. This process was repeated 10 times,
each time partitioning the training data into different 10 folds, and
the evaluation performance were averaged. Tuning of the param-
eters was performed using grid search.

Harrell’s concordance index (C-index) was used to assess the
predictive performance of the models.17 The C-index computes the
proportion of all usable patient pairs in which the predictions and
outcomes are concordant and ranges from 0 to 1, with 1
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Figure 1. Filtering process for development of University of California San Francisco (UCSF) and Zuckerberg San Francisco General (ZSFG) Proliferative
Diabetic Retinopathy (PDR) cohorts with A, depiction of inclusion/exclusion criteria, model training, internal/external validation, and B, description of
variable sets used in prediction models. Cox-BW¼ Cox with backward selection; Cox-LS ¼ Cox with LASSO regression; De-CWD¼ de-identified clinical
data warehouse; EHR ¼ electronic health record; NPDR ¼ nonproliferative diabetic retinopathy; RSF ¼ random survival forest.

Guo et al � Predicting Progression to Proliferative Diabetic Retinopathy
indicating perfect prediction. Another common performance
measure for survival prediction is Integrated Brier Score. It gives
the integrated squared prediction error over time, and is usually
weighted by inverse probability of censoring weights to account
for censored observations.18 Because our event proportion was
Table 2. Full List of Variables U

Demographics Comorbidity Vit
Age at index date Tobacco usez Me
Sexz Diabetes mellitus type Me
Race/ethnicity Hypertension* Me
Insurance* Hyperlipidemia*
Eye-Related Diabetic Nephropathy*,y Me
Intravitreal injection (any)* Diabetic Neuropathy*,z Insu
Diabetic macular edema (any)*,z Diabetic foot ulcer* An
NPDR severity* Myocardial infarction (any, N)*,y AC

Stroke (any, N) *,y Sta

ACE ¼ angiotensin-converting enzyme; N ¼ number; NPDR ¼ Non-Prolifera
*Time-varying variables
yBoth indicators (any vs. none) and the actual counts (N) were created for the
zThese variables were included due to known clinical significance in previous s
low, the Integrated Brier Score was nearly indiscernible between
model sets during training, and we chose to use C-index as our
primary measure of performance.

The selected models from training were internally validated on
the UCSF 20% test set. In addition, to assess the robustness and
sed for Model Development

als, Laboratory Values Health care Utilization
an hemoglobin A1c * No show visit (any, N)*,y

an body mass index* Ophthalmology no show visit (any, N)*,y

an systolic blood pressure* Outpatient encounter (N)*
Ophthalmology outpatient encounter (N)*

dications Hospital admission (any, N)*,y

lin use* Emergency room visit (any, N)*,y

tihyperglycemic use*
E inhibitor use*
tin use*

tive Diabetic Retinopathy.

se variables.
tudies.
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generalizability of our prediction models, trained models were
evaluated on the entire ZSFG cohort for external validation.

Calibration refers to the extent of bias of a model (i.e., the ab-
solute difference between the predicted and observed probabilities).
To assess the calibration of the models, the Kaplan-Meier curve was
compared with the predicted survival probability over time.19 We
averaged the predicted survival probability over all patients in the
UCSF and ZSFG test sets separately at the observed times and
plotted it alongside the actual Kaplan-Meier curve. In addition, we
used the median of the linear predictors from the training set as the
cut-off point to divide the patients in the test sets into high-risk and
low-risk groups. The predicted survival curve and the Kaplan-Meier
curve of each risk group were also compared.

Statistical Analysis

The data characteristics between groups were compared using
Wilcoxon Rank Sum test for continuous variables or Pearson’s chi-
squared test for categorical variables. The proportional hazard
assumption of the Cox models and Cox-BW models was checked
by examining the slope of Schoenfeld residuals against time. The
C-index was compared by the method of Kang et al20 and was
adjusted for multiple comparison using the Benjamini-Hochberg
method.21 To evaluate the predictive ability of variables, we
looked at variable importance from RSF as well as the number
of times they were selected by Cox-BW and Cox-LS. The
Breiman-Cutler method for variable importance is associated with
the change in prediction error of the original forest grown using a
variable compared with a new forest grown without the variable.22

Large variable importance values indicate variables with strong
predictive ability. All analyses were done in R 4.1.0. We used
the following packages for model development: ‘survival’,
‘grpreg’ and ‘randomForestSRC’.

Results

Cohort Characteristics

A total of 1130 patients (median [interquartile range] age 66
[56e75] years, 563 [50%] female) were included in the
UCSF cohort after inclusion and exclusion criteria were
applied. The ZSFG cohort had 687 patients (median [inter-
quartile range] age 64 [57e71] years, 324 [47%] female;
Table 4). The UCSF cohort had a longer median event/censor
time of 37 months compared with 17 months for the ZSFG
cohort. The rates of PDR progression per person-year were
0.022 for the UCSF cohort and 0.031 for the ZSFG cohort.
University of California San Francisco data were available
from 2012 whereas ZSFG was only available from 2019.
There were differences in sociodemographic factors and
disease severity between the UCSF cohort compared with the
ZSFG cohort. Specifically, in the UCSF cohort, there were
more White patients (33% versus [vs.] 11%), fewer patients
of Hispanic descent (14% vs. 38%), fewer patients who were
self-pay or had Medicaid insurance (16% vs. 41%), and fewer
patients with moderate (9.6% vs. 25%) or severe NPDR
(2.9% vs. 7.9%) respectively.

Model Results

Random survival forest with the updated 6-month variable set
(RSF6m), and the Cox and Cox-BW with the dynamic vari-
able set (Coxdynamic, Cox-BWdynamic) achieved a C-index of
4

0.70 on the UCSF test set (Table 5). However, they were not
significantly different from other models after correcting for
multiple comparisons. The best-performing model on the
ZSFG cohort was the RSF with updated 6-month variables
(RSF6m, C-index 0.76), and it was significantly better than
Cox6m, Cox-BWdynamic, and Cox-LSdynamic (adjusted P-
values: 0.024, 0.024, 0.024) respectively. Results from the
univariable Cox model fit using the UCSF training set are
shown in Table S6 (available at www.ophthalmology
science.org/).

Table 7 lists the top 10 variables ranked by variable
importance from the RSF6m model. As shown in Table 7,
across models with the updated 6-month variable set,
NPDR severity, insurance, and age were consistently pre-
dictive of progression to PDR. Among all variables, age and
insurance were selected by all Cox models and ranked in
the top 10 by variable importance for all RSF models
(Table S8, available at www.ophthalmologyscience.org/).
Other frequently selected variables were NPDR severity,
diabetic neuropathy, number of strokes, mean HbA1c, and
number of hospital admissions.

Calibration

The calibration plots of the RSF6m model are shown in
Figure 2. To facilitate comparison, we truncated the time
span of the UCSF test set to be the same as the ZSFG
cohort (28 months). The overall calibration of the ZSFG
cohort appeared worse than the UCSF test set. After
stratification, the RSF6m model predicted the UCSF low
and high-risk groups well, but underpredicted the low-risk
group and overpredicted the high-risk group of the ZSFG
cohort after 18 months.

Discussion

In this study, we developed survival models for predicting
progression from NPDR to PDR using variables at different
timepoints, and evaluated the model using EHR data from
two different health systems. The C-indices ranged from 0.66
to 0.70 for the UCSF test set (internal validation), and 0.61 to
0.76 for external validation on the ZSFG data, indicating
acceptable predictive ability and reasonable generalizability
of the models. Updating the variables at 6 months after the
index date or including the change in variables during a 6-
month period did not consistently improve predictive per-
formance compared with using variables at the index date.
Among all variables, age and insurance were selected by all
Cox models and ranked in the top 10 by variable importance
for all RSF models. Other important predictors included
NPDR severity, diabetic neuropathy, number of strokes,
mean HbA1c, and number of hospital admissions.

In general, our survival models had good generaliz-
ability when evaluated on a second health care system that
uses the same EHR system, Epic. The model performance
on the ZSFG cohort was comparable or better than the
UCSF test set with the Static0 and Static6m variable sets
across all 4 types of models. However, the Dynamic
models performed worse in external validation than in
internal validation, possibly because the Dynamic models

http://www.ophthalmologyscience.org/
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Table 4. Cohort Characteristics

Characteristic UCSF, N [ 1130* ZSFG, N [ 687* P-valuey

Time to PDR or last ophthalmology follow-up (months) 37 (19, 65) 17 (12, 23) < 0.001
Number of patients who progressed to PDR 92 (8.1%) 30 (4.4%) 0.002
Rate of PDR progression per person-year 0.022 0.031 0.133
Age (years) 66 (56, 75) 64 (57, 71) 0.004
Sex 0.271
Female 563 (50%) 324 (47%)
Male 567 (50%) 363 (53%)

Race < 0.001
White 374 (33%) 75 (11%)
Asian 350 (31%) 229 (33%)
Black/African American 130 (12%) 84 (12%)
Hispanic/Latino 154 (14%) 261 (38%)
Other 122 (11%) 38 (5.5%)

Insurance < 0.001
Medicare 536 (47%) 231 (34%)
PPO/HMO 262 (23%) 71 (10%)
Self-Pay/Medicaid 178 (16%) 281 (41%)
Other 154 (14%) 104 (15%)

Diabetes mellitus Type < 0.001
Type 1 106 (9.4%) 7 (1.0%)
Type 2 1024 (91%) 680 (99%)

NPDR severity < 0.001
Mild 443 (39%) 201 (29%)
Moderate 108 (9.6%) 169 (25%)
Severe 33 (2.9%) 54 (7.9%)
Unspecified 408 (36%) 53 (7.7%)
Missing 138 (12%) 210 (31%)

Diabetic macular edema < 0.001
No 486 (43%) 274 (40%)
Yes 178 (16%) 174 (25%)
Missing 466 (41%) 239 (35%)

Mean hemoglobin A1c < 0.001
� 6.5 123 (11%) 84 (12%)
6.5e8 381 (34%) 131 (19%)
8e10 267 (24%) 114 (17%)
> 10 89 (7.9%) 68 (9.9%)
Missing 270 (24%) 290 (42%)

HMO ¼ Health Maintenance Organization; NPDR ¼ non-proliferative diabetic retinopathy; PDR ¼ proliferative diabetic retinopathy; PPO ¼ Preferred
Provider Organization; UCSF ¼ University of California San Francisco; ZSFG ¼ Zuckerberg San Francisco General Hospital.
*Median (interquartile range); n (%).
yWilcoxon rank sum test; Pearson’s chi-squared test.

Guo et al � Predicting Progression to Proliferative Diabetic Retinopathy
included more variables than the Static0 and Static6m
models (the extra variables representing change during the
6-month period), making it less generalizable to the
external dataset.
Table 5. Model Performances Evaluated by C-indice

UCSF test set

Static0 Static6m

Cox proportional hazards regression 0.68 0.69
Cox with backward selection 0.67 0.66
Cox with LASSO regression 0.67 0.68
Random survival forest 0.69 0.70

UCSF ¼ University of California San Francisco; ZSFG ¼ Zuckerberg San Fran
*The C-index of random survival forest with the Static6m set was significant
adjusted).
An objective of this study was to determine if incorpo-
rating updated information into the model could improve
model performance. By comparing the results of the
Static6m and Dynamic models to the Static0 models, we
s on the UCSF Test Set and the ZSFG Cohort

ZSFG cohort

Dynamic Static0 Static6m Dynamic

0.70 0.72 0.67* 0.70
0.70 0.68 0.74 0.61*
0.68 0.72 0.72 0.65*
0.67 0.73 0.76 0.65

cisco General Hospital.
ly better than these models in external validation (multiple comparison
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Table 7. The Top 10 Variables for Predicting Progression to PDR Ranked by Variable Importance from the RSF6m Model, and the
Associated HRs (95% CIs) in Cox6m and Cox-BW6m, and HR in Cox-LS6m

Variable

RSF6m Cox6m Cox-BW6m Cox-LS6m

Rank HR (95% CI) HR (95% CI) HR

NPDR severity (Reference: mild) 1
Moderate 2.99 (1.37e6.53) 3.60 (1.73e7.49) 2.25
Severe 2.54 (0.84e7.66) 2.84 (1.05e7.63) 2.33
Unspecified 2.07 (0.98e4.39) 1.87 (0.97e3.61) 1.32
Missing 1.50 (0.51e4.43) 1.34 (0.53e3.39) 1.11

Age (years) 2 0.97 (0.95e1.00) 0.96 (0.94e0.99) 0.98
Insurance (Reference: Medicare) 3
PPO/HMO 2.55 (1.19e5.48) 2.29 (1.08e4.88) 2.00
Self-Pay/Medicaid 2.58 (1.23e5.42) 2.81 (1.31e6.03) 2.28
Other 0.54 (0.15e1.97) 0.57 (0.16e2.08) 0.77

Stroke (N) 4 e e 1.09 (1.01e1.19) 1.01
Hospital admission (N) 5 1.09 (0.931.28) 1.17 (0.96e1.44) 1.08
Emergency room visit (N) 6 e e e e e
Ophthalmology outpatient encounter (N) 7 e e 1.06 (1.01e1.12) 1.04
Mean hemoglobin A1c (Reference: � 6.5) 8
6.5e8 0.47 (0.19e1.21) 0.60 (0.24e1.51) 0.77
8e10 0.52 (0.20e1.36) 0.61 (0.23e1.61) 0.78
> 10 1.43 (0.53e3.83) 1.99 (0.74e5.36) 1.72
Missing 0.67 (0.21e2.09) 1.82 (0.70e4.69) 1.13

Diabetic foot ulcer (Reference: no) 9 1.44 (0.47e4.46) e e 1.10
Neuropathy (Reference: no) 10 2.01 (1.02e3.98) 1.79 (0.96e3.34) 1.56

CI ¼ confidence interval; Cox6m ¼ Cox model with the updated 6-month variable set; Cox-BW6m ¼ Cox model with backward selection and the updated
6-month variable set; Cox-LS6m ¼ Cox model with LASSO regression and the updated 6-month variable set; HR ¼ hazard ratio; HMO ¼ Health
Maintenance Organization; NPDR ¼ nonproliferative diabetic retinopathy; PPO ¼ Preferred Provider Organization; RSF6m ¼ random survival forest model
with the updated 6-month variable set.

Ophthalmology Science Volume 3, Number 2, June 2023
found that updating the variables at 6 months from the index
date or including the change of variables during the 6-month
period did not consistently improve the predictive perfor-
mance in either the internal or external datasets. One reason
might be that 6 months is not long enough for time-varying
variables to change. We were not able to extend this time-
point to 1 year as it would further reduce our sample size
and number of events. In the future, a more extended
updated time point of � 1 year may demonstrate more
distinction between time-varying models.

Our models identified several key predictors of PDR pro-
gression that were not shown in previous studies, which we
will discuss in further detail here: insurance status, number of
previous strokes, and number of previous hospital admissions.
Insurance status was selected by all our models, indicating
high predictive ability. While insurance status has not been
specifically identified as a risk factor of progression from
NPDR to PDR, other studies investigating different aspects of
diabetic retinopathy care have found insurance-based dispar-
ities to be a key risk factor in outcomes. Malhotra et al23 found
that patients on Medicare and private insurance presented with
better baseline visual acuity compared with patients on
Medicaid when initiating treatment with anti-VEGF therapy
for diabetic macular edema. In addition, Cai et al24 identified
that not having a regular primary care provider and having
poor housing conditions were associated with poor
adherence to diabetic eye examinations. Similarly, Hinkle
et al25 found that patients with Medicaid had reduced odds
for following up with an eye provider after an emergent
visit for PDR. In our study, both patients with commercial
6

insurance (Preferred Provider Organization/Health
Maintenance Organization) and self-pay/Medicaid had
higher rates of progression to PDR compared with those with
Medicare, after adjusting for variables including age and
NPDR severity. We conjecture that there may be other vari-
ables that were not captured in our study, such as socioeco-
nomic status, that may be contributing. Given the substantial
impact of insurance status on progression to PDR, this is a key
area of future investigation to prevent PDR and improve
outcomes. Potential future directions include incorporating
social determinants of health variables available in the EHR
and investigating how different insurance categories impact
disease outcome, as well as using smaller subcategories of
insurance type, such as separating Preferred Provider Orga-
nization from Health Maintenance Organization and self-pay
from Medicaid.

The number of previous strokes was another important
predictor that was identified in our model. A few recently
published papers have found an association between strokes
and diabetic retinopathy but there is not conclusive evidence
of the relationship.26 A meta-analysis of 19 cohort studies
found that the presence of diabetic retinopathy is associated
with an increased risk of stroke in type 2 DM patients, but
uncertain for patients with type 1 DM.27 In a secondary
analysis of patients enrolled in the ACCORD Eye study
(Action to Control Cardiovascular Risk in Diabetes),
diabetic retinopathy was associated with an increased risk
of stroke.26 While these two studies identified diabetic
retinopathy as a predictor for the development of
strokes,26,27 our study found that the number of previous



Figure 2. Calibration of survival prediction by the random survival forest model with updated 6-month variable set. Calibration is the absolute difference
between the predicted and observed probabilities. A, Total University of California San Francisco (UCSF) test set. B, UCSF test set stratified into low-risk
and high-risk groups. C, Total Zuckerberg San Francisco General Hospital (ZSFG) cohort. D, ZSFG cohort stratified into low-risk and high-risk groups.
Solid lines indicate Kaplan-Meier survival estimates. Dashed lines indicate predicted mean survival probabilities.

Guo et al � Predicting Progression to Proliferative Diabetic Retinopathy
strokes was also a predictor for progression of NPDR to
PDR. These findings indicate that the microvascular
pathology of diabetic retinopathy may have larger
macrovascular implications, and needs to be further explored.

The number of previous hospital admissions was also an
important predictor. Another study identified having more
systemic comorbidities to be a risk factor for diabetic reti-
nopathy progression using the Carlson Comorbidity Index
score.28 In our study, more hospital admissions likely indicate
more comorbidities. While the finding that worse overall
health and comorbidities lead to progression of PDR is not
surprising, our use of the number of previous hospital
admissions may be a comparable and simpler surrogate
marker to capture overall health status for larger data
studies. Additional research should be conducted in this area.

There are several limitations to this study. First, there was
a high percentage of missing data for vitals and laboratory
values, such as HbA1c, in both the UCSF and ZSFG cohorts.
Imputation of a large number of missing values across mul-
tiple variables would have resulted in bias, especially when
variables such as vitals and laboratory values were not
missing at random. Therefore, to avoid significantly shrink-
ing our cohort size, we binned the continuous vitals and
laboratory values and included missingness as one of the
subcategories. This method may have resulted in some loss of
power.29 Given even larger amounts of missing data in less
7
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common laboratory values, we chose to not include other
variables that have previously been shown to be related to
PDR progression, such as hematocrit and serum albumin.3

Second, clinical notes and eye examination data were not
available to us for analysis. As such, we did not include
variables such as visual acuity or duration of diabetes that
have been reported to be significant in previous studies.3,30

Given the significance of duration of DM in previous
studies, we attempted to use the first coded diagnosis of
DM in the EHR to determine DM disease duration.
However, in the UCSF cohort, only 39% of patients had
their first DM diagnosis after their first encounter in the
system. Since the EHR system was implemented in 2012
at UCSF and 2019 at ZSFG, it means that we will not
know the first date of DM diagnosis for the majority of
patients (i.e., 61% in the UCSF cohort) since the EHR has
not been around for long enough to capture this
information. For this reason, DM duration is a difficult
variable to capture reliably from EHR and claims data
without using clinical notes. With the release of UCSF’s
de-identified clinical notes and the availability of new
methods and tools for natural language processing of clin-
ical free-text, this is a potential avenue for future work.

With any EHR-based study, there is the inherent limita-
tion of incomplete data if a patient received care outside of
the hospital system. Because of the likely incompleteness of
EHR data and the fact that we did not include a look-back
period before the index date to avoid decreasing sample
size, the first NPDR diagnosis in our study does not repre-
sent incident NPDR. As such, we expected that our study
may have higher rates of progression and shorter time to
8

PDR than in studies that use incident NPDR, such as
Nwanyanwu et al.11 However, we did not find this to be the
case with 4.4%e8.1% of patients progressing to PDR in our
study compared with 6.7% in their study.11 While claims
data would address the limitation of incompleteness of
data that is seen in EHR datasets, the trade-off is the lack
of specificity and detail that comes with using claims data
alone: only diagnosis codes (ICD-9/10) and billing codes
(current procedural terminology, Healthcare Common Pro-
cedure Coding System) are available, and there are no
uninsured patients, which we found to be a key predictor for
progression in our study. A future direction is to combine
claims with EHR data for prediction models to better cap-
ture a patient’s complete medical course.

In conclusion, this was a novel study that built time-to-
event models for prediction of NPDR to PDR using data
at different timepoints, and evaluated the models on 2 health
care systems with different patient sociodemographic fac-
tors. Our models demonstrated acceptable predictive ability
and generalizability in a different health care system. We
identified novel predictors for progression to PDR that
warrant further investigation. Specifically, we found that
type of insurance was a risk factor for progression. Patients
with more previous strokes or more previous hospital ad-
missions were also at a greater risk of progression to PDR.
We also confirmed other known predictors that are impor-
tant for progression, including younger age, greater NPDR
severity, presence of diabetic neuropathy, and higher
HbA1c. Future directions include additional corroboration at
other medical centers, and further investigation into the
clinical relevance of these novel predictors.
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