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Abstract 

The origin of contemporary Europeans remains contentious. We obtain a genome sequence 

from Kostenki 14 in European Russia dating to 38,700-36,200 years ago, one of the oldest 

fossils of Anatomically Modern Humans from Europe. We find that K14 shares a close 

ancestry with the 24,000 year old Mal’ta boy from central Siberia, European Mesolithic 

hunter-gatherers, some contemporary western Siberians and many Europeans, but not 

eastern Asians. Additionally, the Kostenki 14 genome shows evidence of shared ancestry 

with a population basal to all Eurasians that also relates to later European Neolithic 



farmers. We find that Kostenki 14 contains more Neandertal DNA that is contained in 

longer tracts than present Europeans. Our findings reveal the timing of divergence of 

western Eurasians and East Asians to be >36,200 years ago, and that European genomic 

structure today dates back to the Upper Paleolithic and derives from a meta-population 

that at times stretched from Europe to central Asia. 

 

One Sentence Summary:  

The genome of Kostenki 14, a ~37 ka-old modern human from European Russia, reveals that 

European genomic structure dates back to the Upper Paleolithic.  

 

 

  



Main Text:  

The ancestors of contemporary Eurasians are believed to have left Africa some 60,000-50,000 

years ago (60-50 ka) (1, 2), possibly 30-40 ka later than Australo-Melanesian ancestors (3). 

Despite controversies about routes out of Africa, the first Upper Paleolithic (UP) industries of 

Eurasia are found in the Levant from c. 48 ka (4, 5). Expansion into Europe took place through 

multiple events that by c. 40 ka had generated a spatially and culturally structured Anatomically 

Modern Human (AMH) population – from Russia (6), to Georgia (7), Bulgaria (8), southern 

Europe (9, 10) and the UK (11). The few AMH fossils associated with these initial UP industries 

are morphologically variable (9, 12–17). In western Eurasia, the distinctive Aurignacian toolkit, 

first observed at Willendorf (Austria) by 43.5 ka (18), becomes predominant across the earlier 

range by 39 ka. Although analyses of ancient human genomes have advanced our understanding 

of the European past, revealing contributions from Paleolithic Siberians, European Mesolithic 

and Near Eastern Neolithic groups to the European gene pool (19–23), the possible contribution 

of the earliest Eurasians to these later cultures and to contemporary human populations remains 

unknown. To investigate this, we sequenced the genome of Kostenki 14 (K14, Markina Gora, 

Figure 1A).  

 

The locality of Kostenki-Borshchevo on the Middle Don River, Russia, has one of the most 

extensive Paleolithic records in eastern Europe. The K14 human skeleton was excavated in 1954 

(24) and recently dated to 33,250 ± 500 radiocarbon years BP (25), 38.7-36.2 thousand calendar 

years BP (ka cal BP), in agreement with the stratigraphic position of the burial that cuts into the 

Campanian Ignimbrite ash layer dated to c. 39.3 ka cal BP (26). Below the skeleton there is a 



distinctive early UP industry, with end scrapers, burins, prismatic cores and bone artifacts (Layer 

IV); the cultural layer above (Layer III) has a regionally local character (27, 28) (SOM S1-S2).  

 

We performed 13 DNA extractions from a total of 1.285 grams of the left tibia (dorsal side of the 

shaft), using two extraction methods based on silica purification (29, 30). We first constructed 7 

Illumina libraries and validated the presence of typical signatures of post-mortem DNA damage, 

using a fraction of DNA extracts (SOM S3). The remaining extracts were built into 63 libraries 

following enzymatic USER treatment to limit the impact of nucleotide mis-incorporations in 

downstream analyses (31) (SOM Table S2). Additionally, a limited fraction of two DNA extracts 

was purified for methylated DNA fragments using Methyl Binding Domain (MBD)-enrichment 

(32) before USER treatment and library building, for a total of 8 DNA libraries. Following 

stringent quality criteria for read alignment, we identified a total number of 175.2 million unique 

reads aligning against the human reference genome hg19, representing an average depth-of-

coverage of 2.84X (SOM S4). The eight USER treated DNA libraries that exhibited limited error 

rate and contamination levels were selected for further analyses. This restricted the dataset to 

148.9 million unique reads, representing a final depth-of-coverage of 2.42X. We exploited the 

fact that K14 was a male and used the heterozygosity levels present in the X chromosome to 

estimate overall levels of contamination around 2.0% (SOM S5-S6;Table S5). Note that the 

population genetics analyses results are robust to contamination of that level. In particular we 

replicated the main analyses with selected libraries with varying contamination levels and 

observed no qualitative effect on the results (see SOM S9 for details). 

 



Mitochondrial analyses confirmed the sequence previously reported for K14 (haplogroup U2, 

(33)), which supports data authenticity. The Y chromosome belongs to haplogroup C M130, the 

same as in La Braña – a late Mesolithic hunter-gatherer (MHG) from northern Spain (22) (SOM 

S7).  

 

To identify patterns of shared ancestry and admixture among K14, other ancient genomes and 

contemporary Eurasians (based on a single-nucleotide polymorphism (SNP) array panel of 2091 

individuals from 167 populations), we carried out a series of analyses – model-based clustering 

and principal component analysis (PCA) - to show the contribution of diverse genetic 

components within K14; D-statistics to explore the affinity of K14 to pairs of populations (using 

Mbuti Pygmy as an outgroup); f4 statistics to test whether a given modern population is 

equidistant to an ancient individual and a particular recent group (here Sardinians), given an 

outgroup (here Papuans); and f3 statistics to explore both patterns of admixture (“admixture” f3) 

and shared ancestry (“outgroup” f3). Key results were also replicated using two whole-genome 

sequencing datasets of modern individuals from worldwide populations (23, 34). 

 

Model-based clustering analyses (35) show that K14 has different genetic components of 

substantial size (Fig. 1B, SOM S10), suggesting the sharing of sets of alleles with different 

Eurasian groups. The largest fraction of K14’s ancestry derives from a component that is 

maximized in European MHGs, and also predominant in contemporary northern and eastern 

Europeans. The genetic affinity of K14 to contemporary Europeans is also observed using 

“outgroup” f3-statistics (36). Using Mbuti Pygmy as outgroup, we find that among a panel of 167 

contemporary populations, Europeans have the greatest affinity (i.e. the largest f3) to K14 (Figure 



1C). This conclusion is also formally supported by comparing pairs of populations to K14 using 

the D statistics of the form D(Mbuti Pygmy, K14; Population 1, Population 2). This statistic is 

expected to be equal to zero if K14 is symmetrically related to Population 1 and Population 2, 

whereas its expectation is negative (positive) if K14 is more closely related to Population 1 

(Population 2). For pairs of populations involving East Asians (Population 1) and Europeans 

(Population 2), K14 is always significantly closer related to Europeans (e.g. Z = 12.1, (Han, 

Lithuanians)), in all datasets analyzed (SOM S9;Table S7). We also confirm that these results are 

robust to possible contamination from a modern DNA source, by filtering for reads with a high 

likelihood of ancient DNA using a model-based approach (37) as well as calculating 

contamination-corrected D-statistics (23)(SOM S9;Figure S18).  

 

Within Europe, northern Europeans show the closest affinity to K14, based both on the f3 (Figure 

1D) and D-statistics (e.g., Z = 6.7, for (Sardinians, Lithuanians);Table S7;Figure S16). This 

pattern closely resembles that of European MHGs (La Braña, Ajv58, Loschbour, Motala) and 

Mal’ta (MA1) (Figure S14-S15), with the exception of the latter’s strong genetic affinity with 

Native Americans, which is unique to that individual. Furthermore, a direct comparison to 

ancient genomes in the “outgroup” f3 statistics shows K14 has a higher affinity with MHGs 

(Loschbour, La Braña) than any other ancient individual or contemporary population (Figure 

S14). Together with the rare Y chromosome lineage shared with La Braña, these results provide 

strong evidence of shared ancestry and extensive gene flow between UP West Eurasian people 

related to K14, and European MHGs and their contemporary European descendants. 

 



An interpretation of the above results would be that K14 is an early member of a lineage leading 

to western Eurasian MHGs, after their split from the proposed ancestral northern Eurasian 

lineage including MA1. However, D-statistics of the form D(Mbuti Pygmy, Modern; Ancient, 

K14), which test whether K14 and an ancient individual form a clade with respect to a modern 

population, reject this simple tree-like relationship. We find that all contemporary non-Africans, 

except Australo-Melanesians, are closer to either Mal’ta (MA1) or MHGs than to K14 (e.g., Z = 

-5.3, for D(Mbuti, Han; Loschbour, K14); SOM S9;Table S10;Figure S19). This would suggest a 

basal position of K14 with respect to MHGs and ancient north Eurasians, which is also shown in 

admixture graphs using TreeMix (SOM S12;Figure S24-S25). In addition, a sizeable component 

of K14’s ancestry observed in the model-based clustering analyses is predominant in 

contemporary Middle Eastern/Caucasus (ME/C) populations and Neolithic ancient genomes 

(NEOL) (Gok2, Iceman, Stuttgart), but absent in MA1 or MHGs (Figure 1B;Figure S20). This 

component has been associated with a suggested “basal Eurasian” lineage contributing to NEOL, 

to explain an observed increase in allele sharing between MHGs / MA1 and East Asians 

compared to NEOL (21). Since K14 shows the same pattern as NEOL, a parsimonious 

explanation would be that K14 also derives some ancestry from a related “basal Eurasian” 

lineage. Consistent with this hypothesis, we find that East Asians are equally distant to NEOL 

and K14 using D-statistics as described above (e.g., Z = 0.0, for D(Mbuti, Han; Stuttgart, K14); 

Table S10-S11). This suggests that the main ancestral components proposed for contemporary 

Europeans, including the Middle-Eastern component commonly attributed to the expansion of 

early farmers within Europe, were likely already genetically differentiated and related through 

complex gene flow by the time of K14, at least 36.2 ka ago (Figure 2).  

 



We further investigated the relationship of K14 and the other ancient genomes to East Asian and 

Siberian populations using f4 statistics f4(Sardinian, Ancient; Modern, Papuan), which measure 

whether a modern population shares more alleles with contemporary Europeans or an ancient 

genome. We find that all Siberian and East Asians are equally distant from western MHGs (all 

|Z| < 1.9; Figure 3D; Table S12), supporting the postulated early split between East Asians and 

western Eurasians. In contrast to MHGs and MA1 all Siberian populations are genetically closer 

to contemporary Europeans (Sardinians) than to K14 (3.1 < |Z| < 9.9; Table S12), particularly 

those from the Yenisei and Ob’ basins (e.g. Shors, Z = 8.0) (Figure 3A). Furthermore, these 

populations derive parts of their ancestry from a European “hunter-gatherer” (HG) component 

inferred in the ADMIXTURE analysis (Figure 1D; Figure S20), with populations showing higher 

“HG” ancestry proportion also being closer to contemporary Europeans using the f4 statistic 

(Spearman ρ = 0.96, p = 3.0 x 10
-18

, Figure 3D; Table S13). Notably, the opposite pattern is 

observed with Scandinavian MHGs (Ajv58, Motala), where the same populations tend to share 

more alleles with MHGs than contemporary Europeans and the “HG” component is negatively 

correlated with f4 (e.g. Motala ρ = -0.85, p = 6.2 x 10
-10

; Figure 3C, 3D). Calculating 

“admixture” f3 statistics, we find significant evidence for admixture in those populations, with a 

variety of Siberian and European source populations. The best pair of source populations (i.e., 

the most negative f3 statistic) involves Swedish MHGs (Motala) and Evens (a northeast Siberian 

population) (e.g. f3(Shors; Evens, Motala) = -0.012, Z = -9.1)(Table S14). Altogether, these 

results suggest that contemporary Siberian populations from the Yenisei basin derive part of their 

gene pool from a Eurasian HG population that shares ancestry with K14, but is more closely 

related to Scandinavian MHGs than to either MA1 or western European MHGs, indicating gene 



flow between their ancestors and Scandinavian Europe after K14 but prior to the Mesolithic 

(36.3 > x > 7 ka BP).  

 

Finally, we estimated levels of Neandertal ancestry in K14 using f4-ratio statistics (38). Our 

estimates are consistent with previous analyses (34) showing a Neandertal contribution lower 

than 2 % for most individuals (Figure 4A). However, both La Braña and K14 show slightly 

elevated levels, with an estimated 2.4 ± 0.4% in K14 (Table S15-S16). Restricting this analysis 

to genomic regions without evidence for Neandertal introgressed haplotypes in contemporary 

humans (38, 39) results in 0% estimated ancestry for most individuals except K14, where 0.9 ± 

0.4% Neandertal ancestry is still detected (Table S17-S18). The difference between K14 and 

modern genomes could be caused by several factors including sampling effects and genetic drift, 

natural selection as argued in (38, 39), or by the effects of additional Neandertal admixture not 

represented in the modern gene-pool. We next compared the size distribution of genomic tracts 

of archaic hominin origin in K14 and other ancient individuals (Figure 4B), by identifying 

genomic regions with high frequencies of archaic alleles at sites where all modern Africans carry 

the ancestral allele. The length of Neandertal tracts was higher in K14 than in other ancient 

individuals, with the longest tract totaling ~3Mb on chromosome 6 (Figure 4C). This is 

consistent with K14 being closer to the time of the admixture event with Neandertals, and 

carrying longer archaic tracts that have been affected by less recombination, than in the other 

~11-30,000 year old younger ancient genomes. We then used the length distribution of shared 

ancestry to estimate the admixture time of Neandertals and humans based on the K14 sample, 

and obtained an estimate of approximately 54K years (S15). We note that genomic data from a 

45,000-year-old modern human from Siberia, which was published during the review process of 



this study, also shows longer segments of Neanderthal ancestry, further supporting our 

conclusions (40).  Because of the divergent position of the K14 sample, we also examined if it 

contained any fragments of introgressed DNA from other previously un-sampled hominins. 

However, the distribution of tracts of divergent DNA provides no evidence for additional 

divergent introgressed DNA (S14). 

 

Several studies have reported on the basal genetic distinctiveness between western Eurasian and 

eastern Asian populations, as well as between all Eurasians and Australo-Melanesians (41–43). 

Our results show no close genetic relationship between K14 and Australo-Melanesians, and 

support earlier studies that suggest Australo-Melanesians derive part of their ancestry from an 

early population divergence that pre-dates the separation of Europeans and East Asians (3). The 

K14 genome shows that this early UP individual was clearly part of a western Eurasian lineage 

that had already diverged from eastern Asians, thus establishing a minimum date for that 

separation at least 36.2 ka. The fact that the limited genomic information on the c. 40 ka 

Tianyuan modern human from China clusters with contemporary East Asian populations (44) 

suggests an even earlier date.  

 

Our results further suggest that the early stages of the western Eurasian lineage were already 

complex (see also Figure 2). Besides its core affinities with subsequent European groups, K14 

also shares alleles with European Neolithic farmers and contemporary people from the Middle 

East/Caucasus, which are not found in MA1 and western European MHGs, indicating genetic 

exchange between K14 and a Basal Eurasian Lineage (which eventually contributed to Neolithic 

groups) after the ancestors of MA1 and subsequent European MHGs had diverged. This implies 



that early AMH populations became structured early in their history, but already in the UP 

contained the major genetic components found in Europeans today. As such our findings show 

the existence of a meta-population structure in Europe from the Upper Paleolithic onwards, 

remnants of which are still found today, despite migrations to and from Europe since the UP. The 

early UP contribution is greater among northern than southern Europeans, in agreement with the 

southeast to west and north gene flow cline resulting from the expansion of Neolithic famers 9-6 

ka cal BP (20, 45). However, descendants of the early UP population represented by K14 likely 

also contributed genes to western Siberian groups living around the mouth of the Yenisei River. 

Therefore, our findings support the view that these Uralic-speaking populations represent an 

ancient admixture between European and East Asian lineages. The recently proposed Holocene 

gene flow from East Asians into northern Europeans (21) can, in our view, be equally well 

explained by population structure of the hunter-gatherer meta-population within Europe. As such 

our results paint an increasingly complex picture of colonization history of Europe from the UP 

to today. Instead of inferring a few discrete migration events from Asia into Europe, we now see 

evidence that humans in Western Eurasia formed a large meta-population with gene flow in 

multiple directions occurring repeatedly and perhaps continuously. 
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Figure 1. (A) Location of Kostenki and the samples analyzed in this study. Kostenki (K14) is 

shown in red while comparative ancient samples are shown in blue. (B) Admixture proportions 

for the ancient genomes assuming nine ancestral components for a clustering analysis in a set of 

modern worldwide populations. We labeled the components according to the modern populations 

in which they are maximized for all but one case: the yellow component that we label HG is 

maximized in eastern Europeans. UP: Upper Paleolithic, M: Mesolithic, HG: Hunter-Gatherers, 

NEOL: Neolithic Farmers. (C) Shared drift between K14 and a set of worldwide populations. 

For every modern population X on the map, we compute f3(Mbuti Pygmy; K14, X). The warmer 

colors indicate increased shared ancestry. (D) Shared drift between K14 and a set of European 

populations. This figure is a zoom of panel (C).  



 

 



Figure 2. Relationships of the K14 sample and MA1, MHG, NF, modern Europeans and the 

modern populations in the Yenisei region. This representation is a possible topology consistent 

with the results presented in this study in the context of the relationships described by Lazaridis 

et al. (21) for the modern European populations and Raghavan et al. (23) for MA1. Present day 

populations are colored in blue, ancient in red and ancestral populations in green. Solid lines 

represent descent without admixture events, and dashed lines, admixture events. Arrows do not 

depart from ancient samples (K14 and MA1) as they represent relationships of population 

ancestry. We only show the topology of the potential population tree: there is no notion of time 

in this representation. We also note that the tree is not the result of a model-fitting procedure, but 

rather a possible topology consistent with the key results of this study (indicated with lower case 

letters in the figure). UP: Upper Paleolithic, MHG: Mesolithic Hunter-Gatherers, NF: Neolithic 

Farmers.  

 

 



Figure 3. (A) Values of the f4 statistic for a set of Siberian and East Asian populations and K14. 

We compute the f4 statistic for a topology (Sardinian, K14; X, Papuan). Warmer values indicate 

departure from the topology (Sardinian, K14; X, Papuan) with increased ancestry between the 

modern population X and the Sardinian. The Yenisei region includes the Selkup, Shor, and Ket 

populations. (B) Values of the f4 statistic for a set of Siberian and East Asian populations and 

MA1. We compute the f4 statistic for a topology (Sardinian, MA1; X, Papuan). (C) Values of the 

f4 statistic for a set of Siberian and East Asian populations and Scandinavian hunter gatherers 

(Motala).  (D) Relationship between the “HG” admixture proportion and the f4(Sardinian, K14; 

X, Papuan) shown in (A). The red lines are linear regressions for each case. MHG: Mesolithic 

Hunter-Gatherers. 

 

 



 

Figure 4. (A) Neandertal admixture proportions for the modern and ancient individuals from 

Eurasia. (B) Ancestry tract length distribution for tracts identified as Neandertal through a sliding 

window approach. The sites are ascertained to be ancestral in the African populations. For each 

non-African, the tracts are identified as the regions where sites are derived in Neandertal and the 

individual shown in X. (C) The longest “Neandertal haplotype” identified in K14 through a 

sliding window approach. Individuals were clustered using hierarchical clustering on the 

genotype matrix for the region. Missing data is shown in white, grey indicates homozygous 

ancestral, blue heterozygote and black homozygous derived. 




