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Individual-specific versus shared cognitive states differently support complex 
semantic and perceptual judgments  

Sagana Vijayarajah (sagana.vijayarajah@mail.utoronto.ca) 
Department of Psychology, University of Toronto, Toronto, ON, Canada 

Margaret L. Schlichting (meg.schlichting@utoronto.ca) 
Department of Psychology, University of Toronto, Toronto, ON, Canada 

 

Abstract 
Cognitive processes that underpin performance on a given task 
may vary both within and across individuals. Yet, it is unclear 
how individual-specific versus shared cognitive processes each 
support behaviour. Here, we used a functional magnetic 
resonance imaging (fMRI) pattern classifier approach to ask 
how individual-specific and shared neural cognitive states 
differently relate to an individual’s ability to detect consecutive 
repeats in semantic (story) meaning versus perceptual (artist 
style) dimensions of illustrations that depicted well-known 
stories. Both states were related to participants’ task 
performance overall but differently for story versus artist style 
behaviours: individual-specific states were related to story 
performance, whereas shared states were related to artist style 
performance. These findings suggest that behaviours relying 
upon prior knowledge—likely varying across individuals—
may be supported by idiosyncratic versus shared states. In 
contrast, unfamiliar judgments associated with a smaller 
number of eligible strategies may be supported by a state 
shared across individuals. 

Keywords: semantic; perceptual; attention; fMRI; MVPA 

Introduction 
A single perceptual experience can evoke a variety of 

cognitive processes, with the tendency to adopt one over 
another varying both across people and within a given person 
over time. For example, imagine a visitor to a museum stops 
to view a painting. The viewer may focus on discerning the 
meaning of the painting by identifying its composite elements 
or relating it to their own past experiences. In contrast, other 
viewers might focus on elements of the painter’s style such 
as the vibrant colours and broad brushstrokes. While some of 
these experiences may elicit a cognitive state that is common 
across different viewers, others may be idiosyncratic to a 
particular person—ultimately suggesting a mechanism by 
which a given event can elicit either shared or uniquely 
personal experiences. Here, we suggest that cognitive process 
will be reflected in a person’s “brain state,” or distributed 
pattern of neural activation measured using fMRI. We 
reasoned that directly comparing such neural patterns across 
people would shed light on how different individuals 
approach a given task—such that shared and idiosyncratic 
states would yield high and low across-participant similarity, 
respectively—as well as how such approaches are related to 
behavioural differences.  

Neural decoding analyses have shown that an individuals’ 
engagement of a cognitive process evokes activation patterns 

that are stable even across different experiences (i.e., brain 
states; Hanke et al., 2009; for reviews see Herz et al., 2020; 
Norman et al., 2006) and relate to subsequent behavior 
(Carlson et al., 2003; Kuhl et al., 2012; Kuhl & Chun, 2014; 
Mostert et al., 2015; Sudre et al., 2012). Furthermore, 
cognitive state as assessed by neural decoding also predicts 
ongoing behaviour: For example, fluctuating attentional 
states for face versus scene images relates to sustained 
attention performance (DeBettencourt et al., 2015). However, 
decoding states within individuals—as has been the approach 
in most past work using this technique—does not reveal 
anything about how an individual’s state compares with 
others’, or how any neural divergence from the group might 
be related to behaviour.  

Recent studies have shown that certain cognitive processes 
evoke brain states that can be decoded across individuals. For 
example, researchers were able to “read out” from neural 
patterns the particular memory strategy participants used 
during an initial experience—and predict later behaviour—
using other participants’ brain states as a reference (Richter 
et al., 2016). It has been proposed that such states reflect the 
common knowledge that people rely upon or extract from a 
new experience. For instance, viewers tend to evoke similar 
neural representations when processing semantic themes 
from movies or narratives (Baldassano et al., 2017; Chen et 
al., 2017; Hasson et al., 2008; Honey et al., 2012; Meer et al., 
2020; Regev et al., 2013; Zadbood et al., 2017), which has 
been taken as evidence that shared knowledge supports a 
shared experience engaging with the story. As further support 
for this idea, other work has shown that disrupting 
participants’ reliance upon common knowledge impacted 
their ability to extract a shared event representation: event 
representations were less similar across individuals who had 
extracted different meanings from the same event (Nguyen et 
al., 2019) or when the new events could not be linked to prior 
knowledge (Lerner et al., 2011). These findings suggest that 
the degree to which an individual’s state aligns with others’ 
may reflect the similarity of their interpretations. 

 Despite this suggested link between a shared interpretation 
of stimulus meaning and a consistent brain state across 
people, how such states relate to interpretations evidenced in 
ongoing behaviours remains unclear. More broadly, few 
studies have directly compared the behavioural relevance of 
brain states that are shared versus idiosyncratic across people, 
making it an open possibility that each state is beneficial in a 
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particular task context. Given the work described above 
(Baldassano et al., 2017; Chen et al., 2017; Hasson et al., 
2008; Honey et al., 2012; Lerner et al., 2011; Meer et al., 
2020; Nguyen et al., 2019; Regev et al., 2013; Zadbood et al., 
2017), one might expect that an orientation towards the 
meaning of an experience could elicit similar processes 
across people as they rely upon their shared semantic 
knowledge to arrive at an interpretation. Conversely 
however, past work also suggests an individual’s own neural 
engagement is important for processing meaning-based 
features (Chadwick et al., 2016; Linde-Domingo et al., 2019; 
Liuzzi et al., 2020; Sudre et al., 2012)—for instance in 
showing that individual-specific neural representations were 
more predictive of meaning-related memory errors than those 
shared across people (Chadwick et al., 2016). Therefore, it 
remains unknown whether shared or individual-specific brain 
states might be more predictive of behaviours reflecting 
arrival at a common interpretation. 

Here we explore how individual-specific versus shared 
brain states relate to performance in an ongoing task. 
Motivated by past behavioural paradigms that manipulated 
participant’s cognitive orientation towards semantic 
(meaning) versus perceptual features to examine processing 
related to common knowledge (Challis et al., 1996; Craik & 
Lockhart, 1972; Lockhart, 2002), we examined how brain 
states for attention to meaning versus perceptual features 
differently relate to their respective behaviours. In this 
investigation we contrasted meaning with perceptual style-
based orientations because perceptual features are less likely 
to promote processing in relation to shared knowledge or past 
experiences (Craik & Lockhart, 1972), but still require 
complex (style) judgments of the same stimuli. Specifically, 
we cued participants to make judgments about the story 
meaning or perceptual artist style of illustrations depicting 
artists’ renditions of well-known storybook stories. We then 
used a classification analysis to ask if we can reliably decode 
individual-specific and shared brain states evoked by 
participants as they made these story meaning and artist style 
judgments. We then related both orientation states to people’s 
ability to accurately detect consecutive repeats in story versus 
artist style to ask which brain states were important for 
behaviour. We predicted that states shared across individuals 
would support the extraction of stimulus (story) meaning. In 
contrast, we anticipated that novel perceptual discriminations 
of artist style that were less related to prior knowledge would 
be supported by individual-specific states. 

Method 

Participants 
Forty-two right-handed adults participated in this 

experiment (28 females, 14 males; mean age=19.8 years, 
SD=2.4 years; 18-30 years old). This sample size was chosen 
a priori to achieve 80% power to detect an effect size of 
d=0.45 based on previous work (Aly & Turk-Browne, 2015). 
All participants provided written consent. The experimental 
protocol was approved by our university’s ethics board. 

Design 
Stimuli Participants viewed 144 storybook-style illustrations 
that varied in story theme (story depicted) and artist style 
(artist creator). A subset of these illustrations were repeat 
pairs in either story or artist—i.e., they depicted the same 
story but were created by different artists or depicted different 
stories created by the same artist, respectively. Illustrations 
were organized into 18 blocks of 8 illustrations each.  

Attention cues preceded illustration blocks to indicate the 
upcoming task. The cues were simple black shapes (a 
diamond, star, and square) that participants were pre-trained 
to associate with the different tasks (described in detail 
below).  
 
Task and behavioural analysis Participants completed two 
different tasks with the illustration blocks during fMRI 
scanning: the artist task and the story task. Participants also 
completed blocks from an unrelated baseline task which did 
not use the illustration stimuli (not discussed here). The 
experiment was divided into three runs of equal length, 
yielding three blocks from each task per run. Fixation was 
included at the beginning (3s) and end (9s) of each run to 
allow for stabilization and lag of the MR signal, respectively. 

Before each block, an attention cue was presented (2500ms 
with a 500ms interstimulus interval [ISI]; Figure 1A) to 
indicate the task for the upcoming block. The assignment of 
the cues to tasks was counterbalanced across six groups of 
participants to ensure our neural decoding of shared states 
could not be attributed to specific cues. Following each cue, 
illustrations were presented one at a time in blocks for 
2500ms with a 500ms ISI. 

In the artist and story tasks, participants performed a 
modified 1-back judgment in which they made a button box 
response to indicate whether an illustration was or was not a 
consecutive repeat along the cued dimension (i.e., artist style 
repeats in artist, and story theme repeats in story). 
Importantly, the structure of blocks was held constant across 
tasks while participants’ cognitive orientation varied: most 
blocks (12 blocks) contained one artist style repeat (“artist 
repeats”), and one story theme repeat (“story repeats”); the 
remaining 4 illustrations depicted unique stories and artist 
styles (Figure 1A). Half of these blocks were assigned to each 
task, with the task assignment counterbalanced across 
participants to control for stimulus-specific differences 
between tasks. The remaining six blocks contained an 
additional repeat at the end of the block purely to reduce task 
predictability (not considered in subsequent analyses), with 
two instead of four illustrations depicting unique stories and 
artist styles so the block still contained 8 illustrations. These 
blocks were always assigned to the task that aligned with the 
additional repeat (three blocks per task). Altogether, each 
participant viewed nine blocks in each task.  

Because our block structure was consistent across tasks, we 
summarized performance as participants’ ability to detect 
repeats specifically along the cued dimension in both tasks 
(e.g., making a repeat response to artist but not story repeats 
in the artist task). We then related their behavioural 
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performance to brain states to ask whether the brain states 
participants engaged while viewing illustrations related to 
their ability to detect cued repeats in both tasks. 

MRI data collection and preprocessing 
Data acquisition Imaging data were collected using a 3.0T 
Siemens Prisma MRI scanner. Sixty-nine functional slices 
angled between 15–30° (oblique axial; orientation chosen to 
maximize participants’ brain coverage; repetition time 
[TR]=1500ms, echo time [TE]=28.0ms, flip angle=71°, 220 
x 220 x 138mm matrix, 2mm isotropic voxels, multiband 
acceleration factor=3, GRAPPA factor=2) were collected 
using a multi-band echo-planar imaging (EPI) sequence. A 
structural T1-weighted 3D magnetization-prepared rapid 
gradient echo (MPRAGE; 256 x 256 x 160mm matrix, 1mm 
isotropic voxels) volume was collected for co-registration 
and spatial normalization into standard template space, along 
with a field map to correct for susceptibility distortion 
(TR=700ms, TE=4.92/7.38 ms, flip angle=60°, 220 x 220 x 
138mm matrix, 2mm isotropic voxels). 

 
Data preprocessing Volumes were preprocessed with the 
fMRIprep version 1.1.4 automated pipeline (Esteban et al., 
2018). Structural images were corrected for intensity non-
uniformity (N4BiasFieldCorrection; Tustison et al., 2010), 
skull-stripped (ANTs brain extraction tool), and normalized 
into 2mm isotropic MNI152NLin2009cAsym template space 
(Fonov et al., 2009). Volumes were also segmented into 

cerebrospinal fluid, white-matter, and gray-matter (GM) 
(FSL FAST; Zhang et al., 2001) to create T1-weighted GM 
tissue-probability maps. 

Functional data were corrected for motion (FSL 
MCFLIRT) and susceptibility distortion (FSL FUGUE) 
before normalization into template space (nonlinear 
registration; ANTs antsApplyTransforms and Lanczos 
interpolation; boundary-based registration; 9 degrees of 
freedom; FreeSurfer BBREGISTER; Greve & Fischl, 2009). 

Decoding cognitive orientation towards artist style 
versus story features 
Regions of interest We performed all our neural decoding 
analyses using a group whole-brain GM mask. This mask was 
created by first generating participant-specific GM masks 
using their T1-weighted GM tissue-probability maps 
(threshold=0.5) transformed into template space. These 
masks were then merged and thresholded to include only GM 
voxels in at least 50% of all participants (N=21+) to create 
the group mask used in our analyses. 

 
Classification approach Before performing the 
classification analyses, participants’ unmodeled neural data 
was shifted by four timepoints (6s) in each run to account for 
hemodynamic lag in the fMRI signal. We also removed three 
timepoints at the onset of each attention cue to exclude cue to 
task transition periods from our analyses. Non-task fixation 
time that occurred at the start and end of each run was also 

Figure 1: A) Task. Example of partial illustration block in either the story (purple, top, Subject 1 [S1]) or artist (green, bottom, 
S2) task across participants. Each block contained at least one each artist and story repeats (denoted with "artist" and "story" 
above the curved arrows, respectively). Each horizontal bar depicts a run that included baseline (light grey) every third block, 
with one each artist and story blocks (order counterbalanced) in between. Attention cues (depicted; star) preceded each block. 
Here, we show that the same cue shape indicated story for S1 and artist for S2 because cue shapes were counterbalanced across 
participants. B) Classification analysis within- (bottom) and across-participants (top). Input data (left; either from multiple or 
a single participant) was used to train a classifier to discriminate between artist and story orientations to illustration features 
(middle). The trained classifier was then applied to held-out data (right) to calculate the accuracy of the classifier predictions 
of state. C) Top, Decoding accuracy within- (left) and across- (right; mean center dots with 95% confidence bars, individual 
participant data points as smaller dots) participants was well above chance (dashed line), and greater for across than within. 
Bottom, Decoding accuracy within- (solid; dark grey) and across- (dashed; light grey) participants was related to behavioural 
performance (ribbons depict 95% CI). ~ p<0.1, * p<0.05, ** p<0.01, **** p<0.0001 
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excluded from the data. Using the remaining data from the 
artist and story tasks, we then trained sparse multinomial 
logistic regression (SMLR) classifiers in PyMVPA (default 
parameters; no feature selection was performed; Hanke et al., 
2009) to decode task-evoked states within each participant, 
and those that were shared across participants (Figure 1B).  
 
Characterizing participant-specific states We used neural 
data from the story and artist tasks to train a classifier to 
decode neural patterns evoked by each participant in these 
tasks. A leave-one-run-out cross-validation approach was 
used for classifier training: we trained the classifier on task-
labeled timepoints (story/artist task) from two of the three 
runs and tested the classifier’s accuracy on the held-out run 
(Figure 1B, bottom). This process was repeated in three folds 
such that each run was held out once.  

 
Characterizing across-participants states We also 
examined whether artist and story states were shared across 
participants. We trained another classifier to decode artist and 
story states consistent across participants by this time using a 
leave-one-participant-out cross-validation approach. In this 
approach, we trained the classifier on task-labeled timepoints 
from all but six participants—one from each of the six 
counterbalancing groups—and tested the classifier’s 
accuracy on the six held-out participants (Figure 1B, top). We 
excluded one participant from each counterbalancing group 
from training to ensure the training set was balanced in terms 
of the assignment of attention cues to tasks. This process was 
repeated seven times (42/6) so that all participants were used 
to test the classifier’s accuracy once.  
 
Decoding statistical analyses The classification analyses 
provided the following metrics derived from both each 
participant’s own neural data, as well as with data across all 
other participants: 1) predicted, binary (story/artist) task 
labels for each timepoint; and 2) continuous estimates of the 
degree to which neural patterns reflect artist and story states, 
on a timepoint-by-timepoint basis. We first tested whether we 
could reliably decode artist and story states within and across 
participants by calculating the accuracy of the classifiers’ 
predicted task labels for timepoints across artist and story 
tasks, and separately within each task. We then correlated 
decoding accuracy to behavioural performance to test for 
evidence of a relationship between these decoded states and 
all task behaviours in general, and each task specifically.  

Once we established that we could decode artist and story 
states that were also generally related to behaviour, we used 
a more fine-grained approach to ask how within- versus 
across-participants states support trial-to-trial variability in 
task behaviours: we related the continuous estimates of artist 
and story state evidence from consecutive illustrations to 
participants’ performance in the artist versus story tasks. 
Specifically, the continuous estimates of story and artist state 
evidence were log odds transformed to correct for any non-
normality in the distribution of classifier estimates (Richter 
et al., 2016). Then, linear-mixed effects models (R statistical 

package version 4.0.4; R Core Team, 2021; lme4 package 
version 1.1-26; Bates et al., 2015) were used to ask whether 
brain states in the moments leading up to the presentation of 
a cued repeat were predicted by task accuracy (1=correct, hit; 
0=incorrect, miss), on a trial-by-trial basis (while accounting 
for within-participant variance).  

Results 

Participants correctly modulated their behaviour in 
response to the attention cues 

We compared the proportion of repeat responses to cued 
repeats (hits) versus the alternate repeat type (false alarms) to 
assess participants’ behaviour (18 repeats each, per 
participant; half from each task). Because we were interested 
in how brain states relate to individual differences in 
behavioural performance overall and within artist versus 
story, we examined performance averaged across tasks and 
then separately in each task. Participants’ task performance 
was well above chance overall (d’; t(41)=13.5, p<0.001, 
Cohen’s d=2.08) and in both tasks separately (d’; t-test versus 
0; story: t(41)=8.24, p<0.001, d=1.27; artist: t(41)=13.7, 
p<0.001, d=2.11). Performance was also significantly better 
in the artist versus story task (t(41)=2.57, p=0.014, d=0.397) 
due to elevated false alarms in story over artist (t(41)=3.14, 
p=0.003, d=0.484); there was no difference in hits between 
tasks (p=0.969). Therefore, participants did correctly 
modulate their behaviour to the attention cues, with 
potentially less difficulty in the artist task. 

Successful decoding of neural artist versus story 
states within and across participants 

We assessed if we could reliably decode artist and story 
states within participants, and if these states were shared 
across participants (Figure 1C, top). Indeed, decoding of 
artist and story tasks was reliably above chance for both 
within (mean=0.612; 95% CI [0.594, 0.630]; t-test versus 
0.50; t(41)=7.54, p<0.001, d=1.16) and across participants 
(mean=0.639; 95% CI [0.621, 0.657]; t-test versus 0.50; 
t(41)=13.2, p<0.001, d=2.04). A direct comparison of within- 
versus across-participants decoding accuracy showed higher 
accuracy with across-participants states (paired t-test; 
t(41)=2.31, p=0.040, d=0.328). We separately considered the 
decoding of artist versus story blocks to further characterize 
this accuracy difference and found that the across-
participants classifier demonstrated greater accuracy in artist 
than story (t(41)=2.12, p=0.040, d=0.327). In other words, 
the classifier was more accurate to identify the cued state 
when it was an artist over story block. There was no reliable 
difference in within-participants decoding accuracy for artist 
versus story (p=0.198). Therefore, while we successfully 
decoded whole-brain artist style and story states both within 
and across participants, there were differences in the artist 
and story orientations characterized in these states.  

Lastly, we assessed whether decoding of within- and 
across-participants states were related to individual 
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differences in participants’ task behaviour overall (Figure 1C, 
bottom). Indeed, across decoding was reliably related to task 
performance overall (d’; r=0.485, t(40)=3.51, p=0.001), with 
within decoding demonstrating moderate evidence for the 
same relationship (r=0.300, t(40)=1.99, p=0.053). Thus, in 
subsequent analyses, we further characterized how within- 
versus across-participants decoding support behaviour by 
examining artist and story task judgments separately. 

Within-participants decoding was related to story 
judgments 

 To interrogate the relationship between state decoding and 
artist versus story judgments, we assessed how classifier 
accuracy in decoding artist and story blocks separately was 
related to performance on their respective tasks (cued repeat 
detection d’). Specifically, is the degree to which the 
classifier can accurately decode story blocks related to story 
but not artist task performance, and vice versa? Importantly, 
we found no evidence for a correlation between artist and 
story task performance (p=0.137), suggesting that it was not 
the case that participants who performed well in one task also 
performed well in the other task. Thus, we can consider 
participants’ artist and story task performance separately. 
With respect to story, within- (r=0.335, t(40)=2.25, p=0.030) 
but not across-participants (p=0.159) story block decoding 
accuracy was related to story task performance (Figure 2A, 
left); however, the difference between these relationships was 
not reliable (p=0.859; Figure 2A, left). The relationship 
between within-participants story block decoding and story 
task performance was only present for the respective (story) 
task: we found no evidence of this relationship with artist task 
performance (p=0.158, Figure 2A, right), although there was 
no reliable difference between the relationships to story 
versus artist task performance (p=0.433; Figure 2A, left 
versus Figure 2A, right). In contrast to story block decoding, 
there was no specific relationship between artist block 
decoding and its respective task. Across- (r=0.404, 
t(40)=2.79, p=0.008) but not within-participants (p=0.432) 
artist block decoding accuracy was related to artist task 
performance (Figure 2B, right). The relationship to artist task 
performance was also moderately greater for across- versus 
within-participants artist block decoding accuracy (t=1.74, 
p=0.086; Figure 2B, right). However, across-participants 
artist block decoding accuracy was also related to story task 
performance (r=0.507, t(40)=3.71, p=0.001, Figure 2B, left), 
and there was no reliable difference between the relationships 
to story versus artist task performance (p=0.331; Figure 2B, 
right versus Figure 2B, left), suggesting that this decoding 
relationship was not specific to the respective task. Therefore, 
while both within- and across-participants states are related 
to task performance overall, within-participants states 
demonstrate a relationship between story block decoding and 
behavioural story judgments. 

Differences in across-participants states preceding 
correct versus incorrect artist judgments  

 We next examined if variability in the engagement of artist 

and story states over illustrations can be predicted by trial-
wise behavioural accuracy, in the respective tasks. In other 
words, do participants demonstrate differential evidence for 
the cued state leading up to correct versus incorrect repeat 
detection trials (Figure 3A)? For story states, neither within 
(p=0.128) nor across-participants (p=0.806) states differed 
between correct and incorrect responses. In contrast, there 
was reliably more across-participants artist state evidence 
across illustrations for upcoming correct versus incorrect 
responses (β=0.837, SE=0.325, t=2.57, p=0.011; Figure 3B). 
Within-participants artist states did not show the same 
relationship (p=0.141). Therefore, across-participants states 
may support participants’ accurate artist style judgments. 

Discussion 
Here, we successfully decoded cognitive orientation to 

story versus artist both within and across individuals, and 
found that these states were related to different behaviours: 
While individual-specific and shared brain states were related 
to overall task performance, interrogating story versus artist 

Figure 2: Relating within- and across-participants story 
versus artist block decoding accuracy to behavioural 
performance in story (left) versus artist (right) tasks. A) Left, 
Within- (solid line, dark purple) not across- (dashed line, 
light purple) participants story block decoding accuracy was 
related to story task performance. Right, No relationship 
between within-participants story block decoding and artist 
performance (solid line, dark purple). Across-participants 
story block decoding was related to artist performance 
(dashed, light purple). B) Right, Across- (dashed line, light 
green) but not within-participants (solid line, dark green) 
artist block decoding accuracy was related to artist 
performance. Left, Across-participants artist block decoding 
was also related to story performance (dashed line, light 
green). Ribbons represent the 95% CI. Smaller dots represent 
individual participant data points. ~ p<0.1, * p<0.05 
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style behaviours showed that individual-specific states were 
related to meaning-based story judgments, while shared 
states were related to accurate perceptual style judgments. 

Participants’ tendency to consistently engage the same 
state across trials was related to their ability to make story 
judgments. While these results may appear to contradict past 
work that suggests similar neural representations across 
individuals underlie the processing of the same semantic 
themes (Baldassano et al., 2017; Chen et al., 2017; Hasson et 
al., 2008; Honey et al., 2012; Meer et al., 2020; Regev et al., 
2013), one speculative possibility is that our findings reflect 
that participants may have used a variety of different 
approaches to accomplish the story task. Consistent with this 
idea, past work has shown less neural consistency across 
individuals who ultimately extract different abstract 
meanings from the same event (Nguyen et al., 2019)—
suggesting that in our case, neural divergence across 
participants may indicate the multitude of different 
approaches and ultimate interpretations participants might 
have had in the story task. 

Variation in the strategies participants used to make 
meaning-based judgments may stem from differences in their 
prior story knowledge, or the qualitative nature of meaning-
oriented processing. Firstly, if participants are relying on 
different types of prior story knowledge when making story 
judgments, they may have used divergent strategies to 
perform the task—e.g., while some may have focused on 
recognizing main characters from their limited knowledge of 
the story, others may have attempted to identify key story 
events from their more extensive knowledge. Post-
experiment self-report measures suggest there was indeed 

large variability in participants’ prior story knowledge. Such 
differences in knowledge could give rise to different 
elaborative processes across people, as cuing an individual’s 
orientation toward semantic over shallow perceptual features 
may encourage more elaborative processing and connections 
with semantic (Craik & Tulving, 1975; Craik & Lockhart, 
1972; Fisher & Craik, 1980; Moscovitch & Craik, 1976) or 
autobiographical memories (Pasupathi et al., 2007; Warren et 
al., 2016). Differences in the elaborative connections 
participants made to their past story knowledge and 
experiences may evoke differences in meaning-based states 
across participants. Future investigations that systematically 
assess participants’ self-reported strategies for the story and 
artist tasks would be needed to explore this speculation.   

In contrast to story judgments, artist style judgments 
evoked a more consistent state across individuals that 
benefited artist task performance. A general lack of expertise 
with the artist style dimension among our participants may be 
the reason for such a benefit. Although artist style features 
were intended to be less connected to participants’ past 
knowledge than story themes, less expertise in making artist 
style discriminations may result in participants having less 
diverse strategies available when performing the artist task. 
This is consistent with previous work that has shown greater 
experience with a particular skill can increase the number of 
strategies an individual can use to perform the skill (Chase & 
Simon, 1973; Ericsson & Lehmann, 1996; Gobet & Waters, 
2003). Therefore, a lack of familiarity with the artist style 
dimension across individuals may explain why a shared brain 
state was related to artist style judgments. It may also be the 
case that the representation of perceptual information has 
greater alignment across subjects (Haxby et al., 2020), such 
that it is better decoded across subjects. 

In addition to the unfamiliarity of artist style judgments, 
lower distinctiveness of artist versus story features may also 
support neural convergence across participants in the artist 
task. Past work has suggested that low-level perceptual 
features are susceptible to memory errors because they are 
less distinct than semantic features (Elias & Perfetti, 1973; 
Hunt, 2013; Lockhart, 2002)—e.g., the broad brushstrokes in 
an artist style may appear in many illustrations versus the 
story features that may be more unique. Therefore, our 
finding of shared brain states is also consistent with common 
processing of these constituent perceptual features.  

Together, these findings suggest that the degree to which 
individual-specific and shared states can benefit behaviour 
depends on the nature of that behaviour. When faced with a 
task that affords solutions in myriad potential ways, 
consistently engaging an individual-specific state may 
support behaviour. In contrast, we speculate that judgments 
along an unfamiliar dimension may offer a fixed set of 
approaches and therefore converge across people. 
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