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Crude incidence in two-phase designs in
the presence of competing risks
Paola Rebora1* , Laura Antolini1, David V. Glidden2 and Maria Grazia Valsecchi1

Abstract

Background: In many studies, some information might not be available for the whole cohort, some covariates, or
even the outcome, might be ascertained in selected subsamples. These studies are part of a broad category termed
two-phase studies. Common examples include the nested case-control and the case-cohort designs. For two-phase
studies, appropriate weighted survival estimates have been derived; however, no estimator of cumulative incidence
accounting for competing events has been proposed. This is relevant in the presence of multiple types of events,
where estimation of event type specific quantities are needed for evaluating outcome.

Methods: We develop a non parametric estimator of the cumulative incidence function of events accounting for
possible competing events. It handles a general sampling design by weights derived from the sampling probabilities.
The variance is derived from the influence function of the subdistribution hazard.

Results: The proposed method shows good performance in simulations. It is applied to estimate the crude incidence
of relapse in childhood acute lymphoblastic leukemia in groups defined by a genotype not available for everyone in a
cohort of nearly 2000 patients, where death due to toxicity acted as a competing event. In a second example the aim
was to estimate engagement in care of a cohort of HIV patients in resource limited setting, where for some patients
the outcome itself was missing due to lost to follow-up. A sampling based approach was used to identify outcome in
a subsample of lost patients and to obtain a valid estimate of connection to care.

Conclusions: A valid estimator for cumulative incidence of events accounting for competing risks under a general
sampling design from an infinite target population is derived.

Keywords: Two-phase design, Competing risks, Crude incidence, Case-control, Case-cohort, Missing data,
Subdistribution hazard

Background
In many longitudinal studies, some information might
not be measured/available for the whole cohort, in fact
biomarkers/additional covariates, or even outcome, might
be ascertained only in selected subsamples. These stud-
ies are part of a broad category termed two-phase studies
[1], in fact they imply two sampling phases: the first one
being usually a random sample from the target popu-
lation, ending up in the entire cohort (phase I sample),
and the second one applying some kind of sampling (e.g.
efficient or of convenience) to collect additional infor-
mation or the selection of subjects with no missing data

*Correspondence: paola.rebora@unimib.it
1Center of Biostatistics for Clinical Epidemiology, School of Medicine and
Surgery, University of Milano-Bicocca, via Cadore 48, 20900 Monza, Italy
Full list of author information is available at the end of the article

(phase II sample). Common examples of efficient second
phase sampling include the nested case-control and the
case-cohort designs [2–5]. In other situations the outcome
itself is collected only for a subsample [6]. Two-phase sam-
pling, or more generally, multiphase sampling, is a general
design that includes any valid probability sample of the
data, in which each subsampling can depend on all the
currently observed data at each step [7]. The actual sam-
pling probabilities will depend on the specific design. The
acknowledgement of these sampling phases, even in the
commonly applied designs, can be very useful to improve
efficiency and to allow flexibility in the analysis (e.g. dif-
ferent time-scales or different models can be applied) by
using information available for the whole cohort [8].
Efficient designs are particularly useful to identify new

biomarkers when the combination between large cohorts
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and expensive new technologies make it infeasible to mea-
sure the biomarkers on the entire cohort. The Women’s
Health Initiative program, for example, stored serum and
plasma from participants and used them for specialized
studies [9]. Also the Cardiovascular Health Study col-
lected DNA from most participants to study different
genetic factors underlying cardiovascular or other dis-
eases and only subsets of the cohort have been genotyped
in different projects [10].
In our first motivating clinical example, the aim was

to evaluate the role of different genetic polymorphisms
on treatment failure due to relapse in childhood acute
lymphoblastic leukemia (ALL) using clinical information
and biological samples available from a clinical trial that
enrolled nearly 2000 patients. In this situation, a parsi-
monious use of these specimens motivated the choice of
an efficient/optimal two-phase sampling design [11]. We
present also a further application where the aim was to
estimate engagement to care of HIV patients in resource
limited settings. Here the outcome itself was missing in
a group of patients due to possibly informative loss to
follow-up. The outcome was tracked in a random sam-
ple of those lost to follow-up to obtain a valid estimate of
engagement to care [12].
For two-phase studies, appropriate weighted survival

estimates have been derived, both in the presence of addi-
tional covariates measured in the second phase [7, 13, 14],
as well as in cohorts where the outcome/follow-up is not
available for everyone [15]. A Cox model adapted for two-
phase designs has also been derived [14]. However no
estimator of cumulative incidence accounting for compet-
ing events in the general framework of two-phase designs
has been proposed, while it has been developed for spe-
cific designs, such as nested case-control studies [16, 17].
This is relevant in the presence of multiple types of events,
such as relapse and (toxic) death in cancer patients, as in
themotivating examples presented here, where estimation
of event type specific quantities are needed for evaluating
outcome.
The aim of this paper is to develop a non parametric

estimator of the crude incidence of events accounting for
possible competing events in the general framework of
two-phase designs, where subgroups of analysis might be
defined according to explanatory variables ascertained in
the phase II sample, or the outcome itself assessed only in
the second phase sample.
In the Methods section we propose a weighted crude

incidence estimator for application in two-phase designs.
The theoretical properties of the proposed method are
derived in appendix and investigated through simulations
under different scenarios, which results are reported in
Results section. In this section we also report the exam-
ples on childhood ALL and HIV patients. Conclusions is
dedicated to the discussion.

Methods
Notation and basics
Let T be the failure time variable and suppose there are
K possible causes of failure denoted by ε = 1, 2, . . .K . Let
the cause-specific hazard function of the kth event be:

λk(t) = lim
dt→0

1
dt

P(t ≤ T < t + dt; ε = k|T ≥ t)

and �k(t) = ∫ t0λk(s)ds. Define

Fk(t) = P(T ≤ t; ε = k) (1)

as the probability that a failure due to cause k occurs by
time t, that is the quantity that we aim to estimate. Define
also S(t) = P(T > t) = 1 −∑k Fk(t) as the probability of
surviving from any cause of failure.
A convenient representation of the crude incidence

function (1) as product limit estimator naturally arises
starting from the subdistribution hazard introduced by
Gray [18] and defined as:

λ∗
k(t) = lim

dt→0

1
dt

P{t ≤ T < t + dt; ε

= k|T ≥ t ∪ (T < t; ε �= k)}
(2)

This hazard has been shown to be very useful to com-
pare the crude cumulative hazard functions in differ-
ent groups, since it restores a one-to-one relationship
between the hazard and the cumulative probability of a
particular failure type: Fk(t) = 1 − exp

{−�∗
k(t)
} = 1 −

�s≤t
[
1 − �∗

k(ds)
]
, with �∗

k(t) = ∫ t
0λ∗

k(s)ds and where
the product integral notation � is used to suggest a limit
of finite products

∏
[18, 19]. Of note, the one-to-one

relationship between the hazard and the cumulative prob-
ability is not satisfied from the cause-specific hazard in
the presence of competing events [20]. The subdistribu-
tion hazard can be thought as the hazard of an artificial
variable T∗

k = T · I {ε = k} + ∞ · I {ε �= k} that extends
to infinity the time to event k when another competing
event is observed. In fact, for any finite t, T∗

k ≤ t is equiv-
alent to T ≤ t and ε = k; thus, given definition (1),
P
(
T∗
k ≤ t

) = Fk(t). The definition of T∗
k is consistent with

the argument that when an event other than k occurs as
first, the latter will never be observed as first and thus the
corresponding time is infinity.
Let (Ti, εi,Ci,Zi), with i = 1 . . .N , be N independent

replicates of (T , ε,C,Z), where C is the censoring time
and Z a vector of covariates. We will refer to these N sub-
jects as the phase I sample. Define X = min(T ,C) and
� = I(T ≤ C). We will assume that failure and censor-
ing times are conditionally independent, T ⊥ C|Z. Let
Yi(t) = I(Xi ≥ t), Nik(t) = I(Xi ≤ t,�iεi = k) and
Ni·(t) = ∑K

k=1Nik(t), where I(·) is the indicator function.
Define G(t) = P(C > t) as the probability to remaining
uncensored up to t.
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Suppose that complete information on (Xi,�iεi,Zi) is
available only for a subset n < N of subjects drawn based
on a possibly complex sampling design and let ξi indi-
cate whether subject i is selected into this sample. We
will refer to the n = ∑

i ξi subjects as the phase II sam-
ple, even if multiple phases of sampling could actually
be involved to obtain the final complete sample [7]. Let
πi = P(ξi = 1|Xi,�iεi,Zi) being the inclusion probability
of subject i for the phase II sample, conditional on being
selected at the first phase. In a random sample this proba-
bility is equal for every subject. However sampling is often
stratified on some variables to increase efficiency; in this
case, the probability to be selected for the phase II sample
is common for all subjects in the same stratum and differs
between strata. In particular, it is usually higher for the
more informative strata (e.g. strata including subjects with
the event of interest as in case-control studies). For nested
case-control designs the sampling probability of cases will
be 1, while the one of controls might be derived as the
probability that individual i is ever selected as control, fol-
lowing Samuelsen [4]. We denote the pairwise sampling
probability for any two subjects (i, j, with i �= j) by πij =
P(ξi = 1, ξj = 1|Xi,�iεi,Zi,Xj,�jεj,Zj). As commonly
assumed in survey theory, the sampling method should
have the following properties: the sampling probabilities
πi and πij must be non zero for all i, j in the population and
must be known for each i, j in the sample [7].

Incidence estimation in the presence of competing risks
Overall survival/incidence estimate
Under a two-phase design it is common to be interested in
estimating survival in subgroups related to variables ascer-
tained only in phase II sample (i.e. biomarkers). Another
possible situation is that, instead of covariates, the out-
come itself is not available for the whole cohort. Thus,
in both cases an estimate of the incidence of event using
only the phase II sample is very useful. The total num-
ber of events of type k up to t and the total number of
persons at risk at time t for the entire phase I sample
can be estimated from the phase II sample (accounting
for the sample design) by N̂·k(t) = ∑N

i=1[ξiNik(t)/πi] and
Ŷ·(t) = ∑N

i=1[ξiYi(t)/πi], respectively. Note that these
estimates are valid under general sampling designs, where
πi and πij, the so-called ‘design weights’, are known for the
observations actually sampled [21].
The estimate of the overall survival has been shown by

several authors in different contexts of complex sampling
[13–15]:

Ŝ(t) = �
s≤t

[
1 − �̂(ds)

]
(3)

where the overall hazard can be obtained by �̂(t) =∑K
k=1 �̂k(t) and �̂k(t) = ∫ t

0 N̂·k(ds)/Ŷ·(s) [22]. It has

been shown that
√
N[�̂(t) − �(t)] converges weakly to a

zero-mean Gaussian process [14, 15].

Competing risk
The goal is to estimate the crude incidence of a given cause
k, Fk(t) = 1 − �s≤t

[
1 − �∗

k(ds)
]
, using the phase II sam-

ple, which is also called subdistribution function and is
the probability that a failure due to cause k occurs within
t [23, 24]. The estimate of �∗

k(t) is based on the count of
events due to cause k and the count of subjects at risk for
T∗
k , denoted by Ŷ ∗

·k(s) (see Appendix A.1):

Ŷ ∗
·k(s) =

N∑
i=1

ξi
πi
Yi(s)+

N∑
i=1

ξi
πi

⎡
⎣∑

l �=k
Nil(s−) · Ĝ(s−|X−

i )

⎤
⎦
(4)

The estimate of the cumulative subdistribution haz-
ard in (2) can now be estimated, using only the phase II
sample, by:

�̂∗
k(t) =

∫
t

0

N̂·k(ds)
Ŷ ∗

·k(s)
. (5)

Note the complement of Fk(t) can be thought as the sur-
vival probability of T∗

k [18, 20, 25], thus a product limit
type estimator can be directly derived as:

F̂k(t) = 1− �
s≤t

[
1 − �̂∗

k(ds)
]

= 1− �
s≤t

[
1 − N̂·k(ds)

Ŷ ∗
·k(s)

]

(6)

Interestingly, this estimator is algebraically equivalent
to the Aalen-Johansen type estimator, shown by [18] for
random sampling, and in the Appendix A.2 for general
sampling:

F̂k(t) = 1 − �
s≤t

[
1 − �̂∗

k(ds)
]

=
∫ t

0
Ŝ(s−)�̂k(ds) (7)

It is easy to see that in the absence of competing events,
Ŷ ∗

·k(s) in (4) degenerates to the usual risk set Ŷ·(s), thus
�̂∗

k(t) = �̂(t) and F̂k(t) equals the complement of 1 of the
weighted Kaplan-Meier estimator for two-phase studies
[13]. Under no censoring, the weight Ĝ(s−|Xi) becomes
1 and the risk set Y ∗

·k is eroded in time only by events
of type k, therefore F̂k(t) degenerates into the propor-
tion of events of type k estimated by the phase II sample
(weighted number of events of type k out of the estimated
total size of the cohort, phase I). If every subject in phase
I is sampled (ξi = 1 ∀i), then (5) becomes the standard
subdistribution cumulative hazard [19, 20] and (6) the
standard estimator of the crude incidence.
For simplicity of notation, in (6) we estimated the overall

incidence regardless of covariates, but the estimator can
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also be applied on subgroups defined by Z. The censor-
ing probabilityG(t) should also be estimated in subgroups
defined by Z. The overall estimator is reasonable when
we make the more restrictive assumption T ⊥ C, other-
wise separate estimators conditional on Z would be more
appropriate (and eventually an average, weighted on the
frequencies of Z, between the conditional estimates).

Variance and confidence intervals
Following Breslow and Wellner [26], we can express√
N
[
�̂∗

k(t) − �∗
k(t)
]

= √
N
[
�̃∗

k(t) − �∗
k(t)
]

+
√
N
[
�̂∗

k(t) − �̃∗
k(t)
]
where �̃∗

k(t) represents the crude
cumulative incidence estimator that we would have
obtained if complete information (Xi,�iεi,Zi) was known
for all the subjects in phase I sample (i = 1 . . .N) [18].
The two terms are asymptotically independent [14, 26].
The first term converges weakly to a zero-mean Gaussian
process [19] with covariance that we denote as σ 2

kI(t).
By the arguments in Appendix A.3, the second term
converges weakly to a zero-mean Gaussian process with
covariance σ 2

kII(t). Hence,
√
N
[
�̂∗

k(t) − �∗
k(t)
]
converges

weakly to a zero-mean Gaussian process with covariance
being the sum of the contribution of each sampling phase:
σ 2
k (t) = σ 2

kI(t) + σ 2
kII(t). The first one represents the

irreducible minimum uncertainty that would remain if
everyone in phase I would be sampled and the second
one accounts for the fact that complete information is
available only in the phase II sample [13, 14, 26].
Each contribution to the variance can be estimated by

the influence function approach [27]. The influence func-
tion of an estimator describes how the estimator changes
when single observations are added or removed from the
data and has the property that the difference between the
estimate and the population quantity can be expressed as
the sum of influence functions over all the subjects in the
sample. By denoting with z∗ik(t) the influence function of
subject i on �̂∗

k(t) we have that [28]:

�̂∗
k(t) − �∗

k(t) =
N∑
i=1

z∗ik(t) + o(1/
√
N) (8)

The influence function of subject i on �̂∗
k(t) has been

derived in Appendix A.4.
By using the Horvitz-Thomposon variance [29] on the

weighted influence function, the contribution of the vari-
ance of phase II will be:

σ̂ 2
kII(t) = ˆvar

[ N∑
i=1

ξi
πi
z∗ik(t)

]
=

=
n∑

i=1

n∑
j=1

[
z∗ik(t) · z∗jk(t)

πi · πj
−

z∗ik(t) · z∗jk(t)
πij

] (9)

For phase I, the variance σ̂ 2
kI(t) can also be estimated

using (9) by setting sampling probabilities to 1 [13].
Given the one-to-one relationship between Fk(t) and

�∗
k(t), the variance of the crude cumulative incidence (6)

can now be estimated as:
ˆvar
[
F̂k(t)

]
=
[
1 − F̂k(t)

]2 · σ̂ 2
k (t) (10)

In analogy with the survival estimate for two-phase
designs, we derived confidence intervals for (6) on the
logarithm scale by:

exp
{
log[ F̂k(t)]±qα/2

1 − F̂k(t)
F̂k(t)

σ̂k(t)
}

(11)

where qα/2 denotes the α/2 quantile of the standard Gaus-
sian distribution.

Software
By using suitable weights for both study design and cen-
soring, any software allowing for time dependent weights
can be used to derive the modified risk set and to
estimate the crude cumulative incidence function (6).
These weights have been implemented in R in function
crprep in the mstate package [30] and in STATA in the
stcrprep function. However, any software can be used
to derive the ingredients for the modified risk set in (4)
and these can be used to estimate (6) and its variance by
the Horvitz-Thompson approach.
The complete code to compute this estimate has been

developed in R software [31] using the survey package
[32] and is available at [33]. An example of the applica-
tion of this function is given in the subsection Genotype
ascertained on a subset of a clinical trial cohort.

Results
Simulations
Simulations protocol
We considered two competing events with independent
latent times T1 and T2 and constant marginal hazard of
0.1, the crude incidences are then F1(t) = F2(t) = 1

2 (1 −
e−0.1t). We focused on the crude incidence of event 1 up
to t = 2 units of time (i.e. years). This implies a fraction
of 82% with no events at t = 2 (administrative censor-
ing) and a crude incidence of about 9%. The independence
between the latent times T1 and T2 is not restrictive given
the non identifiability issue [34]. The censoring time fol-
lowed an uniform distribution on ranges (0.5,30.5) and
(0.5,10.5), leading to around 5% and 15% censored before
t = 2, respectively.
We drew B = 1000 random first-phase samples of size

N = 1000, from which we sampled a phase II sample
according to different study designs:

1. random sample, with n = 50, 100 units;
2. case-control sampling: we randomly sampled n/2

individuals among those who experienced event 1
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(cases) up to time 2 and n/2 individuals among the
others (controls), with n = 50, 100 units;

3. stratified sampling: we considered the phase I sample
divided into 4 strata defined by the variable Z = {0, 1}
(with frequencies 70% and 30% for Z = 0 and Z = 1,
respectively) and the occurrence or not of event 1 up
to time 2. The hazard rates were assumed to be 0.08
and 0.2 with Z = 0 and with Z = 1, respectively. An
equal number of subjects (n/4) were sampled for each
strata (balanced sampling), with n = 50, 100 units.

4. nested case-control design: we selected all cases and
m controls for each case with no events at the time
of event of the case, fixingm = 1, 2. Under this
design we cannot fix a total sample size a priori, but
we expect around 90 events and 90 · m controls.
Sampling probabilities for each included subject were
derived according to Samuelsen [4].

B = 1000 was chosen in order to get a ±5% level of
accuracy in the estimate of the crude incidence (F1(t), t >

0.3) in about 95% of the samples. For each sample, F̂1(t)
has been computed by (6), with �̂∗

1(dt) estimated by (5),
and it has been compared with F1(t) in order to assess
bias in each sample: F̂1b(t) − F1(t), b = 1 . . .B. Bias has
been computed and reported for 20 different time points
t = 0.1, 0.2, . . . , 2. For each simulation, we also computed
standard error of F̂1(t) according to (10) and the 95% con-
fidence interval (CI) of F̂1(t) on the logarithm scale (11) to
evaluate coverage and length.

Simulations results
Figure 1 compares the average of the estimated standard
error of F̂1(t) in each simulation with the empirical stan-
dard error at the 20 different times of observation in the
four different scenarios with random censoring of 15%.
They were found to be very close in all scenarios, as
expected.
Figure 2 reports the distribution of bias in each one

of the 1000 simulated samples under random (panel a),
case-control (panel b), stratified (panel c) and nested case-
control sampling (m = 1, panel d). Bias fluctuates around
0 in each scenario, but it has more variability in the
random sampling compared to other scenarios, resulting
also in a higher mean value of absolute bias over the B
simulations (still always lower than 0.2%). The lower per-
formance of the estimator in the first scenario is due to
the fact that random sampling is not a convenient design
in the simulated setting. In fact, in phase I cohort we
expect around 90 events of type 1 (incidence of 9% and
sample size of 1000), thus if we randomly sample 100 sub-
jects from the phase I cohort, we expect to observe only
9 events (in phase II sample). With such a small number
of events, unbiasedness is in fact not sufficient to ensure
a reasonable behaviour and to get enough information

on event incidence. To address this issue, the other study
designs (scenarios 2, 3, and 4) are indeed thought to guar-
antee to sample more events of type 1. Thus we recom-
mend adopting efficient designs accounting for the event
of interest. Relative and standardized biases were always
lower than 6% (data not shown). The mean square error,
not shown, slightly increases with time, in fact variability
is increasing in time (as confirmed by the empirical stan-
dard error of F̂1(t) and by Fig. 2). The average length of the
confidence interval was consistently increasing with time,
ranging between 7% and 12% in the random sampling
and between 2% and 4% in the case-control, stratified and
nested case-control sampling (data not shown). This com-
parison underscores the advantages of a careful selection
of the subsample.
Figure 3 reports results on coverage for the random,

case-control, stratified and nested case-control sampling.
The coverage was very close to the nominal value of 95%,
rangingmostly within aminimum of 94% and amaximum
of 97%, except for very early times in the random setting.
In the same setting, we also considered a longer follow-

up time, t = 50, with around 500 events of type 1 expected
in phase I sample (under no censoring), and confirmed the
performance of our estimator in a scenario with higher
variability, with similar results for the different sampling
schemes (data not shown).

Motivating examples
Genotype ascertained on a subset of a clinical trial cohort
A study on childhood ALL evaluated the role of a genetic
polymorphism (glutathione S-transferase-θ , GST-T1) on
treatment failure due to relapse (in different sites), in the
presence of a competing event (toxic death). GST-T1 is a
common genetic polymorphism in Caucasians, with 13–
26% of individuals displaying a homozygous deletion of
the gene (null genotype). Subjects carrying the null vari-
ants fail to express the GST-T1 enzyme, that is involved in
drug metabolism. Clinical information were available for
a cohort of 1999 consecutive patients (mainly European
Caucasians, aged between 1 and 17 years, median age: 5
years) newly diagnosed with ALL in the Italian Associ-
azione Italiana di Ematologia Pediatrica centers between
September 2000 and July 2006. Biological samples stored
at diagnosis were available, but genotype was ascertained
only in a subgroup (phase II sample) for an efficient use
of specimens [11, 13]. The interest was to evaluate inci-
dence at different relapse sites by GST-T1, that can only
be estimated using phase II data. In order to select the
subgroup to be genotyped we adopted an optimal strategy
that is carefully described in [11, 13]. Briefly, sampling was
done after classifying patients into 6 strata according to
the event of interest (relapse/no relapse) and to 3 groups,
defined by prognostic features in the treatment protocol,
that modulate the intensity of treatment, we will call them
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Fig. 1 Estimated and empirical variances. Comparison between estimated and empirical variance under random (panel a), case-control (panel b),
stratified (panel c) and nested case-control sampling (m = 1, panel d). For the first three scenarios a sample size of 100 was used, while in the nested
case-control sampling a mean of 180 subjects was considered. Data were subject to a random censoring of 15% (plus administrative censoring).
Dashed lines represent the main bisector corresponding to the equality between estimated and empirical reference

treatment protocols (Table 1). Strata were not defined
based on the competing event death due to toxicity- 58
events - for efficiency reasons given that the event of
interest was relapse. Patients were sampled at random
without replacement from the 6 strata, with the sampling
from each stratum conducted independently (stratified
sampling) and with higher probability in the more infor-
mative strata according to an optimal design [13]. The full
cohort of 1999 patients represents the phase I sample, for
which clinical information are available, while genotype is
ascertained in the phase II sample only (n = 601).
Relapses were classified according to the site, in par-

ticular we distinguished relapses involving bone-marrow
(BM) from the others (extramedullary). We estimated
the crude incidence of BM relapse by GST-T1 deletion
using (6) and (10) and found higher relapse incidence for
patients with GST-T1 deletion, with 5-year crude inci-
dence of 19.3% (95% CI: 13.4−27.7%) versus 12.4% (95%
CI: 10.7 − 14.4% for non deleted patients, Fig. 4 panel a).

This was derived accounting for the competing risk of
other sites of relapse as well as for death due to toxicity.
We report here the R code used to compute these

estimates:
library(survey)
d.std<-twophase(id=list(˜upn,˜upn),
subset=˜!is.na(GST_T), strata=list
(NULL,˜interaction(rel,elfin)),data=dat)
GSTse<-svycr(Surv(time,event>0)˜GST_T,
etype=“BMrelapse”,d.std,se=TRUE)
The twophase function in the survey package

describes the design and produces a survey object [32].
The svycr function, available at [33], performs the esti-
mate of crude incidence by the influence approach and
uses 3 variables: time is the time of event, event the
censoring indicator (1 if an event of any type is observed
and 0 otherwise) and BMrelapse indicates whether a
BM relapse is observed or not. Details on the survey
package can be found in [7, 32].
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Fig. 2 Bias distribution. Distribution of bias in the 1000 simulated samples under random (panel a), case-control (panel b), stratified (panel c) and
nested case control sampling (m = 1, panel d). For the first three scenarios a sample size of 100 was used, while in the nested case-control sampling
a mean of 180 subjects was considered. Data were subject to a random censoring of 15% (over administrative censoring). The box represent the first
and third quartile, the black line the median and the empty dots represent outliers defined as bias more than 1.5 times the interquartile range above
the third quartile (or more than 1.5 times the interquartile range below the first quartile). Dotted lines represent the reference for bias (bias equal to 0)

The right panel of Fig. 4 represents the incidence of
extramedullary relapses by GST-T1 showing that the dif-
ference in relapse incidence between GST-T1 deleted and
other patients is mainly due to relapse involving the BM,
that represents the most relevant type of relapse in child-
hood ALL. A Cox model adapted for two-phase design
[14], when applied to the cause specific hazard of BM
relapse, gives an hazard ratio (HR) of 1.53 (95% CI 0.98–
2.37) for GST-T1 deleted patients versus non deleted; after
adjusting for relevant factors (treatment protocol, gender,
age), the HR dropped to 1.38 (95% CI 0.90–2.13). For
extramedullary relapses the HR was 1.22 (95% CI 0.60–
2.49). Of note, in order to compare patients with and with-
out deletion of the GST-T1 gene, we used a cause-specific
model, thus we actually compared the cause-specific haz-
ard of relapse. In fact, a subdistribution model accounting
for the two-phase design is not available. This would be
useful to compare the actual incidences of relapse in the

two groups, however the cause-specific model is still very
useful to address the impact of the genotype on relapse by
an aetiological point of view.

Outcome ascertained on a subset of patients lost to follow-up
In the evaluation of the effectiveness of the global effort
to provide antiretroviral therapy (ART) for HIV-infected
patients in resource limited settings, the estimate of the
number of patients who continue to access care after start-
ing ART is essential. This estimate is hampered, however,
by the fact that some patients die shortly after their last
visit to clinic - a group of individuals who cannot be con-
sidered as “stopping care” nor censored for the event of
stopping care. In addition, the number of patients who are
starting care is large and a high fraction have unknown
outcomes (i.e., are lost to follow-up), generating informa-
tive censoring. Given that lost patients could reasonably
be not in care, but they could also have changed clinic or
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Fig. 3 Coverage of confidence intervals. Simulation results for the coverage of confidence intervals (CI) under random (panel a), case-control (panel
b), stratified (panel c) and nested case-control sampling (m = 1, panel d). For the first three scenarios a sample size of 100 was used, while in the
nested case control sampling a mean of 180 subjects was considered. Data were subject to a random censoring of 15% (over administrative
censoring). Dotted lines represent the reference for CI coverage (nominal 95%)

be dead, one approach to obtain outcomes estimates has
been to identify a numerically small, but random, sample
of those who are lost [15], intensively seeking their out-
comes, and using them to correct outcomes among the
lost.

Table 1 Distribution of phase I (Ns) and II (ns) samples in the 6
strata and sampling fractions expressed as percentages in
parenthesis for Phase II

Treatment protocol

Standard Medium High

ns/Ns(%) Total

No relapse 54/487 (11.1) 193/987 (19.6) 109/219 (49.8) 356/1693

Relapse 21/28 (75.0) 147/186 (79.0) 77/92 (83.7) 245/306

Total 75/515 340/1173 186/311 601/1999

To illustrate, a cohort of 13,321 HIV-infected adult
patients, who initiated ART treatment, were followed
from ART initiation to either death, disengagement or
administrative database closure (see Fig. 5). Among them,
2451 patients were lost to follow-up [35], defined as not
being seen at the clinic for at least 90 days (after the
last return visit). A tracker went into the community to
determine the outcome of a random subsample of 428
among the 2451 lost patients and got information on
306 patients (110 patient were found to be in care in
other clinics, 80 died while in care and 116 were found
to be not treated/disengaged) [12]. The 10,870 patients
no lost to follow-up and the 306 tracked patients can
been considered as the second phase sample of the whole
cohort, stratified on lost to follow-up.
We used the methods developed in theMethods section

to estimate crude cumulative incidence, where the 306
tracked patients represented the 2451 lost patients by the
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Fig. 4 Crude cumulative incidence of relapse in ALL data. Panel a reports the crude cumulative incidence estimate of relapse involving the bone
marrow in patients with normal (estimate and confidence limits reported with solid lines) and deleted (dashed lines) GST-T1 gene. Panel b reports the
crude cumulative incidence estimate of relapse in extramedullary sites in patients with normal (solid lines) and deleted (dashed lines) GST-T1 gene

sampling probability 306/2451, while the other 10,870 had
sampling weight one. The crude incidence estimate of dis-
engagement is reported in Fig. 6, the curve starts to rise
after 90 days from ART start, that is the earliest possible
time of disengagement, by definition. At 1 year, disengage-
ment resulted 6.8% (CI 95% 5.7–8.2%). This was subject
to a strong influence of the competing event death in
care that resulted 7.7% (CI 95% 6.8–8.9%) at 1 year. A

naïve (but less expensive) approach to deal with infor-
mative censoring would be to treat all lost patients as
events or, contrarily, as censored observations.We plotted
the two corresponding curves in Fig. 6, obtaining esti-
mates of crude incidence at 1 year since ART treatment
of 18.5% and 0.2%, respectively. We can consider that the
true incidence will lie between these two estimates (that
are however quite far in this context), as in fact it does

Fig. 5 Outcome in the cohort of HIV patients. Outcome of the 13,321 HIV patients who initiated ART treatment
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Fig. 6 Crude cumulative incidence of disengagement in the HIV data. Crude cumulative incidence of disengagement of the 13,321 HIV patients
who initiated ART treatment (black line) with confidence intervals (dashed lines). In the bottom part of the plot the number of patients at risk in time
is reported (weighed to represent the whole cohort of 13,321). The dashed grey lines report the crude cumulative incidence of disengagement
computed by treating all lost patients as event or censored observation, respectively

the estimate we got by tracking a random sample of lost
patients and using the proposed estimator.

Availability of supporting data
The R code to compute the proposed estimate of crude
cumulative incidence is available at [33]. The results of
simulations presented in the Simulations section and the
related code are also available at [33].

Conclusions
We have derived an estimator for cumulative incidence of
events based on the subdistribution hazard accounting for
competing risks under a general sampling design from an
infinite target population. The estimator shows good per-
formance in simulations under different scenarios and the
variance, derived by the influence function of the subdis-
tribution hazard and the Horvitz-Thompson theory, was
very close to the empirical variance, therefore we expect it
to be very close to the one obtainable by replicate weights
(e.g. bootstrap) [7]. Confidence intervals, derived on the
log scale, provided good coverage in simulations, but alter-
native confidence intervals might also be considered such
as the complementary log-log transformation [36]. The
proposed estimator was used to estimate incidence of
relapse by genotype in a cohort of childhoodALL patients,

where the genotype was ascertained only on a subsam-
ple of the cohort chosen by an optimal sampling approach
based on relapse as the event of interest. Interestingly,
we can also analyze the incidence of the competing event
(toxic death) or of the combined endpoint (relapse or toxic
death), but the efficiency could be lower unless the sub-
sampling is adapted to this new endpoint by including a
further strata on toxic death in the sampling process. This
is particularly important since toxic death is a rare event in
this context. We should also remember to avoid random
sampling when the event of interest is rare, as discussed in
the Simulations section.
In the second case, we dealt with a missing data prob-

lem, in which the outcome itself was not available for
everybody, since some patients were lost to follow-up. A
subsample of lost patients had been tracked to ascertain
the outcome, but if this tracking was not possible, a more
basic/naïve approach to deal with this informative cen-
soring could have been to identify the variables affecting
missingness, post-stratify the sample in homogeneous
strata and use the missing probabilities for each strata as
sort of sampling weights to adjust the incidence estimate.
This approach would make an important assumption of
missing at random that might be not appropriate and
cannot be tested [7, 15, 21, 37]. However this underlines
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how the proposed estimator could be applied also in the
presence of missing data.
The code to compute this estimate has been developed

in R software [31] under the survey package [32] and is
available at [33]. The survey package is a flexible package
for complex surveys including also two-phase studies. It
provides flexible functions to describe the design of the
study and to derive sampling fraction accordingly. The
package includes functions to estimate survival and to
perform a weighted Cox model with standard error prop-
erly adjusted for the design and with the possibility to use
general weights, as calibrated weights. Our function takes
advantage of the facilities of the package (see an example
of use in Genotype ascertained on a subset of a clinical
trial cohort).
In order to recover the representativeness of the sub-

cohort (phase II) for the entire cohort, we used weights
related to the inverse of the probability to be sampled,
similarly to the weights of Barlow for case-cohort studies
[38].More general weights can be used, such as calibration
weights [7, 39, 40]. The use of calibration weights is advan-
tageous when there is availability of phase I variables that
are strongly related to the additional variables ascertained
in phase II. This would provide results more representa-
tive of phase I data and increase precision. When phase
II variables are common genetic polymorphisms, as in
our first example, it is unlikely to find any strong rela-
tion between phase I and II variables, therefore no big
advantage would be expected by calibration.
The estimator can also be extended to a situation where

an individual may move among a finite number of states
to estimate the Aalen-Johansen probabilities of transition
among each state in a multistate framework [41] in the
presence of general sampling design.
In order to derive a model-based estimate of incidence

(adjusted for possible covariates) two main approaches
have been followed in the context of competing risk, the
first one based on the cause-specific hazard inspired by
Benichou and Gail [16, 42, 43] and the other one based
on the subdistribution hazard [19, 44]. The crude cumu-
lative estimator developed by Kovalchik and Pfeiffer [45]
for two-phase studies for finite population follows the
first approach, and the Cox model for two-phase designs
[14] could be used to extend it for infinite population.
Under this model we can estimate the effect of a covari-
ate on the cause-specific hazard to address its impact
on the event by an aetiological point of view. However
it is well known that this does not reflect the impact of
the variable on the crude cumulative incidence. The lat-
ter effect, even if affected by the incidence of the other
competing events, could still be of interest for a public
health prospective. Future work will concern the devel-
opment of a regression model to assess the effect of a
covariate on the crude cumulative incidence. The Fine

and Gray regression model [19] could be extended to
complex sampling by weighting the estimating function of
the parameter of interest and working out their influence
function.

A Appendix
A.1 Derivation of the risk set for T∗

k
The risk set for the usual survival time T at s is commonly
obtained in standard analysis by counting the observed
times greater then s. It can be also written as:

Ŷ·(s) = P̂(T > s−)P̂(C > s−) = Ŷ·(0)Ŝ(s−)Ĝ(s−) (12)

where Ĝ(s) is the probability to be free of censoring up to
s and is estimated considering censored observations as
events and viceversa according to (3). This can proved also
in the case of a two-phase design by the following:

Ŷ·(0)Ŝ(s−) · Ĝ(s−) = Ŷ·(0) �
u<s

[
1 − N̂··(du)

Ŷ·(u)

]
·

�
u<s

[
1 − N̂c· (du)

Ŷ·(u) − N̂··(du)

]
=

= Ŷ·(0) �
u<s

[
Ŷ·(u)−[ N̂··(du) + N̂c· (du)]

Ŷ·(u)

]
=

= Ŷ·(0) �
u<s

Ŷ·(u+)

Ŷ·(u)
= Ŷ·(0)Ŷ·(s)

Ŷ·(0)
=

=
N∑
i=1

[ξiYi(s)/πi]

(13)

where N̂c· (t) = ∑N
i=1 [ξiI(Xi ≤ t,�i = 0)/πi] denotes the

number of censoring up to time t and N̂··(t) =∑n
i=1 N̂i·(t)

the total count of events observed up to time t.
The derivation of the risk set for T∗

k at s can be obtained
by:

Ŷ ∗
·k(s) = P̂

(
T∗
k > s−

)
P̂(C > s−) = Ŷ·(0) ·

[
1 − F̂k(s−)

]
Ĝ(s−) =

= Ŷ·(0) ·
⎡
⎣Ŝ(s−) +

∑
l �=k

F̂l(s−)

⎤
⎦ · Ĝ(s−) =

= Ŷ·(s) + Ŷ·(0) ·
∑
l �=k

F̂l(s−) · Ĝ(s−)

(14)

By writing F̂l(s−) as empirical cumulative distribution
function F̂l(s−) = 1

Ŷ·(0)
∑N

i=1
ξi
πi

I(Xi≤s−;εi=l)
Ĝ(X−

i ∧s−)
[25, 46], the

risk set becomes:



Rebora et al. BMCMedical ResearchMethodology  (2016) 16:5 Page 12 of 16

Ŷ ∗
·k(s) = Ŷ·(s) +

∑
l �=k

N∑
i=1

ξi
πi
I(Xi ≤ s−; εi = l)

Ĝ(s−)

Ĝ
(
X−
i ∧ s−

)
(15)

that can be simplified to

N∑
i=1

ξi
πi
Yi(s) +

N∑
i=1

ξi
πi

⎡
⎣∑

l �=k
Nil(s−) · Ĝ (s−|X−

i
)⎤⎦ (16)

that is equivalent to (4).
The first summation estimates the usual total num-

ber of subjects at risk at s, where the condition Xi =
min(Ti,Ci) ≥ s is satisfied. This in fact implies
min(T∗

ki,Ci) ≥ s, i.e. being at risk for T implies being also
at risk for T∗

k . The second summation estimates the num-
ber of subjects who had other events before s, satisfying
the condition Xi = min(Ti,Ci) < s, �i = 1 and εi �= k
which implies T∗

ki = ∞ > s and completes the number at
risk at s for T∗

k . While the first part is exposed to censor-
ing, the contribute of each subject observed to fail of cause
l �= k,

∑
l �=k Nil(s−), would remain equal to 1 up to ∞,

thus ignoring possible censoring, given that Ci is (usually)
not observable if Ti < Ci. A possible way to deal with this
inconsistency is to mimic the presence of random censor-
ing acting on the infinite times, by weighting the unitary
contributions

∑
l �=k Nil(s−) by the estimate Ĝ(s−|X−

i ) of
P(C > s−|C > X−

i ) = G(s−|Xi), where G(t) = P(C > t)

is estimated by Ĝ(t) = ∏
s≤t

[
1 −

∑N
i=1 ξiNc

i (ds)/πi∑N
i=1 ξiYi(s)/πi

]
, with

Nc
i (s) = I(Xi ≤ s,�i = 0). This weight assumes value

1 before Xi and decreases afterword according to the
censoring distribution.
Of note, an alternative expression for Ŷ ∗

·k(s) derives
substituting Ŷ·(0)Ĝ(s−) = Ŷ·(s)

Ŝ(s−)
from (12) in (14):

Ŷ ∗
·k(s) = Ŷ·(0)Ĝ(s−)·

[
1 − F̂k(s−)

]
= Ŷ·(s)

[
1 − F̂k(s−)

]
Ŝ(s−)

(17)

This shows as Ŷ·(s) is upweighted by a multiplier that
gets greater as the action of competing events gets larger,
accounting for the fact that subjects that experienced
events of type l �= k will never experience event k as first.

A.2 Proof of equivalence (7)
The equality between the cumulative incidence of the arti-
ficial variable T∗ in (6) and the Aalen-Johansen type esti-
mator (that for the purpose of this proof will be denoted
as F̂AJ

k (t)) holds true if and only if, ∀t:

F̂AJ
k (t) =

∫ t

0
Ŝ(s−)�̂k(ds) = 1− �

s≤t

[
1 − �̂∗

k(ds)
]

= F̂k(t)

(18)

which can be proved by induction. Both quantities are
step functions, changing value at each occurrence of type
k events. At the time t where the first event of type k is
observed, �̂k(dt) = �̂∗

k(dt) being from (4) Ŷ·(t) = Ŷ ∗
·k(t).

If this was the first event overall, then Ŝ(0) = 1 and Eq. 18
is satisfied, otherwise F̂AJ

k (t) =[1 − 1/Ŷ·(0)] ·1/[Ŷ·(0) −
1]= 1/Ŷ·(0) = 1−[1 − 1/Ŷ·(0)]= F̂k(t).
Now, assuming that (18) holds true for a given t−, this

implies F̂AJ
k (t) = F̂k(t) if and only if, from (18):

F̂AJ
k (t−) + Ŝ(t−)�̂k(dt) = 1 − (1 − F̂k(t−))

(
1 − �̂∗

k(dt)
)

and using the equality at t−:

F̂k(t−) + Ŝ(t−)�̂k(dt) = F̂k(t−) +
[
1 − F̂k(t−)

]
�̂∗

k(dt)

Ŝ(t−)�̂k(dt) =
[
1 − F̂k(t−)

]
�̂∗

k(dt)

�̂k(dt) = 1 − F̂k(t−)

Ŝ(t−)
�̂∗

k(dt)

N̂k(dt)
Ŷ·(t)

= 1 − F̂k(t−)

Ŝ(t−)

N̂k(dt)
Ŷ ∗

·k(t)

Ŷ ∗
·k(t) = Ŷ·(t) · 1 − F̂k(t−)

Ŝ(t−)

That is proved by (17).

A.3 Weak convergence of �̂∗
k(t)

Lin showed that the normalised Horvitz-Thompson
estimators of the number of events

√
N
[
N̂·(t) − N·(t)

]
,

number at risk
√
N
[
Ŷ·(t) − Y·(t)

]
, cumulative hazard

√
N[ �̂(t) − �(t)] and survival function

√
N
[
Ŝ(t) − S(t)

]
(and analogously

√
N
[
Ĝ(t) − G(t)

]
) are asymptotically

multivariate zero-mean normal [14]. Firstly, we con-
centrate on the normalised Horvitz-Thompson esti-
mators of the modified at risk process:√
N
[
Ŷ ∗

·k(t) − Y ∗
·k(t)

]
= √

N
∑N

i=1
ξi−πi

πi
Y ∗

·k(t) = √
N
∑N

i=1
ξi−πi

πi
Y·k(t) + √

N
∑N

i=1
ξi−πi

πi

∑
l �=k Nil(t−)Ĝ(t−|Xi). The

first term represents the estimator of the number at
risk, that Lin showed to be asymptotically multivariate
zero-mean normal [14]. We concentrate now on the
second term:
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√
N

N∑
i=1

⎡
⎣ ξi

πi
·
∑
l �=k

Nil(t−)Ĝ(t−|Xi) −
∑
l �=k

Nil(t−)Ĝ(t−|Xi)

⎤
⎦ =

= √
N

N∑
i=1

⎡
⎣Ĝ(t−|Xi)

⎧⎨
⎩ ξi

πi

∑
l �=k

Nil(t−) −
∑
l �=k

Nil(t−)

⎫⎬
⎭
⎤
⎦ =

= √
N

⎡
⎣Ĝ(t−|Xi)

⎧⎨
⎩
∑
l �=k

N̂·l(t−) −
∑
l �=k

N∑
i=1

Nil(t−)

⎫⎬
⎭
⎤
⎦ =

= √
N
∫ t−

0
Ĝ(s−|Xi)

⎧⎨
⎩
∑
l �=k

N̂·l(ds−) −
∑
l �=k

N∑
i=1

Nil(ds−)

⎫⎬
⎭ =

= √
N
∫ t−

0
G(t−|Xi)

⎧⎨
⎩
∑
l �=k

N̂·l(ds−) −
∑
l �=k

N∑
i=1

Nil(ds−)

⎫⎬
⎭+

+ op(1)

that using Lemma 1 in [14] also converges to a zero-mean
Gaussian process.
We want to prove that also

√
N
[
�̂∗

k(t) − �∗
k(t)
]

=
√
N
[
�̃∗

k(t) − �∗
k(t)
]

+ √
N
[
�̂∗

k(t) − �̃∗
k(t)
]

converges
to a zero-mean normal, where �̃∗

k(t) represents the
crude cumulative incidence estimator that we would have
obtained if complete information (Xi,�iεi,Zi) was known
for all the subjects in phase I sample (i = 1 . . .N) [18].
Fine and Gray proved that the first term converges weakly
to a zero-mean Gaussian process [19].
The second term results:

√
N
[
�̂∗

k(t) − �̃∗
k(t)
]

= √
N
[∫ t

0

N̂k(ds)
Ŷ ∗

·k(s)
−
∫ t

0

Nk(ds)
Y ∗

·k(s)

]
=

= √
N
[∫ t

0

N̂k(ds)
Ŷ ∗

·k(s)
−
∫ t

0

Nk(ds)
Y ∗

·k(s)
+
∫ t

0

Nk(ds)
Ŷ ∗

·k(s)
−
∫ t

0

Nk(ds)
Ŷ ∗

·k(s)

]
=

= √
N

⎡
⎣∫ t

0

N̂k(ds) − Nk(ds)
Ŷ ∗

·k(s)
−
∫ t

0

Nk(ds)
[
Ŷ ∗

·k(s) − Y ∗
·k(s)

]
Ŷ ∗

·k(s)Y
∗
·k(s)

⎤
⎦ .

It then follows that also
√
N
[
�̂∗

k(t) − �̃∗
k(t)
]
converges

weakly to a zero-mean Gaussian process.

A.4 Influence function for �̂∗
k(t)

The estimator �̂∗
k(t) can be expressed as a differentiable

function g of the estimated total number of events of type
k and total number at risk for T∗ up to t:

�̂∗
k(t) = g(N̂·k(dt), Ŷ ∗

·k(t)) =
∫ t

0

N̂·k(ds)
Ŷ ∗

·k(s)
=

=
∫ t

0

∑N
i=1 ξi · Nik(ds)wi∑N
i=1 ξi · Y ∗

ik(s)wi

(19)

where wi = 1/πi and ξi indicates whether subject i is
withdrawn in the phase II sample.
The difference between the true and estimated cumu-

lative hazard can be expressed as a sum of influence
functions: �̂∗

k(t)−�∗
k(t) =∑N

i=1 z∗ik+o(1/
√
N), where z∗ik

is the influence function of the ith subject. Demnati and
Rao [27] proved that we can express the influence func-

tion of subject i as z∗ik(t) = ∂g
(
N̂·k(dt),Ŷ ∗

·k(t)
)

∂wi
. The influence

function of �̂∗
k(t) of the i

th subject can thus be derived as:

z∗ik(t) =
∫ t

0

Nik(ds)Ŷ ∗
·k(s) − ∂Ŷ ∗

·k(s)
∂wi

N̂·k(ds)
Ŷ ∗

·k(s)2
(20)

Being Ŷ ∗
·k(s) = ∑N

i=1 ξiwi ·
[
Yi(s) + I(Xi≤s−;εi �=k)Ĝ(s−)

Ĝ(X−
i ∧s−)

]

and being Ĝ(s) = �u≤s

[
1 −

∑N
i=1 ξiNc

i (du)/πi∑N
i=1 ξiYi(u)/πi

]
, the deriva-

tive of Ŷ ∗
·k(s) with respect to wi results:

∂Ŷ ∗
·k(s)

∂wi
=

∂

{
ξiwi ·

[
Yi(s) + I(Xi≤s−;εi �=k)Ĝ(s−)

Ĝ
(
X−
i ∧s−)

]
+∑

j �=i
ξjwj ·

[
Yj(s) + I(Xj≤s−;εj �=k)Ĝ(s−)

Ĝ
(
X−
j ∧s−

)
]}

∂wi
=

= ξiYi(s) + ξi

∂

[
wi

I(Xi≤s−;εi �=k)Ĝ(s−)

Ĝ
(
X−
i ∧s−)

]
∂wi

+
∂

[∑
j �=i

ξjwjI(Xj≤s−;εj �=k)Ĝ(s−)

Ĝ
(
X−
j ∧s−

)
]

∂wi
=

= ξiYi(s) + ξi
I(Xi ≤ s−; εi �= k)Ĝ(s−)

Ĝ
(
X−
i ∧ s−

) +
N∑
j=1

ξjwjI(Xj ≤ s−; εj �= k)
∂

∂wi

⎡
⎣ Ĝ(s−)

Ĝ
(
X−
j ∧ s−

)
⎤
⎦ .

(21)
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Please note that the last addendum accounts for the fact that Ĝ(t) is estimated using information of subject i. For
v ≤ u:

∂

∂wi

[
Ĝ(u)

Ĝ(v)

]
=

Ĝ(u)
∫ u
0

dNc
i (s)−λ̂c(s)Yi(s)

Ŷ·(s)
Ĝ(v) − Ĝ(v)

∫ v
0
dNc

i (s)−λ̂c(s)Yi(s)
Ŷ·(s)

Ĝ(u)

Ĝ(v)2
=

=
Ĝ(u)Ĝ(v)

∫ u
v+

dNc
i (s)−λ̂c(s)Yi(s)

Ŷ·(s)

Ĝ(v)2
=

Ĝ(u)
∫ u
v+

dNc
i (s)−λ̂c(s)Yi(s)

Ŷ·(s)

Ĝ(v)

(22)

where the superscript c indicates the quantities related to the censoring process, i.e. Nc
i (u) = I(Xi ≤ u,�i = 0) is the

indicator of censoring for subject i up to time u and λ̂c(u) = N̂c· (du)/Ŷ·(u) the instantaneous hazard of censoring. The
derivative of Ŷ ∗

·k(u) becomes:

∂Ŷ ∗
·k(s)

∂wi
=

Yi(s) + I(Xi ≤ s−; εi �= k) · Ĝ(s−)

Ĝ
(
X−
i ∧ s−

) +
N∑
j=1

ξjwjI(Xj ≤ s−; εj �= k)
Ĝ(s−)

Ĝ
(
X−
j ∧ s−

)
[∫ s−

Xj

Nc
i (du) − λ̂c(u)Yi(u)

Ŷ·(u)

]

(23)

Thus, the influence function of �̂∗
k(t) of the i

th subject results:

z∗ik(t) =

∫
t

0

Nik(ds)Ŷ ∗
·k(s) − N̂·k(ds)

[
Yi(s) + I(Xi≤s−;εi �=k)Ĝ(s−)

Ĝ
(
X−
i ∧s−) +

N∑
j=1

ξjwjI(Xj≤s−;εj �=k)Ĝ(s−)

Ĝ
(
X−
j ∧s−

) ∫ s−
Xj

Nc
i (du)−λ̂c(u)Yi(u)

Ŷ·(s)

]

Ŷ ∗
·k(s)2

=

=

∫
t

0

Nik(ds) − �̂∗
k(ds)

[
Yi(s) + I(Xi≤s−;εi �=k)Ĝ(s−)

Ĝ
(
X−
i ∧s−) +

N∑
j=1

ξjI(Xj≤s−;εj �=k)Ĝ(s−)

πjĜ
(
X−
j ∧s−

) ∫ s−
Xj

Nc
i (du)−λ̂c(u)Yi(u)

Ŷ·(u)

]

Ŷ ∗
·k(s)

(24)

where wj = 1/πj. By defining Mc
i (s, t) = ∫ t

s
Nc
i (du)−λ̂c(u)Yi(u)

Ŷ·(u)
as the influence function of subject i on censoring, vj =

ξj
πj

∑
l �=k Njl(s−)Ĝ(s−|X−

j ), andMik(s) =
[
Nik(s) − �̂∗

k(s)Y
∗
ik(s)

]
/Ŷ ∗

·k(s).
Thus it can be reduced as:

z∗ik(t) =

∫
t

0

Nik(ds) − �̂∗
k(ds)Y

∗
ik(s) − �̂∗

k(ds)
[

N∑
j=1

ξj
πj

∑
l �=k Njl(s−)Ĝ

(
s−|X−

j

)
Mc

i
(
Xj, s−

)]

Ŷ ∗
·k(s)

=

=

∫
t

0

Mik(ds) −
�̂∗

k(ds)
[

N∑
j=1

vjMc
i
(
Xj, s−

)]

Ŷ ∗
·k(s)
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