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ABSTRACT
ChIP-seq has been commonly applied to identify genomic occupation of 

transcription factors (TFs) in a context-specific manner. It is generally assumed that 
a TF should have similar binding patterns in cells from the same or closely related 
tissues. Surprisingly, this assumption has not been carefully examined. To this end, 
we systematically compared the genomic binding of the cell cycle regulator FOXM1 
in eight cell lines from seven different human tissues at binding signal, peaks and 
target genes levels. We found that FOXM1 binding in ER-positive breast cancer cell 
line MCF-7 are distinct comparing to those in not only other non-breast cell lines, but 
also MDA-MB-231, ER-negative breast cancer cell line. However, binding sites in MDA-
MB-231 and non-breast cell lines were highly consistent. The recruitment of estrogen 
receptor alpha (ERα) caused the unique FOXM1 binding patterns in MCF-7. Moreover, 
the activity of FOXM1 in MCF-7 reflects the regulatory functions of ERα, while in 
MDA-MB-231 and non-breast cell lines, FOXM1 activities regulate cell proliferation. 
Our results suggest that tissue similarity, in some specific contexts, does not hold 
precedence over TF-cofactors interactions in determining transcriptional states and 
that the genomic binding of a TF can be dramatically affected by a particular co-factor 
under certain conditions.

INTRODUCTION

Transcription factors (TFs) are crucial proteins 
that mediate gene transcriptional regulation by binding 
to specific DNA sequences in all living organisms. 
Several technologies have been developed to investigate 
the binding of TFs in a high-throughput manner [1]. 
Among them, chromatin immunoprecipitation followed 
by microarray hybridization (ChIP-chip) [2] or high-
throughput DNA sequencing (ChIP-seq) [3] have become 
the most widely used methods to detect binding events of 
individual TFs across the entire genome [1, 4–6]. These 
methods identify direct and indirect (through interacting 
with co-factors) binding sites of DNA-associated proteins 
of interest [4, 7, 8]. Currently, ChIP-seq has become one of 

the most important technologies used in genomic studies 
as evidenced by the rapid accumulation of ChIP-seq data.

Previous studies have reported a rapid turnover 
rate of binding sites of homologous TFs in different 
species [9–14], suggesting that individual binding sites 
of a TF are not conserved. Odom et al. performed ChIP-
chip analysis and found that the binding sites varied 
extensively between human and mouse even for TFs that 
are highly conserved during evolution [13]. Borneman 
et al. compared the pseudohyphal regulators STE12 and 
TEC1 binding sites in three yeast species, S. cerevisiae, S. 
mikatae, and S. bayanus under pseudohyphal conditions 
and reached a similar conclusion [11]. Other than these 
comparative studies by experiments, computational studies 
based on systematic motif analysis also indicated high 
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turnover rate of TF binding motifs in different organisms 
[12, 14]. In spite of this, functional conservation has 
been demonstrated for many TFs even between species 
that are distantly related [15, 16]. In other words, the 
homologous TFs participate in the regulation of the same 
biological process in different species. Interestingly, the 
functional conservation of them can be attained through 
regulating different sets of target genes in different 
species. For example, Tuch et al. showed that the target 
genes of MCM1 have diverged substantially in three 
related yeast species; however, in all species MCM1 is 
involved in regulating cell cycle and mating processes 
[17]. Moreover, motif analyses indicate that the binding 
motifs associated with a TF is generally conserved across 
species, presumably due to the selective pressure imposed 
on its DNA binding domain [7]. 

On the other hand, the genomic occupancy of a 
TF in multiple cell types of the same organism shows 
different degrees of variation. For some TFs, a high 
degree of shared occupancy between cell types has been 
observed. Investigation of CTCF binding in 19 human 
cell lines, for instance, indicates that on average 72% 
of CTCF sites were shared between any two cell types 
[18]. Additionally, variable binding has been observed for 
64% of CTCF sites which vary in at least one cell type. 
However, the binding variation for some other TFs are 
more dramatic. Shira et al. compared the REST genomic 
occupancy in 16 different human cell lines and found that 
only 7% of binding peaks are shared by all cell lines [19]. 
According to the unpredictable binding of TFs described 
above, an interesting question arises: is the genomic 
occupancy of a TF more similar in more closely related 
cell types? Intuitively, this should be the case according 
to general knowledge from transcriptomic and other 
genomic studies. It has been shown in previous studies 
that gene expression [20, 21] and DNA methylation [22, 
23] levels are highly consistent in cell lines from the 
same tissue. Moreover, TF binding is largely determined 
by local chromatin structure (i.e., the accessibility as 
measured by DNase I hypersensitivity analysis [24, 25]) 
that is shaped by epigenetic mechanisms such as histone 
modification [26, 27]. In fact, it has been demonstrated 
that a combination of these genomic features with motif 
analysis can predict TF binding sites with fairly high 
accuracy [28–32]. Furthermore, data generated from the 
Encyclopedia of DNA Elements (ENCODE) [33] indicate 
that high similarity of DNase I hypersensitivity regions 
between cell lines of similar tissue origins [34, 35]. Given 
these results, we would also expect TF binding profiles be 
more similar in closely related tissues or cell types.

In this study, we investigate FOXM1 binding in 
several cell lines and show that overall genetic similarity 
of cell lines does not hold precedence over context-
specific TF-co-factor interactions in determining TF 
binding profiles. FOXM1, forkhead box protein, is a 
crucial cell cycle regulator [36, 37], which has been 

shown to be highly associated with multiple cancer types 
[38–42]. Recently, genomic binding data of FOXM1 have 
been generated by ChIP-seq experiments in several studies 
[43–47]. Based on these data, we performed a comparative 
analysis to identify the common and specific genome-wide 
binding events of FOXM1 in 8 distinct cell lines derived 
from 7 different tissues. By systematically comparing the 
binding sites and target genes of FOXM1, we find that 
even though MCF-7 and MDA-MB-231 are both breast 
cancer cell lines, FOXM1 binding events are substantially 
different between these two cell lines compared to non-
breast cell lines. In particular, FOXM1 binding sites are 
more similar in MDA-MB-231, HeLa, U2OS, HEK293, 
GM12878, SK-N-SH and ECC-1 although they all 
represent different tissues. Moreover, the prognostic value 
of FOXM1 has been reported in several cancer types [43, 
48–50] with the observation that FOXM1 activity is more 
predictive to prognosis than its mRNA level. We examined 
the ability of using target genes to infer FOXM1 activity 
in tumor samples and investigated their association 
with patient survival in breast cancer. We find that the 
inferred regulatory activity of FOXM1 is predictive of 
the survival of patients, and more interestingly, scores 
inferred based on FOXM1 targets from different cell lines 
provide complementary clinically related information -- 
MCF-7 specific FOXM1 targets inform estrogen receptor 
(ER) activity while targets in other cell lines inform the 
proliferative ability of tumor cells. These results indicate 
that the genomic occupation of TFs is more complicated 
than expected, and that these nuanced changes in binding 
activity are manifested at the clinical level.

RESULTS

Overview of our analyses

To compare FOXM1 binding sites in different 
human cell lines, we searched for all available FOXM1 
ChIP-seq datasets in the Gene Expression Omnibus 
(GEO) database [51] and obtained a total of 23 ChIP-seq 
experiments for FOXM1 at the time of writing. These 
FOXM1 binding data were collected from 6 studies 
across 8 different cell lines (Table 1), including MCF-7 
(ER-positive breast cancer), MDA-MB-231 (ER-negative 
breast cancer), ECC-1 (endometrium cancer), GM12878 
(blood), HEK293 (kidney cancer), HeLa (cervical cancer), 
SK-N-SH (neuroblastoma), and U2OS (osteosarcoma). 
For these datasets, we performed systematic comparative 
analyses using different levels of information from these 
data (Figure 1). First, at the binding signal level we 
performed principle component analysis (PCA) [52] on the 
normalized binding signals of the ChIP-seq experiments. 
Second, at the peak level we identified FOXM1 binding 
peaks in each of these ChIP-seq experiments and 
examined the number of shared peaks between each pair 
of experiments. Moreover, we performed motif analyses 
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to examine the enrichment of 687 motifs available from 
the TFANSFAC [53] and JASPAR [54] databases in the 
binding peaks of each ChIP-seq experiment. Third, at 
the gene level we defined FOXM1 target genes using 
a probabilistic model and compared the shared genes 
between all pairs of experiments. Comparative analyses 
at the signal, peak, and gene target levels consistently 
support that MCF-7 ChIP-seq experiments are highly 
similar to each other but exhibit little resemblance to 
MDA-MB-231, which is more similar to non-breast cell 
lines. Finally, at the level of regulation activity, we applied 
the Binding Association with Sorted Expression (BASE) 
algorithm [55] to a primary breast cancer expression 
dataset to infer FOXM1 regulatory activity in patient 
samples based on its target gene expression. Our results 
suggested that FOXM1 target genes identified in all cell 
lines except MCF-7 are informative of the proliferation-
regulating activity of FOXM1, while the target genes 
identified in MCF-7 cell line reflect ER activity rather than 
FOXM1 activity. Excitingly, the activities inferred based 
on MCF-7 and other cell lines can be combined to achieve 
more accurate prediction of patient prognosis. 

Comparison of FOXM1 binding signals and 
peaks

We first sought to investigate the difference in 
FOXM1 binding events between different cell types. 

We divided the whole human genome into 100 bp bins, 
and for each bin we calculated the normalized binding 
signal (mean coverage per million reads) based on the 
continuous-valued TF binding signal provided in the 
bedGraph files. Bins with non-zero signal in at least 
one of the 23 ChIP-seq profiles were selected for PCA 
analysis. The results showed that all MCF-7 cell ChIP-seq 
profiles clustered together according to the first principle 
component, whereas MDA-MB-231 profiles were grouped 
with HEK293, HeLa and U2OS (Figure 2A). This is 
interesting since MDA-MB-231 and MCF-7 are both 
breast cancer cell lines, yet FOXM1 binding profiles in 
MDA-MB-231 are more similar to those in non-breast cell 
lines.

Second, we called FOXM1 binding peaks for all 
ChIP-seq experiments using Model-based Analysis 
of ChIP-Seq (MACS2) [56]. The number of FOXM1 
binding peaks ranged from 517 to 54,916 depending on 
sequencing depth and other experimental factors, with 
details shown in Table 1. We examined the number 
of shared peaks between each pair of TF binding 
experiments. A peak in one experiment is counted as 
shared if there is at least a 1 bp overlap with peaks from 
the other experiment. Peak overlap analysis showed that 
most FOXM1 binding peaks called in MCF-7 cells are 
shared, despite the variation in peak numbers across 
different experiments (Figure 2B). As expected, peaks 
in MCF-7 exhibited low overlap with those called in 

Figure 1: Schematic depicting the comparison of FOXM1 binding in different cell lines. We compared the difference based 
on three levels, (A) the raw signal profiles, (B) binding peaks and (C) target genes, to show the different binding of FOXM1 in different 
cells. (D) We applied the target gene profiles to infer FOXM1 activity and further compared the difference.
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the other cell types. Strikingly, binding peaks in MDA-
MB-231 cells exhibited greater overlap with those in 
non-breast cell lines than with MCF-7 cells (Figure 2B). 
Moreover, FOXM1 binding peaks displayed different 
genomic distribution in different cell types (Figure 2C 
and see Supplementary Figure 1). Compared to other 
cell types, a smaller fraction of FOXM1 binding peaks 
in MCF-7 cells were observed in promoter regions, but 
more binding events occurred in intergenic regions.  In 
MDA-MB-231 and other non-breast cell lines, FOXM1 
binding signals exhibited high enrichment in regions 
proximal to transcription start sites (TSS) (from −1 kb to 
1 kb) (see Supplementary Figure 2). Conversely, binding 
signals in MCF-7 cells were more enriched in regions 
distal to gene TSSs (from −3 kb to −2 kb and from 2 kb 
to 3kb). 

Figure 2D shows a strong FOXM1 binding peak 
associated with the gene CDC25B, a well-known 
FOXM1 target gene [57], which was detected in all cell 
types but MCF-7. This phenomenon was also observed 
for many other cell cycle genes (data not shown), 
implying that FOXM1 may be less involved in cell 
cycle regulation in MCF-7 cells. In contrast, a FOXM1 
binding peak associated with VMP1, a gene encoding 
a vacuole membrane protein [58], was only detected 

in MCF-7 cells (Figure 2D). Taken together, these 
results suggest that FOXM1 binding in MCF-7 cells 
differs from that of the other cell types, most notably 
MDA-MB-231. Moreover, FOXM1 binding in MDA-
MB-231 was more similar to binding in non-breast 
cell lines. One plausible explanation is that estrogen 
receptor alpha (ERα), which is present in MCF7 but not 
in MDA-MB-231 cells, modulates FOXM1 activity by 
recruiting FOXM1 to ERα binding sites [59, 60] and 
causing differential FOXM1 binding between the two 
breast-cancer cell lines [59].

Comparison of motifs enriched in FOXM1 
binding sites

To further investigate differences in FOXM1 
binding events, we identified the TF binding motifs 
that are enriched in FOXM1 binding peaks in different 
cell lines. Motif enrichment analysis was conducted 
by scanning for 687 motifs from the TRANSFAC [53] 
and JASPAR [54] databases in peak regions (see details 
in Methods). To test whether a motif is enriched, we 
calculated enrichment scores for each FOXM1 binding 
peak across all the motifs enrolled in those two datasets. 
A log2-transformation was applied after performing the 

Table 1: Numbers of reads, peaks and genes in each ChIP-seq experiment
ChIP-seq ID Total Reads Total Peaks Total Target Genes GSE Antibody Cell Line Tissue

SRR577922 116,488,388 18,765 274
GSE32465 SC-502 ECC-1 Endometrium

SRR577923 94,505,444 5,892 228

SRR577673 168,945,472 54,916 243
GSE32465 SC-502 GM12878 Blood

SRR577674 121,585,588 30,273 199

SRR1534936 140,964,036 3,883 162
GSE60032 GTX-102170 HEK293 Kidney

SRR1534937 144,836,032 1,963 148

SRR1045855 68,473,196 3,789 243
GSE52098 SC-502 HeLa Cervical

SRR1045856 67,826,668 1,426 209

SRR2390493 168,903,060 12,214 112

GSE72977 SC-501SRR2390494 143,504,268 5,032 97

SRR2390496 150,878,452 14,806 95

SRR567275 125,468,568 34,091 114

GSE40762 SC-502
MCF-7

Breast
SRR567277 115,745,436 2,763 92

SRR567284 54,319,080 517 95

SRR567287 135,548,148 9,148 109

SRR577748 140,926,888 24,926 95
GSE32465 SC-502

SRR577749 67,248,588 7,801 90

SRR567279 112,861,044 13,816 190
GSE40762 SC-502 MDA-MB-231

SRR567281 129,971,924 11,160 111

SRR577710 119,592,208 13,405 170
GSE32465 SC-502 SK-N-SH Neuroblastoma

SRR577711 94,138,820 12,122 183

SRR500261 147,600,792 1,188 127
GSE38170 SC-502 U2OS Osteosarcoma

SRR500262 45,863,008 584 138
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motif enrichment analysis so that a positive value indicates 
enrichment and a negative value indicates depletion. The 
results showed that experiments in MCF-7 cell lines 
(green bar) clustered together based on their enriched 
motifs compared with the other cell lines, whereas those 
from MDA-MB-231 (brown bar) cell lines clustered with 
other non-breast cells (Figure 3A). 

In Figure 3A, we highlighted three interesting 
groups of enriched motifs. Group A contained the motifs 

enriched in all cell lines. Amongst these common motifs, 
NFYA (NFY CCAAT) has already been confirmed to be 
enriched in U2OS [47] and HeLa [61] cells; FOS and 
AP1 were previously shown to be associated with both 
ERα and FOXM1 binding [61, 62]; and BACH1 and 
BACH2 are two FOXM1 related proteins [63]. This 
group also contained some members of the E2F family 
of TFs involved in the cell cycle [64]. Group B consisted 
of two groups, where group B1 was mainly enriched 

Figure 2: Comparison of FOXM1 binding events in different cell lines. (A) PCA analysis of the normalized binding signal 
of FOXM1 in different ChIP-seq experiments. Colored dots represent different ChIP-seq experiments. The first PC explains 41.13% 
variation and the second PC explains 14.79% variation. (B) Peak overlap analysis based on the called binding peak in different ChIP-seq 
experiments. The color bars in left and top represent different ChIP-seq experiments. (C) Genomic regions distribution of FOXM1 binding 
peaks in different ChIP-seq experiments. (D) Two specific examples of FOXM1 binding.
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in MCF-7 cells while group B2 was specific to MCF-7 
cells. Specifically, motifs in group B1 consisted of diverse 
forkhead family and GATA family motifs, including 
FOXA1, FOXA2 and GATA3 which have been shown to 
act as ERα pioneer factors [65–67]. On the other hand, 
group B2 contained motifs associated with many kinds of 
receptors including estrogen receptor, nuclear receptor, 
peroxisome proliferator-activated receptor and thyroid 
hormone receptor. In group B2, ESR1 and ESRRA are 
two specific motifs for ERα [68, 69], and RORA (nuclear 
receptor related) and PPARG (peroxisome proliferator-
activated receptor related) have been shown to associate 
with ERα [70, 71]. Group C contained motifs that are 
specifically enriched in GM12878 cells, and motifs which 
are associated with signal transduction, activation of 
transcription, and interferon regulatory factors. 

Moreover, we compared log2-transformed ESs of 
five different motifs between the cluster groups including 
NFYA, AP-1, FOXA1, ESR1, and ISRE (Figure 3B). As 
shown, FOXA1 (Mann Whitney Wilcoxon Test P = 4e-
03) and ESR1 (Mann Whitney Wilcoxon Test P = 3e-05) 
were significantly enriched in MCF-7 cell lines compared 
to others (Figure 3B). The same result was also observed 
for other ER-related motifs (see Supplementary Figure 3). 
These findings suggest that ERα may interact with 
FOXM1 and mediate FOXM1 binding in MCF-7 cell line. 

Moreover, we conducted a preliminary exploration 
into other co-factors that may modulate FOXM1 binding 
activity. Due to higher enrichment in non-MCF-7 cells, 
we used NFH3 (see Supplementary Figure 4), a FOXM1 
motif included in the TF Encyclopedia dataset [72] as the 
primary motif for SpaMo algorithm [73]. Besides, we 
utilized HOCOMOCO V10 [74], a human motif database 
as the secondary motif database as SpaMo input. Our 
results (see Supplementary Table 1) suggest that the motif 
of STAT3, a regulator involved in signal transduction and 
activation of transcription [75], was enriched in all cell 
lines except GM12878. 

Comparison of FOXM1 target genes

Next, we explored whether the differential genome-
wide binding sites of FOXM1 results in the regulation of 
different target genes across varied cell lines. To identify 
the target genes of FOXM1, we applied a probabilistic 
model, TIP [76], to determine target genes for each 
ChIP-seq experiment (see Supplementary Table 2). The 
numbers of identified target genes for each ChIP-seq 
experiment were shown in Table 1, with a range of 92 
(in MCF-7 cell) to 274 (in ECC-1 cell). According to 
the target genes, pair-wised enrichment analyses were 
conducted to calculate the corresponding p values. Based 
on negative log 10 transferred p values, the cluster results 
showed that target genes from all MCF-7 related ChIP-
seq experiments exhibit significant overlap with each other 
but little overlap with those from other cells (Figure 4A). 

Consistent with our binding peaks and motif analyses, 
target genes detected in MDA-MB-231 and other non-
breast cell lines displayed highly degree of consistency. 

Furthermore, we performed comprehensive pathway 
analysis on target genes in each ChIP-seq experiment 
using the Molecular Signatures database (MSigDB) 
[77] C2 pathway database which integrates KEGG [78], 
REACTOME [79], Pathway Interaction Database (PID) 
[80] and BioCarta [81] databases. Because FOXM1 is a 
critical cell cycle regulating TF [82], we expected that the 
most significant enriched pathways would be related to 
the cell cycle. Indeed, our results showed that pathways 
related to the cell cycle were significantly enriched in 
FOXM1 target genes in MDA-MB-231 and other non-
breast cell lines (Figure 4B). However, pathways enriched 
in FOXM1 target genes from MCF-7 cell lines exhibited 
lower enrichment in the cell cycle pathway (Figure 4C, 
Mann Whitney Wilcoxon Test P = 7e-04) but higher 
enrichment in an estrogen receptor related pathway, 
ER non-genomic pathway (Figure 4C, Mann Whitney 
Wilcoxon Test P = 0.005), when compared to other cell 
lines (Figure 4B). These results suggest that recruitment 
by ERα modifies the binding of FOXM1 in MCF-7 cell 
lines resulting in distinctive binding sites that differ from 
that of MDA-MB-231 and other non-breast cell lines. 
Moreover, the target genes of FOXM1 displayed a high 
degree of concordance between MDA-MD-231 and the 
other 6 non-breast cell lines even though they are derived 
from diverse tissues.

Prognostic prediction based on FOXM1 activity 
in breast cancer

Several studies have shown that the transcriptional 
activity of FOXM1 is more predictive than its mRNA 
expression in cancers [43, 48–50]. To further investigate 
whether the different binding of FOXM1 is able to disturb 
its activity, we applied a computational method that infers 
FOXM1 activity based on its target gene expression, and 
examined whether it is prognosticative. We performed our 
analysis in the METABRIC breast cancer dataset, which 
contains gene expression and clinical profiles for 1,992 
breast cancer patients [83]. We first merged target genes 
identified in each cell line into a core set of FOXM1 target 
genes and employed the BASE algorithm [55] to calculate 
an individual Regulatory Activity Score (iRAS) for each 
tumor sample based on the expression of FOXM1 target 
genes in the tumor gene expression profile. A higher iRAS 
in a tumor sample indicates that target genes of FOXM1 
tend to have higher expression level and therefore a higher 
transcriptional activity of FOXM1 in this sample. Since 
FOXM1 target genes have been identified in 8 cell lines, 
we inferred FOXM1 activities in breast cancer samples 
using target genes identified in each individual cell 
line, resulting in eight iRASs for a tumor sample. Here, 
we utilized the target genes from the two breast cancer 
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cell lines, MCF-7 and MDA-MB-231, as an example 
to investigate whether the inferred TF activities are 
associated with cancer outcome. Specifically, we denote 
FOXM1 activity inferred based on target genes identified 
in MCF-7 cell line as iRASMCF-7. Similarly, iRASMDA 
indicates FOXM1 activity inferred based on its target 
genes in MDA-MB-231 cell line.

We first compared the inferred regulatory activities 
of FOXM1 in ER-positive (ER+) versus ER-negative 

(ER−) breast tumor samples. When FOXM1 targets 
identified in MCF-7 were used for activity inference, 
the resulting iRASMCF-7 showed significant difference 
between ER+ and ER− samples (Figure 5A). As shown, 
ER+ samples exhibited significantly higher iRASMCF-7 
than ER- samples (Mann Whitney Wilcoxon Test P = 4e-
98). However, when we stratified patients into ER+ and 
ER- groups, iRASMCF-7 is not associated with prognosis 
any more (P > 0.1). This indicates that FOXM1 targets  

Figure 3: Comparison of enriched motifs of FOXM1 in different cells. (A) Motif enrichment analyses across all FOXM1 
ChIP-seq experiments. The color bars in the left represent different cell lines. The value in heatmap is log 2 transferred enrichment score 
(ES). (B) Five specific examples show the different binding of FOXM1 in different ChIP-seq experiments. Barplot was performed in log2 
transferred enrichment scores. * represents the significance of enrichment (FDR < 0.01). Mann Whitney Wilcoxon Test p-value was showed 
in the FOXA1 and ESR1 examples.



Oncotarget76505www.impactjournals.com/oncotarget

in MCF-7 cell lines reflect estrogen receptor activity in 
breast tumor samples, implying that ERα serves as the 
major factor that mediates FOXM1 genomic binding in 
ER+ breast cancer. Namely, in majority binding sites, 
ERα mediates FOXM1 through its DNA motifs, and 
thus regulating the transcription of ERα target genes. 
We further divided patients into two groups based on 
iRASMCF-7, patients with high iRASMCF-7 (iRASMCF-7 > 0) 
and those with low iRASMCF-7 (iRASMCF-7 < 0), and 
compared their prognosis. Patients with high iRASMCF-7 

exhibited better prognosis compared to those with 
low iRASMCF-7 (Figure 5B, log-rank P = 6e-05). These 
observations further implied that iRASMCF-7 primarily 
reflects ERα activity in a tumor sample where higher ERα 
activity indicates greater sensitivity to hormone treatment, 
even though the major function of FOXM1 is to regulate 
cell cycle division.

We then examined the regulatory activity of 
FOXM1 inferred based on its targets in MDA-MB-231, 
an ER-negative breast cancer cell line, and generated the 

Figure 4: Comparison of target genes of FOXM1 in different cells. (A) Heatmap of the enrichment of the target genes of pair-
wised ChIP-seq experiments. The color bars around the heat map represent different cells. (B) Heatmap of pathway enrichment results 
based on negative log 10 transferred p-value. The color bars in the left represent different cells. (C) Enrichment scores comparison of two 
pathways, the cell cycle and the ER nongenomic, in MCF-7 and other cell lines. Colored bars represent corresponding cells. Mann Whitney 
Wilcoxon Test p-value was showed.
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corresponding iRASMDA. We observed significantly lower 
iRASMDA in ER+ than in ER- tumor samples (Figure 5C, 
Mann Whitney Wilcoxon Test P = 1e-65), which is 
opposite to what we observed for iRASMCF-7. Furthermore, 
patients with low iRASMDA had better prognosis compared 
to those with high iRASMDA (Figure 5D, log-rank P = 7e-
17). These results suggested that iRASMDA reflects the 
activity of FOXM1 in regulating cell proliferation. Lower 
iRASMDA indicates slower proliferation of tumor cells in a 
patient’s sample, and therefore informs better prognosis. 
The relevance of iRASMDA with cell proliferation was 
further confirmed by its high positive correlation with 
the E2F4 score (Pearson Coefficient R = 0.93, see 
Supplementary Figure 5), which is calculated based on an 
E2F4 gene signature that serves as an accurate indicator 
of cell proliferation in breast tumor cells [84]. In contrast, 
iRASMCF-7 inferred based on FOXM1 targets in MCF-7 
cell lines showed no significant correlation with iRASE2F4 
(Pearson Coefficient R = 0.017, see Supplementary 
Figure 5). However, the calculated iRASMCF-7 had high 
positive correlation (Pearson Coefficient R = 0.45, see 
Supplementary Figure 5) with ESR1 gene expression while 
iRASMDA was negatively correlated (Pearson Coefficient 
R = −0.34, Supplementary Figure 5) with ESR1 gene 
expression. Moreover, we also inferred the FOXM1 
activities in breast tumor samples based on its target 
genes identified in the other six non-breast cell lines. As 
expected the resulting iRAS were similar to iRASMDA but 
different from iRASMCF-7 in terms of prognostic prediction 
(Supplementary Figures 5 and 6). 

Our observations indicate that FOXM1 activity 
inferred based on its targets in MCF-7 cell line serves as 
a proxy for ERα activity, while iRASMDA and other iRAS 
calculated using the target genes in non-breast cells serve 
as proxies for proliferation. Since both ER status and 
proliferation are critical factors for determining patient 
prognosis in breast cancer, we postulated that prognosis 
could be better predicated based on a combination of 
iRASMCF-7 and iRASMDA. Specifically, we divided the 
patients into four categories based on both iRASMCF-7 
and iRASMDA (Figure 5E). For example, patients (green) 
with high iRASMCF-7 and low iRASMDA were classified 
as group 1 which encompassed 33.4% of patients in the 
METABRIC dataset, 97.5% of which were ER+ patients. 
In contrast, patients (pink) in group 4 contained 23.1% of 
METABRIC patients with only 35.1% of these patients 
being ER+. This observation further suggests that the 
calculated iRASMCF-7 reflects the activity of estrogen 
receptor, which is consistent with Figure 5A where ER+ 
patients exhibited higher iRASMCF-7 than ER- patients. 
More interestingly, when we compared group 1 with 
group 4, we found that ER+ patients are more likely to 
maintain lower cell proliferation. We further found that 
patients in group 1 have the best outcome compared to the 
other 3 groups (Figure 5F, log-rank P = 3e-16), as these 
patients are associated with higher ERα activity and lower 

proliferation. Moreover, patients in group 1 and 2 had 
better prognosis compared to those in group 3 and 4 which 
implies that proliferation is more prognosticative than ER 
activity in breast cancer. These observations suggest that 
the combination of the inferred activities of both ERα 
and proliferation can provide more precise prognostic 
predictions in breast cancer.

DISCUSSION

TFs play crucial roles in regulating gene expression 
by binding to many cis-regulatory elements that decide 
cell fate. ChIP-seq technology has been widely utilized to 
investigate the binding sites of several TFs in a panoply 
of biological contexts. Intuitively, we would expect to 
observe more similar genomic binding profiles of a TF in 
cell lines from the same or more closely related tissues. 
However, our analyses on FOXM1, a well-known cell 
cycle regulator [85], provide an example showing that 
the overall genetic similarity of cell lines does not always 
hold precedent over context-specific TF co-factors in 
determining TF binding profiles. 

In this study, we focus on the binding events of 
FOXM1 using 23 ChIP-seq experiments from 8 human 
cell lines that encompass 7 different tissues (Table 1). 
We comprehensively examine the binding patterns of 
FOXM1 across 4 information layers including raw 
binding signals, binding peaks, target genes, and regulator 
activity (Figure 1). The PCA analysis of raw binding 
signals showed that ChIP-seq experiments in MDA-
MB-231 clustered with HEK293, HeLa and U2OS cell 
lines signals while those from MCF-7 cell lines group 
together independently. This is surprising due to the fact 
that MCF-7 and MDA-MB-231 are both breast cancer cell 
lines that are dissimilar in their FOXM1 binding profiles. 
In addition, binding profiles in MDA-MB-231 are more 
similar to those from other non-breast tissues.

Peaks called in MCF-7 cell lines exhibited high 
overlap with each other even though the total number of 
peaks called differed between experiments. Contrastingly, 
peaks identified in another breast cancer cell line, MDA-
MB-231, showed a high degree of overlap with other 
non-breast cell lines. Furthermore, utilizing the called 
binding peaks of FOXM1, we compared motifs enriched 
in different ChIP-seq experiments and demonstrated 
that the enriched motifs are highly overlapped between 
MCF-7 ChIP-seq experiments while those in MDA-
MB-231 were extremely similar with that in the other 
non-breast cell lines. Notably, peaks called in MCF-7 cell 
lines were significantly enriched in ERα related motifs. 
Similar results are observed in the comparison of target 
genes as well. Specifically, genes identified in MCF-7 
cell lines were highly redundant, whereas genes identified 
in MDA-MB-231 cell lines showed greater overlap with 
those found in non-breast cell lines. Additionally, the cell 
cycle pathway was highly enriched in FOXM1 target 
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Figure 5: Associations between different FOXM1 activities and primary breast cancer sample prognosis. (A) Boxplot for 
iRASMCF-7 of ER+ and ER- patients. (B) Survival curve for ER+ and ER- patients with high or low iRASMCF. (C) Boxplot for iRASMDA of 
ER+ and ER- patients. (D) Survival curve for ER+ and ER- patients with high or low iRASMDA. (E) Distribution of patients based on both 
iRASMCF-7 and iRASMDA. Red dots: patients with both positive iRASMCF-7 and iRASMDA. Blue dots: patients with both negative iRASMCF-7 
and iRASMDA. Green dots: patients with positive iRASMCF-7 and negative iRASMDA. Pink dots: patients with negative iRASMCF-7 and positive 
iRASMDA. The percentages at four corners are the fractions of patients with ER+ in the corresponding group. The number 1~4 mapped to 
the survival curves. (F) Survival curves for the four patient groups.



Oncotarget76508www.impactjournals.com/oncotarget

genes identified in MDA-MB-231 and non-breast cell 
lines, but not in MCF-7. However, the ER non-genomic 
pathway was significantly enriched in target genes 
identified in MCF-7 cell lines. Interestingly, ECC-1, an 
endometrial cell line that is also ER positive cells, shows 
similar pattern with other non-MCF-7 cell lines in terms 
of FOXM1 binding, suggesting that the effect of co-factor 
ERα on FOXM1 binding might be breast tissue-specific.

Based on these results, we suspected that FOXM1 
and ERα might exhibit a physical functional interaction 
in MCF-7 cell lines which is consistent with reports 
from previous studies [59, 86, 87]. We hypothesized that 
this interaction alters the binding properties of FOXM1 
in MCF-7 cell line and modulates FOXM1-driven 
transcriptional output. Sanders et al. [59] indicated that 
the recruitment effects of ERα on FOXM1 binding in ER 
positive breast cancer cell lines differs in ER negative cell 
lines. In our study, we demonstrate that the influence of 
ERα not only causes differences between the two breast 
cancer cell lines, but also induces differences between ER 
positive breast cancer cell lines and non-breast cancer cell 
lines. Moreover, the binding sites of FOXM1 in MDA-
MB-231, an ER negative breast cancer cell line, and those 
in non-breast cell lines showed a high degree of overlap 
even though they are classified as different tissues. 
These results suggest that the binding of FOXM1 can be 
modulated by a co-factor such as ERα, and this interaction 
lead to significant changes in activated pathways that hold 
precedence over tissue-specificity.

Lastly, we further tested whether the varied binding 
affects the overall regulatory activity of FOXM1 in a cell 
type-specific fashion. In support of our earlier results, we 
found that the activity of FOXM1 is mainly captured by 
ERα binding events in MCF-7 cell line which reflects ERα 
activity. In contrast, the FOXM1 activity inferred using 
target genes in MDA-MB-231 or non-breast cell lines, 
is more indicative of cell proliferation. Both inferred 
activities are significantly predictive of breast cancer 
prognosis. Nevertheless, the results of multivariate Cox 
regression model suggested that the activity of FOXM1 
in MDA-MB-231 cell line, proliferation activity, still is an 
independent biomarker in breast cancer sample prognosis 
(see Supplementary Table 3). While FOXM1 activity 
in MCF-7 cells is not associated with prognosis after 
considering clinical variables which is consistent with 
the result of ER status. Moreover, combining information 
about the activity of both estrogen receptor and cell 
proliferation activities results in a gene signature that 
predicts patient prognosis with high accuracy.

In light of our findings, we were surprised by how 
the influence of a single co-factor on the binding patterns 
of a certain TF could induce a completely different 
binding profile. The co-factor discovery analysis (see 
Supplementary Table 1) suggests that STAT3 might be a 
potential co-factor of FOXM1, in line with previous report 
that the activation of FOXM1 is dependent on STAT3 

activity [88]. Because of the diversity and uncertainty 
of FOXM1 motifs (see Supplementary Figure 4), we 
considered this analysis as a preliminary exploration to 
provide further directions.

In view of our analyses, we inferred the binding 
patterns of FOXM1 in different cell lines based on its 
physical interactions with different co-factors. In MCF-
7 cell lines FOXM1 binding might be mediated by 
ERα, supporting the following two possible patterns: 
(1) FOXM1 interacts with ERα and both bind their own 
motifs, eliciting a cooperative binding pattern, and (2) 
FOXM1 interacts with ERα but only ERα binds its DNA 
motif (Figure 6A). Our motif enrichment results (Figure 
3A) indicate that FOXM1 binding sites in MCF-7 cells 
are enriched not only in ER-related motifs but also in cell 
cycle related motifs. This observation suggests that the 
cooperative binding (Figure 6A, pattern 1) is the more 
likely to be the binding pattern of FOXM1 in MCF-7, 
which is in agreement with the previous study by Sanders 
et al. [59]. In contrast, in MDA-MB-231 and the non-
breast cell lines FOXM1 may have four possible binding 
patterns (Figure 6B). (1) FOXM1 interacts with another 
TF x, each binding with its own motif; (2) FOXM1 binds 
with its motif without interacting with a co-factor. (3) 
FOXM1 interacts with another TF x, but DNA binding 
is mediated by FOXM1 motif. (4) FOXM1 interacts with 
another TF x that binds with its motif. These four binding 
patterns may co-exist in MCF-7 and non-breast cancer cell 
lines. When ChIP-seq data for FOXM1 are generated in 
more cell lines, we may expect to observe in some cell 
lines that FOXM1 binding events are mainly mediated 
by the interaction of another TF x with its DNA motif as 
observed in MCF-7 cells. 

Although the FOXM1 ChIP-seq data were collected 
from 6 different studies with different FOXM1 antibodies 
and sequence depths, we achieved consistent results 
according to the comparisons based on raw signals, 
binding peaks, motifs and target genes. Our systematic 
analyses revealed that binding of FOXM1 in MCF-7 cell 
line differs with MDA-MB-231 and other non-breast cell 
lines. Moreover, the binding of FOXM1 exhibited highly 
similarities in cell lines from MDA-MB-231 and six other 
different tissues. Our results provide new insights into TF 
binding and suggest that some TFs might not be as affected 
by tissue type as previously thought. However, there exists 
some limitations to our methods. First, noise caused by 
the hybridization process in ChIP-seq experiments[3] 
may influence the accuracy of our results. Second, the 
computational nature of our analysis is unable to directly 
reveal a direct PPI between ERα and FOXM1. However, 
a previous study by Sander et al. [59] revealed that ERα 
co-immunoprecipitates with FOXM1 demonstrating that 
they are able to interact in vitro. In summary, our analysis 
robustly demonstrated altered FOXM1 binding as a result 
of ERα activity and provided new insights concerning the 
binding modes of FOXM1 in different cell types.
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MATERIALS AND METHODS

Collection of FOXM1 ChIP-seq experiments

We retrieved 23 FOXM1 ChIP-seq experiments 
from the NCBI GEO database [51] (Table 1). We 
downloaded two FOXM1 ChIP-seq experiments 
performed in ECC-1 cells (endometrium cancer cell line), 
two ChIP-seq experiments performed in GM12878 cells 
(blood cancer) and two ChIP-seq experiments performed 
in SK-N-SH cells (neuroblastoma cancer) from ENCODE 
using Series accession number GSE32465 [46]. Two 
FOXM1 ChIP-seq experiments in HEK293 cells (kidney 
cancer cell line) were acquired using Series accession 
number GSE60032 [44]. Two FOXM1 ChIP-seq 
experiments performed in HeLa cells were downloaded 
under Series accession number GSE52098 [45]. Two 
FOXM1 ChIP-seq experiments performed in U2OS cells 
(osteosarcoma cancer cell line) were downloaded under 
Series accession number GSE38170 [47]. Two FOXM1 
ChIP-seq experiments performed in MDA-MB-231 
cells (breast cancer cell line) were downloaded with 
Series accession number GSE40762 [59]. Nine FOXM1 

ChIP-seq experiments performed in MCF-7 cells (breast 
cancer cell line) were downloaded under Series accession 
numbers GSE32465 [46], GSE72977 [43], and GSE40762 
[59]. The antibodies used in GSE60032 and GSE72977 
are GTX-102170 and SC-501, respectively. In addition, 
FOXM1 antibody SC-502 is used in the other experiments.  

Breast cancer database

In this study, we downloaded the METABRIC breast 
cancer dataset [83] to calculate iRAS and perform survival 
analysis with the accession number EGAS00000000083. 
This dataset contains gene expression profiles and 
clinicopathological data for 1,992 breast cancer samples 
including time-to-event information and ER status. 

ChIP-seq reads alignment

After collecting the FOXM1 ChIP-seq experiments, 
we first used NCBI Sequence Read Archive [89] to align 
the reads in each experiment. Fastq-dump was applied 
to convert the raw ChIP-seq experiment profiles to fastq 
files. We used Bowtie [90] to map reads to  the UCSC 

Figure 6: Co-binding patterns for FOXM1 in different cells. (A) Two possible co-binding pattern of ERa and FOXM1 in MCF-7 
cell lines. (B) Four possible co-binding patterns in MDA-MB-231 and other non-breast cell lines.
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hg19 human sequence and generated SAM files for each 
ChIP-seq experiment. We then sorted these SAM files 
using SAM tools [91] and then generated bedGraph files 
using BEDtools [92]. The resulting reads for each ChIP-
seq experiment were listed in Table 1. The bedGraph 
files were further used to perform PCA analysis [52] and 
display specific peaks with Integrative Genomics Viewer 
[93].

ChIP-seq peak calling and Genomic distribution 
of binding peaks

Using the generated SAM files, significant peaks 
were called by MACS2 [56] setting q-value cutoff as 
0.01. The number of called peaks for each experiment 
were shown in Table 1. The peaks overlap coefficients 
were used to cluster ChIP-seq experiments. The Cis-
regulatory Element Annotation System [94] was applied 
to functionally annotate binding peaks across the genome.

Motif enrichment analysis

In our study, we utilized two high-quality 
transcription factor binding profile databases, TRANSFAC 
[53] and JASPAR [54] , to perform the enrichment 
analysis. We used FIMO [95] to scan peak regions for 
occurrences of all the 687 motifs contained in the two 
databases. Second, we refined the called peaks using the 
summit files generated by MACS [56]. Specifically, for 
a given peak, we set up a region surrounding its summit 
(from −250 to 250 of summit). Then, the overlapped 
district of the peak and this region was considered as the 
refined peak. To perform the enrichment analysis, we set 
up two control regions (the same length of the refined 
peak) for each refined peak. One is upstream of the refined 
peak and ends at the start position of the refined peak. The 
other is downstream of the refined peak and starts at the 
ending position of the refined peak. Third, enrichment 
score (ES) was calculated and corresponding p value was 
calculated using Chi-squared test. The function heatmap.2 
from the R package “gplots” was used to show the motif 
enrichment analysis results after log 2 transformation of 
the ES.

Identification of target genes

We used the TIP algorithm [76] to identify the target 
genes of FOXM1 for different ChIP-seq experiments 
(bedGraph files) by assigning each gene a probability 
of being bound by FOXM1 based on the averaged 
background binding signal. An FDR threshold of 0.01 
was used to identify putative target genes of FOXM1 for 
each ChIP-seq experiment. The number of target genes 
identified in each experiment are shown in Table 1 and 
the specific genes are listed in an additional table (see 
Supplementary Table 1). Moreover, the average signal 

of FOXM1 binding in the DNA region surrounding TSS 
profiles were generated as the output of the TIP algorithm. 
These profiles were applied to show the FOXM1 binding 
distribution around gene TSSs (from −3 kb to 3 kb of TSS).

Pathway enrichment analysis

In our study, we used the MSigDB [77] C2 pathway 
database to perform pathway enrichment analysis. The 
C2 database integrates 4 independent pathway datasets 
including REACTOME, PID, BIOCARTA, and KEGG 
[78–81]. We excluded pathways containing less than 
40 target genes and calculated the ES and p-value 
for all FOXM1 target gene sets using a two-sided 
hypergeometric test. Clustering analysis of pathway 
enrichment was performed by log10-transforming the 
enrichment p-values and assigning a positive value if the 
corresponding ES was < 1 and a negative value if the ES 
was > 1. All p-value calculations were performed using the 
R “Hypergeometric” package and clustering analysis was 
implemented using the “gplots” package in R.

Calculation of FOXM1 activity

According to the target gene sets identified using 
our previously TIP algorithm [76], we first merged target 
genes identified in each cell line into a core set of FOXM1 
binding affinity data. Specifically, gj = {g1,j, g2,j, …gi,j, …, 
gn,j}, where gj is the target gene set for cell line j, gi,j is the 
ith gene in whole human genome, n is the total number 
of whole human genome genes. gi,j is 1 suggests that the 
ith gene is FOXM1 target gene in cell line j, whereas, 
the ith gene is non-target gene. Integrating breast cancer 
samples gene expression profiles, we employed BASE 
[55], a rank-based algorithm, to infer an iRAS for each 
breast tumor. Briefly, for a given sample S = {s1, s2, …, si, 
…, sn}, where si is expression level of the ith gene. Basing 
on the FOXM1 binding affinity data, BASE calculated 
a cumulative distribution function for both target genes 
and non-target genes, denoting as T(i) and Non-T(i). The 
maximum deviation between these two functions infers 
the similarity score between the binding affinity data 
and sample gene expression. After 1000 times random 
permutation, we normalized those scores and got the iRAS 
which infers the activity of FOXM1 in a specific sample.

Survival analysis

The Kaplan-Meier method was applied to compare 
survival prognosis of patients in different groups and the 
log-rank test was used to calculate the p-value. Multivariate 
cox regression model was used to examine the independent 
prognostic power of iRAS considering important clinical 
variables including age, tumor stage, tumor grade, ER 
status, PR status and HER2 status.  The R package 
“survival” was used to implement survival analysis. 
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