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ABSTRACT

A new class of kernel estimates is proposed for long run variance and spectral
density estimation. The kernels are called steep origin kernels and are related to a
class of sharp origin kernels explored by the authors (2003) in other work. They
are constructed by exponentiating a mother kernel (a conventional lag kernel that
is smooth at the origin) and they can be used without truncation or bandwidth
parameters. Depending on whether the exponent is allowed to grow with the sample
size, we establish different asymptotic approximations to the sampling distribution
of the proposed estimator. When the exponent is passed to infinity with the sample
size, the new estimator is consistent and shown to be asymptotically normal. It is
shown that, unlike conventional kernel estimation where an optimal choice of kernel
is possible in terms of MSE criteria (Priestley, 1962; Andrews, 1991), steep origin
kernels are asymptotically MSE equivalent, so that choice of mother kernel does not
matter asymptotically. When the exponent is fixed, the new estimator is inconsistent
and has a nonstandard limiting distribution. It is shown via Monte Carlo experiments
that, when the chosen exponent is small in practical applications, the nonstandard
limit theory provides better approximations to the finite sampling distributions of
the spectral density estimator and the associated test statistic in regression settings.

Key words and Phrases: Exponentiated kernel, lag kernel, long run variance, optimal
exponent, spectral window, spectrum.

JEL Classification: C22



1 Introduction and Motivation

Following the vast time series literature on spectral estimation, kernel estimates were
proposed and analyzed in the econometric literature for long run variance (LRV) and
heteroskedasticity and autocorrelation consistent (HAC) covariance matrix estima-
tion. These procedures have been found to be particularly useful in the construction
of robust regression tests, unit root tests, and cointegration estimators. There is now
a wide literature discussing these procedures, their various refinements and data-
based empirical implementations in econometrics (see den Haan and Levin, 1997, for
a recent review).

It is known that in cases like robust hypothesis testing, consistent HAC estimates
are not needed in order to produce asymptotically valid tests. In recent work on this
issue, Kiefer and Vogelsang (2002a, 2002b) have proposed the use of inconsistent HAC
estimates based on conventional kernels but with the bandwidth parameter (M) set
equal to the sample size (7). Kiefer and Vogelsang show that such estimates lead to
asymptotically valid tests that can have better finite sample size properties than tests
based on consistent HAC estimates. Their power analysis and simulations reveal that
the Bartlett kernel among the common choices of kernel produces the highest power
function in regression testing when M = T, although power is noticeably less than
that which can be attained using conventional procedures involving consistent HAC
estimators.

In other work, the authors (2003) recently showed that sharp origin kernels, con-
structed by exponentiating the Bartlett kernel, can improve the power of linear hy-
pothesis tests while eliminating truncation and retaining some of the size advantages
noticed by Kiefer and Vogelsang. The present paper pursues this approach by con-
sidering the use of mother kernels other than the Bartlett kernel in the construction
of LRV estimates. In particular, we consider as mother kernels a class of quadratic
kernels that includes many of the popular kernels that are used in practical work,
such as the Parzen and quadratic spectral (QS) kernels. Exponentiating these ker-
nels produces a class of kernels that have steep but smooth behavior at the origin,
in contrast to the Bartlett kernel which produces a sharp, non differentiable kernel
at the origin. Farlier work on quadratic kernels with the use of bandwidths M < T
showed that there are certain advantages, including improved rates of convergence,
arising from the smooth behavior of such kernels at the origin. The present paper
is motivated to explore whether similar advantages may arise in the use of exponen-
tiated kernels of this type when M = T and the exponent is passed to infinity or
assumed to be fixed as the sample size increases.

Accordingly, the paper first develops an asymptotic theory for this new class of
steep origin kernel estimates, assuming that the exponent (p) goes to infinity at an
appropriate rate with the sample size. For convenience, we call this type of asymp-
totics “large-p asymptotics”. The paper establishes the consistency and asymptotic
normality, and gives formulae for asymptotic bias, variance and mean squared error
(MSE) of the new kernel estimator. It is shown that data-determined selection of
the exponent parameter is possible and rules are provided for optimal choice of the
exponent based on a minimum MSE error criteria. Optimal rates of convergence for



steep origin kernel estimates constructed from quadratic mother kernels are shown to
be faster than those based on exponentiating the Bartlett kernel. This steep origin
approach to LRV estimation applies more generally to cases of spectral density and
probability density estimation and the paper illustrates such extensions by consider-
ing spectral density estimation at frequencies w # 0.

The paper next considers the “fixed-p” asymptotics in which p is assumed to be
fixed as the sample size increases. Both the LRV estimation and spectral density
estimation at nonzero frequencies are considered. Under the fixed-p asymptotics, the
LRV and spectral density estimators are inconsistent and converge to nonstandard
distributions. Statistical inference can be made in a similar way to that under the
large-p asymptotics. Since no rate condition is imposed on the exponent and the
limiting distribution reflects the kernel used, the fixed-p asymptotics may be better
able to approximate the finite sample distribution than the large-p asymptotics when
p is not large in practice.

Finally, the paper conducts three Monte Carlo experiments to examine the finite
sample properties of the proposed spectral density estimators and associated tests.
In the first experiment, we compare the root mean squared errors (RMSEs) of differ-
ent kernel estimators using data-driven exponents or bandwidths. Simulation results
show that the steep kernel estimators have very competitive RMSE-performance rel-
ative to the conventional QS estimator in an overall sense for the sample sizes and
frequencies considered. In particular, for spectral density estimation at nonzero fre-
quencies, the steep kernel estimators outperform the conventional QS estimator when
there is a large peak at the target frequency. In the second experiment, we compare
the finite sample coverage and length of different 95% confidence intervals. We find
that confidence intervals based on the fixed-p asymptotics have the best finite sample
performance when both the length and coverage error are taken into account. In the
last experiment, we compare the size and power of robust regression tests using steep
kernels. We propose a new t— test which produces favorable results for both size and
power in regression testing and this test is recommended for practical use.

The present contribution is related to recent work by Kiefer and Vogelsang (2003)
and Hashimzade and Vogelsang (2004). These authors consider LRV and spectral
density estimation using traditional kernels when the bandwidth (M) is set propor-
tional to the sample size ('), i.e. M = bT for some b € (0,1). Their approach is
equivalent to contracting traditional kernels k(-) to get ky(x) = k(x/b) and using the
contracted kernels ky(-) in the LRV and spectral density estimation without trunca-
tion. Both contracted and exponentiated kernels are designed to improve the power
of existing robust regression tests with truncation. The associated estimators and
tests share many properties. For example, the size distortion and power of the new
robust regression tests increase as p increases or b decreases. Nevertheless, it is dif-
ficult to characterize the exact relationship between these two types of strategies.
In the special cases when exponential type kernels such as k(x) = exp(—|z|) and
k(z) = exp(—|z|?) are used, these two strategies lead to identical estimators and
statistical tests when p and b are appropriately chosen. Exponential kernels of this
type have not been used before in LRV estimation and appear in spectral density



estimation only in the Abel estimate (c.f. Hannan, 1970, p. 279).

The rest of the paper is organized as follows. Section 2 describes a class of steep
origin kernels, characterizes their asymptotic form, develops a central limit theory,
provides bias, variance and MSE formulae and discusses data-determined optimal
exponent selection. This section assumes that the exponent goes to infinity as the
sample size increases. Section 3 provides a similar analysis for the corresponding
spectral density estimates at non-zero frequencies. Section 4 assumes that the expo-
nent is fixed and develops alternative asymptotic approximations to the finite sample
distributions of the LRV estimator and spectral density estimator. Section 5 reports
some simulation evidence on the finite sample performance of these estimates and
associated tests. Conclusions are given in Section 6. Proofs and other technical ma-
terial are included in the Appendix (Section 7) and a glossary of notation is given in
Section 8.

2 LRV Estimation with Steep Origin Kernels

We construct a class of steep origin kernels for use in LRV estimation based on
quadratic mother kernels, study the asymptotic form of the associated windows, and
develop an asymptotic theory for the estimates.

2.1 Exponentiated Quadratic Kernels

Consider an m-vector stationary process {X,g};f:1 with non-singular spectral density
matrix fyx (A). The long run variance matrix of X; is defined as

Q=7+ (v +74) = 27 fxx(0) 1)
h=1

where v, = E(Xpn — 1) (X¢ — )’ and EXy = p. To estimate , we consider the
following lag kernel estimator of fx x(0)

Fxx(0 Z ki "Yhu (2)

T h="Tt1
where N
3, = :}“ t1 (Xt+h—X)£Xt—X)_I for h >0 3)
" T Zt:—h—i—l (Xt+h — X) (Xt — X) for h <0

X =1/T Zle X4, k, () is equal to k(x) raised to some positive integer power p, i.e.
kp () = k" (2). (4)

When k(z) is the Bartlett kernel, fX x(0) is the sharp origin estimator considered by
Phillips, Sun and Jin (PSJ hereafter, 2003).



Exponentiating the kernel k(x) induces a class of kernels {k, ()} 7+ - The kernel
k(z) itself belongs to this class and is called the mother kernel of the class. This paper
will consider mother kernels that have quadratic behavior at the origin and satisfy
the following assumption.

Assumption 1: (a) k(z) : [ — 1,1] — [0,1] is even, nonnegative and differentiable
with k(0) =1 and k(1) = 0.

(b) For any n > 0, there exists & < 1 such that k(x) <& for |x| > n.

(¢) k(x) has a valid quadratic expansion in a neighborhood of zero:

k(z)=1-ga2®>+o0(2%), as x — 0 for some g > 0. (5)

Under Assumption 1(c), the kernel k(x) has Parzen (1957) exponent ¢ = 2 such

that
1—k(x)

z—0
The Parzen exponent characterizes the smoothness of k(x) at the origin. Assumptions
1(a) and 1(c) imply that £'(0) = 0 and k”(0) = —2g. Thus, the kernels satisfying
Assumption 1 have quadratic behavior around the origin.
Examples of commonly used kernels satisfying Assumption 1 include the Parzen
and quadratic spectral (QS) kernels:

1— 62246z for 0 < |z <1/2,

Parzen kpr(z) =< 2(1—|z|)3 for 1/2 < |z| <1,
0 otherwise.
. _ _25 sin(6mz/5)
Quadratic Spectral kgs(z) = w5 | —6mm 75 cos (6mz/5)

For the Parzen kernel, g = 6. For the quadratic spectral kernel, g = 1872/125. The
Parzen kernel has been used in the literature concerning long run variance estimation.
The quadratic spectral (QS) kernel has some optimality properties in conventional
LRV/HAC estimation. Since the bandwidth is set equal to the sample size, we
effectively restrict the domain of the QS kernel to be [—1, 1], over which the kernel is
positive and may be exponentiated as in (4).

The exponentiated kernel k, (x) satisfies Assumption 1 if k (z) does. Obviously,
k,(x) has series expansion

k:p(:c):l—pg:z:2+0(:c2), asx — 0

and 1~k (2)
—k, (x
lim —2> = pg.
Jim —— Py (6)
Thus, the curvature of k,(z) at the origin increases as p increases. In other words, as
p increases, k,(x) becomes successively more concentrated at the origin and its shape
steeper. k,(x) is therefore called a steep origin kernel. Figs. 1 and 2 graph k,(z) for

p =1,5,10, 20 illustrating these effects.
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Figure 1: Steep origin kernels with the Parzen kernel as the mother kernel

2.2 Asymptotic Bias, Variance and MSE Properties of the LRV/HAC

estimator

This section develops an asymptotic theory for the spectral estimatorfx X /(O) when
p — 00 as T' — oo. Under certain rate conditions on p, we show that fxx(0) is
consistent for fx x(0) and has a limiting normal distribution. Of course, as is apparent
from Figs. 1 and 2, the action of p passing to infinity plays a role similar to that
of a bandwidth parameter in that very high order autocorrelations are progressively
downweighted as T' — oc. R

To establish the asymptotic bias and variance of fxx(0), we use the conditions
below.

Assumption 2: X; is a m-vector stationary linear process with mean
o o0
Xe=p+Y Ciejy Y jllCill< oo, (7)
§=0 §=0
where g is #d(0, ) with E || e ||*< o0.

Assumption 3: T%/p° + p/T? — 0 as T — oo and p — oc.

Assumption 2 is convenient and includes many time series of interest in applica-
tions, although condition (7) is stronger than necessary in establishing results for the



Figure 2: Steep origin kernels with the QS kernel as the mother kernel

asymptotic bias and variance. Let f)(?;{ (0) = >3- h?v},, then Assumption 2 implies
that

£ O] <Rl < oo ®)

The boundedness of f)(?;((O) is often assumed in the LRV estimation and spectral
density estimation literature, ensuring that the spectral density has some degree of
smoothness. In particular, (8) ensures that fxx (A\) is twice continuously differen-
tiable and that results for the asymptotic bias, variance and MSE of kernel estimates
can be derived. However, the linear process assumption facilitates asymptotic calcula-
tions and is particularly useful in establishing a central limit theory for our estimates.

Assumption 3 imposes both upper and lower bounds on the rate that p approaches
infinity. Given the lower bound T%/p®> — 0, we can use either the biased covariance
estimate 7, as in (3) or the unbiased covariance estimate 7, in the construction of
fxx(0). The unbiased covariance estimate 7;, is equal to 7, divided by the factor
(1 —|h| /T) . Both approaches lead to the same asymptotic results. Some simulations
by the authors (not reported here) show that the form involving the usual biased
covariance estimator works better in practice. The bounds in Assumption 3 ensure
that the asymptotic bias diminishes as 7" goes to co. They are also used in the proof
of Lemma 2 in Section 2.4.

Assumption 3 holds when p = aT® for some a > 0 and 6/5 < b < 2. Note



that the expansion rate for p implied by Assumption 3 is very different from the
rate condition % + &‘}LT — 0 that was used in developing an asymptotic theory
for the sharp origin kernel in PSJ (2003). While p/T" — 0 in that case, we require
T%/p> — 0 in the present case, so that p tends to infinity much faster. The reason for
this difference is the Bartlett mother kernel rapidly decays from unity at the origin
and less exponentiation is required with this kernel in order to achieve a similar degree
of weighting to the autocorrelogram. On the other hand, the sharp behavior of the
Bartlett kernel at the origin prevents a second order development that enables a
higher rate of convergence in the kernel estimator. So, with this accommodating rate
condition on p, we have the opportunity to achieve both objectives in exponentiating
a quadratic kernel.

Let
Z ]{7 Z)J'L (9)
—T+1
be the spectral window and
1z 2 ;| T
_ Y i =~ _—iA\h
Ixx(\) = d (X - X)eM = o > Ape (10)

vV2rT 1= h=—T+1

be the periodogram. Then

- L Tl " e
Ixx(0) = o h—;ﬂkp(f)% 5 2 K (Xs) Ixx (Xs) - (11)

Note that 7, = [ Ixx(A)ed), so Fxx(0) can also be written as

Fex (0 Z ko a :% RADELY (12)
—T+1

The two representations in (11) and (12) will be used in establishing the asymptotic
variance of fxx(0) in the theorem below.

Before stating the theorem, we introduce some notation. Let K., be the m2xm
commutation matrix (e.g. Magnus and Neudecker, 1979) and I,,2 be the m? x m
identity matrix. Define the Mean Squared Error (MSE) as

2
2

MSE(fxx (0), W) = E {vee(Fxx(0) = fxx(0))W vee( Fxx(0) = fxx(0))}

2

for some m? x m? positive semi-definite weight matrix W.

Theorem 1 Let Assumptions 1-3 hold. Then, we have:
(a) limr—oo (T2/p) (EFxx(0) = fxx(0)) = g/ Ek(0):
(b) T (2—;59)_1/ Var (vee(Fx(0))) = (e + Knn) Fx(0) @ frx(0).

7



(c) If p°/T® — 9 € (0,00), then
Jim TY5MSE( fx x(0), W)

= 9?/5¢%vec (f)(?;{(O))/erc< )((2;{(0))

™

1/2
+ (2—g> ﬂ_l/lotr{W(Imz + Kpm) fxx(0) @ fxx(0)}.

Results (a) and (b) of Theorem 1 are similar to those for the LRV estimate based
on a sharp origin kernel in PSJ (2003). They also bear similarities to those for
conventional LRV estimates as given, for example, in Andrews (1991). Note that the
asymptotic variance of fxx (0) depends explicitly on fx x(0) and the Parzen exponent
parameter pg. In fact, as the proof of part (b) makes clear the asymptotic variance
of fxx(0) can be written in the more conventional form

1
t[ﬁi@MMI+KﬁMQ&x@N&&XmDa

involving the second moment of the kernel k, (z). However, as p — oo, k, (z) con-
centrates at the origin and a Laplace approximation gives

/Vﬂm:(”)mu+dm, (13)

-1 2pg

as shown in (65) in the Appendix. Thus, the critical parameter affecting the asymp-
totic variance is g, the Parzen exponent of the mother kernel & (x) . This point turns
out to be important in constructing comparable exponent sequences for comparing
kernels as discussed below.

Since k, (x) becomes successively more concentrated at the origin as p and T’
increase, the overall effect in this approach is analogous to that of conventional HAC
estimation where increases in the bandwidth parameter M ensure that the band of fre-
quencies narrows as T — oo. When p is large, the increase of the asymptotic bias and
the decrease of the asymptotic variance with pg reflect the usual bias/variance trade-
off. As in the conventional case, for large p the absolute asymptotic bias increases
with the curvature of the true spectral density at the origin. It should be mentioned
that when p is not very large and the data are demeaned, the bias/variance trade-off
becomes more complicated. Theorem 8 in Section 4 shows that when p is small,
the asymptotic bias decreases and the asymptotic variance may increase for certain
kernels as p increases.

Observe that when p%/T8 — ¢ € (0,00), MSE(fxx(0), W) = O (T_4/5) . So
Fxx(0) converges to fxx(0) at the rate of O (T_2/5), which is a faster rate than
in the case of the sharp origin Bartlett kernel. In the latter case, the optimal rate
for the exponent was found to be p = O (TQ/ 3) and the rate of convergence of the
estimate to be O (T -1/ 3) . The T2/ rate of convergence for the steep origin kernel
estimate represents an improvement on the sharp origin Bartlett kernel. Note that the



T—2/5 rate for the steep origin kernel estimate is the same as that of a conventional
(truncated) quadratic kernel estimate with an optimal choice of bandwidth (e.g.,
Hannan, 1970; Andrews, 1991).

With the given expressions for the asymptotic MSE, we may proceed to compare
different mother kernels. However, the mother kernels satisfying Assumption 1 are
not subject to any normalization. In other words, both k(z) and k%(z) for any
a € RT can be used as mother kernels to construct steep origin kernels. It is therefore
meaningless to compare two kernels using the same sequence of exponents. To make
the comparison meaningful, we use comparable exponents defined in the following
sense. Suppose ki (z) is the reference kernel and pp,; is a sequence of exponents to
be used with ki(x). Then the comparable sequence of exponents for kernel ka(z) is
pr,2 such that

—1/2 —-1/2
) T (1) . gl 7(2)
l Vi 0))=1 Vi 0
() ) i (7)),
(14)
where jA’(Xlgf (0) and j?)(g{ (0) are spectral density estimates based on kj(z) and ka(z),
respectively. In view of Theorem 1(b), this definition yields

Pr2 ::glpTJ/92> (15)

where g; and gy are the Parzen parameters for the two kernels (i.e. g = —1/2k; (0),
g2 = —1/2ky(0)). The requirement (15) for pp,1 and pg,o to be comparable expo-
nent sequences adjusts for the scale differences in the kernels that is reflected in the
asymptotic approximation (13) of the second moment of the mother kernel.

When comparable exponents are employed, it is easy to see that the pairs (k1(x), p7.1)
and (k2(z), pr2) produce estimates with the same asymptotic bias, variance and MSE.
This is expected, as the second order derivative K’ (0) is the only parameter that ap-
pears in the expressions for asymptotic bias, variance and MSE. Alternatively, we can
normalize the mother kernels first and then compare the mean squared errors of the
resulting LRV estimates, using the same exponent. As an example, let the Parzen
kernel be the reference kernel. The normalized QS kernel is,

25 (sin (67/5)

125/(372)
kgs(x) = [12%%2 6raj5 cos (67T/5.1?)>:| 1{]z| <1}. (16)

Then, for any p satisfying Assumption 3, (kpr(z))” and (kg(z))” will deliver LRV
estimates with the same asymptotic MSE.

Thus, our asymptotic theory shows that all quadratic kernels are equivalent as-
ymptotically. In effect, since the exponentiated kernels concentrate as p,T — oo,
what matters asymptotically is the local shape of the mother kernel at the origin.
When comparable exponent sequences as in (15) are employed, it follows that the
asymptotic MSE’s of the kernel LRV estimates are the same for all mother kernels
with the same Parzen exponent (here ¢ = 2).

The equivalence of quadratic kernels in our context is in contrast to earlier re-
sults in the LRV /spectral density estimation literature. In the conventional spectral



density estimation, Priestley (1962; 1981, pp.567-571) showed by a variational argu-
ment that the quadratic spectral kernel is preferred in terms of an asymptotic MSE
criterion to other quadratic kernels when comparable bandwidths are used. Later,
Andrews (1991) utilized this result in the context of LRV/HAC estimation. Priest-
ley’s variational argument involves optimizing a quadratic functional with respect
to the spectral window. In the case of steep origin kernels, Lemma 2 below shows
that the spectral window K,()\) has the same asymptotic normal behavior (up to
scaling by the fixed parameter g) for all quadratic kernels windows. This explains
the asymptotic MSE equivalence of steep origin quadratic kernels. Some comparisons
with the asymptotic MSE of conventional (bandwidth driven) quadratic kernels will
be given in the following section.

Of course, the equivalence of quadratic kernels in our case holds only asymptoti-
cally when T is large. In finite samples, different quadratic kernels lead to estimates
with different performance characteristics and they are well known to have different
properties. For example, the Parzen and QS kernels are positive definite and the
resulting LRV estimate is guaranteed to be nonnegative. This property is certainly
desirable and is not shared by kernels which are not positive definite.

2.3 Optimal Exponent Selection

Theorem 1(c) reveals that there is an opportunity for optimal selection of . The first
order condition for minimizing the scaled asymptotic MSE is
2
5

1 T 1/2
- = <%) 9~V (W(I 4 Kn) fxx(0) ® fxx ()}, (17)

9735 gPec (f)(?;( (O))I Wec (f)(?;( (O))

leading to
2

(£)" 0 WU+ Kou) P (0) @ fx(0))

’= 4g2vec (f)(?;((O)), Wvec (fgk(O))

So the optimal p is

2/5
e = 78/51 | YT AW+ Ko fcx(0) @ e (O)}
1v2vee (13 (0)) Wee (135 (0))

(18)

For illustrative purposes, suppose X; is a scalar AR(1) process such that X; =
aX;_ 1+ &, e ~ id(0,02). Then

2 1 2 2 29
g a andf)(?;(:a— a

_ - ) T
PO = i —ap X T i ap v a) 2m (1 - o)t

10



Hence,

2/5
. (VT (1 -t

For this choice of p, the RMSE is

RMSE?,.., = 2.13067~2/5a/5 (1 — a)~"?/%. (20)
In contrast, when sharp origin kernels are used in the construction of fX x(0), PSJ
(2003) showed that the optimal exponent satisfies

1/3
. 1—a? 2
psharp = T2/3 <u> (21)

402
and the resulting RMSE is

RMSE?,,,, = V3T /3 (1 —a)72. (22)

sharp
The ratio of the respective RMSE’s of the sharp and steep kernel estimates is

RMSE?
ShaTP. — ().81294TY/15 (1 — )% 1/5. (23)

RMSEg..,

Table 1 tabulates p%. for the sharp origin kernel and the steep origin kernel for
different values of T'. For steep kernels, we choose the Parzen kernel as the mother
kernel as it is representative of other quadratic kernels. As implied by the asymp-
totics, the values of p}. are much larger for the steep origin kernel than the sharp
origin kernel. Since the ratio RMSES, . /RMSE,.,, is of order T/15, the sharp
kernel estimate is 100% less efficient asymptotically than the steep kernel estimate.
Finite sample performance may not necessarily follow this ordering, however, and
will depend on the magnitudes of T, f, f1) and f2). For example, in the AR(1) case,
when the autoregression parameter is very close to 1, the sharp kernel estimate may

have a smaller RMSE than the steep kernel estimate for moderate T

Table 1: Asymptotically optimal p* for the sharp and
and steep kernels for AR (1) processes

Sharp Bartlett Kernel Steep Parzen Kernel

@ T =50 100 200 1000 T=50 100 200 1000
a=.04 73 115 184 538 510 1548 4693 61634
a=.09 42 67 106 311 245 742 2251 29574
a=.25 20 32 52 152 79 240 729 9584
a=.49 1 18 28 84 25 75 229 3018
a=.81 3 4 7 22 3 10 31 415
a=.90 2 3 5 17 1 3 10 136

11



When p = p*, direct calculation shows that the MSE satisfies:

Jim T*MSE(fx x (0), W) = Zn%n

where

= {tr (W Ko fx(0) @ Frx(ON {veo (£30)) Wree (72(0)) }1/5 -

As expected, the asymptotic MSE does not depend on the kernel used. Using Propo-
sition 1 in Andrews (1991), we can show that for the conventional kernel estimators
fxx(0) with MSE-optimal bandwidth, the MSE satisfies:

3 ) o 4/5
lim T%°MSE(fxx(0), W) = 5 (29)5 { / k2(az)d:c} .

T—oo 4 — 00

Therefore, the asymptotic relative efficiency (ARE) of these two types of estimators
is

(SIS

2

ARE = Jim MSE(Fxx(0), 1) {MSE(fxx (0), W)} - (%) { / k2(:c)da:}
For the QS kernel, [* k*(z)dz = 1, g = 187%/125. So ARE = 1.0408. For the
Parzen kernel, [ k%(z)dx = 0.539285, g = 6. So ARE = 0.95881. Therefore, the
asymptotic efficiency of the new kernel estimator lies between that of the traditional
Parzen-based and QS-based estimators. Clearly, the asymptotic efficiency of the
steep kernel estimator is very close to that of the traditional QS estimator and has
the advantage that its asymptotic MSE is independent of the kernel employed in the
estimator’s construction.

2.4 Central Limit Theory

We proceed to investigate the limiting distribution of Fxx(0). In view of (11) and (12),
it is apparent that the asymptotic distribution of fx x(0) is that of a smoothed version
of the periodogram and depends on the spectral window K,()s), whose asymptotic
form as T' — oo is given in the next result.

Lemma 2 Let Assumptions 1 and 3 hold. Then, as T — oo

K00 - Y2 p( pg)<1+<1>>

0(%)  Jors<O(/p),
a @) (Te\/;—g> Jor s > O(/p).

12
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Figure 3: Spectral windows of steep Parzen kernels

It follows from Lemma 2 that K, (\s) is asymptotically equivalent to

212
ﬂexp I ’ (24)
VP 4pg

which is proportional to a normal density with mean zero and variance of order
O (p/T?) . The graph of K,(\) with Parzen kernel as the mother kernel is shown in
Fig. 3 for T?/p = 10,20, 50 and T = 200. The graph shows that the exact expression
as defined in (9) is almost indistinguishable from the asymptotic expression as defined
in (24). The peak in the spectral window at the origin increases and the window
becomes steeper as T2 /p increases because K, (0) = O (T/\/p), as is clear from
Lemma 2.

Theorem 3 Let Assumptions 1-8 hold, then

R =\ 1/2
P4 Fex(0) — Fxx(0)} —a N(o, (5) (Imz+Kmm>fXX<o>®fxx<o>).

As in the proof of Lemma 2, the derivation of this result makes use of the Laplace
method to approximate integrals (see, e.g. De Bruijn 1982). The asymptotic normal-
ity result permits us to make inference on fxx(0), which we discuss further in the
following section.
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3 Spectral Density Estimation with Steep Origin Ker-

nels

We consider estimating the spectral density at an arbitrary point w € (0,7) and
extend the asymptotic theory of the previous section to this general case. The results
for w =0 (and also w = 7) given above continue to apply with minor modifications.
The steep kernel estimator of fxx(w) is

Fxx(w Z Eo( et (25)

-T+1

where 7, is defined as before. When w = 0, the estimator reduces to the estimator
in (2).

Following arguments similar to those in Section 2.2, we can prove the theorem
below.

Theorem 4 Let Assumptions 1-8 hold. Then for w # 0,m,
(a) limr—oo (T2/p) (Efcx(w) = fxx(@)) = =g Gk (w) where

e -
= Z B2y e~ (26)

(b) limp_ o0 (2—29)_1/2‘/(17“ (vec(fxx(w))) = fxx(W)® fxx(w).
(c) If p°/T® — 9 € (0,00), then

lim T4/5MSE(fX x(w), W)
= 9?Pg?vec (f)(?;((w)>l Wec (f)(?;((w)>

1/2
4 (%) 91/ 104 {Wfxx(w)® fxx(w)]}.

Theorem 4 shows that the earlier asymptotic results for bias, variance and MSE
continue to apply for w # 0. The only difference between the case w =0 (or w = 7)
and w € (0,7) lies in the asymptotic variance. This is typical of the literature on
spectrum estimation. The rates of convergence are the same for all w € [0, 7] and the
optimal power parameter that minimizes the asymptotic MSE is still of order 7/°.
The optimal power parameter now depends on f )((2;{ (w) and fxx(w).

To establish the limiting distribution of fX x(w), we proceed as in Section 2.2 by
developing an asymptotic approximation for the spectral window K (A5 — w).

14



Lemma 5 Let Assumptions 1 and 3 hold. Then, as T — oo

— 2ms)?
K\ —w) = % exp <—%> (1+0(1))
O (\% for |wT —2ms| < O(/p),

N @) (% exp (—%)) for |wT' —2ms| > O(\/p).

The asymptotic approximation is the same as that in Lemma 2 except that K, (As)
now concentrates around w. This is apparent, as Lemma 5 shows that K (A\; —w) is
exponentially small when |wT" — 27ws| — co. Note that K, (\s) can be written as

VT o (_M> (14 o(1)). (27)

VP 4pg

Therefore, the asymptotic approximation to the spectral window is proportional to
a normal density with mean w and variance of order O (p/T?) .

Using this asymptotic representation of K (As —w), we establish the following
central limit theorem for fxx(w).

Theorem 6 Let Assumptions 1-8 hold. Then

s

p!/* {]?XX(W) - fXX(w)} —a N (0, <2_g>1/2 fxx(w)® fXX(W) )

for w #£0, .

Again, the asymptotic distribution continues to hold with obvious modifications.
The asymptotic normality results in Theorems 3 and 6 are related, of course, to much
earlier results in the time series literature (see, e.g., Anderson, 1971) on the asymp-
totic normality of conventional spectral density estimates under regularity conditions
on the bandwidth expansion rate. R

Using the asymptotic normality of fx x(w), we may construct pointwise confidence
regions for fxx(w) in the usual manner. When Xj is a scalar process,

pl/Ay—1 {zﬁz; - 1} —4 N(0,1),

where

1/2
V2 = (1 + (50,“)) <2—7;> and ('507“J = 1{w:0,7r}'

Thus, an approximate 100(1 — «)% confidence interval (CI) for fxx (w) is

N 1 1 )
Fexe) | T Ta e ey e =0T (28)
- : 1

fXX(w) |:1+(7r)1/4(2,09)_1/4cv(a/2)’ 1—(7r)1/4(2pg)_1/4cv(a/2) for w 7& 0,7
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where cv(a/2) is the critical value of a standard normal for area «/2 in the right tail.
The asymptotic covariance between fx x(w;) and fxx(wj) for w; # wj is given in
the next result.

Theorem 7 Let Assumption 1-3 holds, then for w; # w;

Tlgréoplﬂcov (Vec(fXX(wi),vec(fXX(wj)) = 0. (29)

According to this theorem, ]?X x (w;) is asymptotically uncorrelated with fX x (wy)
for any fixed w; # wj, a result that is analogous to that for conventional spectral den-
sity estimators. Intuitively, ]?X x(w;) is a weighted average of the periodogram with
a weight function that becomes more and more concentrated at w;. The asymptotic
uncorrelatedness of fx x(w;) across points on the spectrum is therefore inherited from
that of the periodogram. In fact, the proof of the theorem shows that fxx (w;) will
be asymptotically uncorrelated with fxx(w;) unless w; and w; are sufficiently close
together in the sense that |w; —w;| = o(/p/T). Therefore, \/p/T may be regarded
as the effective width of the spectral window K, ().

4 An Alternative Asymptotic Approximation

In previous sections, we assumed that p approaches infinity as the sample size in-
creases. This specification embeds the spectral density estimates in a triangular
array. Under this large-p specification, the spectral density estimator is consistent
and asymptotically normal. However, the required rate condition 7% /p® + p/T? — 0
may not be compatible with (p, T")-combinations that work well in practice, especially
when p is small. Also, the limit distribution theory, being independent of the kernel
employed, does not reflect certain aspects of the finite sample behavior of the spec-
tral density estimator. To alleviate these problems, we consider an alternative limit
theory called fixed-p asymptotics in which p is fixed as T goes to infinity. Simulations
reveal that fixed-p asymptotics generally provide better approximations to the finite
sample distribution and these will be reported in the following section.
Define the partial sum discrete Fourier transform process

1 (Tr]
Su(r)=—=> (X; —p)e ™"
To derive the fixed-p asymptotics, we maintain the following assumptions:

Assumption 4. k(z): R — [0,1] is twice continuously differentiable.

Assumption 5. S, (r) satisfies a functional central limit theorem: S,(r) =
AW, (1) with

[ Wu(r) forw =0 or m,
Walr) = { Won(r) +iWer(r) forw 40, ,
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and
AN — 2nfxx(w) forw=0orm,
YT wfxx(w)  for w #0, T,

where Wy(r), Wx(r), Wr(r) and Wi(r) are standard vector Brownian motions and
Wyr(r) is independent of Wr(r).

The limit distribution theory of ]?X x (w) under fixed-p asymptotics is characterized
in the following result.

Theorem 8 Let Assumptions 4 and 5 hold, then for a fixed p asT goes to infinity:
(a) Fxx (@) —a (21) TALELAL where

= o o kp(t, T)dWo()dWy(T)  for w =0
fo fo (t = 7)dWo, (t)dW( (1) for w # 0,

[

and
1 1 1
Ko(t,7) = kolt — 7) —/0 kp(t—r)dr—/o (s —T)d8+/0 ky(r — s)drds.
(b) The mean of the limiting distribution is:
E(27T)_1Aw5wA£u = pi, fxx(w)

where p,, = ( fo fo drds) Liw—oy + w0} -
(¢) The variance of the lzmztmg distribution is:

Vw(Im2 +Kmm) (fXX(w) & fXX(w)) s fOT w=0,7

var (vec 1Aw_wA/
(vee ((2m)” ) = { Vo (fxx (W) ® fxx(w)), forw#0,m

where v, = fol fol [ky(r — 8))° drdsl .oy + fol fol (K5 (r, s)]erdsl{MZO}.

Theorem 8 shows that under fixed-p asymptotics, the spectral density estimator
converges weakly to a random variable. More specifically,

(7 -1 _ - -
PG [P (@) = o frxx(@)] (A) ™) = (2m) 0V (B — ERL). (30)
Like the finite sample distribution, the new limit distribution is random and depends

on the kernel. In contrast, the large-p limit theory gives a consistent estimate and
the limiting normal distribution

R 2\ 1/2
pVAAC (fXX(uJ) — fXX(w)) (A;)—l sy N <0, (2—g> (L2 + 1we{0,ﬁ}Kmm)> ,
(31)
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which is unaffected by the kernel. Thus, fixed-p limit theory retains features of the
finite sample distribution that are lost as p — oo and, in doing so, are suggestive
that this asymptotic theory may better capture finite sample behavior than large-p
asymptotics which rely on central limit arguments.

The statistics given in (30) and (31) are centred and scaled in a similar way and,
as mentioned below, the limit distributions may be related by using sequential limit
arguments as T" — oo followed by p — oo. Accordingly, inferences based on fixed-p
asymptotic theory can be conducted in the same way as those based on the large-p
asymptotics. For example, when m = 1 and p is fixed, (30) implies that

<]?Xx(w; —Mw> . { (2v,)Y? 2 forw=0,n ’ (32)

fxx(w

where Zf = Z* (p) = (2, — EE,) /v/var (Z,). Thus, an approximate 100(1 — @)%
confidence interval for fxx (w) is given by

~ . ) B
Fx(w) [Mw+(2yw)l/20vw(a/2)’ uw+(2vw)l/26vw(1—a/2)} for w= 0,7 (33)
fxx(w) [ 3 , - } for w#0,7

tryt(vVw) T v (a/2) " pyt+(vew) ™ Teve (1-a/2)

where cv,(«) is the a quantile of 2%, i.e. P(Ef < cu,(a)) = a.

Direct computations show that when p goes to infinity, =7 is approximately stan-
dard normal, p1, = 1+0(1) and v, = (7r/(2pg))1/2 (1+0(1)). Therefore, the preceding
fixed-p confidence interval coincides with the large-p confidence interval in (28) as
p — 00. However, in finite samples with a particular p, the fixed-p confidence interval
may differ significantly from the large-p confidence interval because of three factors
(i) 27 is not standard normal for small p; (ii) o # 1; and (iii) ve, # (7/(2p9))2.

To construct the fixed-p confidence interval, we first need to compute p, and v,
by analytical or numerical integration. We then need to find the quantiles of =% by
simulation. It is easy to see that the distribution of = is the same for all nonzero w’s.
So it suffices to simulate two distributions, one for w = 0 and the other one for w # 0.
Table 2 reports the 2.5%, 5%, 95% and 97.5% quantile functions of Z. The Brownian
motion process is approximated using normalized partial sums of 1000 normal variates
and the simulation involves 10,000 replications. For each o = 2.5%, 5%, 95%, 97.5%
and p = 1,2,...,1500, we obtain the quantiles and represent them approximately
using a hyperbola of the form:

b
p—a

CU =

+c, (34)

where c is the quantile from the standard normal distribution. This formulation
can be justified in terms of a continued fraction approximation to the Cornish Fisher
expansion of the limit distribution as p — oo, which is being developed by the authors
in other work.

Table 2 gives nonlinear least squares estimates of a and b in (34). The standard
errors (s.e.) are small, indicating that the hyperbola explains the quantiles very well.
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As p increases, the fitted hyperbola approaches its asymptote and critical values from
the fixed-p and large-p asymptotics become arbitrarily close to each other. However,
for small p, both the upper and lower quantiles are larger than the respective normal
quantiles, reflecting the fact that the distribution of =} is skewed to the right and has
a fat right tail. In fact, =, can be written as an infinite weighted sum of independent
X3 random variables. So, it is not surprising that the distribution of =, inherits some
properties of a y? distribution.

Table 2: Approximate quantile functions of Z¥ (P(Z¥ < =% 4 ¢ = a))

=5 < 524
w=20 wF#0
2.5% 5% 95% 97.5% 2.5% 5% 95% 97.5%
Parzen Kernel

—2628.2 —1659.0 —1846.3 —1539.6 —2776 —2391.3 —1650.3 —2267.6
865.95 384.53 349.43 519.45 890.52 488.74 324.43 721.1
—1.96 —1.645 1.645 1.96 —1.96 —1.645 1.645 1.96
0.0352 0.0231 0.009 0.0278 0.0325 0.0233 0.009 0.0270

QS Kernel

—3181.9 —2614.9 —9598.8 —3093.4 —3614.5 —2702.3 —6253.9 —3960
1397.1 772.19 1734.5 1263.3 1499.4 748.47 1237.7 1540.2
—1.96 —1.645 1.645 1.96 —1.96 —1.645 1.645 1.96
0.0487 0.0367 0.0149 0.0295 0.0475 0.0357 0.0110 0.0336

5 Finite Sample Performance

This section examines the finite sample performance of steep kernel methods in
spectral density estimation and robust regression testing in comparison with sharp
Bartlett kernel and conventional kernel methods.

5.1 Spectral Density Estimation

-~

We explore the finite sample properties of the new spectral density estimator f(w) at
different frequencies. The frequencies considered are w = 0, 7/6, and 7 /4, which in-
clude low frequency and business cycle frequencies. In order to compare performance
in a more demanding setting, we allow for spectral peaks at these frequencies.

To illustrate, suppose X; is a scalar AR(2) process: X; = p+aXi—1 +bXi—2+¢t
with g, ~ iid N(0,1). This process has a spectral peak at w if

a

b:a—4cosw’ (35)
provided that
b < 0 and ‘“(14; b)' <1 (36)
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Figure 4: Stationary region and (a,b) combinations satisfying b = a/(a — 4 cosw) for
w=0,7r/6, /4

See Priestley (1981, pp. 241). Fig. 4 depicts combinations of (a, b) satisfying (35) for
w =0, m/6, and /4, together with the stationary triangular region of the parameter
space for the AR(2) process X;. Thus, a € [0,2) for a stationary AR(2) process with
spectral peak at w = 0, a € [0,/3) for a peak at w = 7/6, and a € [0, v/2) for a peak
at w = m/4. Accordingly, for our simulations, we select a = 0,0.4,0.8,1.2,1.6 in the
second case, and a = 0,0.4, 0.8, 1.2 in the third case, together with b = a/(a —4 cosw)
for different values of w. Figs. 5, 6, and 7 display the corresponding spectral densities
of the X; process with peaks at w = 0,7/6, and 7/4, respectively, for a = 0,0.4,0.8
and 1.2. When a = 0, the process is white noise and its spectral density is flat in
each case. As a increases, we move closer to the boundary of the stationary region,
and the spectral densities become progressively more peaked at the corresponding
values of w. The second order derivative of the spectral density at the origin is zero
for an AR(2) process that has a peak at zero, c.f. Fig. 5. Thus, the bias is expected
to be of smaller order and our optimal exponent formula does not apply for that
case. Instead, we use an AR(1) process which has a spectral peak at zero, and select
a=0,0.2,0.4,0.6,0.8.

We first compare the RMSE performance of different kernel estimators using the
data-driven exponent or bandwidth. From Theorem 4 in Section 3, we can show that
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Figure 6: Spectral density of AR(2) process with peak at w = 7/6

21



Figure 7: Spectral density of AR(2) process with peak at w = 7/4

for steep origin kernels the optimal exponent is

2/5
T8/54~1 [%] for w# 0,7

2/5
- VIl x (W) _
T8/54-1 [m] forw=0,7

psteep - (37)

An analogous analysis shows that for sharp origin kernels the optimal exponent is

1/3
T2/3 %] for w #£ 0,7
" 2 (w)
psharp = ( A ) 1/3 ) (38)
T2/3 L() forw=0,7
(f(l) )) ’

and, for the conventional estimator with the QS kernel the optimal bandwidth is

@ N21Y?
1.322171/5 % for w # 0,7
Sp = (39)
@) 271/5
1.322171/5 i’;—())L] for w= 0,7
XX
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To implement these formulae, we use the AR(1) and AR(2) plug-in approaches (as
in Andrews, 1991) in the simulation study.

We report results for the AR(1) plug-in approach as those for the AR(2) plug-in
approach are qualitatively similar. Table 3 reports the ratio of RMSE of the steep
and sharp estimators to that of the conventional QS estimator for sample sizes T =
50, 100, 200. We use the conventional QS estimator as the benchmark as it minimizes
the asymptotic MSE among the kernel estimators that are guaranteed to be positive
semidefinite. We consider only Parzen, QS and Bartlett kernels as they are positive
semidefinite and have been used in practice. It is clear that the steep kernel estimators
have very competitive performance relative to the conventional QS estimator in an
overall sense for the sample sizes and values of w considered. When w = 0, the
conventional QS estimator outperforms the steep kernel estimators by less than 2%.
In contrast, for w # 0 the steep kernel estimators have the potential to outperform the
conventional QS estimator, especially when the AR process is close to nonstationary,
i.e. when there is a large peak in the spectrum. While the relative performance
of the steep kernel estimators is quite robust, the relative performance of the sharp
Bartlett kernel is sensitive to the sample size, frequency and DGP considered, with
the RMSE ratio ranging from 86.3% to 169%. The simulation results show that the
sharp Bartlett estimator has superior performance when the DGP is close to a white
noise or a nonstationary process but its performance deteriorates dramatically for
other cases.

Table 3: Ratio of RMSE of steep and sharp power kernel estimators to that of the
conventional QS estimator using AR(1) plug-in exponents or bandwidths for
Xt =aX; 14+ bXy 2+ e with b= 1¢,401a/(a —4cosw) and g ~ iid(0, 1)

T =50 T =100 T =200

w a Parzen QS  Bartlett Parzen QS  Bartlett Parzen QS  Bartlett

0 0.0 1.007 1.004 0.961 1.008 1.006 0.971 1.012 1.011  0.991
0.2 1.013 1.010 0.994 1.012 1.010 1.044 1.021 1.019 1.117
0.4 1.012 1.008 1.034 1.019 1.016  1.098 1.022 1.019 1.161
0.6 1.008 1.005  1.042 1.018 1.014  1.095 1.026  1.022  1.157
0.8 1.014 1.010 1.058 1.012 1.008  1.069 1.024 1.019 1.105
0.0 1.010 1.008  0.984 1.006 1.005  0.971 1.007  1.006  0.968
0.4 1.008 1.006 0.928 0.991 0.991  0.942 0973 0974 0.935
0.8 1.005 1.000  1.153 1.012  1.007  1.367 1.026  1.022  1.690
1.2 1.026 1.022 1.113 1.030 1.023  1.140 1.025 1.020 1.178
1.6 0.980 0.983  0.970 0.964 0971  0.923 0.953 0.960  0.863
0.0 1.006 1.004 0.986 1.004 1.003  0.996 1.004 1.003  0.984
0.4 0993 0992 0.985 0.982 0.982 1.026 0972 0973  1.127
0.8 1.004 1.002 1.186 1.004 1.003  1.225 1.002 1.002  1.255
1.2 0968 0.975  1.001 0.956 0.964  0.964 0.946 0.953  0.919
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We now compare the coverage probabilities of confidence intervals based on the
different kernel estimators and asymptotic theories. For steep quadratic kernels, the
confidence intervals are given in (28) and (33) for different asymptotic specifications.
For the conventional QS kernel estimator, we have, under some regularity conditions
(see Anderson (1971)), that

T [ fxx(w) = fxx(w -
\/%(fxx(f}){x(f)cx( )> —4 N(0, (1+1w6{0,7r})/_oo k*(x)dz),  (40)

where, for the QS kernel, [ k%(z)dr = 1. Thus, an approximate 100(1 — a)%
confidence interval based on the conventional QS kernel estimator is given by

~ 1 1 =

fxx(w) 1+4/2M/Tev(a/2)” 1—1/2M/Tev(o/ 2)} orw =0 (41)
—~ 1 1 |

Fxx(w) /M Teva/2)’ 1—/M Teo(a/2) for w # 0,7

where, as in (28), cv(a/2) is the critical value of a standard normal for area a/2 in
the right tail.

To make the comparison meaningful, we use comparable exponents and band-
widths. We consider p,q,.c, = 1, 16,32 for the steep Parzen kernels. It follows from
equation (15) that the comparable exponents for the steep QS kernel are pos = 4,67
and 135. For these values of pgg, we choose the bandwidth according to M =
T'/,/Pgs- Such a bandwidth choice rule ensures that the local behavior of kgs , (z/T)
at the origin matches that of kgg(xz/M).

For each data generating process and exponent or bandwidth, we compute fX x(w)
and construct the confidence intervals using (28), (33), or (41) for T' = 50, 100, 200.
To evaluate the information content of these confidence intervals, we calculate their
lengths. Obviously, the shorter a confidence interval is, the more informative it is.
We focus on the steep Parzen and QS kernel estimators under the fixed and large
p asymptotics and the conventional QS kernel estimator under the usual ‘small-M’
asymptotics given in (40). Tables 4a and 4b report the finite sample coverages and
relative lengths of different 95% confidence intervals for T = 100 and 200 based
on 10,000 replications. The length reported is the median length over the 10,000
replications divided by the median length of the conventional QS confidence interval.

We draw attention to four aspects of Tables 4a and 4b. First, for the confidence
interval constructed using the asymptotic normality results, the length and finite
sample coverages are more or less the same. Second, the confidence interval based
on the fixed-p asymptotics are shorter than those based on the large-p and small-M
asymptotics. This is especially true when p is small or M is large as given in Table
4a, in which case the upper limits of the large-p and small-M confidence intervals
are infinity and the relative lengths of the fixed-p confidence intervals approach zero.
Therefore, the fixed-p confidence intervals are more informative than those based on
consistent estimation and central limit theorems. Third, when w = 0 and p is small,
the fixed-p asymptotics delivers the shortest confidence interval whose empirical cov-
erage is closest to the nominal coverage. When w = 0 and p is relatively large, the
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fixed-p confidence interval still has the best performance except when the DGP is
very persistent. This finding shows that the fixed-p asymptotic distribution gener-
ally gives a more accurate approximation to the finite sample distribution than the
large-p asymptotic distribution. Fourth, when w # 0, the empirical coverage of the
fixed-p confidence interval is less satisfactory when the sample size is small and the
DGP is close to nonstationarity but it improves substantially when the sample size
increases. On the other hand, when w # 0, the fixed-p confidence interval is about
30% or 100% shorter than the large-p and small-M confidence intervals.

To sum up, the fixed-p steep-kernel-based confidence interval is the best in an
overall sense when p is not large.

Table 4a: Finite sample coverages and relative lengths of different 95% confidence intervals®®
for Xy = aXy 1 +b0Xy o+ e with b= 1y, .01a/(a —4cosw) and & ~ iid(0, 1).

fixed-p Parzen large-p Parzen fixed-p QS large-p QS QS
Coverage Length Coverage  Length Coverage Length Coverage Length Coverage
w a T =100

0 00 0950  0.000 0.998  0.894 0.950  0.000 0.998  0.935 0.995
0.2 0.948 0.000 0.998  0.892 0.950  0.000 0.998  0.939 0.996

0.4 0949  0.000 0.998  0.890 0.951  0.000 0.998  0.934 0.996

0.6 0951  0.000 0.998  0.889 0.952  0.000 0.996 0.934 0.996

0.8 0.947  0.000 0.999  0.880 0.950  0.000 0.998  0.925 0.998

w/4 0.0 0.863  0.000 0.959  0.986 0.868  0.000 0.962  0.990 0.961
0.4 0861  0.000 0.959  0.987 0.864  0.000 0.962  0.990 0.961

0.8 0.857  0.000 0.961  0.981 0.861  0.000 0.964  0.988 0.963

1.2 0.829  0.000 0.969 0.99 0.832  0.000 0.972  0.993 0.971

w a T =200

0 00 0953 0.000 0.998  0.894 0.954  0.000 0.998  0.937 0.996
0.2 0953  0.000 0.998  0.891 0.954  0.000 0.998  0.932 0.997

0.4 0.953  0.000 0.998  0.892 0.954  0.000 0.998  0.933 0.997

0.6 0.953  0.000 0.998  0.893 0.955  0.000 0.998 0.938 0.997

0.8 0.953  0.000 0.998  0.889 0.955  0.000 0.998  0.933 0.997

w/4 0.0 0.864  0.000 0.959  0.986 0.868  0.000 0.962  0.990 0.961
0.4 0861  0.000 0.959  0.987 0.864  0.000 0.962  0.990 0.961

0.8 0.857  0.000 0.961  0.981 0.861  0.000 0.964  0.988 0.963

1.2 0.829  0.000 0.969  0.990 0.832  0.000 0.972  0.993 0.971

a. The exponents for the steep Parzen and QS kernels are 1 and 4 respectively.
b. The bandwidth for the conventional QS kernel is 7'/2.
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Table 4b: Finite sample coverages and relative lengths of different 95% confidence intervals®?

for Xy = aXy 1 +b0Xy o+ e with b= 1g,.0a/(a —4cosw) and & ~ iid(0, 1).

fixed-p Parzen large-p Parzen fixed-p QS large-p QS QS
Coverage Length Coverage Length Coverage Length Coverage Length Coverage
w a T =100
0 00 0948 0.539 0.975  1.098 0.946  0.531 0.976  1.108 0.973
0.2 0946  0.538 0.977  1.096 0.946  0.528 0.977 1.104 0.974
0.4 0943 0.538 0.978  1.095 0.942  0.528 0.979 1.102 0.978
0.6 0928 0.541 0.981 1.101 0.928  0.530 0.983 1.108 0.983
0.8 0.816 0.558 0.970  1.136 0.808  0.543 0.970 1.134 0.963
w/4 0.0 0.935 0.701 0.955  1.045 0.935  0.694 0.956  1.047 0.954
0.4 0928 0.701 0.960  1.045 0.929  0.693 0.962  1.046 0.962
0.8 0.888 0.701 0.968  1.055 0.888  0.698 0.970  1.053 0.970
1.2 0481 0.748 0.765 1.115 0.461 0.730 0.757  1.103 0.697
w a T =200
0 00 0952 0.538 0.976  1.096 0.952  0.529 0.977  1.105 0.975
0.2 0952 0.538 0.976  1.096 0.951  0.529 0.977  1.105 0.975
0.4 0951  0.539 0.978  1.097 0.949  0.530 0.978  1.107 0.976
0.6 0947  0.538 0.981 1.095 0.947  0.528 0.981 1.103 0.979
0.8 0923 0.542 0.985  1.103 0.922  0.531 0.987  1.109 0.984
w/4 0.0 0934 0.702 0.952  1.046 0.934  0.695 0.955  1.049 0.955
04 0931 0.703 0.954  1.048 0.931  0.695 0.956  1.049 0.957
0.8 0925 0.703 0.958  1.047 0.924  0.695 0.961  1.049 0.963
1.2 0.800 0.720 0.944 1.074 0.792  0.707 0.945 1.068 0.938

c. The exponents for the steep Parzen and QS kernels are 32 and 135 respectively.
d. The bandwidth for the conventional QS kernel is 7'/+/135.

5.2 Robust Hypothesis Testing

Using the steep kernel LRV estimator, we propose a new approach to robust hypoth-
esis testing. Consider the linear regression model:

gy =z +u, t=1,2..T, (42)

where u; is autocorrelated and possibly conditionally heteroskedastic and z; is an
m x 1 vector of regressors. Suppose we want to test the null Hy : RS = r against the
alternative Hy : Rf # r where R is a p x m matrix. Let B be the OLS estimator and
Q be 1/T Zle zz;. Then the usual F-statistic is

~ S NEPN -1 ~
Fy =T(RB—r) (RQ'Q,Q'R) (R —r)/p, (43)

or, when p = 1, the t-ratio is

t5=TY*(RB —r) (R@—lﬁp@—lR’)_l/2 , (44)
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where Qp =21 fxx(0), fxx/(0) is defined in (2) with X; replaced by z(y; — 2 3).

Let p be the data-driven exponent as defined in (19) with « replaced by the first
order autocorrelation of X;. Using the results in the previous sections and following
the arguments similar to the proof of Theorem 3 in PSJ (2003), we can show that
under Assumptions 1-3,

PF; = W (1)Wy(1) =a xj, 5= Wi(1) =4 N(0,1), (45)
under the null hypothesis, and
PEE = (M le+ Wo(1) (A e+ WD), £ = (v + WA(1)), (46)

under the local alternative hypothesis H : RS = r+¢T 2. Here A*A* = RQ™'QQ 'R/,
v =c(RQ™'QQ'R')"1/2, and Wy (r) is p-dimensional standard Brownian motion.

The above limiting distributions hold under the large-p asymptotics in which the
exponent p approaches infinity at a suitable rate so that we have consistent HAC
estimates. It is known that consistent HAC estimates are not needed in order to
produce asymptotically valid tests. Using Theorem 8, we can show that the £} and
t7, statistics have the following limiting distributions under the fixed-p asymptotics.
First, under the null Hy : R3 =,

-1

pFr = W (// (r — 8)dW, (r)dW(s )) W, (1) (47)

o ( /0 /0 ol — s)d%(r)dms))_l (1)

1/2

£ = Wil (// r—stl()dvl()>_ . (48)

Second, under the local alternative Hy : RS = r + ¢TI~ 1/2,

and

pFr = (A le+ W,(1 (/ / o(r = 5)dVp(r)dV; (s )) I(A*_10+Wp(1)),

(49)

and
—-1/2

= (4L (// r—stl()dVI()> . (50)

In these formulae, k,(-) is any positive semi-definite kernel (so the steep Parzen and
QS kernels may be used), and V,(r) is p-dimensional standard Brownian bridge. For
derivations of the preceding formulae, see PSJ (2003).
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Table 5: Asymptotic critical value functions for
the one-sided ¢7-test with steep Parzen and QS kernels

Parzen QS
90.0%  95.0% 97.5%  99.0% 90.0% 95.0% 97.5% 99.0%
a —2.152 —-1.884 —-2.036 —2.370 —281.328 —43.119 —40.141 —21.394
4.260 6.604 10.012 16.015 120.806 63.656 83.741 93.564
1.282 1.645 1.960 2.326 1.282 1.645 1.960 2.326
s.e. 0.001 0.002 0.005 0.007 0.035 0.031 0.050 0.054

Given the above fixed-p asymptotics, the critical values for different p values can
be simulated and tabulated. As in Table 2, we approximate the Brownian motion
by normalized partial sums of 1000 éid N(0,1) random variables and simulate the
t7, statistic 10,000 times. It turns out that the critical values at a given significance
level can be represented approximately by a hyperbola of the following form (again
motivated by a continued fraction asymptotic approximation):

b
p—a

cv = +c, (51)
where c¢ is the critical value from the standard normal. Table 5 presents nonlinear
least squares estimates of a and b and the standard errors of the nonlinear regressions.
The standard errors are seen to be small, especially when the steep Parzen kernel
is used. Figs. 8 and 9 depict the fitted hyperbolae at different significance levels.
These figures show that the curves are nearly flat for large p and the critical values
are very close to those from the standard normal as p — co. This is not surprising as
the t-statistic is asymptotically normal under the large-p asymptotics.

We now proceed to investigate the asymptotic power of the t* test under both
fixed-p asymptotics and large-p asymptotics. For convenience, we refer to these two
tests as the ¢}, test and the {3 test, respectively. Note that for a given exponent
the t statistic is constructed in exactly the same way regardless of the asymptotics
used. The difference between the two tests is that for the ¢} test the exponent is
fixed a priori and critical values from the fixed-p asymptotics are used, while for the
t% test the exponent is data driven and critical values from the large-p asymptotics
are used. For the t% test, the power curve is the same as the power envelope that is
obtained when the true {2 or any consistent estimate is used. This holds because the
consistency approximation is being used. For the ¢} test, we consider three values of
p:p=1,16 and 32 for the steep Parzen kernel and p = 6,96 and 192 for the steep
QS kernel. For each p, we approximate the Brownian motion and Brownian bridge
processes by the partial sums of 1000 normal variates.

Fig. 10 presents the asymptotic power curves when the steep Parzen kernel is
used. The figure is based on 50,000 simulation replications. It is apparent that the
power curve moves up uniformly as p increases, just as it does with sharp origin
kernels (PSJ, 2003). The difference is that with sharp origin kernels, when p > 16,
the power curve is very close to the power envelope, whereas much larger values of
p are needed here, consonant with the power parameter expansion rates established
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Figure 8: Asymptotic critical value curves at various significance levels for one-sided

t test using the steep Parzen kernel

for consistent HAC estimation earlier in the paper. To save space, we do not report
the local power curves when the steep QS kernel is used but instead comment on it
briefly. The curves are similar to those in Fig. 10 but we need to take a larger p to
attain the same power. This result is consistent with the curvature difference at the
origin between the Parzen and QS kernels.

Compared with the ¢7 test, the t% test has an obvious power advantage. How-
ever, as with other tests that use consistent LRV estimates, the t% test has larger
size distortion than the ¢ test in finite samples. Before studying the finite sample
performances of these two tests, we introduce a new test that seeks to combine the
good elements of both procedures. The new test uses the same t% statistic defined
in (44) with a data-driven p. The point of departure is that, instead of using the
critical values from the standard normal, we propose using the critical values from
the hyperbola defined in (51). The new testing procedure is thus a mixture of the t%
test and the ¢} test. As a result, the new test has the dual advantage of an optimal
choice of power parameter that is data-determined and at the same time the good
finite sample size properties of the ¢7 test. The latter point will become clear below.
Since the critical value from the hyperbola approaches that of the standard normal
as p — 00, the new test is equivalent to the t% test in large samples. We will refer to
the new test as the t_,, test hereafter.

new
To compare the finite sample performances of the t* tests (including the iy, test,
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¢ test and ¢}, test) and the conventional (i.e., bandwidth truncated) ¢ test, we use
a simple location model

Y = [+ Uy,

where u; = ajup—1 +asui—o + €, e; are 1id(0, 1). We consider the null hypothesis Hy :
= 0 against the one-sided alternative Hj : p > 0. In computing the conventional ¢-
statistic, g ac, the bandwidth is chosen by the AR(1) plug-in approach as in Andrews
(1991).

Tables 6a and 6b present the finite sample null rejection probabilities via simula-
tion for T'= 50 and 200. The simulation results are based on 50,000 replications. For
the ¢}, and ¢}, tests, rejections were determined using the asymptotic 95% critical
value based on the hyperbola formula (51). For the t% and tg 4 tests, rejections were
determined using the 95% critical value from the standard normal. The results for
the ¢ test with a fixed-p are very similar to those of the test with sharp Bartlett ker-
nels. First, in almost all cases, the size distortions of the t7, tests are less than those
of the tyac-test. This is true even for large p. Second, the size distortion increases
with p. But as T increases, the null rejection probabilities approach the nominal size
for all cases. Simulation results (not reported here) show that with increases in p,
the size distortions of the ¢7 test constructed using steep Parzen or QS kernels in-
crease less dramatically than those using sharp Bartlett kernels. Third, when the
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errors follow an AR(1) process, the size distortion of all tests becomes larger as a;
approaches unity. However, compared to sharp Bartlett kernels, the incremental size
distortion is less (not reported here). The size distortion of the t5 test is close to that
of the ty ¢ test, which is expected, since we use the same asymptotic critical value
(1.645) for both tests. Compared with the t7, test, the t% test generally has larger
size distortion, especially when the error process is persistent. Using the adjusted
critical values, the t7,.,, test has significantly smaller size distortions than the &5 test,

especially in cases where the t% and tgac tests perform worse. In fact, the ¢, test
achieves the best size properties among all the tests considered except the ¢] test

with the Parzen kernel and the ¢ test with the QS kernel.

Table 6a: Finite Sample Null Hypothesis Rejection Probabilities
for the Location Model y; = p + u; with wy = aqus—1 + agup—2 + ey,
up = u—_1 = 0 and e; ~ iid(0, 1) with the Parzen kernel

al az  tHac B thew  tpm1 tpmie =32
T =50 —0.500 0.000 0.054 0.047 0.042 0.050 0.050 0.054
0.000 0.000 0.060 0.059 0.056 0.055 0.052 0.060
0.300 0.000 0.078 0.077 0.069 0.058 0.056 0.066
0.500 0.000 0.097 0.096 0.076 0.062 0.066 0.078
0.700 0.000 0.127 0.127 0.082 0.069 0.086 0.110
0.900 0.000 0.236 0.227 0.117 0.102 0.184 0.219
0.950 0.000 0.310 0.291 0.155 0.136 0.257 0.288
0.990 0.000 0.384 0.350 0.191 0.175 0.331 0.364
1.500 —0.750 0.144 0.129 0.033 0.050 0.022 0.026
1.900 —-0.950 0.361 0.147 0.029 0.029 0.030 0.047
0.800 0.100 0.238 0.234 0.131 0.106 0.196 0.230
T =200

—0.500 0.000 0.046 0.048 0.048 0.059 0.054 0.057
0.000 0.000 0.057 0.056 0.066 0.059 0.054 0.057
0.300 0.000 0.068 0.069 0.067 0.061 0.055 0.057
0.500 0.000 0.074 0.074 0.071 0.061 0.056 0.058
0.700 0.000 0.086 0.086 0.078 0.062 0.059 0.063
0.900 0.000 0.129 0.129 0.088 0.069 0.089 0.101
0.950 0.000 0.175 0.174 0.099 0.084 0.131 0.154
0.990 0.000 0.326 0.308 0.165 0.148 0.273 0.312
1.500 —-0.750 0.085 0.083 0.051 0.058 0.051 0.050
1.900 —-0.950 0.199 0.173 0.046 0.051 0.027 0.014
0.800 0.100 0.134 0.133 0.097 0.071 0.094 0.107
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Table 6b: Finite Sample Null Hypothesis Rejection Probabilities
for the Location Model y; = p + u; with wy = aqus—1 + agup—2 + ey,
up = u—_1 = 0 and e; ~ 4id(0, 1) with the QS kernel
a1 az tmac thew  tp=s  Lpmo6  Lp=192
T =50 —0.500 0.000 0.057 0.037 0.032 0.064 0.037 0.042
0.000 0.000 0.059 0.058 0.054 0.068 0.041 0.047
0.300 0.000 0.076 0.079 0.067 0.071 0.045 0.056
0.500 0.000 0.097 0.097 0.070 0.074 0.056 0.070
0.700 0.000 0.124 0.125 0.075 0.082 0.079 0.104
0.900 0.000 0.228 0.224 0.123 0.129 0.184 0.228
0.950 0.000 0.302 0.292 0.179 0.177 0.259 0.298
0.990 0.000 0.378 0.360 0.249 0.232 0.333 0.366
1.500 —0.750 0.140 0.112 0.034 0.059 0.015 0.019
1.900 —0.950 0.360 0.260 0.140 0.030 0.029 0.049
0.800 0.100 0.231 0.232 0.135 0.134 0.197 0.240

T =200
—0.500 0.000 0.050 0.043 0.042 0.071 0.043 0.049
0.000 0.000 0.057 0.056 0.056 0.072 0.044 0.048
0.300 0.000 0.068 0.071 0.068 0.072 0.044 0.049
0.500 0.000 0.074 0.076 0.072 0.073 0.045 0.051
0.700 0.000 0.084 0.088 0.075 0.075 0.049 0.056
0.900 0.000 0.127 0.129 0.080 0.084 0.079 0.105
0.950 0.000 0.168 0.171 0.096 0.103 0.128 0.163
0.990 0.000 0.315 0.308 0.195 0.191 0.276 0.319
1.500 —0.750 0.083 0.074 0.039 0.071 0.038 0.039
1.900 —-0.950 0.191 0.166 0.063 0.066 0.012 0.007
0.800 0.100 0.131 0.135 0.091 0.086 0.086 0.112

There are inevitable trade-offs between finite sample size and power. Fig. 11
shows the finite sample power of the Parzen-kernel-based tests when a; = 0.7 without
size correction. The graph is similar for the QS-kernel-based test and that is omitted
to save space. The typical pattern in the figure is that the power curves of tz7 40 and
t% are indistinguishable, and the power of the ¢ test increases as p increases, just
as asymptotic theory predicts. The ¢}, test also has very competitive finite sample
power but much reduced size distortion. Simulation results (not reported here) show
that, as a; moves away from unity, the power of the ¢}, test becomes closer to that
of the tg 40 and t% tests. Fig. 11 also shows the size distortions of the different tests,
which are shown in the descending order: tyac,t5,t, 32, 15—16; lpew, and ¢,_;. This
pattern is found to be typical in cases where the AR coefficient is large but less than
unity. Overall, the ¢, test produces favorable results for both size and power in
regression testing and is recommended for practical use.

All the tests considered can be combined with prewhitening procedures such as
those in Andrews and Monahan (1992) and Lee and Phillips (1994). To save space,
we do not report the simulation results for the prewhitening version for the tests. We

remark that all the qualitative observations continue to apply but the size distortions
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are smaller in all cases.
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Figure 11: Finite Sample Power of Parzen-Kernel-Based Test for Location Model:

Yt = W+ U, U = 0.7Ut—1 + e with 7" = 50.

6 Extensions and Conclusion

Exponentiating a mother kernel enables consistent kernel estimation without the use
of lag truncation. When the exponent parameter is not too large, the absence of
lag truncation influences the variability of the estimate because of the presence of
autocovariances at long lags. As has been noted by Kiefer and Vogelsang (2002a &
b) and Jansson (2004) and as confirmed in the simulations reported here, such effects
can have the advantage of better reflecting finite sample behavior in test statistics
that employ LRV/HAC estimates leading to some improvement in test size. When
the exponent is passed to infinity with the sample size, the kernels produce consistent
LRV/HAC and spectral density estimates, thereby ensuring that there is no loss in
test power asymptotically. Similar ideas can, of course, be used in probability density
estimation and in nonparametric regression.

One feature of interest in the asymptotic theory is that, unlike conventional ker-
nel estimation where an optimal choice of quadratic kernel is possible in terms of
MSE criteria, steep origin kernels are asymptotically MSE equivalent, so that choice
of mother kernel does not matter asymptotically, although it may of course do so
in finite samples. Another feature of the asymptotic theory of steep origin kernel
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estimation is that optimal convergence rates (that minimize an asymptotic MSE cri-
terion) are faster for quadratic mother kernels than they are for the Bartlett kernel.
The corresponding expansion rate for the exponent is p = O (T 8/ 5) (leading to a con-

vergence rate of T2/% for the kernel estimate fxy) so that p tends to infinity much
faster than the sample size T'. The reason for this fast expansion rate is that quadratic
kernels have a flat shape at the origin and, since no bandwidth or lag truncation is
being employed to control the effect of sample autocovariances at long lags, the fast
rate of exponentiation ensures that the long lag sample autocovariances are suffi-
ciently downweighted for a central limit theory to apply. The use of flat top kernels
with bandwidth parameters and steep decay at long lags has recently attracted in-
terest in the nonparametric literature (e.g., Politis and Romano, 1997) and it may be
worthwhile pursuing these new ideas in conjunction with those of the present paper.

The simulation results of the present paper confirm earlier findings of the existence
of a trade-off between power and size in econometric testing. Methods that reduce
size distortion, such as fixed p asymptotics, also lead to some reduction in power
relative to alternate methods based on large-p asymptotics. This trade-off between
improvement in test size and reduction in test power can be quantified using higher
order expansions of the limit theory and criteria for the optimal selection of control
parameters such as the power exponent p or the bandwidth in conventional kernel
estimation can be developed. Some research along these lines for the case of sharp
kernels is reported by the authors (2004) in other work.
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7 Appendix

Proof of Theorem 1. Part (a). We first show that

-~ ] I
Ev, = - — —). 2
Tn = Tn( T)+O(T) (52)
For h > 0, some simple manipulations yield
],T_h ‘h
~ 5 \/
B9y =Bz Y (Xepn — X) (X, = X) = B4 + 0(7) (53)

where

Direct computation leads to

h 1 T—hT—h
0 _ S o _ !
h 1 T—hT—h
= Wml-7) — T Yorn
(_@)_l 1 +T—h—1 T
- h T T T h?/h ~ T_h V—T—h

Combining (53) and (54) gives the desired result.
Similarly, we can show that (52) holds for h < 0. Using (52), we have

T2 -
7E(fXX(O) — fxx(0))
172 Ih| 7?1 &
= s > ko() (1 = ) T 2m 2
h=—T+1
81 |,k
+0 <7T > o)
h=—T+1
172 = 172 2 b
= %7 Z [kp( )—1]7 —%7 Z kp(Z) = 7n
h=-—T+1 h=—T+1



R

172 = 172 = b

= —— —1ly, - —— 2
o7 p h_;ﬂ [kp( ) ]WL 27 p h:;-u ko(7) 7= n

where the last line follows because ‘ZIhIZT fyh‘ < T2 Do ih|>T ‘hQ’yh{ and fol zk,(x)dr =

0] <p3—1/2) . The latter order of magnitude can be proved using the Laplace approxi-

mation method. The details are similar to the proof of (85) in what follows and are
omitted. We now consider the first two terms in (??). The second term is bounded
by

172 = |n T1 = T
T > Tl o > |hllvl O() =o(1) (56)
h=—T+1 h=—T+1

using Assumptions 2 and 3. The first term in (??) can be written as

T-1 T/logT

> |w@-tu= X @t X k@)

h=—T+1 h=—T/log T T/log T<|h|<T
(57)
Noting that

2 2
= > [kp(%)_l}'yh < L >l

P T/log T<|h|<T T/log T<|h|<T

log? T log? T
< > rhl=o(E1).
P T/log T<|h|<T P

and using Assumption 1(c), we obtain

2 I h T2 78T h log? T
N >, [kp(f)—l]% = > [kﬂ(?)_1}7h+0< p >
h=—T+1 h=—T/logT
T/logT h
k() —1] 5
h=—T/logT
[e.e]
= —gy Py (1+o(1). (58)
Combining the above results gives
T >,
Jim —B(fxx(0) = fxx(0) = =g ) _ . (59)
—0o0
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Part (b). We prove only the scalar case. The vector case follows from standard
extensions. Note that

Fex(© = 5= [ Lo, () an (60)

2 J_,

To find the asymptotic variance of fX x(0), we can work from the following standard
formula (e.g., Priestley, 1981, eqn. 6.2.110 on p. 455) for the variance of a weighted
periodogram estimate such as (60), viz.

Var { Fxx(0)} = 2% x (0 Z k() [L+0 (1) (61)

-T+1

which follows directly from the covariance properties of the periodogram of a linear
process (e.g., Priestley, 1981, p. 426).

To evaluate (61), we develop an asymptotic approximation of 7! Z T 41 k2 (%)
Since k,(z) is differentiable by Assumption 1, it follows by Euler summation that the
sum can be approximated by an integral as

Z k2< ):/_llkg(x)dx(uo(l)). (62)

—-T+1

We use Laplace’s method to approximate the above integral. It follows from As-
sumption 1(b) that for any § > 0, there exists ¢ > 0 such that log k(z) < —( () for
|z| > 0. Therefore, the contribution of the intervals § < |z| < 1 satisfies

1
2 = ex O X X ex — — 2 xZ).
/<s<|x|<1kp(3’>df”‘/a<x|<l p {2plogk (2)} de < exp -2 (p 1><<5>1/_1k<>

(63)
We now deal with the integral from —§ to J. From Assumption 2(c),
k(z)=1-gaz®>+o0(2%), as  — 0 for some g > 0,
we have log k(z) = —gz? + o(z?). So, for any given £ > 0, we can determine § > 0

such that
|log k() +g:c2‘ <er? |z < 6.

In consequence,

/_i exp [—2p(g + €)2?]| dz < /

—0

§ §
exp2plogk (x) dx < / exp [—Zp(g — 5):132] dzx.
-6

But

é oS
/ exp [—2p(g + 6)332] de = / exp [—2p(g + e):cQ] dz+ O (e7%)

—4 —o0

_L e~ P
B 2p(9+6)+0( )
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for some positive o that depends on § but not p.

Similarly,
§
/ exp [—2p(g — s)aﬂ dex = _vT +0 (e77).
) 2p(g —€)
Therefore
5 -\ /2
exp 2 lokazd:c:<— 1+0(1)).
[ etk @ = (=) (1+0(1)

Combining (63) and (64) yields

/_11 K2 (2) do = (%)1/2 (1+0(1)),

which completes the proof of part (b).
Part (c). Part (c) follows directly from parts (a) and (b). m

Proof of Lemma 2. Approximating the sum by an integral, we have
1

K,(As) = T Z ky(=)etsh = T/ ky(x)e % dz (1 + o(1))
—T+1 -1

1
= T/ exp p (log k(x) + log cos(2msx)) (1 + o(1)) .
-1

(66)

Using the Laplace approximation, we find that as p — oo, the contribution to the
integral in (66), as in the proof of Theorem 1(b), comes mainly from a small region
around z = 0, say (—6,d) for some arbitrarily small § > 0. So there exists ¢ (§) > 0

such that

§
K,(As) = T/_(S exp {p [log k(z) cos(2msz)]} (1 + o(1)) + T exp [=pC (9)] (1 + o(1))

= T / ' ePloglk(@)+2mszi g (1 4 (1)) + T exp [—p¢ (8)] (1 + o(1))

4

= T [ e ot t2msriqy (1 4 (1)) + Texp [—pC (6)] (1 + o(1))

_ T/ ePIT 2SI (1 4 o(1)) + T exp [—pC (6)] (1 + o(1)
_ T/

8

_ \/7;_9 exp (—%) (1+o0(1)).

Hence,

O (%) for s < O(\/p),

K >\s — _mos®
p(As) O(’-FBT’W) for s > O(,/p),

e—P9(a®+2mszi/ pg—(m5)/(pg)*)—(m)*/(pg) T exp [—p¢ (8)] (1 + o(1))



as desired. m

Proof of Theorem 3. We prove the results for the scalar case, the vector case
follows without further complication. Since fxx(0) = 7 Z;F:_Ol K,(As)Ixx(As) and

h=—T+1 s

’ﬂ

-1
e = TE(0) =T,

%I:
[l
o

we can write the scaled estimation error as

pt/4 {fXX(O) - fxx (0)}

1/4 T-1
= pTZKp(A ) Ixx(As) — fxx (0)]
(a7t
= pT Ky(As) Ixx(Xs) — fxx (As)]
1/27’-’?—1
+pT ; Ky(Xs) [fxx(As) — fxx (0)]. (67)
Using Lemma 2, we have
_ VAT (s 0 s =
K,(\) = i p< o >(1+ (1), s=0,1,..,[T/2]. (68)

By Assumption 2, | f% x(As)| < 5= S h?|y,], so that

[fxx(As) = fxx (0 ( Z|h| |fyh|> A2,

Hence, the second term of (67) can be bounded as follows:

1/4T 1

T ZK ) [fxx(As) — fxx (0)]

/4 [T/2 S/ 172
= —2 Z Kp(As) [fxx(As) — fxx (0)] Z [ Ky (As)|A2
/4 (T/2] fT 7242
= 0 A2
( ZO N < pg ) ’

00 2.2
= 0 <p_1/4T_2/ exp (—W i > s2ds>
0 Py

= O(p~ Y4772y = o(1). (69)
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Then, by (67) and (69), we have

!

~ /a4 T-1
P Fx(O) = fx (00} = 25 3 K, (0 (T () = Frx () + 0, ().

s

Il
=)

In view of Assumption 2, we have X; = C(L)e; = > 22 Cjer—;. The operator C(L)
has a valid spectral BN decomposition (Phillips and Solo, 1992)

C(L) = C(e™) + Ch(e L) (e L — 1),

where C)(e~L) = >0 Cyje A LI and Cyj = 32° . Cse, leading to the rep-

s=j+1
resentation
X; = C(L)ey = C(e™)er + e en—1 — B, (70)
where
g)\t Z/\L 5t ZC)\ e —ijA Et—j

is stationary. The discrete Fourier transform of X; has the corresponding represen-
tation

T
1 )
wh) = —=> X"
V21T =

— O™ () + ;ﬂT(e)\o—em’\*s)\ )
= C(e™)we(As) + Op(T71/?) (71)
Thus, using the fact that
= _2y/aT 7/ 252
S0 = 23 e <— > )(1+o<1>>
/P9 /_oo p< Pg )d (L+o()
= ﬂ OOeX — 82 S
P /_oo p( 2pg/(2m ))d (1+o(L) (72)
~1
AT 1 .
- m( 2wpg/<27r2>> (1 olt)
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we get

p'/t {J?XX(O) — fxx (0)}
1/4T 1
— T ZK YIxx(As) = fxx(As)) +0p(1)

p1/4 T-1
= D KA (wAs)w(As)* = fxx(As)) + 0p(1)
s=0
P1/4 — i 1/2
= T 2 KOO we (M) + 0p(T 1)
s=0
X[C (e )we(As) + Op (T2 = fxx(Xs)} + 0p(1)
1/4 T-1 1/4
= L S RO =) — 500 + 0y (”T T%) +0,(1)
s=0

= Kp(X)[C*(1) (e (Ns) — %02)] +op(1), (73)

)
—
~
W~
S
L

where we have used p/T? — 0. The fourth equality follows because K,()\s) becomes
progressively concentrated at the origin.
Let m1 =0 and for ¢t > 2,

t—1
my = &t E €jCt—j
j=1

where -
B 02(1) /)1/4 —
G="—"%—"Tz ;(Kp@ ) cos(jAs))
Then we can write
1/4 T-1 1
P 2 )
7 2 KoAICP D Ueehe) = 520%)
d Pl/ 2 - 1 1 & 2 2
= 2) m+ =C (1)ZKP(>\S)% (ngt —a>
t=1 5=0 t=1
T p1/4 T-1 1
= 2 my+ B (1) | Y Ky (0| O =)
= s=0
T 1/4
P 1
= 2 +0,| —=—T—
T
= 2> my+oy(1). (74)
=1
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By the Fourier inversion formula, we have

(75)

Hence

S 2=0 ;f;ik? - <;/22 (i)mT):o(%). (76)

= 2pg

The sequence m; depends on 7' via the coefficients ¢; and forms a zero mean martin-
gale difference array. Then

r 44 1/2 1/2
2% my —a N (o, T (219) ) =N (0, 2/5x(0) (%) ) ,
t=1

by a standard martingale CLT, provided the following two sufficient conditions hold:

otC4(1) (T 1/2
ZE 2| Filq) — 2 <@> —, 0, (77)

where F;_1 = o(e¢—1,€¢—2, ...) is the filtration generated by the innovations ¢;, and

T

> E(m{) = 0. (78)

t=1

We now proceed to establish (77) and (78). The left hand side of (77) is

2Tt1 4(1)771/2 2T
Zzg iCt—j — 87‘1’2 <—> +o ZZersjct_rct_j =11 + Is. (79)

1=2 j=1 29 t=2 r#j
The first term, Iy, is
T—-1 T—j3 T—1T-—t 404( ) 1/2
o2 2(5]2 —o?) Z A+ (ot c? o2 <Qg> := I11 + I12. (80)
j=1 s=1 t=1 j=1

The mean of 11 is zero and its variance is of order

[BE9)-o[ &6

7=1
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using (76). Next, consider the second term of (80). We have

1/2T 1T—j

C4(
;;Cg: 4772 T2 leszle
1/2T 1T-s
= 4ﬂ.2 T2 sz2

s=1 j=1

s=1
_C (1) 2 T 2
= 32 300 (I1+0(1))

= (2) = + o(1).
8T 2¢g
Here we have used the following result, obtained by means of the Laplace approxi-
mation:

; (- 2R = /0 (1 — 2)k2(x)da(1 + o(1))

_ /OOO exp {—x _ %552 - pga?2} da(1+ o(1))

= expi —x — pg+2x dz(1+ o(1))
0

= Jew i+ g) |
- 2° PIT5 \/2pg+1
1/ 7 \1/2
= - | — 1 1)). 1
5 () o) (s1)
We have therefore shown that
T t—1 4,4 1/2
9 o*C*(1) [«
Il—O' Zzgj Cy_ —j W 2—9 —>p0
t=2 j=1

So the first term of (79) is op(1).
Now consider the second term, Iz, of (79). Iz has mean zero and variance

T min(p—1,g—1)

Z Z (¢q—rCq—jCp—rCp—j)

p:g=2 r#j
T p—1 T p—1qg-1
- 2 Z Z - p it Z Z Z(Cq—rcq—jcp—rcp—j) . (82)
P=2 r#j p=3 q=2 r#£j



In view of (76), we have

T p—1 T 2 1
2 2 _ 2 _
g E  CorCp—j = o\|\T E cj =0 <T> . (83)
p=2 r#j J=1

For the second component in (82), we have, using (76) and the Cauchy inequality,

T p—1g—1 T p—1g-1 q—1
, , 2 2
4 E § E (Cg—rCq—jCp—rcp—j) <4 E :E :E :Cq—r Cp—r
p=3 q=2 r#j p=3 q=2 r=1 r=1
T T p—1g—1 p—1 p-—1

IN

1=1 p=3 q=2 r=1

DYOH NI

We now show that .
p1/2/ (1 — x)k,(z)dx = o(1). (85)
0
To this end, we need the following result: if the function p,(z) = 2(1 — z)k,(z)
achieves its maximum at z*(p) € (0, 1), then z*(p) — 0 as p — oo. The result can be
proved by contradiction. Suppose for any p, there exists an ¢ > 0 and p, > p such
that z*(pg) > €. Since z*(py) > e, it follows from Assumption 1 that there exist a
positive number ((g) such that k(z*(py)) < 1 — ((g). Therefore

Poy (7 (P0)) < 27 (po) (1 — 2" (pg)) [1 = C()]" < 1/4[1 = ()] (86)

But for large py,

N (19N o - L
Ponl1/00) = (1 po) (1 pg) (L+o() =~ (o). (7

Hence
Poo(1/P0) > ppy (2 (p0)) (88)

for large py. This contradicts with the fact that z*(py) is a maximizing point. So
lim z*(p) must be zero. We note, in passing, that we have effectively shown that
x*(p) is of order O(1/p). Since the function p(x) is strictly concave in a neighborhood
of zero, z*(p) is the unique maximizer for any fixed p.
Given that p(x) has a unique maximizer x*, we can apply Laplace’s method to
. . 1
approximate the integral fo p(z)dz. Let

_ Kt (K (@)

") =T T R (89)
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then

(1 — 2)k,(z)dx

xpllog(z) + log(1 — z) + log k,(x)|dz

[
/Oe

_ 2 —:c*)kp(:c*)/oo exp [— (2( S 2(;*)2 _ %p/i(x*)) yﬂ dy(1 + o(1))

0 x*—1)
1
= [0) — y 90
() o
using lim, .o, 2* = 0, lim,_.o k(z*) = —2¢ and k,(z*) = O(1) as p — oo.

Combining (83), (84) and (90) completes the proof of Iy —, 0. We have therefore
established condition (77).

It remains to verify (78). Let A be some positive constant, then the left hand side
of (78) is

T t—1
Hy Z E(Z Esct—5)4
t=2 =1
T t—1t—1t-1¢t-1
S AZE ZZZZessrspsqct sCt—rCt—pCt—q
s=1 r=1p=1qg=1
T T t—1t-1
< AZ th s +AZ th sC
t=2 s=1 t=2 s=1r=1
< AT(icW:o(TiQ) :O<l>,
p T T

using (76), which verifies (78) and the CLT.
With this construction, we therefore have

, T-1 1,
1) Z Kp(As)[(Lee(As) — Py )]
pyoL! a\1/2
= 2th+0p —q 2N <0, 867;2(1) (@) )

(122 5)) - v(oo(3) ).

This gives the required limit theory for the spectral estimate at the origin, viz.,

1/4T 1

P ex ) - fx ) = L > KOs ex(A) = fex (M) + op(1)

4N (0,2 (219)1/2 f)Q{X(O)> .
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Proof of Theorem 4. Part (a) follows from the same arguments as in the
proof of Theorem 1(a). It remains to prove part (b) as part (c) can be easily proved
using parts (a) and (b). To prove part (b), we write

Z k‘ ,Yhe—zhw _ Z k h 27T Z IXX z()\s—w)h
—T+1

—T+1
Ixx (Ns) Z E(
—T+1

fxx(w) =

: -

1

I
i

T
= Z (As —w) Ixx (Ns) .
s=0

'ﬂ |

As before, the variance of fX x(w) can be calculated using a standard formula (e.g.,
Priestley, 1981, eqn. 6.2.110 on p. 455):

Var{fXX(w)} = fax(Ww ZT:Hk +o(1)],
=\ 12
= B w) <2—pg) 14 0(1)], (1)

where the last line uses (65). This complete the proof of part (b).
The stated result for the vector case follows directly by standard extensions (e.g.
Hannan, 1970, page 280). =

Proof of Lemma 5. Approximating the sum by an integral, we have

KMhs—w) = T Z ky(= )@ — / 11 k() e@rT=2ms0)i g (1 4 o(1))
—T+1 -
1
= T/_1 exp p (log k(x) + log cos(waT — 2msz)) (1 + o(1)). (92)

Proceeding as before, we approximate the integral using Laplace’s method. For some
small § > 0, we have

4
K,(As) = T/—5 exp {plog [k(x) cos(wzT — 2msx)]} (1 4 o(1))
4
= T/—6 exp {plog [k(x)] + (WT — 27s) zi} dx (1 + o(1))
§
= T/_5 exp { —pgz?® + (wT — 27s) zi} dz (1 + o(1))

_ 7 / " exp [—pga® + (T — 2s) i da (1 + o(1)) (93)

—00

47



Simple calculations give
Ky(\) = Texp |- (T —275)/ (4pg)]

X /oo exp —pg [xQ + (WT — 27s) i/ pg — (WT — 21s)? /(2pg)?

r — 2ms)?
_ % exp (-%) (14 0(1))
B 0 (%) for |wT' —2ms| < O(/p),

: 0 (% exp (‘%)) for |wT" — 2ms| > O(/p), (94)

and this completes the proof. m

Proof of Theorem 6. As before, we consider the scalar case as the vector case
can be proved by standard extensions. Note that

T-1 T-1 h T-1
DKM —w)= Dkl o(7) ¢! k,(0) =T,
5=0 h=—T+1 s=0

and K ()\s) is a real even periodic function of Ay with periodicity 2.
Without loss of generality, we assume that T' is even. Let A; be the Fourier
frequency that is closest to w and

B,={s:s=J-T/24+1,J-[T]/2,...J,J+1,...J+T/2}. (95)
Then the scaled estimation error can be written as

pt/4 {J?XX(W) - fxx (w)}

1/4
— pT Z K, (As —w) Ixx(As) — fxx (w)]
p1/4 sEB,,
= = Z K, (As —w) [Ixx(Xs) = fxx (As)]
s€B,,
L/
+ Z Ky, (As —w) [fxx(As) — fxx ()] (96)

By Assumption 2, |fi v (As)| < 5= S |k[|C (h) |, so that

[fxx(As) = fxx (w ( Z\hHF )])\S—w].
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Hence, the second term of (96) is

pl/4
A 3K, (s —w) [fxx(As) = fxx (@)
s€B.,
1/4
= L Y KW w
sEB,,
1/4 ﬁT (UJ >\5) T2
_ ofr vl [ As —
<Ts§w\/@ep< 4pg )' w')
1/4 VT (wT — 27s)?
— O p_ ——— ex — mws — T
(T 2 ( i )'2 T '>
B p1/4 S v2 T2
- 0(7 e (575) ”d“>
p1/4
= O(5) = o(1), &7

where we have used Lemma 5.
Combining (96) and (97) leads to

Vi f s /4
p {fXX(W) — fxx (W)} = s; K, (As —w) [Ixx(As) — fxx (As)] +o(1)

In view of (71), the frequency domain BN decomposition, we have )
w(As) = C(e™)w-(\s) + Op(T713). (99)
Following the same steps in (72), we can show that
T—1
S 1K (A —w)] = O(T). (100)
5=0

Plugging (99) into (98) and using (72), we have
pH/t {fXX(UJ) - fxx (w)}

- 5 3 KO e+ 0,

SEBw

(G (0) + 0T )] = fxx (M)} +0(1)

1/4 ' "
= pT Z K, (As —w) UC(SMS) 2155 (As) — fxx ()\s):| + 0, (%Tﬁ) +0(1)

s€By,
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T
seB,,
1/4 2
p 2 o
= T Kp ()\8 — W) ‘C(@ZU)){ |:Isg ()\8) - %:|
SGBw
1/4 A o?
o X Ko e (et - o P) 1 0 = 5] +o, ),
7r
SEBw
(101)
where we have used p/ T? — 0. But the second term in (101) is bounded by
T Z K, (\s —w)|As —w| =0, (1) (102)
SEBw
by the smoothness of C(e?) and (97). Hence
R pl/4 o2
pl/ {fXX(w) - [xx (w)} = {C’ )y Z K,(A\s —w) [IE8 (As) — %} )
SGBw
(103)

Let my = 0 and for t > 2,

where )
C(eiw) 1/4 .
cj(w) = %[)TT (Kp(As — w) cos(jAs)).
SEBw

Following the same steps as in (74), we can write

ZK (As —w [EE( s ——} _2th+op 1). (104)

SGBw

1/4

Simple calculations show that

|C(eiw)‘2 p1/4

¢ (w) = TTkp(%)coswj. (105)
Hence
T 1/2 T
A (T2 Zk ) (;) (106)
j=1

We proceed to show that

T 04{0(61‘1”){4 a0\ 1/2 \1/2
2;mt —q N (O,T <@> ) =N <0,f)2(X(w) <@> ) . (107)

20



by verifying the following two sufficient conditions for a martingale CLT:

T 4 \C( iw){4 1/2
o e T
Em?| Fiq) — ————— [ — 1
; (mi| Fi—1) 6.2 <29> —p 0, (108)
and
T
> E(mf) =, 0. (109)
t=1
The left hand side of (108)
T t—1 4 ¥4 1/2 T
o*C*(1) ([«
o? Z ZEJZC?—J' (w) — 1677(2 ) (2—> +0? Z Z ergjci—r (W) ci—j (w) == T1+71o.
t=2 j=1 g t=2 r#j
(110)
The first term, 77, is
T—1 T—j T-1T-t 44 1/2
o*C*(1) (=«
ATt |t g - (1) )= T
j=1 s=1 t=1 j=1 g
(111)
The mean of 777 is zero and its variance is of order
T-1 2 T 2 ]
0| (Seaw) [ -ojr(Sdw) | -o(;),
j=1 \s=1 s=1
using (106). Next, consider the second term of (111). We have
T-1T—j i) 12 T-1T—j
2 ‘C { P 2
ZZCS( = ZZk ) cos? ws
7j=1 s=1 7j=1 s=1
‘C iw ‘4p1/2T 1T-s 2
= W z; Zk cos ws
‘C(eiw)‘ 1/ r-1 S. o )
= e 7 U phip) s
‘C(ew)rl 12 ™ 2
—_— — 1 1 112
e () (o) (12
iw |4 1/2
Cle
_ M 1 +o(1),
167 2g
where (112) follows from the approximation
1 T-1 ) ) . 1/2
— 1—=)k == 1 1 11
73 G eoen = (5) 0+ oD (113

ol



which can be proved using Laplace’s method. To save space, the details of the proof
are omitted.
The above derivations therefore demonstrate that

T t-1 4 iw |4 1/2
o* |C(e™) T
Il —0'2 E E E Ct ] % (@) —p 0. (].].4)
t=2 j=1

So the first term of (110) is o,(1). Following arguments similar to the proof of
Theorem 3, we can show that Zo —, 0. In fact, since ¢; (w) < 1/2¢;, all steps go
through with no modifications. Similarly, condition (109) can be verified in the same
way.

Combining (103), (104) and (107) yields

Lo e Y 8 0w [0 - 2

SEBw

—~4 N (o"ﬂ$€2w>|4 (%)1/2> =N <o, (2%)1/2 f§X(W)> . (115)

>From this, we obtain the limit theory for the spectral estimate at w # 0, 7:

R S\ 12
pl/‘*{fXX(w)—fXX(w)}wN(0, (3) f;%X(w)), (116)

as desired. m

Proof of Theorem 7. Note that

Fxx(wi) —TZK wi) Ixx (As)
R R T—-1T-
cov ( Fxx (W), Fxx ( ) =y Z —wi) K (A — wy) cov (Ixx (As) , Ixx (Ar).-
7=0 s=0

(117)
Under Assumption 2, we have

(i)Var (Ixx(As) — fxx(As)) = 4n80, fix(As)(L+O(T712),  (118)
(14)Cov (Ixx (As), Ixx (A7) = O(fxx(As)fxx(Ar)/T),s #,

where dgx, = 1+ 1{n,—0,r}, and O(-) holds uniformly in As and A; (see 6.2.37 of
Priestley (1981)). Therefore

oon (Fex(en. Frxtey) = (T-*famus—w»m_w») (0+ o)

s=0

T3 K (As —wi) K (Ar —wj)| | - (119)
SHET
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The second term in (119) is

s T-1 - T-1 - _
0T [ D IK s —wi)l | [ D 1K (A = wj) o(/T),
s=0 7=0

using ZZ;& | K

—~

Ar —wj)| = O(T). The first term in (119) is bounded by

S exp (_ (0= NPT (w wzﬂ))
4

Q

Py 4pg

I
Q

I
Q
A —A—

— ™I I ™IN D=
c\
[\~
3
"
o
|
.
- E 3
. A N
8
|
: &
o |+
&
<
~_
no
€
)

&
<
h©

~__—

| |
jo W
S}

——

= 0 750 [—8T—/;(wz wJ)Q] (120)

Therefore

2o (Tt Fex() = 0 (p411) +0 (exp [~ (i =]
= o(1) (121)

using p/T? — 0. m
Proof of Theorem 8. (a) Let X; = X; — 1/T 23:1 X,. Simple calculations

show that

1

T or

Fxx(w

T
~ . !
o (X e “w) (XTe—W) (122)
=1

where for a complex matrix 2z, 2z’ denotes the conjugate and transpose of z. Let
Su(r) = \/— Z[TT Xie~ ™!, Using summation by parts twice, we have

R 1 T—-1T-1 _ P
Fex@) = =3 5 StmD(=)8 /)
t=1 7=1
T-1
+3e5 0 S (WD () ST )
=1
T-1
3 2 Sult/T) (o) = R ) S0+ S0
t=1
where t—r t—r tor—1 t—r+1
DTy =2k (D) (T (Y )



We now consider three cases (i) w = 0, (ii) w = 7 and (iii) w # 0,7 separately.
First, when w = 0, we have

So(1) =0, Su(r) = Ao (Wo(r) — Wo(1)r) := AgVo(r) (125)
where Vj(r) is a standard Brownian Bridge. Note that when 7' — oo such that
(t/T,7/T) — (r,s) in the Euclidean metric (||-||) for some r and s, we have

t—T
)

lim 72Dy ( = —k)(r—s). (126)
T—o0

Since k(-) is twice continuously differentiable, the above convergence is uniform in

r and s. In other words, for any given € > 0, there exists a positive A which is
independent of r and s such that

t_
—T)—i-kZ(T—S)

T <e€

T2D,(

whenever |[(t/T,7/T) — (r,s)|| < A for all (r,s) in [0, 1] x [0, 1]. For a proof of the
uniformity, see Weinstock (1957).

Combining (123), (125), and (126), and invoking the continuous mapping theo-
rem, we get

fxx(0) = —iAo /1 /1 ki (t — 1) Vo (t) Vo (7)dtdT A

_ —Ao/ / (t — 7)dVo(£)dV (1) Al (127)
where the last line follows from integration by parts. Some simple algebraic manipula-
tions show that the last expression is the same as (27) " Ag I [ E(t=7)dWo(t)dWe(T)Ag

as required.
Second, when w = 7, we have

(Tr] [Tr]

S (r) = % S (X — e — (X - \/1_ Ze—m S AWR(r). (128
Combining the above result with the the continuous mapping theorem leads to
Fex(m) = 5 Ax / / Wat)k, (¢ — 7V (1), + = Ax W (D (1AL
+2 A </ ko(1 —T)Wr(r )dT) W, (1)AL —|— A Wr(1) (/Olkp(l—T)W;r(T)dT> AL
/ / (t — 7)d W, (£) AW ()AL (129)

Finally, we consider w # 0, 7. Note that

Su(r) = Ay (Wor(r) +iWer(r)). (130)

54



Again using (123), (126), and the continuous mapping theorem, we get

Fex(w) = %Aw / / k(1 — 7)dW,, (£)dW! (7)., (131)

Details are omitted.
b) For w = 0, we have

1 1
E(27) AgZoA, = (27) 1 AoE / / K2 (8, 7)dWo (1) dW (r)A)
0 0

) /0 k() = Fxx(0) (1— /0 1 /0 1 kp(t,T)dtch-). (132)

For w # 0, we have

1,1
B(2m)  ALELN, = (21) ' ALE / / oy (t — 7)AW, (8 (1) AL
o Jo
= (2n)TALAL + 2m) TTALAL T {w # T = fxx (W) (133)
c) We prove the case when w # 0,7, as the proofs for the other cases are similar

and simpler. Write E (vec(Z,)vec(E,)’) as

E </01 /01 /01 /01 ko (7, $)ko(p, q)vec (AW, (r)dW,,(s)) vec (dWJp)dWL(q))')
= F (/01 /01 /01 /01 kp(% s)kp(p, 2 Z j# kL ka) (_i)#{kz,kg,}

k‘l,kg,k‘g,k4€{R,I}

X vec (dkal (7“)dVVa'j,€2 (s)) vec (dkag (p)dWc:lm (Q))I>

where # A denotes the number of elements in A which are equal to ‘I’.
Some calculations show that £ (Vec (AW, (r) AWk, (5)) vee (dWep, (p) AW, (q))/)
is
vec(Im)vec(Im ) drdpl (o, ko Liky=key, 7 =s#p=1q,

IdeTd31{k1:k3}1{k2:k4} ifr = 14 7& s =q, (134)
Kmmdrd31{k:1:k4}1{k2:k:3} ifr= q 7& s =p,
0, otherwise.
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Using the above result, we have

E (vec(Z,)vee(Ey))
Z i#{kl,lm}( )#{k2’k3}vec( m)vec(I, )ll{klsz}l{k3:k4}
k1,k2,k3,kac{R,I}

1 1
Z Z’#{k‘lylﬂ} (_Z)#{k‘%ki&} / / ki(fr — S)dT'dSImQ 1{k;1:k‘3}1{k2:]€4}
k1,k2,ks,kac{R,I} 070

1 1
Z i#{khlﬂ} (_i)#{k27k3} / / kﬁ(T - S)deSKmml{klzkz;}1{k2:k3}
k1,kg k3, ka€{R,I} o Jo

+

+

dvec(Ip,)vec(],

dvec(Ip,)vec(],

Hence

var(vec(Ay,Z,AL))

= Evec(A,Z A vec(ALELA
E (Ay @ Ay) vee(Zy,)vec(E,) (AL @ A)
4 (A, @ Ay) vec(Iy)vec(L,) (AL, @ Al)

+4/ / k2 (r — s)drdsl,,»

+ 4 k2 (r — s)drdsl,,:. 135
m

1) —vec(A, EZ, AL vec(A, EE,AL)

— 4vec(Ay, A vec(AL,AL)

1 1
+4/0 /0 k?,(’r — 8)drds (A, ® Ay) (AL, @ A)) — 4vec(A,Al)vec(AL,AL)

11
4/0 /0 kg(r — s)drds (A, @ A) (Aw @A)

— 471-2 /01 /01 kﬁ(’r — s)d’rds (fxx(w) ® fxx(w)) , (136)

giving the stated result. m
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Notation

LRV  Long Run Variance

MSE Mean Squared Error

HAC Heteroskeda'stic and'
autocorrelation consistent

—d weak convergence

0p (1) tends to zero in probability

VA set of positive integers

R* (0, 00)

Kmm

vec(A)
[
tr{A}
R

1Al

o6

m?2 X m? commutation matrix

Kronecker product
vectorization by columns

integer part

trace of A

(—OO, OO)

Euclidian norm of A
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