
UC Irvine
UC Irvine Previously Published Works

Title
Approximate simulation of cortical microtubule models using dynamical graph grammars.

Permalink
https://escholarship.org/uc/item/6mg5x18v

Journal
Physical Biology, 20(5)

Authors
Medwedeff, Eric
Mjolsness, Eric

Publication Date
2023-07-07

DOI
10.1088/1478-3975/acdbfb

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/6mg5x18v
https://escholarship.org
http://www.cdlib.org/

Approximate simulation of cortical microtubule models using
dynamical graph grammars

Eric Medwedeff1,2, Eric Mjolsness2,3,*

1Computational Science Research Center, San Diego State University, 5500 Campanile Drive,
San Diego, CA 92182, United States of America

2Department of Computer Science, University California Irvine, Irvine, CA 92697-3435, United
States of America

3Department of Mathematics, University California Irvine, Irvine, CA 92697-3875, United States of
America

Abstract

Dynamical graph grammars (DGGs) are capable of modeling and simulating the dynamics of

the cortical microtubule array (CMA) in plant cells by using an exact simulation algorithm

derived from a master equation; however, the exact method is slow for large systems. We present

preliminary work on an approximate simulation algorithm that is compatible with the DGG

formalism. The approximate simulation algorithm uses a spatial decomposition of the domain at

the level of the system’s time-evolution operator, to gain efficiency at the cost of some reactions

firing out of order, which may introduce errors. The decomposition is more coarsely partitioned

by effective dimension (d = 0 to 2 or 0 to 3), to promote exact parallelism between different

subdomains within a dimension, where most computing will happen, and to confine errors to

the interactions between adjacent subdomains of different effective dimensions. To demonstrate

these principles we implement a prototype simulator, and run three simple experiments using a

DGG for testing the viability of simulating the CMA. We find evidence indicating the initial

formulation of the approximate algorithm is substantially faster than the exact algorithm, and

one experiment leads to network formation in the long-time behavior, whereas another leads to a

long-time behavior of local alignment.

Keywords

numerical computing; dynamic graph grammars; cortical microtubule array; simulation algorithm;
cell complex; local graph dynamics; operator splitting

Original Content from this work may be used under the terms of the Creative Commons Attribution 4.0 licence.
*Author to whom any correspondence should be addressed. emj@uci.edu.

Supplementary material for this article is available online

HHS Public Access
Author manuscript
Phys Biol. Author manuscript; available in PMC 2024 July 01.

Published in final edited form as:
Phys Biol. ; 20(5): . doi:10.1088/1478-3975/acdbfb.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://creativecommons.org/licenses/by/4.0/

1. Introduction and background

1.1. Overview

Dynamic graphs are graphs that change over time and are capable of encoding the changing

state of complex systems. Graphs with local dynamics provide a mathematical framework

for understanding changing relationships between objects. We can formulate and enable the

use of dynamic graphs by providing a high level language for their dynamics. Dynamical

graph grammars (DGGs) [1] allow for an expressive and powerful way to declare a set

of local rules to model a complex, dynamic system with graphs. The DGG formalism is

flexible for modeling and allows a wide array of models to be created in the natural sciences.

DGGs have well-defined meaning. They map graph dynamics into a master equation, a set

of first order linear differential equations governing the time evolution of joint probability

distributions of state variables of a dynamic system. Using operator algebra [2], DGGs

can be simulated using an exact algorithm that subsumes Gillespie’s stochastic simulation

algorithm (SSA) [3], which is closely related to Kinetic Monte Carlo algorithms of statistical

physics [4]. As does the SSA, the exact algorithm becomes slow for large systems. Using

operator splitting, a faster approximate algorithm for spatially embedded graphs can be

derived. In section 2 we discuss the preliminary work done on the approximate algorithm,

and areas for improvement.

In this work we present a paradigm for model creation and demonstrate the utility provided

by DGGs. In particular, we focus on one specific example in biology, plant cell division,

and one particular system in that process, the cortical microtubule array (CMA). We further

restrict our graphs, and require them to be spatially embedded in Euclidean space.

1.2. Biological motivation

Eukaryotic organisms comprise complex cells with many subsystems that are well suited to

be modeled with dynamic graphs. Over time cells can divide allowing for a plant to grow,

among other processes. Understanding the exact biomechanical mechanisms taking place

during cell division in plants is a long-standing question [5], but it is known that there is

a connection between division plane orientation in plants and a change in the orientation

of cortical microtubules (MTs) associated with the plasma membrane [6], as they form the

pre-prophase band (PPB). For example, one hypothesis for the PPB orientation process is

‘survival of the aligned’ [7], and another is alignment through selective katanin mediated

severing [8]. The ensemble of MTs associated with the plasma membrane of the cell is the

CMA. The question of how MTs contribute to cell shape and other processes during cell

division motivated us to develop a simplified model for the dynamics found in the CMA,

with potential to extend this work to larger systems with more complicated dynamics and

interacting networks at different spatial scales.

1.3. Stochastic chemical kinetics

The SSA is an example of stochastic modeling, as opposed to the deterministic modeling

approach [9]. In a deterministic approach, the time-continuous processes are wholly

predictable and can be governed by the reaction-rate equations [10], a set of coupled

Medwedeff and Mjolsness Page 2

Phys Biol. Author manuscript; available in PMC 2024 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

ordinary differential equations (ODEs). The stochastic approach is a type of random-walk

process that is completely encoded in the master equation. The master equation is itself a

high dimensional linear differential equation, governing the rate at which probability flows

through different states in the system. However, systems can become very large due to an

exponential state space explosion with respect to the number of biological variables, and the

systems may have infinite dimensional state spaces, making the analytical solution to the

master equation computationally intractable or impossible.

The work of Gillespie [11] uses the Monte Carlo method and kinetic theory to rigorously

derive the exact SSA for chemical kinetics. The derivation makes a case based on several

assumptions about the systems, the most important being the system contains a large

number of well-mixed molecules at thermal equilibrium. After making key assumptions,

it is necessary to set reaction rates—which can be difficult to determine. Three routes for

determining rates are lab measurements, giant ab initio quantum mechanical calculations

or machine-learning generalizations therefrom, and parameter optimizations in the context

of system-level observations together with the use of other known reactions rates that are

more easily measurable. Finally, an event is sampled from a conditional density function.

The Monte Carlo procedure does not give the analytic solution to the master equation, but it

does yield an unbiased sample trajectory of a system. It effectively provides a realization by

means of numerical simulation.

As powerful as the exact SSA is, it is prohibitively slow, since each reaction event must

be computed in order. Numerous methods have been proposed to speed up the exact SSA.

τ-Leap [12] fires all reactions in a window of τ before updating propensity functions, saving

computation at the cost of errors. Later, it was made even more efficient [13]. R-Leaping

[14] lets a preselected number of reactions fire in a simulation step, again at some cost in

accuracy. The Exact R-Leap, ‘ER-Leap’ [15] modifies the R-Leaping algorithm to both be

exact and provide a substantial speed up over SSA. ER-leap was later improved upon and

parallelized in HiER-Leap [16]. More recently, S-Leap [17] was introduced as an adaptive,

accelerated method that bridges the methods of τ-Leaping and R-Leaping. There are many

other works on speeding up the original SSA as well.

Our work builds on this rich history and complements it. We are not just interested in

solving the master equation for stochastic chemical kinetics. Instead, we’d like to solve a

broader class of problems in biology and beyond, by representing the dynamics of spatially

extended objects using graphs. The foundational work for the mathematical theory will be

briefly discussed in the DGG formalism section and the curious reader may refer to [1, 2,

18] for more detailed information.

1.4. Graph theory

We will use the following graph theory and notation. A graph (undirected) G = V , E is a

set of V vertices and set of edges E ⊆ u, v ∣ u, v ∈ V , each an unordered pair of V , where

the elements u, v ∈ V are vertices. V G is the set of vertices of graph G and E G is the

set of edges of graph G. Now, let G = V , E and G′ = V ′, E′ . The graph G is homomorphic

to G′ if there exists a mapping f:V V ′ that preserves the adjacency of vertices i.e.

Medwedeff and Mjolsness Page 3

Phys Biol. Author manuscript; available in PMC 2024 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

v, v′ ∈ E f v , f v′ ∈ E′. We call this a homomorphism from G to G′. If the function f
is bijective and its inverse is a homomorphism, then f is also an [19] isomorphism.

A labeled graph G is defined as G = V , E, α , where V , E is a graph and α :V L is a

function assigning labels to vertices. To each labeled graph there corresponds an (unlabeled)

graph V , E without the labels. We define a label-preserving homomorphism of labeled

graphs to be a graph homomorphism that preserves the labels exactly, without remapping

them. We define a match to be an injective label-preserving graph homomorphism G G′.
Informally, a match locates a ‘copy’ of G as a subgraph inside of G′ for which vertices,

edges, and labels are all preserved.

A labeled graph can be seen in figure 1. Here, the nodes are uniquely labeled using positive

integers and the edges remain unlabeled. The discrete vertex labels have been mapped to a

color set and visualized with those colors. In this case, the graph has no spatial embedding,

so we could visualize the graph in many different ways.

A dynamic graph, G t is a graph that changes over time. The change can either be

in the form of vertex/edge creation or destruction, or the change of label parameters.

Mathematically, we write G t = V t , E t , αt , where αt :V t L.

1.5. Extended objects and the expanded cell complex (ECC)

Declarative modeling of complex biological systems requires a way to describe non point-

like extended objects [1]. Examples of extended objects are polymer networks in the

cytoskeleton, and multi-cellular tissues. In this section, we use a mix of standard and

non-standard definitions used in construction of extended objects and we introduce the

‘ECC’ used in the approximate simulation algorithm.

Graphs augmented with labels are expressive mathematical objects capable of a high level

of abstraction, and we use these for the representations of all of our extended objects.

As defined in [1], numbered graphs are special cases of labeled graphs that have unique

consecutive non-negative integer labels for vertices. If the graph in figure 1 did not have

colors assigned to nodes it would be a numbered graph. A graded graph, on the other hand,

is a graph where vertices are labeled non-uniquely with a level number, associated with

spatial resolution which can only differ by {0, ±1} between neighbors. A stratified graph
labels vertices by a non-negative integer ‘dimension’ of the stratum to which they belong.

Graded stratified graphs have both dimension and level number vertex labels with suitable

constraints.

A special case of stratified graphs is the abstract cell complex. The abstract cell complex is a

graph that is used to represent the topology of a space in the manner of a CW cell complex

[20]. It has further constraints on the dimension labels. A graded abstract cell complex can

represent topological properties of the space with the addition of level numbers associated

with spatial resolution.

‘Expanding’ is a process of consistently mapping each lower dimensional cell in a cell

complex to a cell of the highest dimension in a new ‘expanded’ cell complex. By expanding

Medwedeff and Mjolsness Page 4

Phys Biol. Author manuscript; available in PMC 2024 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

as in [21, 22] all of the abstract cell complex cells with dimension numbers less than the

maximum, we get an ECC. We only apply expansion to the interior of lower dimensional

cells. In our case we apply expansion to a two level graded abstract cell complex with

a coarse scale 2D grid that is refined to a finer scale 2D grid. Figure 2 exhibits a side

by side visualization of a pre-expansion (figure 2(a)) cell complex and its post expansion

(figure 2(b)) cell complex. In figure 2(b), lower dimension interior cells are expanded such

that they always have a ‘collar’ width less than the cell of the dimension above, so that

cells of the same dimension are always separated by at least a dimension-specific minimum

distance. This key criteria of the ECC is well-separatedness, as will be explained more in

the methods section. The ‘collar’ we refer to is related to the idea of a tubular neighborhood

in differential topology [23]. Further discussion of cell complex theory can be found in [20,

24–27].

1.6. Related work

There already has been work done to simulate plant MT dynamics [6, 28]. However, there

is no other work to our knowledge that does it with dynamic graph grammars. The tool

Plenum [29] implements DGGs as an embedded symbolic meta-programming language in

Mathematica. However, it is not scalable because it uses the exact algorithm—which is

only practical for small systems. Additionally, Plenum supports graphs by using unique

object identifiers (OIDs), but does not directly support graphs as a native data structure.

Improvements to the algorithm used in Plenum and a scalable solution is necessary to

modernize the current work and allow for faster and more realistic results.

2. Methods

2.1. DGGs formalism

DGGs are a further refinement of the Dynamical Grammars (DGs) [18], which generalized

Stochastic Parameterized Grammars (SPGs) [18] by the inclusion of differential equation

rules. SPGs function to unify the formalism of generative grammars, stochastic processes,

and dynamic systems. While SPGs can be applied to graphs, DGGs include all the related

formalisims of SPGs and DGs, along with an additional and expressive modeling language

framework for graphs. The semantics of the DGG formalism starts with DGG models MDGG

in language LDGG and using a compositional map ΨDGG, maps the declarative grammar rules in

the model to a valid dynamical system expressed by a master equation.

The master equation represents the time evolution of a continuous time Markov process. It

can be written in the form:

P′ t = W ⋅ P t ,

(1)

with the equation having the formal (but usually not practical) solution:

P t = etW ⋅ P 0 .

Medwedeff and Mjolsness Page 5

Phys Biol. Author manuscript; available in PMC 2024 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

(2)

W is called the model system’s ‘time-evolution operator’, since it entirely specifies (in a

probabilistic way, which can specialize to deterministic dynamics if need be) how the model

evolves in time.

Let Ψ M = W M be a semantic map over DGG models comprising rules indexed by r, and

Ŵ r ≡ Ŵ LHSr RHSr be an operator that specifies the non-negative flow of probability between

states under each rule r. Then Ψ is ‘compositional’ if it sums the operators W r over rules

thusly:

W = ∑
r

W r

(3a)

W r ≡ Ŵ r − Dr

(3b)

Dr ≡ diag(1 ⋅ Ŵ r)

(3c)

where equation (3a) states that rule operators sum up, equation (3b) states rules conserve

probability, and equation (3c) represents the summed conditional probability outflow per

state. The operators for rules indexed by r ∈ M map to the operator sum and the dynamics

can be defined under the ME.

Parameterized grammar rules extend the pure reaction rules to an additional parameterized

space and allow for a more expressive form of modeling. This gives rise to the SPG. The

probability space for the SPG was defined in [29]. A form of a stochastic parameterized rule

is:

τα p xp ∣ p ∈ Lr *
τβ q xq ∣ q ∈ Rr *

with ρr xp , yq

(4)

where τα p xp and τβ q xq are the object types parameterized by parameters xp and xq. Note

that xp and xq may be vectors. Again, r is the rule index, and Lr, Rr are the left and right

hand side argument list indexed sets. So, p and q represent the position of τα p xp and τβ q xq

in their respective argument lists. Finally, ρr xp , yq is the reaction rate function of both

the incoming and outgoing parameters. ρr xp , yq ℝ+ is a non-negative propensity rate

function. If ρr xp , yq is integrable over output parameters it can be decomposed into a rate

function over input parameters and a conditional probability over the output parameters:

Medwedeff and Mjolsness Page 6

Phys Biol. Author manuscript; available in PMC 2024 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

ρr xp ≡ ∫ ρr xp , yq Δ yq

P yq ∣ xp ≡ ρr xp , yq
ρr xp

ρr xp , yq ≡ ρr xp *P yq ∣ xq .

(5)

For clarity, grammar rules will be written decomposed in this manner.

Parameterized rules are encoded into the master equation and we can derive a simulation

algorithm [2]. We can elevate these parameterized rules to include graphs by adding unique

discrete object IDs [30] as parameters.

Using operator algebra [2] we can derive an exact time warping simulation algorithm [2]

(algorithm 1), and add in differential equation rules:

τα p xp ∣ p ∈ Lr = Rr *
τβ q xq ∣ q ∈ Rr = Lr *

solving dxp, j
dt = vp, j xk ∣ p, j} .

(6)

Here, everything remains the same in regard to notation, except the left hand side (LHS)

and right hand side do not change in number or object type, but the parameters can

evolve by solving a differential equation. When we combine these differential rules with

the parameterized rules, we get DGs [16].

The exact algorithm simulates a single trajectory of a continuous time stochastic process.

Propensity functions are factored into a product of the rate function and a distribution of

output parameters conditioned on input parameters, as in equation (5). While the simulation

time is less than the maximum, we compute the time until the next reaction and modify

the system when it occurs. The process is very similar to the standard SSA, but with the

inclusion of the time warping equation. The warp equation is an ODE to keep track of the

time until the next event and must be solved as part of the system of ODEs governing the

time evolution of the parameters. When a reaction does occur, the state of the system is

modified according to the rule instance selected and the parameters are sampled from the

conditional distribution of the factored propensity function.

Medwedeff and Mjolsness Page 7

Phys Biol. Author manuscript; available in PMC 2024 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

DGs [30] are able to handle graph representations using unique OID parameters.

However, using OIDs to represent graphs decreases readability and natural expressiveness.

Alternatively, using a formal graph notation [1], DGGs can be represented using a different

form:

G λ G′ λ′ with ρr or solving ẋ = v.

(7)

Here G λ is the LHS labeled graph with label vector λ and G′ λ′ is the right hand

side labeled graph with label vector λ′ . G and G′ without their label vectors λ and λ′ are

numbered graphs, so that the assignment of label component λi to graph node member i is

unambiguously specified. We have the usual ‘solving’ and ‘with’ clauses. For examples of

such graph grammar rules, see the supplementary material.

2.2. Approximating the exact simulation algorithm

The forgoing exact algorithm is powerful and works for multiple rules of different forms [2];

however, it is prohibitively slow for large systems. A single run of the exact algorithm yields

only one trajectory. In practice thousands or more may be needed to be run to compute

meaningful statistics or to recover outcome density functions. The type of rules we use

are expressed as graphs [1] and extend previous work [30] by being a more efficient and

readable representation of DGG rules compared to using the OIDs mentioned in the previous

section.

We make two key assumptions in our approximation of the exact algorithm: spatial locality

of the rules and well-separatedness of the cell complex used to decompose biological space

into domains. Consider the spatial locality constraint for graphs. The system state comprises

extended objects taking the form of labeled graphs. Each of the nodes in a graph is labeled

with a vector-valued position parameter. Additional parameters are allowed and have no

Medwedeff and Mjolsness Page 8

Phys Biol. Author manuscript; available in PMC 2024 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

spatial constraint. Our graph grammar rules are made spatially local by virtue of their

propensity functions. We use spatial locality to define local neighborhoods of rule firings.

Any rule instantiations outside this neighborhood have zero or near zero propensity that

decreases rapidly, for example exponentially, with distance. Hence, any two objects in the

system that are too far apart have a very small chance of reacting, and their potential

interactions are ignored.

Spatial locality also allows us to decompose the domain of the simulation space into smaller,

well-separated geometric cells. In the context of the simulation algorithm, a ‘cell’ refers

to a computational spatial domain, which differs from the biological notion of a cell.

Such a geometric cell (geocell) is a cell of an ECC, labeled by the dimension of the

corresponding cell in the unexpanded cell complex. Lower dimensional cells of the cell

complex are expanded to be large enough to keep rule instances from spanning multiple

same-dimensional geocells. An example can be seen in figure 2. By setting these geocells to

be large enough (at least several factors larger than the exponential ‘fall off distance’), we

are able to logically map rule instances to well-separated geocells.

The operator W in equation (1) assumes a state space and specifies the probability flow

on that space for all of the extended objects in our system. Considering equation (3a),

W = ∑W r, the method we propose to approximate etW is an operator splitting algorithm

that imposes a domain decomposition by means of an ECC that corresponds to summing

operators, W = ∑ d W d = ∑ d, c W c, d , over pre-expansion dimensions d, and cells c of each

dimension:

etW ≈ ∏
d

e
t
nW d

n ∞

(8a)

Medwedeff and Mjolsness Page 9

Phys Biol. Author manuscript; available in PMC 2024 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

et′W d = ∏
c ⊂ d

et′W c, d where W c, d , W c′, d ≈ 0

and t′ ≡ t
n

(8b)

W c, d = ∑
r

W r, c ≡ ∑
r

∑
R ∣ φ R = c,

R instantiates r

W r R ∣ c, d .

(8c)

Equation (8a) is a first-order operator splitting, by solution phases of fixed cell dimension,

where d means we multiply from right to left in order of highest dimension to lowest.

It incurs an approximate error of O((t/n)2). Equation (8b) uses the fact that the resulting

cells c of fixed dimension d are all well-separated geometrically with enough margin (due

to the ‘collar’ of dimension d′ ≠ d [21]) so that reaction instances R, R′ commute to high

accuracy if they are assigned to different cells c, c′ of the same dimensionality, by some

reaction instance allocation function φ. The commutators of equation (8b) can be calculated

as derived in [31], but they will inherit the exponential falloff with separation that we

assumed for the rule propensities (see [31], equation 12 therein). Hence, the dynamics etW c, d

of different cells c, c′ of the same original dimension d and can be simulated in any order, or

in parallel, at little cost in accuracy.

The operator splitting and the function φ introduce a major opportunity for parallel

computing, because the exponentials defined in each cell c of a given dimensionality d
can all be sampled independently of one another. This potential parallelism includes the

possibly heavy computation of solving ODEs specific to cell c. Equation (8c) then defines

the geocell-specific operator for the process to be simulated by algorithm 1 [2], specialized

to the case of graphs. The resulting parallel algorithm is outlined in algorithm 2. It can

be seen that without domain subdivisions, the approximate algorithm reduces to the exact

algorithm. A more complete mathematical treatment of the approximate algorithm using

DGG commutators computed as in [31] to bound the operator splitting errors will be the

topic of future work.

2.3. Developing the prototype DGG simulator

To conduct our experiment with simplified CMA models, we have implemented a prototype

DGG simulator in C++ [32]. The simulator is capable of using both the exact and

approximate algorithms. The prototype simulator makes use of a dynamic graph library,

an ECC, a subgraph-specific pattern recognizer (SSPR), an ODE solver, an input file reader,

and an output file generator.

The core data structure in the DGG simulator is the graph. The DGG formalism

declaratively specifies what type of graph rewrites can occur, but it does not specify how

rewrites are performed or how graphs should be represented on a computer. To address

Medwedeff and Mjolsness Page 10

Phys Biol. Author manuscript; available in PMC 2024 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

the ‘how’ we have developed our own dynamic graph library, Yet Another Graph Library

(YAGL). YAGL provides a dynamic graph data structure, along with rewrite operations.

Other functionality has been implemented as needed, and YAGL will continue to develop

concurrently with the simulator implementation.

The ECC is what the simulator uses to manage the topology and geometry of the simulation

space. A spatial reaction grid is used to manage the propensity function ‘fall off’ of a rule

instance. The ECC and a reaction grid are seen in figure 3. For this work, a cell complex of

a regular Cartesian grid is expanded. A cell complex graph is used for the expansion and it

is labeled with additional data for the well-separatedness criteria. The reaction grid is also a

Cartesian grid and it is aligned with the ECC. Regions of the same pre-expansion dimension

are separated from each other by a minimum distance. Further, reaction grid cells keep

reactions spatially local and are smaller than the minimum separation distance of geocells.

We use a SSPR to find all matching LHSs of each grammar rule. For our purposes, a

recognizer is a program that identifies all labeled subgraphs that match one to one with a

given LHS labeled graph. Subgraph matches are found by using manually written search

code for individual LHS rather than general-purpose subgraph isomorphism algorithms [33,

34]. The SSPR implementation we use includes the search code for each individual LHS

grammar rule in the model.

To build a SSPR, we need to determine a way to find all the applicable matches of a given

LHS grammar rule in the system graph, GSYS. We denote the LHS of any rule as GLHS. The

system graph is our search space, and the pattern of the LHS is the target. The process of

recognizing a single instance of the target graph in the search space is what we mean by

subgraph pattern recognition. Finding every valid instance of target graph GLHS is matching.

Since it would be prohibitively hard to directly search for all possible functions

f:GLHS GSYS, where f is an edge preserving map, we need to apply some heuristic filter.

Let GT be a rooted spanning tree of target graph GLHS. If GT and f exist, then there must exist

some mapping g:GT GSYS. We can represent the entire process using the commutative

diagram of graph homomorphisms as in equation (9):

Medwedeff and Mjolsness Page 11

Phys Biol. Author manuscript; available in PMC 2024 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

(9)

We can demonstrate what we mean by finding the mappings f and g. In figure 4 we have a

side by side view of the graph to be searched and an example of a target pattern. Figure 4(a)

is GSYS and figure 4(b) is GLHS also known as the target graph/pattern.

Instead of trying to find the direct match for the target graph, we first find all matches g for

some rooted spanning tree GT ⊆ GLHS, and then filter to ‘lift’ g to f if possible. We can see

two examples of valid rooted spanning trees in figure 5. Figure 5(a) is an example of a less

optimal root choice, whereas figure 5(b) is an example of an optimal choice for the tree. In

general, the optimal choice is related to the height of the tree. The taller tree will be a more

costly transformation for the search algorithm, since it will generate a more deeply nested

search code.

In figure 6 we can see what an algorithm searching the graph using the transformation of the

target pattern seen in figure 5(a) actually does when we pick the starting node as depicted

and start our rooted search. The rooted tree directly corresponds to our search path. The

shorter the tree, the less deeply we need to search and the more search branches that can

be pruned. We choose the less optimal tree to demonstrate this fact. Starting on node five

in figure 4(a) we search and find two matches as can be seen in figure 6. A search started

from each an every node in the graph would yield all possible matches. In this case, there

are twelve matches (we include all valid permutations of a target match) and we finally have

everything we need for a SSPR.

To solve the ODEs for deterministic grammar rules, we have included a state-of-the-art

numerical solver. We use the suite of nonlinear and differential/algebraic equation solvers

Medwedeff and Mjolsness Page 12

Phys Biol. Author manuscript; available in PMC 2024 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

[35]. Solving functions are also manually written, but in future iterations a code generator

would generate them directly from the DGG language.

In the absence of such a code generator, input is handled by configuration files. Simulation

parameters are saved in a configuration file using JavaScript Object Notation (JSON) format.

We use the library ‘simdjson’ [36] to read these files into our input file reader. Eventually,

the JSON configuration files should be replaced by a more expressive language interface and

a symbolic computer algebra system.

Our output file writer saves graphs in the visualization toolkit file format (VTU). VTU

is a variation of an extensible markup language file. The VTU files are rendered using a

combination of the visualization toolkit [37] and Paraview [38]. We save the ECC at the

initial time step and save the system graphs periodically during simulations. Since the graphs

are all spatially embedded, we can render a physical system as it evolves.

Additional metrics from the simulation such as the number of connected components

(computed by YAGL), total node count, and counts of individual node types are collected

during the run and transformed from C++ to Python Numpy arrays [39]. The arrays are used

with Matplotlib [40] to visualize simulation results.

2.4. Steps for model creation

The DGG formalism defines how grammar rules are written and mapped into a master

equation, but it does not define how to create a model. We identify six necessary steps

for defining a model: (1) identify the initial conditions, (2) define a set of structure

changing rules, (3) determine rate functions, (4) define the simulation domain’s geometry

and topology, (5) set boundary conditions, and (6) determine time scale and other parameter

settings.

The initial state can be generated by sampling from probability distributions or by other

means, such as images. In our experiments we sample from probability distributions.

The structure-changing rules should be defined using insight from biophysics. Rate

functions determine how often stochastic graph rewrites occur and how parameters evolve

deterministically. The rate functions are determined by theoretical or observed biophysical

dynamics.

The geometry of the simulation domain represents the physical space to be simulated.

We describe it using a labeled cell complex, which also encodes information about the

simulation space’s connectedness and the dimensionality of each spatial domain. An

overview of cell complex generation can be seen in figure 7.

The simulation algorithm has no restrictions on boundary conditions. Graph rewrite rules

and domain constraints on the solving ODEs can be used to bound dynamics to a region

in space. Periodic or reflective conditions are added in this way. In this work, rules have

an implicit constraint on the ODEs: ODE solving only occurs within the non-ghosted

geocells and any rule instance assigned to a ghosted geocell has a zero propensity. For

more information on ghosted cells, see figure 3. Finally, in the current simulator, a JSON

Medwedeff and Mjolsness Page 13

Phys Biol. Author manuscript; available in PMC 2024 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

configuration file is used to set parameters such as time scale, rate function coefficients, and

cell complex specifications.

2.5. Mapping biology and relevant physics to DGGs

In plant cells, the CMA plays an important role in cell division and determining shape

[41]. An MT is a polymer composed of α and β tubulin proteins arranged in a cylinder

of usually 13 longitudinal protofilaments [42]. MTs can be thought of as relatively stiff

tubes around 25 nanometers in diameter. They can be represented in a graph as chains of

stiff rod segments. Cortical microtubules (CMTs) in the CMA undergo structural dynamics

such as treadmilling, zippering, induced catastrophe and crossover [6]—all of which can be

represented as DGG rules.

The graph representation of CMTs is compatible with elastic dynamics and beam theory

[43]. For example, in [28], MTs are represented as a string of points, using the standard

formula for bending elasticity to allow MTs to bend under external forces and resist these

forces elastically. The persistence length is one way to measure an MT’s resistance to

bending, and it characterizes the length scale over which the MT maintains its direction

while indicating its stiffness or flexibility. External forces can be caused by random thermal

fluctuations, which can be described using the Boltzmann distribution. Thermal fluctuations

can cause the MT to lose directionality over short length scales, resulting in a shorter

persistence length [44]. The Boltzmann distribution plays a crucial role in determining the

probability of the MT moving to a different energy state with a particular conformation and

persistence length.

Currently, the model does not include the exact physics of these internal and external

forces directly; however, these dynamics could be added as ODEs attached to nodes

in the graph. The ODEs supported within the DGG formalism can also be extended to

stochastic differential equations that include random fluctuations. In the current work, we

have simply approximated fluctuations in the direction of the growing end by adding in

small perturbations in the direction of growth when an instance of the stochastic rewrite rule

in equation (10) is selected to occur.

While MTs are stiff (but still bendable) and can function to provide structure to a cell,

they also have dynamic properties. In particular, it has been observed that MTs have the

ability to undergo rapid growth and shrinkage, known as dynamic instability [45]. Dynamic

instability and dynamic MTs provide a means for the cell to reorganize the cytoskeleton

rapidly during cell division [42] or because of changes in the environment [46]. It has

also been hypothesized that MTs can act as tension sensors [47], providing biomechanical

feedback.

During dynamic instability, the MT is able to grow by rapidly polymerizing tubulin protein

subunits bound to guanosine triphosphate (GTP) [42]. The cell must keep the concentration

of GTP-tubulin high to allow for polymerization [42]. As long as the end remains stable, the

MT will continue to grow, but as soon as instability is reached, the MT begins to splay apart

and shrink [47]. In the grammar we encode these dynamics into our stochastic/deterministic

growth/retraction rules. Alternatively, these processes are called rescues and catastrophes,

Medwedeff and Mjolsness Page 14

Phys Biol. Author manuscript; available in PMC 2024 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

respectively. Dynamic instability is regulated by MT associated proteins and incorporating

them is a possible path for future work.

CMTs in the CMA also are subject to additional structural graph-changing dynamics.

Three primary processes have been observed [6] and the mechanisms that control them

are still a subject of debate. They are: zippering, crossover (junction formation), and induced

catastrophe. If we let θ be the angle of collision and θcrit be the critical angle of collision,

zippering occurs at a higher probability with θ < θcrit and catastrophe and crossover occur at

θ ⩾ θcrit [48]. Grammar rules for the mentioned dynamics are provided in the supplementary

material.

As mentioned in section 1, the CMA is associated with the cell’s plasma membrane. For our

work, we restrict our simulation to be an idealized version of this region and leave an exact

physical interpretation for future work. We focus on replicating the simplified dynamics

mentioned and an use implicit capture condition for MT segments that reach the simulation

boundary [49]. In the future, we could impose a more realistic boundary condition on the

domain (such as capture and release) and add additional grammar rules to model transport

dynamics within and between cells [41].

The following is an example of a stochastic dynamic graph grammar rule for growth:

Positive MT Overgrowth:

(○1 — ●2) x1, u1 , x2, u2

(○1 — ○3 — ●2) x1, u1 , x2, u2 , x3, u3

with σ ∥ x2 − x1 ∥
Ldiv

; k = 10

where
x3 = x2 − x2 − x1 γ

u3 = x3 − x2
∥ x3 − x2 ∥

(10)

In equation (10), σ ⋅ ; k = 1/ 1 + e−kx is a sigmoid activation rate function. Here ∥ x2 − x1 ∥
is the length of the edge, Ldiv is the maximal dividing length, and k = 10 is a ‘gain’ parameter

that determines how quickly the function turns on as the edge length gets close to the

dividing length. Other k values could work, but we choose 10 for a rapid activation. The

rate function increases rapidly when an MT segment grows too long, which increases the

propensity that a growth rewrite rule-firing event will occur. The quicker the rate function

activates, the sooner a new segment is added when the threshold is reached.

In the results section, we make use of the term ‘starting MT’. What we mean by ‘starting

MT’ is a graph of the form:

(◾1 — ○2 — ●3) x1, u1 , x2, u2 , x3, u3 .

(11)

Medwedeff and Mjolsness Page 15

Phys Biol. Author manuscript; available in PMC 2024 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

A ‘starting MT’ has a retraction node (closed square), intermediate node (open circle), and

a growth node (closed circle). Edges simply represent relationships between nodes and the

distance between the nodes in space can be computed by using the l2 norm and node position

vectors X i. As rewrite operations are applied to the MT using e.g. the rule in equation (10),

growth is simulated.

In figure 8 we include a high level overview of all the graph rewrite rules used in the CMA

grammar. Rule 1 is a deterministic rule that models the elongation of a polymerizing MT

(growth) with an ODE. Rule 2 is a stochastic rule also used to model growth. When an

MT segment becomes too long under the action of Rule 1, Rule 2 can insert another node

and split the segment into two segments, as seen in equation (10). Rules 3 through 5 are

stochastic rules that determine what outcomes may occur when a growing end of an MT

comes close to two intermediate segments. In Rule 3, the outcome is zippering (bundling)

if the MT comes in at a shallow angle. In Rule 4, the outcome is the MT crossing over the

other and forming a junction. In Rule 5, the outcome is a catastrophe event and the colliding

MT destabilizes and begins to retract. Rule 6 is another deterministic ODE-solving rule like

Rule 1, but in this case it models retraction. Rule 7 is the stochastic version of retraction, like

Rule 2, and determines what happens when an MT segment gets too short. Whereas Rule

2 adds a node, Rule 7 removes a node. Rule 8 is a reversible stochastic rule that allows the

growing end and retracting ends to change states, to effectively model dynamic instability.

Further details on ODEs, propensity functions, and rules may be found in the supplementary

material.

3. Results and discussion

3.1. Overview

We have developed and implemented preliminary work on an approximate algorithm

(Algorithm 2) implemented in C++ for accelerating the simulation of spatially embedded

DGGs. Our simulator is also capable of running the exact algorithm (Algorithm 1), which

is used as a baseline for the performance comparison. The current code is serial and single-

threaded, leaving substantial room for parallel speedup due to the ‘parfor’ in algorithm 2.

We have tested and evaluated our prototype simulator by running three experiments using

the example CMA DGG found in the supplementary material. The CMA DGG uses artificial

parameters to demonstrate proof of concept, and in the future more biologically inspired

ones should be used.

In the first experiment, we simulated the CMA DGG several times for 1600 MTs and we

evaluate the long-time behavior of the realizations. Our realizations include the change in the

quantity of the five types of nodes of the microtuble graphs over time: retraction (negative

growth), intermediate (interior nodes), elongation (positive growth), zipper (bundling), and

junction (crossover). Numbers of each of the node types and the several realizations of the

simulations for this experiment will be plotted in Section 3.2 below.

In the second experiment, we simulate the CMA DGG for 1600 MTs again, but with a

low crossover rate and all other conditions remaining the same. We evaluate the long-time

Medwedeff and Mjolsness Page 16

Phys Biol. Author manuscript; available in PMC 2024 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

behavior of the simulation and compare it to the long-time behavior of the first experiment.

A side by side comparison of the ending states will be shown in Section 3.3 below.

In the third experiment, we analyze the run-time performance of 3200 MTs with different

domain decompositions. In Section 3.4 below, we show a quantitative comparison of

performance using the exact algorithm (1 × 1 case) vs. the approximate algorithm

(remaining cases) for the CMA DGG. The approximate algorithm allows for speedup by

breaking the system into well-separated reaction sub-systems, which obviates the need to

evaluate most possible matches, and by firing some rules out of order as defined by operator

splitting, at the cost of accuracy.

3.2. Experiment 1: long-time network formation

We initialize each simulation of the system with 1600 MTs. An example of the starting

state of a realization is seen in figure 9(a). The initialization follows a uniformly random

distribution over the domain space. The domain is Ω = 0 ⩽ x, y ⩽ 100 ∣ x, y ∈ ℝ , a 100 ×

100 square area in ℝ2. For each simulation, we subdivide the domain into a uniform 8×8

grid. Let Ωi be the ith 2D simulation cell, with dimensions 12.5 × 12.5. Further, Ω = 64 and

⋃i = 1
64 Ωi = Ω. The subdivided domain is then transformed into a cell complex and expanded.

The average MT connected component density per highest dimensional cell is 25 MT
Ωi

. The

average node density is then 75Nodes
Ωi

. The initial average MT density is chosen to be

25 MT
Ωi

, rather than a larger quantity to keep the starting MTs well-separated and allow for

polymerization to occur before junction/zipper formation begins (room for growth). We take

the boundary conditions to be the capturing condition [49].

3.2.1. System dynamics and long term behavior—For the experiment, we let

the simulations run for 1600 units of simulated time. We define one unit of coarse scale

simulated time τref = vl to be the time it takes one MT positive node to move a segment

distance l, given a velocity v. Conceptually, this is similar to the Courant–Friedrichs–

Lewy condition in numerical PDEs [50]. Under our constraint, we ensure that not too

much happens in the system in one time unit, as required by our approximate simulation

algorithm.

Propensity function model parameters are chosen to evaluate the simulation algorithm and

code, by equally exercising all the DGG rules derived from recent literature, rather than to

represent biophysical knowledge.

Figure 9(b) is the final state of the realization of the third simulation after time = 1600τref.

It shows network formation and the onset of a steady state in the long term behavior of

the system. A side by side comparison of the starting state and ending state can be seen in

figure 9. The starting state in figure 9(a) shows 1600 disconnected starting MTs uniformly

distributed. In figure 9(b) the ending state consists of a highly connected network, and the

same behavior occurs in the other realizations. We verify this with a plot of the connected

components for all simulations in figure 10.

Medwedeff and Mjolsness Page 17

Phys Biol. Author manuscript; available in PMC 2024 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

In figure 10, we start with 1600 connected components for each simulation. One connected

component for each MT as exemplified in figure 9(a). Over time, we see the connected

components decrease and trend toward the long-time behavior of a highly connected

network. A fully connected network is expected to emerge if we ran the simulations for

longer. To make the difference in connected components of each realization clear, figure 11

is included. In figure 11(a) all realizations are plotted from the beginning to iteration 400.

Figure 11(b) plots the realizations from iteration 400 to the end and distinctly indicates the

slight difference between realizations in number of connected components over time.

In figure 12 we see the long term behavior of each node type in the system for all of the

realizations. The plot shows how many of each node type we have in the system after every

iteration. The top line in the plot is the total number of nodes. In each simulation, we start

with 4800 nodes (three for each starting MT—equation (11)). In all of the end states of the

realizations we have over 17 000 nodes, indicating an average increase by at least a factor of

three.

The number of junction nodes in the system is different than the number of zippering nodes

(on average three times as many junction nodes as zippering nodes), but they still follow

a similar long-time trajectory as seen in figure 12. Since the zipper node dynamics are

similar to the junctions, we only provide analysis for one. In figure 13, we can see how

the zipper nodes change for each realization. Figure 13 indicates the number of zippering

nodes increase rapidly at first and then begins to slow as we reach the long term asymptotic

behavior.

Figure 14 shows how the number of positive growth nodes in the system changes. The

positive nodes are primarily responsible for the creation of new MT segments because of

their participation in the growth rule, with the only other creation of new segments occurring

during a junction/zippering rule firing. The of rate of MT polymerization was set to be four

times as fast as the rate depolymerization. If the capturing boundary condition (BC) had

not been imposed, the number of positive nodes in the system may have grown without

bounds, since the rate of polymerization exceeds that of depolymerization. There is also a

state change rule, which occasionally switches a negative end to a positive end or a positive

end to a negative end.

Initially, we see a drop in the number of positive nodes at the beginning of the simulation.

The cause is likely a combination of the state change rule, along with the capturing BC.

Eventually the growth recovers, and over time the positive nodes begin to again be captured

by the BC or restricted in their directional dynamics due to the onset of zippering and

junction formation. Any time a junction or zipper is formed, it creates a permanent and

on average irreversible directional barrier for the growing end. The barrier is on average

irreversible, since there is no CMA DGG rule yet included to reverse the formation of a

junction or zippering node. The growing rule does include a stochastic unit vector wobble,

which means an MT could eventually circle around to form a new junction or zippering

node, but that behavior is not likely. Thus, in general, the number of new positive nodes

added into the system is expected to decrease over time and the total number of positive

Medwedeff and Mjolsness Page 18

Phys Biol. Author manuscript; available in PMC 2024 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

nodes is expected to reach a steady state depending on the particular realization, as seen in

figure 14.

The negative nodes in the simulations follow dynamics similar to positive nodes, but delayed

in time (figure 15). The time delay is likely caused by the slower rate of retraction as

compared to growth. Each simulation starts with a fixed number of negative nodes that

should decrease over time due to the BC and junction/zipper formation. We see this exact

behavior, but with a slight initial increase in negative nodes before long term decay into a

steady state. If the simulations ran longer, it is expected that no negative nodes would exist,

because they state-changed to positive and got captured.

Finally, figure 16 is a plot of how the number of intermediate nodes change over time

in each realization. In the CMA DGG simulations presented, the number of intermediate

nodes in the system directly corresponds to the number of MT segments that exist. The

growth rule functions to add more intermediate nodes; however, the zippering/junction rules

and the capturing BC lock the system into place and slow growth. Consequently, network

formation is encouraged, but longer term growth is discouraged. So the more a network

begins to form, the more intermediate nodes we get. As it forms, the addition of intermediate

nodes decreases. Eventually a steady state is reached and the number of intermediate nodes

existing stabilizes.

3.2.2. Reactivity and iteration analysis—The MT dynamics of even a relatively

simple system can be complicated. More complex dynamics require more computation

and make performance a concern. We measure performance over the duration of one

simulation step of τref time, an iteration. We use reactivity per iteration as a quantitative

measure of performance, where reactivity is the wall clock time of an iteration. Wall

clock time is an appropriate measure because iteration time is correlated to the number

of reactions occurring. For example, preliminary experiments with a grammar including a

katanin-mediated severing rule had reactivity increase rapidly.

For the previous experiment of 1600 MT, the initial density was chosen to be low enough for

each simulation to keep MTs in the starting state far apart from interacting with each other

and to leave room for growth. Figure 17 shows how the system run-time dynamics change

over time for different realizations. The plot is the actual real world run-time per iteration.

The reactivity plotted is the sum of the run-time for all of the geocells in an iteration. In

general, the exact algorithm run within a geocell of a given operator-split dimension for

any subdivision may not run in the exact amount of time as other geocells in that same

dimension; however, in this experiment they should on average because the MTs are initially

uniformly distributed (figure 9(a)).

In figure 17, the reactivity of the system increases rapidly over most of the first 50

iterations. The reactivity observed is reflective of the dynamics as detailed in figure 12

and a consequence of MTs growing at a rate faster than they shrink. The peak reactivity

occurs just before iteration 50. After the peak, the network begins to form as irreversible

junction/zippering nodes are created and the reactivity of the system decreases. By around

Medwedeff and Mjolsness Page 19

Phys Biol. Author manuscript; available in PMC 2024 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

iteration 100 and onwards, the reactivity trends downward towards a steady-state, which

corresponds to the realized system dynamics in figure 12 and the network in figure 9(b).

3.3. Experiment 2: long-time local alignment

We use the same parameters and CMA DGG (figure 8) as experiment 1, but with the rate

of crossover events lowered to near zero. Effectively, zippering and catastrophe events are

favored. The starting state is the same as in figure 9(a).

Figure 18 compares the ending state of the system with a low crossover rate to the system

with the original crossover rate. In figure 18(a) a highly connected network has formed,

whereas in figure 9(b) we can see that lowering the crossover rate leads to less connectivity,

inhibits network formation, and reduces the number of surviving MTs. Significantly, figure

9(b) exhibits localized alignment where the first experiment did not.

We compare how aligned the two ending states are by computing an MT orientation

correlation function defined as the squared cosine between the orientation of the MT

segments, and average within bins of roughly constant distance. (This measure can be

derived as the trace of the product of the two rank-one projection matrices defined by the

two unit vectors; it is invariant to sign reversals of these unit vectors.) The function measures

on average how ‘aligned’ MT segments a distance away are from one another. The square

is needed to remove anti-symmetry, since nearby MTs may be aligned but in anti-parallel

directions, and anti-parallel alignment is not visibly distinguishable from parallel alignment

in typical MT imagery. Values close to 0 using this measure indicates orthogonality and

therefore no alignment, whereas values close to 1 indicate complete parallel or anti-parallel

alignment. Typical intermediate values for lines at 45° (equivalently 135°) to one another

are 1/2. Consequently, we subtract 1/2, the ‘uncorrelated’ value, before averaging within

distance bins of width defined by the reaction radius, and fitting an exponential decay as a

function of distance.

We can see the fitted correlation vs. distance functions in figure 19. When we fit to an

exponential decay on figure 9(b), we get the fit c d = 0.34e − d/3.14 with a mean absolute

squared error (MASE) of 0.797. We initially have high correlation and then a quick drop off

with a correlation length ξ2 ≈ 3.14 with a standard error (SE) of 0.06 for the plot in figure 19.

When we fit to an exponential decay on figure 18(a), we get the fit c d = 0.09e − d/1.34 and

an MASE of 0.709. There is a much lower initial correlation and then a rapid drop off with a

correlation length ξ1 ≈ 1.34 with an SE of 0.039 for the plot in figure 19. Even if we were to

very conservatively zoom in on figure 18(a) by a factor of 1.6 to equalize the number of MT

segments in each window, the resulting correlation length of ξ̂1 ≈ 2.14 is (as detailed in the

Supplemental Material) many standard deviations short of ξ2 ≈ 3.14; even more so for ξ1 vs.

ξ2. Similar statistics, among many others (e.g. [51] for graph structure), could in the future be

used to compare model-generated with biological-experiment imagery.

Our comparison indicates that zippering and catastrophe may lead to local alignment,

partially supporting the ‘survival of the aligned hypothesis’ [7]. The results seen in figure

9(b) also look closer to what a real system of CMTs might look like. Alternatively,

Medwedeff and Mjolsness Page 20

Phys Biol. Author manuscript; available in PMC 2024 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

experiment 1 indicates that zippering, crossover, and catastrophe lead to network formation.

The addition of a selective katanin mediated severing rule using an alternative hypothesis [8]

also has potential for global alignment of MTs in the system after the network has formed,

but is a topic for future work.

3.4. Experiment 3: approximate vs. exact performance

As a computational performance experiment, we started the simulation with an initial

condition of 3200 MTs random uniformly distributed across a 100 × 100 unit grid. We

use the same grammar rules and parameters as the first experiment, along with identical

node-capturing boundary conditions.

We ran the simulation five times, once with no subdivisions and four times with different

subdivisions, as seen in figures 20 and 21. The first run, with no subdivisions, is the 1

× 1 domain. The 1 × 1 case does not use operator splitting by geocell dimension and is

equivalent to the Exact Hybrid ODE SSA in algorithm 1.

For each step of τref, the maximum time step that can be achieved is the adaptive step,

max{ 1
reactions , vmax

lmax
}. If we move beyond this step size, the ODE solver may miss reaction

dynamics. As can be seen in figure 20, the exact algorithm is prohibitively slow because

it must take more steps to solve the system. The step time of iteration 10 for the 1 ×

1 subdivision in figure 20 reflects the slowdown and takes over 2000 s or approximately

33 min on a single core of an Intel Core i7-7700HQ CPU @ 2.80 GHz. Clearly, this is

not practical for long term simulations with serial computation and server grade CPUs

would not fare significantly better. In parallel computation, similar bottlenecks for individual

geocells would show up if the experiment was scaled up so that each of the 8 × 8

subdivisions was the same size as a 1 × 1 subdivision; however, there would still be the

benefit of running parallel computations.

The subdivisions 2 × 1, 2 × 2, 4 × 4, 8 × 8 each show a significant speedup over the

original 1 × 1 Exact SSA. Each of these runs uses algorithm 2. In the 2 × 1 case, we see

a speedup(caused by subdividing the domain) of around a factor of four instead of a factor

of two. The difference may be because larger steps can be taken and the search space is

smaller. In the 2 × 2 case, it becomes a factor of twenty. In figure 20 the 8 × 8 and 4 × 4 case

look similar due to the time scale, however there is also a significant speedup. There may be

diminishing returns to scale beyond 8 × 8, for our initial condition of 3200 MTs. We include

the semi-log plot (figure 21) of the same data in figure 20 to make the step time differences

more clear.

From these results, we find that the approximate algorithm achieves a significant speedup

over the exact algorithm. The resulting speedup comes with a few trade-offs. First, we get

the speedup at the potential cost of accuracy due to reactions firing out of order. Second,

there is a saturation speedup point for every system. Simulation cells can only be minimized

to a factor of the ‘fall off’ distance and still need to maintain well-separatedness. Finally, the

practical lower limit of the ODE solver step size depends on the dynamics being simulated.

Whereas simulation speed is limited by cell size and ODE solving step size, there is no such

Medwedeff and Mjolsness Page 21

Phys Biol. Author manuscript; available in PMC 2024 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

limit on scalability—making this algorithm appropriate for modeling very large systems, or

smaller systems in greater detail.

4. Conclusion and future work

DGGs can be used to simulate complex biological systems using a simulation algorithm

derived from their corresponding master equation. We have introduced an approximate

algorithm, for spatially embedded and local DGG dynamics, which achieves improvements

in performance over an exact algorithm at some potential cost of accuracy. We demonstrated

the speedup in simulated dynamics of a DGG model of a plant CMA, which forms a

cytoskeletal network and can exhibit localized alignment.

In future work, we plan to run further experiments using this model with many different

parameter settings in pursuit of plant science questions. We also plan to experiment with

grammars developed to model actin dynamics in neurons. A revised version of the simulator

is in development to add new features and to improve performance. The approximate

algorithm (Algorithm 2), is highly parallelizable, so we are in the process of implementing

a parallel version of the approximate algorithm. Another planned feature is a translator

capable of generating model specific code for different types of grammar rules and systems

—a front-end for a spatial specific version of the DGG modeling language. There is also

potential to reduce the model using machine learning, as in [52] or [53].

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgment

This work was funded in part by U.S. NIH NIDA Brain Initiative Grant 1RF1DA055668-01, U.S. NIH National
Institute of Aging Grant R56AG059602, Human Frontiers Science Program Grant HFSP—RGP0023/2018. This
work was supported in part by the UC Southern California Hub, with funding from the UC National Laboratories
division of the University of California Office of the President. We would also like to acknowledge valuable
conversations with Jacques Dumais, Olivier Hammant, Christophe Godin, and Elliot Meyerowitz.

Data availability statement

The data that support the findings of this study are openly available at the following URL/

DOI: https://github.com/emedwede/CajeteCMA.

References

[1]. Mjolsness E 2019 Prospects for declarative mathematical modeling of complex biological systems
Bull. Math. Biol 81 3385–420 [PubMed: 31175549]

[2]. Mjolsness E 2013 Time-ordered product expansions for computational stochastic system biology
Phys. Biol 10 035009 [PubMed: 23735739]

[3]. Gillespie DT 1977 Exact stochastic simulation of coupled chemical reactions J. Phys. Chem 81
2340–61

[4]. Young WM and Elcock EW 1966 Monte Carlo studies of vacancy migration in binary ordered
alloys: I Proc. Phys. Soc. 89 735–46

Medwedeff and Mjolsness Page 22

Phys Biol. Author manuscript; available in PMC 2024 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/emedwede/CajeteCMA

[5]. Wasteneys GO 2002 Microtubule organization in the green kingdom: chaos or self-order? J. Cell
Sci. 115 1345–54 [PubMed: 11896182]

[6]. Chakrabortty B, Willemsen V, de Zeeuw T, Liao CY, Weijers D, Mulder B and Scheres B 2018 A
plausible microtubule-based mechanism for cell division orientation in plant embryogenesis Curr.
Biol. 28 3031–43.e2 [PubMed: 30245102]

[7]. Tindemans S, Hawkins R and Mulder B 2010 Survival of the aligned: ordering of the plant cortical
microtubule array Phys. Rev. Lett. 104 058103 [PubMed: 20366797]

[8]. Deinum EE, Tindemans SH, Lindeboom JJ and Mulder BM 2017 How selective severing by
katanin promotes order in the plant cortical microtubule array Proc. Natl Acad. Sci. 114 6942–7
[PubMed: 28630321]

[9]. Lecca P, Laurenzi I and Jordan F 2013 Modelling in systems biology Deterministic Versus
Stochastic Modelling in Biochemistry and Systems Biology (Woodhead Publishing Series in
Biomedicine) ed Lecca P, Laurenzi I and Jordan F (Cambridge: Woodhead Publishing) ch 4, pp
117–80

[10]. Lecca P, Laurenzi I and Jordan F 2013 Deterministic chemical kinetics Deterministic Versus
Stochastic Modelling in Biochemistry and Systems Biology (Woodhead Publishing Series in
Biomedicine) ed Lecca P, Laurenzi I and Jordan F (Cambridge: Woodhead Publishing) ch 1, pp
1–34

[11]. Gillespie DT 1992 A rigorous derivation of the chemical master equation Physica A 188 404–25

[12]. Gillespie DT 2001 Approximate accelerated stochastic simulation of chemically reacting systems
J. Chem. Phys. 115 1716–33

[13]. Cao Y, Gillespie DT and Petzold LR 2006 Efficient step size selection for the tau-leaping
simulation method J. Chem. Phys. 124 044109 [PubMed: 16460151]

[14]. Auger A, Chatelain P and Koumoutsakos P 2006 R-leaping: accelerating the stochastic
simulation algorithm by reaction leaps J. Chem. Phys. 125 084103 [PubMed: 16964997]

[15]. Mjolsness E, Orendorff D, Chatelain P and Koumoutsakos P 2009 An exact accelerated
stochastic simulation algorithm J. Chem. Phys. 130 144110 [PubMed: 19368432]

[16]. Orendorff D and Mjolsness E 2012 A hierarchical exact accelerated stochastic simulation
algorithm J. Chem. Phys. 137 214104

[17]. Lipková J, Arampatzis G, Chatelain P, Menze B and Koumoutsakos P 2019 S-leaping: an
adaptive, accelerated stochastic simulation algorithm, bridging τ-leaping and R-leaping Bull.
Math. Biol 81 3074–96 [PubMed: 29992453]

[18]. Mjolsness E and Yosiphon G 2007 Stochastic process semantics for dynamical grammars Ann.
Math. Artif. Intell 47 329–95

[19]. Diestel R 2017 Graph Theory 5th edn (Berlin: Springer)

[20]. Hatcher A 2019 Algebraic Topology (Cambridge: Cambridge University Press)

[21]. Rand A and Walkington N 2009 Collars and intestines: practical conforming delaunay refinement
Proc. 18th Int. Meshing Roundtable ed Clark BW (Berlin: Springer) pp 481–97

[22]. Engwirda D 2016 Conforming restricted delaunay mesh generation for piecewise smooth
complexes Proc. Eng 163 84–96

[23]. Hirsch MW 1976 Differential Topology (Berlin: Springer) ch 4, p 109

[24]. Bretto A 2007 Digital Topologies on Graphs (Berlin: Springer) pp 65–82

[25]. Brisson E 1993 Representing geometric structures ind dimensions: topology and order Discrete
Comput. Geom 9 387–426

[26]. Lane B 2015 Cell complexes: the structure of space and the mathematics of modularity (available
at: http://algorithmicbotany.org/papers/laneb.th2015.html)

[27]. Munkres JR 2000 Topology 2nd edn (Upper Saddle River, NJ: Prentice Hall)

[28]. Nedelec F and Foethke D 2007 Collective Langevin dynamics of flexible cytoskeletal fibers New
J. Phys 9 427

[29]. Yosiphon G 2009 Stochastic parameterized grammars: formalization, inference and
modeling applications (available at: http://computableplant.ics.uci.edu/theses/guy/downloads/
papers/thesis.pdf)

Medwedeff and Mjolsness Page 23

Phys Biol. Author manuscript; available in PMC 2024 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://algorithmicbotany.org/papers/laneb.th2015.html
http://computableplant.ics.uci.edu/theses/guy/downloads/papers/thesis.pdf
http://computableplant.ics.uci.edu/theses/guy/downloads/papers/thesis.pdf

[30]. Yosiphon G and Mjolsness E 2009 Towards the Inference of Stochastic Biochemical Network
and Parameterized Grammar Models (Cambridge, MA: MIT Press)

[31]. Mjolsness E 2022 Explicit calculation of structural commutation relations for stochastic and
dynamical graph grammar rule operators in biological morphodynamics Frontiers Syst. Biol 2
898858

[32]. Medwedeff E 2023 A Dynamical Graph Grammar Simulator for the Cortical Microtubule Array
repository name: CajeteCMA (available at: https://github.com/emedwede/CajeteCMA)

[33]. Carletti V, Foggia P, Saggese A and Vento M 2018 Challenging the time complexity of exact
subgraph isomorphism for huge and dense graphs with VF3 IEEE Trans. Pattern Anal. Mach.
Intell. 40 804–18 [PubMed: 28436848]

[34]. Ullmann JR 1976 An algorithm for subgraph isomorphism J. ACM 23 31–42

[35]. Hindmarsh AC, Brown PN, Grant KE, Lee SL, Serban R, Shumaker DE and Woodward CS 2005
SUNDIALS: suite of nonlinear and differential/algebraic equation solvers ACM Trans. Math.
Softw 31 363–96

[36]. Langdale G and Lemire D 2019 Parsing gigabytes of JSON per second VLDB J. 28 941–60

[37]. Schroeder W, Martin KM and Lorensen WE 1998 The Visualization Toolkit (2nd Ed.): An
Object-Oriented Approach to 3D Graphics (Englewood Cliffs, NJ: Prentice-Hall)

[38]. Ayachit U 2015 The Paraview Guide: A Parallel Visualization Application (Clifton Park:
Kitware, Inc.)

[39]. Harris CR et al. 2020 Array programming with NumPy Nature 585 357–62 [PubMed: 32939066]

[40]. Hunter JD 2007 Matplotlib: a 2D graphics environment Comput. Sci. Eng 9 90–95

[41]. Sampathkumar A, Krupinski P, Wightman R, Milani P, Berquand A, Boudaoud A, Hamant O,
Jönsson H and Meyerowitz EM 2014 Subcellular and supracellular mechanical stress prescribes
cytoskeleton behavior in Arabidopsis cotyledon pavement cells eLife 3 e01967 [PubMed:
24740969]

[42]. Burbank KS and Mitchison TJ 2006 Microtubule dynamic instability Curr. Biol. 16 R516–7
[PubMed: 16860721]

[43]. Lifshitz EM, Kosevich AM and Pitaevskii LP 1986 Theory of Elasticity 3rd edn (Oxford:
Butterworth-Heinemann)

[44]. Pampaloni F, Lattanzi G, Jonáš A, Surrey T, Frey E and Florin EL 2006 Thermal fluctuations of
grafted microtubules provide evidence of a length-dependent persistence length Proc. Natl Acad.
Sci. 103 10248–53 [PubMed: 16801537]

[45]. Shaw SL, Kamyar R and Ehrhardt DW 2003 Sustained microtubule treadmilling in arabidopsis
cortical arrays Science 300 1715–8 [PubMed: 12714675]

[46]. Besson S and Dumais J 2011 Universal rule for the symmetric division of plant cells Proc. Natl
Acad. Sci. 108 6294–9 [PubMed: 21383128]

[47]. Hamant O, Inoue D, Bouchez D, Dumais J and Mjolsness E 2019 Are microtubules tension
sensors? Nat. Commun. 10 2360 [PubMed: 31142740]

[48]. Dixit R and Cyr R 2004 Encounters between dynamic cortical microtubules promote ordering of
the cortical array through angle-dependent modifications of microtubule behavior Plant Cell 16
3274–84 [PubMed: 15539470]

[49]. Vos JW, Dogterom M and Emons AMC 2004 Microtubules become more dynamic but not shorter
during preprophase band formation: a possible “search-and-capture” mechanism for microtubule
translocation Cell Motility 57 246–58

[50]. Strikwerda J 1989 Finite Difference Schemes and Partial Differential Equations 2nd edn (Pacific
Grove, CA: Wadsworth and Brooks/Cole) ch 1, pp 1–36

[51]. Scott CB, Mjolsness E, Oyen D, Kodera C, Uyttewaal M and Bouchez D 2023 Graph metric
learning quantifies morphological differences between two genotypes of shoot apical meristem
cells in Arabidopsis in silico Plants 5 Diad001 [PubMed: 38938656]

[52]. Ernst OK, Bartol T, Sejnowski T and Mjolsness E 2018 Learning dynamic boltzmann
distributions as reduced models of spatial chemical kinetics J. Chem. Phys. 149 034107
[PubMed: 30037235]

Medwedeff and Mjolsness Page 24

Phys Biol. Author manuscript; available in PMC 2024 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/emedwede/CajeteCMA

[53]. Scott CB and Mjolsness E 2019 Multilevel artificial neural network training for spatially
correlated learning SIAM J. Sci. Comput 41 S297–320

Medwedeff and Mjolsness Page 25

Phys Biol. Author manuscript; available in PMC 2024 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 1.
A visual example of a graph labeled by number and color.

Medwedeff and Mjolsness Page 26

Phys Biol. Author manuscript; available in PMC 2024 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 2.
Expanding the cell complex of a 4 × 4 Cartesian grid into well-separated lower dimensional

cells. For this example, only the interior is expanded.

Medwedeff and Mjolsness Page 27

Phys Biol. Author manuscript; available in PMC 2024 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 3.
Expanded cell complex (ECC) with well-separated lower dimensions. Regions of the same

pre-expansion dimension are separated from each other. Note how only interior lower

dimensional cells are expanded. A reaction grid is aligned with the geocells, and reaction

cells are smaller than geocells. The outer boundary of the ECC is padded with optional

ghosted geocells. Ghosted geocells are just geocells that are not processed by algorithm 2.

These optional ghost cells operate as a buffer for any computational errors or as a capture

condition in the case of no grammar rules addressing boundary conditions.

Medwedeff and Mjolsness Page 28

Phys Biol. Author manuscript; available in PMC 2024 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 4.
A side by side view of the search graph and the target graph.

Medwedeff and Mjolsness Page 29

Phys Biol. Author manuscript; available in PMC 2024 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 5.
A side by side comparison of two spanning tree transformations.

Medwedeff and Mjolsness Page 30

Phys Biol. Author manuscript; available in PMC 2024 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 6.
Example of how a search graph works to find an optimal path.

Medwedeff and Mjolsness Page 31

Phys Biol. Author manuscript; available in PMC 2024 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 7.
Plot of cell complex generation and labeling.

Medwedeff and Mjolsness Page 32

Phys Biol. Author manuscript; available in PMC 2024 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 8.
Summary of all the rules used in the CMA grammar.

Medwedeff and Mjolsness Page 33

Phys Biol. Author manuscript; available in PMC 2024 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 9.
Side by side comparison of beginning and end state of the CMA DGG simulation of 1600

MTs for realization 3.

Medwedeff and Mjolsness Page 34

Phys Biol. Author manuscript; available in PMC 2024 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 10.
Six realizations of the change in connected components over time.

Medwedeff and Mjolsness Page 35

Phys Biol. Author manuscript; available in PMC 2024 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 11.
Zoomed in plots of the beginning and end of six realizations of the number of connected

components changing over simulation iterations, where one realization becomes a fully

connected network.

Medwedeff and Mjolsness Page 36

Phys Biol. Author manuscript; available in PMC 2024 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 12.
Plot of long term behavior of all node types, including all six realizations of the CMA DGG

simulations.

Medwedeff and Mjolsness Page 37

Phys Biol. Author manuscript; available in PMC 2024 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 13.
Plot of the change of zippering nodes over time for all six realizations of the CMA DGG

simulations.

Medwedeff and Mjolsness Page 38

Phys Biol. Author manuscript; available in PMC 2024 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 14.
Plot of the change of positive nodes over time for all six realizations of the CMA DGG

simulations.

Medwedeff and Mjolsness Page 39

Phys Biol. Author manuscript; available in PMC 2024 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 15.
Plot of the change of negative nodes over time for all six realizations of the CMA DGG

simulations.

Medwedeff and Mjolsness Page 40

Phys Biol. Author manuscript; available in PMC 2024 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 16.
Plot of the change of intermediate nodes over time for all six realizations of the CMA DGG

simulations.

Medwedeff and Mjolsness Page 41

Phys Biol. Author manuscript; available in PMC 2024 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 17.
Plot of run-time per simulation iteration of six realizations of the CMA DGG simulations.

Medwedeff and Mjolsness Page 42

Phys Biol. Author manuscript; available in PMC 2024 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 18.
Side by side comparison of the end states of the CMA DGG simulation of 1600 MTs on a

100 × 100 unit grid showing the effect crossover has on the system.

Medwedeff and Mjolsness Page 43

Phys Biol. Author manuscript; available in PMC 2024 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 19.
Sampled correlations of alignment over distance and their exponential fits of ending system

states seen in figure 18.

Medwedeff and Mjolsness Page 44

Phys Biol. Author manuscript; available in PMC 2024 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 20.
Plot of performance analysis of five separate simulation runs for 10 iterations.

Medwedeff and Mjolsness Page 45

Phys Biol. Author manuscript; available in PMC 2024 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 21.
Natural log scaled plot of performance analysis of five separate simulation runs for 10

iterations.

Medwedeff and Mjolsness Page 46

Phys Biol. Author manuscript; available in PMC 2024 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

	Abstract
	Introduction and background
	Overview
	Biological motivation
	Stochastic chemical kinetics
	Graph theory
	Extended objects and the expanded cell complex ECC
	Related work

	Methods
	DGGs formalism
	Approximating the exact simulation algorithm
	Developing the prototype DGG simulator
	Steps for model creation
	Mapping biology and relevant physics to DGGs

	Results and discussion
	Overview
	Experiment 1: long-time network formation
	System dynamics and long term behavior
	Reactivity and iteration analysis

	Experiment 2: long-time local alignment
	Experiment 3: approximate vs. exact performance

	Conclusion and future work
	References
	Figure 1.
	Figure 2.
	Figure 3.
	Figure 4.
	Figure 5.
	Figure 6.
	Figure 7.
	Figure 8.
	Figure 9.
	Figure 10.
	Figure 11.
	Figure 12.
	Figure 13.
	Figure 14.
	Figure 15.
	Figure 16.
	Figure 17.
	Figure 18.
	Figure 19.
	Figure 20.
	Figure 21.

