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ABSTRACT OF THE DISSERTATION 

 
Enhancing the Discovery of Neural Representations: Integrating Task-Relevant 

Dimensionality Reduction and Domain Adaptation 

By 

Seyedmehdi Orouji 

Doctor of Philosophy in Cognitive Sciences 

University of California, Irvine, 2024 

Professor Megan Peters, Chair 

 

In human neuroscience, machine learning models can be used to discover lower-

dimensional neural representations relevant to behavior. However, these models often 

require large datasets and can be overfit with the small sample sizes typical in 

neuroimaging. To address this, we developed the Task-Relevant Autoencoder via 

Classifier Enhancement (TRACE) to extract behaviorally relevant representations. When 

tested against standard autoencoders and principal component analysis, TRACE showed 

up to 12% increased classification accuracy and 56% improvement in discovering task-

relevant representations using fMRI data from ventral temporal cortex (VTC) of 59 

subjects, highlighting its potential for behavioral data. 

 

Machine learning models applications also extend to predictive modeling and pattern 

discovery in modern biology. However, these models often fail to generalize across 

different datasets due to statistical differences. This issue also exists in neuroscience, 

where data are collected across various laboratories using different experimental setups. 
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Domain adaptation can align statistical distributions across datasets, enabling model 

transfer and mitigating overfitting issues. In the second chapter we discussed domain 

adaptation in the context of small-scale, heterogeneous biological data, outlining its 

benefits, challenges, and key methodologies. We advocate for integrating domain 

adaptation techniques into computational biology, with further customized developments. 

 

Building on these insights, we used DA for understanding brain region interactions during 

visual processing. We examine the ventral temporal cortex (VTC) and prefrontal cortex 

(PFC) using Domain Adaptive Task-Relevant Autoencoding via Classifier Enhancement 

(DATRACE) to explore shared neural representations. DATRACE leverages domain 

adaptation techniques within an encoder-decoder architecture to predict voxel activities 

from a shared latent space, in order to ensure relevance for object recognition tasks. 

Preliminary results indicate that shared representations capture similar object categories 

in both VTC and PFC. We computed the representational dissimilarity matrix (RDM) of 

the shared representation between VTC and PFC and contrasted that to the RDM 

obtained from the low dimensional representation of VTC. Our results suggest that the 

nature of the information shared with PFC is very similar to those encoded in VTC. 

Additionally, feature perturbation analysis suggests the need for further studies to reveal 

the semantic interpretations of shared dimensions in these brain regions. This integrated 

approach underscores the potential of advanced machine learning techniques in both 

neuroscience and biology.
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INTRODUCTION OF THE DISSERTATION 

 

In the field of computational neuroscience, researchers are interested in the 

understanding of the human brain by utilizing advanced computational techniques. 

Recently, there has been an increasing interest among cognitive neuroscientists in using 

machine learning and domain adaptation in order to develop more accurate predictive 

models that are effective when trained on small-scale neuroimaging data1. Our study 

utilizes deep learning techniques to explore the encoding process within and between 

brain regions in the visual cortex. 

 

In the first chapter we discuss the implementation of the Task-Relevant Autoencoder via 

Classifier Enhancement (TRACE) model2. TRACE is designed to remove noise and distill 

task-relevant information from data while dealing with the challenge of small datasets that 

are common in functional magnetic resonance imaging (fMRI) studies. TRACE’s 

architecture consists of a simple autoencoder with minimal hidden layers which is 

specifically tailored to extract task-relevant features from neural representations. Our 

model not only allows the discovery of a latent low-dimensional representation of neural 

data but also increases the decoding accuracy even at the native voxel space. This 

demonstrates the potential of our method in denoising and extracting task-relevant 

information in fMRI data2. 

 

https://paperpile.com/c/BZcxD5/KpsOL
https://paperpile.com/c/BZcxD5/WM0Bz
https://paperpile.com/c/BZcxD5/WM0Bz
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In the second chapter of this study we pay particular attention to domain adaptation (DA)  

and its utility in dealing with small biological datasets. In the field of computational biology, 

the goal is to uncover generalizable biological truths rather than finding mere statistical 

correlations3. However, the process of collecting and labeling biological data is often 

expensive, and time-consuming. This results in numerous small datasets gathered from 

different sources under varying conditions4, such as the Autism Brain Imaging Dataset 

(ABIDE)1, where data collected across multiple sites. This introduces significant 

challenges in data aggregation due to differences in experimental conditions. These 

variations create different data domains with distinct statistical distributions which pose 

many challenges in data curation5,6. 

 

Domain adaptation (DA) is a powerful tool to address the variation issue across different 

but related datasets7–9. DA was initially developed in the field of computer science to 

increase model performance by enabling cross-dataset information utilization. DA 

facilitates the transfer of knowledge from a well-labeled “source domain” to an unlabeled 

or poorly labeled “target domain”7,9–11. This is achieved by aligning the statistical 

distributions of the source and target domains, allowing a model trained on the source 

domain to accurately predict labels in the target domain 12. In the context of brain imaging, 

we can take advantage of this “byoproduct” of DA in order to find a shared representation 

between different brain regions by treating them as different domains. This alignment 

helps in understanding the interconnected activity between these brain regions but also 

enhances our ability to interpret complex neural interactions involved in visual cognition. 

 

https://paperpile.com/c/BZcxD5/mhqLV
https://paperpile.com/c/BZcxD5/xyDpm
https://paperpile.com/c/BZcxD5/KpsOL
https://paperpile.com/c/BZcxD5/c3kA9+0EEtb
https://paperpile.com/c/BZcxD5/aMK9y+aldYL+A0AMN
https://paperpile.com/c/BZcxD5/A0AMN+aMK9y+7JW1m+ybwLC
https://paperpile.com/c/BZcxD5/q1Yoz
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In the third chapter we analyze the interactions between the ventral temporal cortex (VTC) 

and prefrontal cortex (PFC), which are essential for processing visual information. We 

propose the Domain Adaptive Task Relevant to Autoencoding via Classifier 

Enhancement (DATRACE) model in order to investigate shared neural representations 

that play roles in object recognition. We hope that this approach enhances our ability to 

explore and interpret the complex information transfer between brain regions. 
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Chapter 1. “Task-relevant autoencoding” enhances machine learning 

for human neuroscience  

 
Authors: Seyedmehdi Orouji1, Vincent Taschereau-Dumouchel2-3, Aurelio Cortese4, 
Brian Odegaard5, Cody Cushing6, Mouslim Cherkaoui6, Mitsuo Kawato4, Hakwan Lau7, & 
Megan A. K. Peters1,8 

 
 
1 Department of Cognitive Sciences, University of California, Irvine, Irvine, California, 
USA 92697 
2 Department of Psychiatry and Addictology, Université de Montréal, Montreal, Canada, 
H3C 3J7. 
3 Centre de recherche de l’institut universitaire en santé mentale de Montréal, Montréal, 
Canada. 
4 ATR Computational Neuroscience Laboratories, Kyoto, Japan 619-0288 
5 Department of Psychology, University of Florida, Gainesville, FL USA 32603 
6 Department of Psychology, University of California Los Angeles, Los Angeles, 90095, 
USA 
7 RIKEN Center for Brain Science, Tokyo, Japan 
8 Center for the Neurobiology of Learning and Memory, University of California, Irvine, 
Irvine, California, USA 92697 
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Abstract 
 

In human neuroscience, machine learning can help reveal lower-dimensional neural 

representations relevant to subjects’ behavior. However, state-of-the-art models typically 

require large datasets to train, so are prone to overfitting on human neuroimaging data 

that often possess few samples but many input dimensions. Here, we capitalized on the 

fact that the features we seek in human neuroscience are precisely those relevant to 

subjects’ behavior. We thus developed a Task-Relevant Autoencoder via Classifier 

Enhancement (TRACE), and tested its ability to extract behaviorally-relevant, separable 

representations compared to a standard autoencoder, a variational autoencoder, and 

principal component analysis for two severely truncated machine learning datasets. We 

then evaluated all models on fMRI data from 59 subjects who observed animals and 

objects. TRACE outperformed all models nearly unilaterally, showing up to 12% 

increased classification accuracy and up to 56% improvement in discovering “cleaner”, 

task-relevant representations. These results showcase TRACE’s potential for a wide 

variety of data related to human behavior. 

 

Keywords: human neuroscience, machine learning, dimensionality reduction, task-

relevant representation, fMRI, MVPA, autoencoder 
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1. Introduction 

 

In studying the human brain and human behavior, we often use machine learning 

methods to home in on the (ideally lower-dimensional13–16) representations contained in 

multivariate, feature-rich datasets. These data typically contain noisy, irrelevant signals 

17–19  that we would like to filter out using methods such as multivariate decoders 20–23, 

various types of autoencoders, generative adversarial networks like InfoGAN 24, or even 

principal components analysis (PCA) 25–27. However, state-of-the-art machine learning 

methods typically require very large datasets to train while data for individual human 

subjects collected with methods such as functional magnetic resonance imaging (fMRI) 

17–19 are often severely limited in sample size 28,29 (i.e., have very few training exemplars 

compared to the dimension of data). Consequently, these methods are susceptible to 

overfitting on such neuroimaging data, reducing their predictive power and utility 30–32. 

What’s more, parametric methods (such as PCA), which may better avoid the need for 

large training sets, by definition require rigid assumptions regarding the nature of the 

dimensionality reduction process and thus are limited a priori to insights consistent with 

these parametric assumptions. Thus, we are in need of a nonparametric method that can 

reveal the low-dimensional, task-relevant representations in a given brain region using 

exemplar-poor but input-dimension-rich datasets. 

 

Here, we sought to capitalize on a unique property of many human neuroimaging 

datasets, which is that the features we wish to identify can be conceptualized based on 

whether they are relevant for the subject’s behavior.  

https://paperpile.com/c/BZcxD5/enRMh+rpR0S+xmvnh+b6BYP
https://paperpile.com/c/BZcxD5/PMeuw+KzvLu+yb8ju
https://paperpile.com/c/BZcxD5/34xYo+SjRNs+wv7LC+rPdtF
https://paperpile.com/c/BZcxD5/JLOyV
https://paperpile.com/c/BZcxD5/qfypA+YOrPN+HleVU
https://paperpile.com/c/BZcxD5/PMeuw+KzvLu+yb8ju
https://paperpile.com/c/BZcxD5/0U2RP+Lv9IB
https://paperpile.com/c/BZcxD5/zaIbr+bqJxi+8zu5k
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We drew inspiration from previous successes with classifier-enhanced autoencoders 33–

36 to develop the Task-Relevant Autoencoder via Classifier Enhancement (TRACE) 

model. TRACE’s architecture is purposely simple to limit overfitting to small datasets, 

consisting of a fully-connected autoencoder with only one hidden layer on each of the 

encoding and decoding arms and a logistic regression classifier attached to the bottleneck 

layer (Figure 1.1).  

 

 

Figure 1.1. A cartoon representation of the TRACE network architecture. Each gray 
rectangle represents a layer of the autoencoder, consisting of fully connected units. The 
input layer is connected to the bottleneck layer via one hidden encoding layer, and again 
to the reconstruction layer via one hidden decoding layer. A classifier is attached to the 
bottleneck and contributes to the objective optimization function. 
 
 
We developed four quantitative metrics to assess TRACE’s performance at different 

bottleneck dimensionalities (compression levels), and then comprehensively 

benchmarked TRACE under conditions of severe data sparsity using the MNIST 37 and 

Fashion MNIST 38 datasets, two of the most popular machine learning datasets. We then 

applied TRACE to a neuroimaging (fMRI) dataset of subjects who viewed and categorized 

animals and objects while blood oxygen level dependent (BOLD) signal was collected 

from ventral temporal cortex (VTC) in a single, 1-hour session. By constraining the 

https://paperpile.com/c/BZcxD5/sMJH4+yQhtb+wVXnV+GSXkk
https://paperpile.com/c/BZcxD5/sMJH4+yQhtb+wVXnV+GSXkk
https://paperpile.com/c/BZcxD5/3M20R
https://paperpile.com/c/BZcxD5/xxw32
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dimensionality reduction process to specifically prioritize features that were relevant to 

the participants’ behavioral task, we show that TRACE can extract both quantitatively and 

qualitatively ‘cleaner’ representations at both reduced dimensions and in the original input 

dimensionality, showing up to threefold improvement in decoding accuracy and 

separation of class-specific patterns. These results demonstrate our method can distill 

highly separable, low dimensional neural representations even with sparse and noisy 

data. TRACE may thus show promise on a broad variety of behaviorally-relevant 

neuroimaging datasets. 

 

2. Results 

 

We quantified the performance of the Task-Relevant Autoencoder via Classifier 

Enhancement (TRACE) model against that of a standard autoencoder (AE), a Variational 

Autoencoder (VAE), and using principal component analysis (PCA) via (1) reconstruction 

fidelity, (2) reconstruction classifier accuracy, (3) bottleneck classifier accuracy, and (4) 

reconstruction class specificity (see Methods Section 4.4) (“class” here refers to the 

class of the input image, e.g. “9” or “shoe” or “cat”). We assessed these metrics as a 

function of different bottleneck dimensionalities (i.e., compression levels), first on the 

MNIST and Fashion MNIST datasets under increasing data sparsity and then on a 

previously-collected fMRI dataset of ventral temporal cortex (VTC) (i.e., voxel activations 

while 59 human subjects viewed 40 classes of animals and objects). We also performed 

additional investigation at each dataset’s ‘optimal’ bottleneck dimensionality (where 

reconstruction class specificity is maximized) to characterize each model’s behavior.  
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2.1 Benchmarking TRACE’s advantages, including under increasing data sparsity 

 

 

Figure 1.2. Quantitative comparison between TRACE and other models (AE, VAE, and 
PCA) on the four outcome metrics, for the two benchmark datasets (MNIST & Fashion 
MNIST) for bottleneck dimensionalities between 2 and 150. All metrics show superiority 
of TRACE over other models (except higher dimensionalities in reconstruction class 
specificity). TRACE is shown by the darker line while other models are shown by lighter 
lines. The black, red, blue, and dark red lines show the reconstruction fidelity, bottleneck 
classifier accuracy, reconstruction class specificity, and reconstruction classifier 
accuracy, respectively (see Methods). The dashed blue and dark red lines show the input 
class specificity and input classifier accuracy respectively. Outcome metrics for all 
bottleneck dimensionalities tested (2-784) are shown in Figure S3; locations of peaks for 
all four metrics are shown in Table S1. The chance levels of bottleneck and reconstruction 
classifier accuracy are both 10% (not shown in the plot). 
 

 

We first examined reconstruction fidelity (black, Figure 1.2), i.e. the mean Pearson 

correlation of the inputs and corresponding reconstructions. High reconstruction fidelity 
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assures us that the discovered features in the bottleneck provide a reasonable 

representation of this high-dimensional information – i.e., that the autoencoder portion of 

the models can be successfully trained. Notably, TRACE’s reconstruction fidelity 

performed in a similar fashion despite the fact that the contribution of the reconstruction 

part of the loss function (mean square error; MSE) for TRACE was smaller than for AE 

and VAE (i.e., the objective function in TRACE is the sum of reconstruction loss (𝐿𝐿𝑅𝑅) and 

classification loss functions (𝐿𝐿𝐶𝐶𝐶𝐶); see Methods Section 4.4.1).  

 

 

Next, we examined bottleneck classifier accuracy (bright red, Figure 1.2), i.e. the 

accuracy of a separate classifier trained with bottleneck features as input after the training 

of all models. Bottleneck classifier accuracy was much higher for TRACE than for other 

models even at very low bottleneck dimensionalities. As bottleneck dimensionality grew, 

this metric asymptotically equalizes to at least ~10% better than all other models in the 

MNIST and Fashion MNIST datasets. Notably, though, in both datasets, at all bottleneck 

dimensionalities tested, TRACE bottleneck classifier accuracy is always higher than that 

for other models. Although by attaching a cross-entropy loss function to the bottleneck of 

the network one can expect to naturally discover features that increase the classification 

accuracy, crucially this achievement is gained without losing the ability to reconstruct the 

input in the decoder part of the network. In other words, the lower dimensional 

representations learned by TRACE are not only more suitable for classification purposes 

but also can be used just as effectively to reconstruct the input. 
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The third metric we examined was reconstruction class specificity (blue, Figure 1.2), i.e. 

the average within-class correlation of the reconstructed inputs minus the average 

between-class correlation. This metric quantifies the degree of separation between class 

clusters in reconstruction feature space as a measure of reconstruction representations’ 

categorical ‘purity’. Reconstruction class specificity peaks at bottleneck dimensionality 

d=2 for TRACE for both MNIST and Fashion MNIST. As with the other metrics, TRACE 

outperformed other models at optimal bottleneck dimensionality d=2.  

 

Fourth, we examined reconstruction classifier accuracy (dark red, Figure 1.2), i.e. the 

accuracy of a separate logistic classifier trained to discriminate classes using 

reconstructed data. Reconstruction classifier accuracy quantifies the task-relevance of 

the information extracted through the compression process, and also provides a direct 

benchmark against which to compare to the noisiness of representations in the original 

input space (see below). Reconstruction classifier accuracy for both MNIST and Fashion 

MNIST peaked at bottleneck dimensionality d=5 for TRACE, and was consistently higher 

for TRACE over other models. Interestingly, that this metric peaks at higher bottleneck 

dimensionalities than reconstruction class specificity suggests that the performance of a 

classifier trained on these high-dimensional reconstructions may not meaningfully reflect 

the maximum compression that TRACE can achieve without loss of overall performance.  

 

A final – and critical – test of TRACE would examine its ability to not only distill task-

relevant information into low-dimensional representations but also ‘push’ such distilled 

insights back into the native space of the input. This would be especially important if one 
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wished to use TRACE to de-noise fMRI data to discover multivoxel patterns representing 

a target concept or category to be used with noninvasive intervention strategies such as 

decoded neurofeedback (DecNef) 39–42 (or to simply investigate those activity patterns in 

native space). Although iterative sparse logistic regression and support vector machine 

classification have been demonstrated as successful at identifying such patterns when 

trained on the native input data 39,43,44, we wanted to see whether TRACE would be able 

to denoise the data such that an even cleaner target pattern would become discoverable. 

Specifically, if TRACE is successful at actively removing task-irrelevant noise rather than 

simply passively averaging across it (as is done with a standard category-based logistic 

regression) or removing it through iterative sparsity approaches (iterative sparse logistic 

regression), then we should observe two patterns. First, reconstruction classifier accuracy 

should approach or exceed classification accuracy of an identical logistic regression 

classifier trained on the native inputs. Second, reconstruction class specificity should 

behave similarly, approaching and then exceeding input class specificity. This behavior 

makes reconstruction class specificity an ideal metric for defining the ‘optimal bottleneck 

dimensionality’ if one’s goal is to optimally distill representations in native space. 

 

To evaluate this behavior, we (a) trained an additional logistic regression classifier on 

each of the datasets to classify the native input, and (b) computed class specificity directly 

from the raw input data for all three datasets. We then compared the outcomes to the 

reconstruction classifier accuracy and reconstruction class specificity computed as a 

function of bottleneck dimensionality. 

 

https://paperpile.com/c/BZcxD5/P3ULN+5vR9N+Efgyk+xlGTg
https://paperpile.com/c/BZcxD5/2yYZt+P3ULN+F9Ni1
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Results revealed that, for MNIST, reconstruction classifier accuracy (solid dark red, 

Figure 1.2) exceeded input classifier accuracy (dashed dark red line) immediately (at 

d=2) for TRACE but not until d=10 for AE; it never exceeded the input for other models. 

For Fashion MNIST, this occurred at d=5 for TRACE and only at much higher 

dimensionality – if at all – for the other models tested. These results show that TRACE 

provides not only superior compression but also superior denoising even in comparison 

to the direct inputs. TRACE’s denoising capability can be particularly useful in DecNef 39–

41,45–51 studies as it can minimize the task-irrelevant information of exemplars even in the 

anatomical and functional brain space. 

 

Results for reconstruction class specificity followed a different pattern, but still favored 

TRACE: reconstruction class specificity (solid blue line, Figure 1.2) exceeded input class 

specificity (dashed blue line) at most bottleneck dimensionalities for all models, but was 

higher for TRACE at the optimal bottleneck dimensionality (d=2). These results show that 

TRACE can provide a powerful method for not only distilling low-dimensional 

representations, but also in pushing those cleaner representations back into the structure 

and dimensionality of the raw input space. That is, a structurally identical logistic classifier 

with the same number of parameters can exhibit better performance using the 

reconstructed inputs than using the original inputs themselves.  

 

Note that conducting statistical tests of the results from Figure 1.2 is not feasible since 

the results reported here come from the training of cross-validated models on the entire 

dataset at each dimensionality of the bottleneck.  

https://paperpile.com/c/BZcxD5/RbIfK+mdt6X+P3ULN+O3tFv+Dnjco+FyEQ5+syNWv+Efgyk+5vR9N+ce9pc
https://paperpile.com/c/BZcxD5/RbIfK+mdt6X+P3ULN+O3tFv+Dnjco+FyEQ5+syNWv+Efgyk+5vR9N+ce9pc
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2.1.1 Comprehensive comparison across metrics as a function of increasing data 

sparsity 

We next sought to select a single bottleneck dimensionality for TRACE to explore its 

benefits over AE, VAE, and PCA under increasing data sparsity. For this purpose, we 

selected the maximal value of reconstruction class specificity because this metric 

provides the best balance between task-relevant information extraction and compression, 

both for analyzing low-dimensional representations and patterns in the original input 

dimensionality (e.g., for use with real-time DecNef 39–41,45–51). 

 

Reconstruction class specificity peaked at d=2 for both MNIST and Fashion MNIST, so 

we can first examine TRACE’s superiority at this dimensionality when maximal data is 

available (n = 60,000 training samples for both datasets). Since the goal is to compress 

information as much as possible without losing information, we chose d=2 to conduct the 

rest of the analysis given TRACE peaks at a bottleneck dimensionality lower than AE or 

other models (i.e. d=2). Additionally, at TRACE’s peak (d=2), TRACE shows superior 

performance compared to other models’ performance at dimensionalities where those 

other models peak (e.g., TRACE’s reconstruction class specificity is higher at TRACE’s 

peak [d=2] than AE’s reconstruction class specificity is at AE’s peak [d=5]). Here, we see 

that TRACE’s superior extraction of task-relevant information comes at no loss in 

reconstruction fidelity over AE (Figure 1.2; Table S2). Further explorations, described 

below, were therefore done at bottleneck dimensionality d=2. 

 

https://paperpile.com/c/BZcxD5/RbIfK+mdt6X+P3ULN+O3tFv+Dnjco+FyEQ5+syNWv+Efgyk+5vR9N+ce9pc
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To examine how TRACE fared versus the other models under increasing data sparsity, 

we trained each model after removing 10, 30, 50, 70, 90, 95, and 98 percent of the training 

data. Training examples at each level of sparsity for all models remained the same. We 

then used the conventional 10,000 held-out test set on the trained models and calculated 

all four metrics for all levels of data sparsity. 

 

TRACE was much more robust to increasing data sparsity than other models (Figure 

1.3). Specifically, TRACE’s performance was much better even when only 2% of the data 

(1200 samples) remained available for training. (The test set remained fixed at the same 

10,000 standard test set used for these datasets.) We note that the fMRI dataset we use 

below has a similar samples-to-input-dimensions ratio as the 98% truncated MNIST and 

Fashion MNIST datasets (~1.6 for MNIST and Fashion MNIST, and ~1.5 for this fMRI 

dataset). At this level of data reduction (i.e., 98% truncation) and bottleneck 

dimensionality d=2, we performed 50 jack-knife replications to select 2 percent of 

exemplars in MNIST and Fashion MNIST for training, and reported the mean values 

(calculated within the standard test set) of the 50 independent training sets for all metrics. 

As shown in Figure 1.3, TRACE continued to demonstrate superior performance even at 

the most extreme level of data truncation (i.e., 98% truncation). TRACE nearly uniformly 

swept other models across all performance metrics. To confirm TRACE’s superior 

performance, we ran four one-way repeated measures ANOVAs at 98% truncation – one 

for each of the outcome metrics – with factor model (4 levels). We then followed each 

omnibus ANOVA with planned contrasts comparing TRACE to each other model in a 

pairwise fashion. This analysis revealed a main effect of model for all four outcome 



16 
 

metrics, and that TRACE was statistically superior to all other models in all 12 pairwise 

comparisons; see Table S3 for all statistics).  

 

 

 

 

 

Figure 1.3. Performance of TRACE and other models as a function of sample size for the 
optimal bottleneck dimension of d=2. At 98% truncation level, we used 50 independent 
jack-knife resamplings to truncate 98 percent of exemplars and reported the means and 
standard deviations of the metrics (calculated on the standard test set) for MNIST and 
Fashion MNIST. Error bars show the standard deviation of results across the 50 jack-
knife resamplings at 98% data truncation. Small variations in the metrics are likely due to 
random initialization of weights and use of GPUs in fitting the models.  
 

 

At maximal data reduction (98% truncation) and bottleneck dimensionality d=2, we then 

performed additional explorations of both bottleneck representations and reconstructions. 

First, we visualized bottleneck representations by plotting the activities of the two 



17 
 

bottleneck features against each other for each of the 10 classes in each dataset for 

TRACE versus the other models (Figure 1.4). The results are striking: TRACE showed 

superior task-relevant representations especially for MNIST, i.e. a clear qualitative 

advantage in clustering performance showing distinct clusters for different classes in stark 

contrast to the other models’ class clusters, which are heavily overlapping. Although this 

difference in clustering ability was less apparent for Fashion MNIST, TRACE’s clusters 

do appear visually more tightly bound.  
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Figure 1.4. Visualization of bottleneck features for MNIST and Fashion MNIST datasets 
using TRACE, AE, VAE, and PCA. When trained on the full dataset, TRACE shows clear 
superiority in creating distinctive clusters in the bottleneck for different classes for MNIST 
dataset in comparison to other models The distinction is less clear but still apparent in the 
Fashion MNIST dataset. This pattern persists even at the 98% truncation level (trained 
on only 2% of the data), again showing the robustness of TRACE.  
 

 



19 
 

We next turned to examining the reconstructions (still at bottleneck d=2). We first 

examined the MNIST reconstructions for several different exemplars of the same 

categories (e.g., several different “3” and “6” exemplars). TRACE’s superiority is clear to 

the naked eye: the reconstructions of particular “3” and “6” exemplars from TRACE are 

much more “three-like” and “six-like” than reconstructions from other models especially 

at the 98% truncation level (Figure 1.5). (Recall that this qualitative superiority does not 

come at any quantitative cost to the reconstructions). Similar findings held for Fashion 

MNIST (e.g., sandal and shirt), although the visual result is less striking. These patterns 

held even when only 2% of the data was available for training. 
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Figure 1.5. Visualization of reconstructions for MNIST and Fashion MNIST datasets 
using TRACE, AE, VAE, and PCA. The reconstruction of three representative instances 
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of numbers “three” and “six” in MNIST dataset and three instances of classes “sandal” 
and “shirt” in the fashion MNIST dataset when there are two features in the bottleneck 
shows the same pattern. TRACE shows a more clear and canonical reconstruction of the 
inputs across several exemplars from the same category. 
 

 

We next wanted to quantitatively investigate the distributions of within-class versus 

between-class clusters, both in the bottleneck and the reconstructions. This approach will 

facilitate evaluation of the fMRI dataset since visual inspection in fMRI data is not possible 

in the same sense as for MNIST and Fashion MNIST given that optimal bottleneck 

dimensionality is larger than 2 (see Results Section 2.2). We computed the effect size 

(Cohen’s d) separating clusters in both the bottleneck and reconstructions using pairwise 

within- versus between-class Euclidean distances. Whether trained on all of the data or 

98% truncated, Cohen’s d was always larger for TRACE than for other models (Table 

1.1).  

 

 

  MNIST Fashion 
MNIST 

MNIST  
(98% 

truncation) 

Fashion 
MNIST (98% 
truncation) 

Bottleneck  

TRACE 1.63 ± 
0.21 1.65 ± 0.5 1.36 ± 0.41 1.45 ± 0.35 

AE 1.1 ± 
0.39 1.5 ± 0.43 1.01 ± 0.41 1.26 ± 0.44 

VAE 1.32 ± 
0.55 

1.61 ± 
0.51 0.8 ± 0.31 1.48 ± 0.44 

PCA 1.06 ± 
0.54 

1.25 ± 
0.59 1.06 ± 0.54 1.25 ± 0.59 
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Reconstruction 

TRACE 1.58 ± 
0.21 1.6 ± 0.69 1.51 ± 0.63 1.54 ± 0.68 

AE 1.2 ± 
0.29 

1.48 ± 
0.62 1.02 ± 0.44 1.41 ± 0.66 

VAE 1.27 ± 
0.28 

1.42 ± 
0.61 0.68 ± 0.38 1.37 ± 0.65 

PCA 1.06 ± 
0.54 

1.25 ± 
0.59 1.06 ± 0.54 1.25 ± 0.59 

Table 1.1 Cohen’s d measures of effect size comparing within-class versus between-
class Euclidean distances in the bottleneck and reconstructions for TRACE, AE, VAE, 
and PCA. 
 

 

2.2 TRACE’s performance on a real fMRI dataset 

Given TRACE’s apparent superiority over AE, VAE, and PCA even under extreme data 

sparsity, we next sought to evaluate TRACE using a real-world fMRI dataset, since 

ultimately our goal is to learn about neural representations. Thus, we used the same 

metrics as we used to evaluate TRACE on MNIST and Fashion MNIST on an fMRI 

dataset consisting of 59 individuals who each viewed 3600 exemplars of 40 classes of 

animals and objects (90 exemplars per class) while BOLD signal from ventral temporal 

cortex (VTC) was obtained. The number of voxels in VTC for each individual was different; 

however, the average of voxels for the 59 subjects was 2382 ± 303. 

 

Excitingly, the fMRI dataset showed the same patterns in our four quantitative metrics as 

the MNIST and Fashion MNIST datasets almost across the board. First, reconstruction 

fidelity was actually slightly higher for AE over TRACE and VAE at higher dimensions, 

although this is likely due to the fact that reconstructing the input is the only objective of 
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the AE network; however, note that the numerical difference between TRACE and AE is 

very small, and that both are outperforming VAE. PCA also showed higher reconstruction 

fidelity than all other models starting around d=500, which is also expected since as the 

number of principal components increases, the PCA model can explain the variance of 

the input data almost perfectly.  

 

Reconstruction classifier accuracy asymptoted at bottleneck dimensionality around 

d=250 for all models, but again TRACE showed higher reconstruction classifier accuracy 

than AE, VAE, and PCA at all bottleneck dimensionalities tested. TRACE also showed 

higher bottleneck classifier accuracy at all bottleneck dimensionalities in comparison to 

other models.  

 

TRACE outperformed other models in reconstruction class specificity as well, showing 

that even in the native space of the input – i.e., voxel patterns of activity in ventral temporal 

cortex – TRACE not only successfully distills lower-dimensional representations of task-

relevant data, but also faithfully projects them back into original, high-dimensional voxel 

space. Reconstruction class specificity peaked at bottleneck dimensionality d=30, and 

then fell again. The same was not true for other models, for which reconstruction class 

specificity rose but then asymptoted. Crucially, though, reconstruction class specificity 

was also always higher for TRACE than for other models, much exceeding input class 

specificity (Figure 1.6, solid and dashed blue lines, respectively). This capacity to distill 

a task-relevant, low-dimensional representation and put it back in brain space could 

potentially have great value for studies in which such multivoxel patterns are the target of 
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DecNef 39–42 or other investigations which require anatomically-related representations. 

We discuss this possibility in greater detail in the Discussion, below.  

 

Finally, TRACE’s reconstruction classifier accuracy even surpassed the input classifier 

accuracy for bottleneck dimensionalities higher than d=60 (dashed dark red line, Figure 

1.6) which again suggests that the reconstructed version in the original input space 

contains more task-relevant information.  

 

 

 

Figure 1.6. Comparison between quantitative metrics for TRACE and other models for 
fMRI dataset (n=59). TRACE shows superior performance in three out of four metrics 
(excluding reconstruction fidelity and only for d>250).  
 

2.2.1 Exploration at optimal bottleneck dimensionality for fMRI data 

As mentioned above, the maximal value for reconstruction class specificity was found at 

d=2 for the MNIST and Fashion MNIST datasets. For the fMRI dataset, we found that 

reconstruction class specificity peaked at d=30, so we proceeded with a parallel analysis 

to that done above at this dimensionality.  

 

https://paperpile.com/c/BZcxD5/P3ULN+5vR9N+Efgyk+xlGTg
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Crucially, at d=30, TRACE’s performance on the fMRI dataset mimicked its exemplary 

performance on the MNIST and Fashion MNIST datasets with the exception of 

reconstruction fidelity, which was only slightly smaller for TRACE than for AE at 

dimensionalities of d>250 (and PCA at higher dimensions [i.e., d>500]) (Figure 1.6). To 

quantify this superiority, we performed a one-way repeated measures ANOVA for each 

outcome metric with factor model (4 levels), followed by planned pairwise contrasts 

comparing TRACE to every other model. Results revealed significant main effects of 

model for all four outcome metrics, and that TRACE outperformed the other models in 11 

of these planned comparisons (with the exception of reconstruction fidelity between 

TRACE and AE; see Table S4 for statistics).  

 

Ultimately, as our goal is to learn about representations in human VTC, we also might 

want to visualize clusters for the 40 classes of the fMRI dataset. However, unlike for 

MNIST and Fashion MNIST where optimal bottleneck dimensionality was d=2, for the 

fMRI dataset we found the optimal bottleneck dimensionality at d=30. Therefore, we 

cannot easily visualize the class clusters in a scatterplot, and performing further 

dimensionality reduction for the sake of visualization would be inappropriate since 

assumptions of whichever dimensionality reduction technique we chose would impact the 

visualizations. Instead, we can use the same Cohen’s d approach, described above, to 

characterize the tightness of the class clusters even in higher dimensionalities. The 

average effect size separating within- and between-class Euclidean distances across all 

59 subjects was 0.38 (±0.09) for TRACE, 0.12 (±0.03) for AE, 0.11 (±0.02) for VAE, and 

0.08 (±0.02) for PCA again showing TRACE’s superiority.  
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As a final evaluation of TRACE’s ability to filter out task-irrelevant information, we 

calculated the within- versus between-class Euclidean distance Cohen’s d in the 

reconstructions. Pushing the distilled representations back into input space is particularly 

exciting for the use of TRACE with fMRI data if one wishes to discover a particular target 

pattern for further anatomical analysis, or for use with real-time neuroimaging (e.g., 

DecNef). However, visually examining fMRI reconstructions would not provide particularly 

useful information about the ‘cleanliness’ of the reconstruction, as the patterns are not 

visually meaningful to begin with, so we must again rely on a quantitative comparison. 

The average Cohen’s d here again showed TRACE’s superiority, with mean Cohen’s d 

of 0.14 (±0.02) across subjects for TRACE, 0.09 (±0.02) for AE, 0.08 (±0.02) for VAE, and 

0.08 (±0.02) for PCA. In other words, TRACE was able to reduce task-irrelevant 

information and thus extract a ‘cleaner’ representation, even in the reconstructions.  

3. Discussion 

 

3.1 Summary of findings 

Most dimensionality-reduction approaches do not have a specific mechanism to ensure 

that the lower dimensional representations they reveal are particularly relevant to the 

question an experimenter wishes to answer. Further, many state-of-the-art deep learning 

models are of limited utility for discovering and characterizing meaningful representations 

in input-dimension-rich but exemplar-poor datasets, as they tend to overfit 30–32. Together, 

these facts make discovering neural representations in within-subject fMRI datasets – 

https://paperpile.com/c/BZcxD5/zaIbr+bqJxi+8zu5k


27 
 

which also often contain a high degree of noise and task-irrelevant information – 

extremely challenging 17–19. Further, to address these issues we proposed the 

Autoencoder with Classifier Enhancement (TRACE) model: a simple autoencoder with a 

classifier attached to the bottleneck. The classifier forces the model to learn not just lower 

dimensional representations of the data, but those that are also task-relevant. To quantify 

TRACE’s superiority over a standard autoencoder (AE), a variational autoencoder (VAE), 

and principal components analysis (PCA), we used four metrics (see Methods Section 

4.4): 1. reconstruction fidelity; 2. bottleneck classifier accuracy; 3. reconstruction class 

specificity; and 4. reconstruction classifier accuracy. 

 

TRACE outperformed all other models in all metrics, with the exception of reconstruction 

fidelity (sometimes). Moreover, at the ‘optimal’ bottleneck dimensionality, TRACE’s 

superior capacity for extracting task-relevant information is evident in both the bottleneck 

and reconstruction, and TRACE’s reconstructions can even outperform the inputs on a 

measure of task-relevant behavior (reconstruction class specificity). TRACE’s advantage 

over other models appears due to TRACE’s capacity to minimize task-irrelevant, 

idiosyncratic information unique to a particular sample. This is evident in the one 

occasional exception to TRACE’s sweeping superiority: reconstruction fidelity for the fMRI 

dataset. However, this seeming underperformance – especially in the fMRI dataset – is 

actually a strength: AE tried “too hard” to encode idiosyncratic details of a particular 

exemplar in the bottleneck, when some of these details are merely noise for the task that 

the observer is performing. Thus, precise reconstruction of noisy data may not be 

suitable. 

https://paperpile.com/c/BZcxD5/PMeuw+KzvLu+yb8ju
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Critically, all of these behaviors were maintained by TRACE even under extreme data 

truncation for the MNIST and Fashion MNIST datasets, and carried over into a real-world 

fMRI dataset. These results suggest that TRACE can extract lower-dimensional 

representations of data for both reconstruction and classification purposes and can do so 

even when there is a highly undesirable balance of input-dimensions versus samples. We 

speculate that the better performance under the scarcity of sample size is due to adding 

additional label information to the bottleneck which acts as an auxiliary function to help 

the network to learn the general pattern in the face of scarcity of sample size. Since this 

scarcity of sample size is typical in fMRI data, the superior performance of TRACE 

suggests the strong promise of this approach for both fMRI datasets and for other 

biological-scale data with many more input-dimensions than samples. 

3.2 Relation to previous work 

TRACE is not the only model which can accomplish dimensionality reduction, but one of 

many techniques. So is TRACE really necessary? Why would principal components 

analysis (PCA) 25–27 not suffice? PCA focuses on creating new features that can best 

explain the variance in data – including the noise and task-irrelevant information, which 

we know to be problematic especially in fMRI data 18,52–56 – and thus lacks explicit 

mechanisms to ensure the discovered lower representations contain task-relevant 

information. Additionally, we also note that PCA-based methods are not assumption-free 

(that is, they are parametric); these assumptions about the functional form of the 

dimensionality reduction limit the discovered features to adhering to those assumptions.  

 

https://paperpile.com/c/BZcxD5/qfypA+YOrPN+HleVU
https://paperpile.com/c/BZcxD5/4Ms29+KzvLu+kvLMs+fPYoG+kShBt+FCEEc
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Our approach builds on previous successes with classifier-enhanced autoencoders 33–36 

to extract task-relevant representations in non-biological datasets such as linguistic 

datasets, standard computer vision object datasets, and fault diagnosis applications. 

However, TRACE goes beyond these previous successes by explicitly demonstrating with 

otherwise matched architecture (TRACE vs AE) that the simple addition of a classifier 

can improve extraction of task-relevant latent representations even under extreme data 

paucity. This demonstration is especially important for the types of data used in cognitive 

neuroscience, which are often sample-poor. We also demonstrate that TRACE can 

improve reconstruction classifier accuracy and reconstruction class specificity such that 

it exceeds even input-level for these metrics, which could be a boon for real-time decoded 

neurofeedback (DecNef 39,40,49). We discuss these implications in more detail in 

Implications and Future Directions, below. 

 

Other techniques have been developed including nonparametric techniques beyond the 

fully-connected AE and VAE57,58 used here 59,60: adversarial autoencoders 61, generative 

adversarial networks (GANs) 62, deep convolutional GANs (DCGANs) 63, and so on. While 

comprehensive exploration of these is beyond the scope of this manuscript, we note that 

many of these models do still suffer from the fact that the discovered lower dimensional 

representations are not explicitly crafted to be task-relevant 64. In fact, we can 

demonstrate that an implementation of a GAN modified to allow selection of specific 

categories of reconstruction (a conditional GAN, or cGAN 65), fails quite miserably when 

trained only 2% of the MNIST or Fashion MNIST datasets (see Supplementary Material 

S3 and Figure S3). These considerations led to the development of InfoGAN 24, an 

https://paperpile.com/c/BZcxD5/sMJH4+yQhtb+wVXnV+GSXkk
https://paperpile.com/c/BZcxD5/P3ULN+FyEQ5+5vR9N
https://paperpile.com/c/BZcxD5/XyL6U+4AqC0
https://paperpile.com/c/BZcxD5/zfTTi+dUFXH
https://paperpile.com/c/BZcxD5/zpZMh
https://paperpile.com/c/BZcxD5/794iX
https://paperpile.com/c/BZcxD5/cL3CW
https://paperpile.com/c/BZcxD5/LioWE
https://paperpile.com/c/BZcxD5/r7h3v
https://paperpile.com/c/BZcxD5/JLOyV
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unsupervised learning technique which modifies a generative adversarial network (GAN) 

in order to learn interpretable, low-dimensional representations. InfoGAN accomplishes 

this task by maximizing mutual information between noise in the GAN network and 

observations. Yet despite the tremendous success of InfoGAN 24, it is highly 

disadvantaged for the limited (sample-poor) data type targeted here. Specifically, 

InfoGAN’s success has been demonstrated only on large-scale training datasets 

consisting of tens of thousands of training images. Further, exploring and characterizing 

latent spaces in GANs in general is highly nontrivial 7,66; for these reasons, GANs 

generally do not accomplish the goal targeted by the TRACE network. 

 

Attempts to mitigate the curse of dimensionality in fMRI datasets by pooling data across 

subjects to create larger training sets have of course been established to try to mitigate 

this significant challenge, including the shared response model 16, hyperalignment 67–69, 

and more recently decoder + autoencoder approaches 70. However, while these can pool 

fMRI data to create more training exemplars, they do not explicitly seek subject-specific 

response patterns and instead presuppose that all subjects share a common response 

pattern.  

 

In sum, although we do not benchmark TRACE against InfoGAN, hyperaligned data, or 

the expansive space of model variants, we argue that TRACE’s utility is not only in its 

ability to distill task-relevant, low-dimensional representations, but also to do so in 

exemplar-limited, biological-scale datasets such as those collected in human 

neuroimaging experiments within a single subject. 

https://paperpile.com/c/BZcxD5/JLOyV
https://paperpile.com/c/BZcxD5/aMK9y+aiQIR
https://paperpile.com/c/BZcxD5/b6BYP
https://paperpile.com/c/BZcxD5/ccPwu+f1U6V+jrPM2
https://paperpile.com/c/BZcxD5/1gbZL
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3.3 Limitations 

One limitation of the present approach is that we (deliberately) made TRACE and other 

models extremely simple (as in, few layers), which could have limited their performance. 

We did not investigate whether TRACE-like architecture (addition of a classifier on the 

bottleneck layer) would similarly improve performance for more complex networks, or 

whether multi-layer perceptrons or convolutional neural network (CNN) classifiers would 

surpass the simple logistic regression classifiers used here. We also could have opted to 

make the models deeper, with many hidden layers, which might have resulted in benefits 

in classification or reconstruction. However, we reiterate that we selected a simple 

architecture to be able to best evaluate TRACE’s advantages over a “plain vanilla” fully-

connected autoencoder, as more complex architectures could obscure TRACE’s 

advantages. Future work may wish to explore other possible TRACE-like architectures.  

 

It is also worth mentioning that for the sake of consistency we kept all hyperparameters 

for all networks and datasets the same. However, during training TRACE on a new 

dataset, it is always possible to tune the hyperparameters (learning rate, batchsize, 

regularization, etc) in order to achieve better performance (e.g. better bottleneck 

classification accuracy). Future studies may also more comprehensively explore the 

impact of specific hyperparameter tuning choices on TRACE's behavior. 

3.4 Implications & future directions 

Our findings have potentially exciting implications for the discovery of both low-

dimensional representations and representations in the original (and anatomically- and/or 

functionally-relevant, in the case of fMRI) input space. For example, if a study's goal is to 



32 
 

induce canonical target patterns of neural activity for a particular object category with real-

time decoded neurofeedback (DecNef 39,40,49), one might wish to instead ‘de-noise’ the 

data by maximizing reconstruction classifier accuracy instead of reconstruction class 

specificity. In the fMRI dataset presented here, reconstruction classifier accuracy peaked 

at about d=200. It is possible that in other fMRI datasets, reconstruction classifier 

accuracy might peak at a non-maximal bottleneck dimensionality, in which case it could 

be used to select the best dimensionality for the task at hand. Alternatively, one could 

choose to select optimal bottleneck dimensionality based on when reconstruction class 

specificity or classifier accuracy exceeds the analogous metric calculated directly from 

the raw input data. Here we showed that TRACE either exceeds these benchmarks 

sooner than other models, or does so even when other models do not. Thus, the process 

for selecting the best bottleneck dimensionality can flexibly adapt to an experimenter's 

goals, and future research seeking to use TRACE to extract neural patterns for use with 

DecNef should explore how different bottleneck dimensionalities impact the success of 

the neurofeedback process.  

  

Regardless of the method one uses to select bottleneck dimensionality, it seems likely 

that TRACE can remove task-irrelevant information in a way that is useful for DecNef. To 

demonstrate this possibility, we did one final exploratory test. Recall that the fMRI dataset 

used in this study is in part overlapping with the dataset used by Taschereau-Dumouchel 

and colleagues 49, and as such we can directly compare their binary (“cat” versus 

“everything that is not a cat”) decoding accuracy with the decoding accuracy we achieved 

on TRACE’s reconstructions. To translate the reconstruction classifier accuracy we 

https://paperpile.com/c/BZcxD5/P3ULN+FyEQ5+5vR9N
https://paperpile.com/c/BZcxD5/FyEQ5
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achieved to a binary scale, we counted a prediction to be correct if the correct class was 

in the top 20 (out of 40) of predicted classes from our one-versus-all classifier (with 

chance classification accuracy at 2.5%). Taschereau-Dumouchel and colleagues 49 

observed binary logistic regression classification accuracies of 71.7% on average within-

subject (~1 hour of fMRI data per person). (Relying on hyperalignment67 to pool their 30 

subjects and subsequently train such classifiers, they observed mean 82.4% using a 30-

subject concatenated dataset). When we trained logistic regression classifiers on each 

individual subject (i.e., no hyperalignment) – some of whom are actually the original 

subjects in that former study – and translated the classification accuracies as described 

to be on the same scale as binary classification, we achieved the equivalent of 94.4% 

binary accuracy at bottleneck dimensionality d=30 (where reconstruction class specificity 

was maximized). Thus, TRACE facilitates distillation of class-specific representations in 

native space that are superior to the original representations themselves for this purpose.  

 

Another interesting future possibility would be to investigate the extent to which TRACE 

excels over other methods as a function of neuroanatomical area – for the purposes of 

DecNef or simply to investigate neural representations themselves. Here, we focused on 

object representations in high level visual cortex (VTC), but in theory one could ask how 

early in the visual processing pipeline we might find evidence that task relevance plays a 

meaningful role. In the fMRI dataset used here, the task was for subjects to identify the 

object category of the image, and as a result the images were not standardized across 

lower level visual features such that object category did indeed covary with lower level 

visual properties such as color or spatial frequency (e.g. the background color of the 

https://paperpile.com/c/BZcxD5/FyEQ5
https://paperpile.com/c/BZcxD5/ccPwu
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‘dolphin’ images is predominantly blue, whereas this is not the case for the ‘key’ images). 

Future studies may wish to use standardized images to investigate to what extent TRACE 

may assist in extraction of task-relevant representations versus low-level visual 

properties, depending on task and brain area; due to the limitations of the dataset used 

here for this first proof of concept, we leave these questions to future investigations. 

 

Given TRACE’s success here, we hope that its capacity to discover task-relevant 

information despite undesirable ratios of samples to input-dimensions can help discover 

truths about other biological processes. Future studies should apply TRACE to other 

biological-scale datasets, with the goal of discovering representations relevant to those 

researchers and domains.  

 

As discussed earlier, discovering lower dimensional representations that are in fact more 

task relevant can greatly help researchers to interrogate these lower dimensions. It is 

important to acknowledge that utilizing deep learning models such as TRACE comes with 

the caveat of a more difficult interpretation. Thus, full exploration of the latent, low-

dimensional representations extracted by TRACE remains a subject for further 

investigations using available explainable artificial intelligence methods 71.  

4. Methods 

 

https://paperpile.com/c/BZcxD5/PheoZ
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4.1 Methods overview 

We proposed the “Task-Relevant Autoencoder via Classifier Enhancement” (TRACE) 

model and directly compared its behavior to that of a standard autoencoder (AE), a 

variational autoencoder (VAE), and principal component analysis (PCA) with equivalent 

internal architecture. Additional information about the methodology can be found in 

Supplementary Material S1.1. 

4.2 Datasets 

We employed MNIST 37 and Fashion MNIST 38 to benchmark the TRACE against other 

models. Additionally, we used a previously collected fMRI dataset, partially reported by 

Taschereau-Dumouchel and colleagues 49, in order to demonstrate the TRACE’s efficacy 

in small-scale fMRI datasets. The fMRI data used in this study was obtained from 59 

healthy individuals who viewed 3600 images from 40 different categories of objects (30 

animals and 10 man-made objects) while the whole-brain BOLD responses were 

acquired. Refer to  Supplementary Material S1.2 for more information. 

4.3 Implementation of Task-Relevant Autoencoder via Classifier Enhancement 

(TRACE) 

The Task-Relevant Autoencoder via Classifier Enhancement (TRACE) model is identical 

to a standard autoencoder with two hidden layers (one in the encoding section and one 

in the decoding section). The key distinction lies in the attachment of a logistic regression 

classifier to the bottleneck (Figure 1.1). For the hidden layers, we used the hyperbolic 

tangent as the activation function in order to discover more complex nonlinear patterns in 

the data, as this function has been reported previously to be more sensitive in capturing 

https://paperpile.com/c/BZcxD5/3M20R
https://paperpile.com/c/BZcxD5/xxw32
https://paperpile.com/c/BZcxD5/FyEQ5
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detailed and local information to represent the data with lower dimensions 72. The 

activation function for the “decoder branch” of the network was the softmax function (also 

known as Boltzman distribution) which outputs a probability distribution for each class 

(e.g., Classes of 10 digits for MNIST). The objective function of TRACE consists of two 

components, defined as follow: 

 

The first component of the objective function, Equation 1.1, adopts the mean square 

error (MSE) as the criterion to reconstruct the input: 

 

𝐿𝐿𝑅𝑅  =  1
𝑚𝑚×𝑛𝑛

 ∑ ∑ ( 𝑋𝑋�𝑖𝑖𝑖𝑖 −  𝑋𝑋𝑖𝑖𝑖𝑖)2𝑛𝑛
𝑖𝑖=1

𝑚𝑚
𝑖𝑖=1    (1.1) 

 

Where 𝑋𝑋 is the input with 𝑚𝑚 samples and 𝑛𝑛 input-dimensions, and 𝑋𝑋� is the reconstruction 

of the input. The second component of the object function (attached to the bottleneck of 

the network), Equation 1.2, was chosen as the cross-entropy loss function to find lower-

dimensional representations that are optimized to be task-relevant. 

 

    𝐿𝐿𝐶𝐶𝐶𝐶 = −1
𝑚𝑚 
∑ ∑ 𝑦𝑦𝑐𝑐𝑖𝑖 𝑙𝑙𝑙𝑙𝑙𝑙(𝑦𝑦�𝑐𝑐𝑖𝑖) 𝑘𝑘

𝑐𝑐=1
𝑚𝑚
𝑖𝑖=1     (1.2) 

 

where 𝑘𝑘 denotes the number of the classes, 𝑦𝑦 is the label of observation, and 𝑦𝑦� is the 

predicted label.  

 

In the TRACE network, the final objective function is the summation of reconstruction loss 

and the categorical cross-entropy loss function (Equations 1.2 & 2.2), i.e.:  

https://paperpile.com/c/BZcxD5/ZVwxe
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𝐿𝐿𝑇𝑇𝑅𝑅𝑇𝑇𝐶𝐶𝐶𝐶 =  𝐿𝐿𝑅𝑅 + 𝐿𝐿𝐶𝐶𝐶𝐶 

     =  1
𝑚𝑚×𝑛𝑛

 ∑ ∑ ( 𝑋𝑋�𝑖𝑖𝑖𝑖 −  𝑋𝑋𝑖𝑖𝑖𝑖)2 − 𝛼𝛼
𝑚𝑚 
∑ ∑ 𝑦𝑦𝑐𝑐𝑖𝑖 𝑙𝑙𝑙𝑙𝑙𝑙(𝑦𝑦�𝑐𝑐𝑖𝑖)𝑘𝑘

𝑐𝑐=1
𝑚𝑚
𝑖𝑖=1

𝑛𝑛
𝑖𝑖=1

𝑚𝑚
𝑖𝑖=1   (1.3) 

 

where 𝛼𝛼, sets the weight for the classifier part of the loss function in order to control for 

its participation in updating the parameters.  

 

For more detailed information about the implementation of TRACE and other models, see 

Supplementary Material S1.3. 

4.4 Outcome metrics 

In order to explore what is the best low dimensional feature space that explains within 

class characteristics while preserving the ability of the network to reconstruct the input, 

we evaluated four metrics as a function of bottleneck dimensionality in all models and for 

all three datasets: (1) reconstruction fidelity, (2) reconstruction classifier accuracy, (3) 

bottleneck classifier accuracy, and (4) reconstruction class specificity, as described below 

and shown in cartoons in Figure 1.7. A more detailed explanation of all outcome metrics 

is provided in the Supplementary Material S1.6. 
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Figure 1.7. Graphical representation of the four quantitative outcome metrics. (a) 
Reconstruction fidelity, (b) reconstruction classifier accuracy, (c) bottleneck classifier 
accuracy, and (d) reconstruction class specificity. Small cartoons of the TRACE 
architecture use red rectangle overlays to indicate which sections of the model 
architecture are being utilized for each outcome metric. In (b) and (c), red-filled boxes 
indicate separate classifiers, green-filled boxes indicate attached classifiers, and gray-
filled boxes indicate fully-connected encoder and decoder layers. 
 

4.4.1 Reconstruction fidelity 

We quantified how well a model could reconstruct the input information with the average 

of all Pearson correlation coefficients between each input trial of the test set and the 

corresponding reconstruction of that sample (Figure 1.7a). We computed this correlation 

coefficient at all bottleneck dimensionalities tested. In the Results, below, this metric is 

referred to as reconstruction fidelity or 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑙𝑙𝑓𝑓𝑓𝑓𝑦𝑦𝑅𝑅. 

 

𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑙𝑙𝑓𝑓𝑓𝑓𝑦𝑦𝑅𝑅 = 𝐸𝐸(𝜌𝜌𝑅𝑅)     (1.6) 

 

Where 𝜌𝜌𝑅𝑅 is the correlation between each input exemplar and its reconstruction, and 𝐸𝐸 

denotes the expected value. 
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4.4.2 Reconstruction classifier accuracy 

To quantify how well the reconstructed input represents a certain class, we used a 

separate logistic classifier (Equation 1.7) and trained it using reconstructed inputs for all 

dimensions in the bottleneck (Figure 1.7b). Using the same train/test folds as for training 

all models, we trained the data for 30 epochs for MNIST and Fashion MNIST and 300 

epochs for fMRI.  

 

𝐿𝐿𝑅𝑅𝐶𝐶𝑇𝑇 = 1 
𝑚𝑚 
∑ ∑ 𝑦𝑦𝑐𝑐𝑖𝑖 𝑙𝑙𝑙𝑙𝑙𝑙(𝑦𝑦�𝑐𝑐𝑖𝑖) + 𝜆𝜆∑ 𝑤𝑤𝑟𝑟2

𝑝𝑝
𝑟𝑟=1

𝑘𝑘
𝑐𝑐=1

𝑚𝑚
𝑖𝑖=1    (1.7) 

 

Where 𝐿𝐿𝑅𝑅𝐶𝐶𝑇𝑇 is the cross-entropy loss for reconstructed input, and 𝜆𝜆 is the regularization 

parameter and 𝑤𝑤 and 𝑝𝑝 are the weight matrices and the number of parameters of the 

classifier respectively. 

4.4.3 Bottleneck classifier accuracy 

We quantified the task-relevance of the features in the bottleneck via the accuracy of the 

logistic regression classifier with such bottleneck node activity as inputs (Figure 1.7c). 

For all models, this classifier is trained separately, after the training of models is finished. 

We first extracted the bottleneck features after the training of all networks was complete, 

and then trained a completely separate logistic regression classifier to classify the 

category of the input image as it was now represented in the low-dimensional bottleneck 

of each model. 

 

𝐿𝐿𝐵𝐵𝐶𝐶𝑇𝑇 = 1 
𝑚𝑚 
∑ ∑ 𝑦𝑦𝑐𝑐𝑖𝑖 𝑙𝑙𝑙𝑙𝑙𝑙(𝑦𝑦�𝑐𝑐𝑖𝑖) + 𝜆𝜆∑ 𝑤𝑤𝑏𝑏2

𝑞𝑞
𝑏𝑏=1

𝑘𝑘
𝑐𝑐=1

𝑚𝑚
𝑖𝑖=1    (1.8) 
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where 𝑤𝑤 and 𝑞𝑞 are the weight matrices and the number of parameters of the classifier 

respectively. The hyperparameter 𝜆𝜆 was set to 0.007 which was manually tuned to 

maximize the classification accuracy.  

4.4.4 Reconstruction class specificity 

Another measure of the task-relevancy of the reconstructed information is the degree of 

similarity of representations within a class versus between classes which we defined as 

the average of the diagonal (within class) of this similarity matrix minus the average of the 

off-diagonal (between class) of this matrix (Figure 1.7d), i.e. 

 

𝑅𝑅𝑅𝑅𝑅𝑅 = 𝐸𝐸(𝜌𝜌𝑅𝑅,𝑤𝑤𝑖𝑖𝑤𝑤ℎ𝑖𝑖𝑛𝑛)  − 𝐸𝐸(𝜌𝜌𝑅𝑅,𝑏𝑏𝑏𝑏𝑤𝑤𝑤𝑤𝑏𝑏𝑏𝑏𝑛𝑛)   (1.9) 

 

where 𝑅𝑅𝑅𝑅𝑅𝑅 is the class specificity in the reconstruction of the input, and 𝜌𝜌𝑅𝑅,𝑤𝑤𝑖𝑖𝑤𝑤ℎ𝑖𝑖𝑛𝑛 and 

𝜌𝜌𝑅𝑅,𝑏𝑏𝑏𝑏𝑤𝑤𝑤𝑤𝑏𝑏𝑏𝑏𝑛𝑛 are the Pearson correlation matrices between trials within-class and between-

class respectively. See Supplementary Material S1.6.4 for a more detailed description. 

4.4.5 Benchmarks against original inputs 

To quantify the reduction in noise and the success of task-relevant feature extraction, we 

benchmark the reconstructions from all models in two ways.  

 

First, we examined the classification accuracy of a simple logistic regression classifier 

applied to the input data in comparison to the accuracy of an identical classifier applied 

to the reconstructions (Methods Section 4.4.2). That is, if a representation has been 
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successfully de-noised through the compression (and task-relevant feature extraction, in 

the case of TRACE), then the reduction in task-irrelevant noise should be apparent in the 

superior classification accuracy of a logistic regression classifier. Thus, we trained logistic 

regression classifiers on the input space as well as the reconstruction (Methods Section 

4.4.2) at each bottleneck dimensionality, and reported the accuracy (Equation 1.7).  

 

Second, a final test of the ability of models to extract task-relevant representations can 

be quantified via comparing the reconstruction class specificity (Methods Section 4.4.4) 

against input class specificity, calculated equivalently to reconstruction class specificity 

(Equation 1.9). 
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Abstract 

 

Machine learning techniques are steadily becoming more important in modern biology, 

and are used to build predictive models, discover patterns, and investigate biological 

problems. However, models trained on one dataset are often not generalizable to other 

datasets from different cohorts or laboratories, due to differences in the statistical 

properties of these datasets. These could stem from technical differences, such as the 

measurement technique used, or from relevant biological differences between the 

populations studied. Domain adaptation, a type of transfer learning, can alleviate this 

problem by aligning the statistical distributions of features and samples among different 

datasets so that similar models can be applied across them. However, a majority of state-

of-the-art domain adaptation methods are designed to work with large-scale data, mostly 

text and images, while biological datasets often suffer from small sample sizes, and 

possess complexities such as heterogeneity of the feature space. This Review aims to 

synthetically discuss domain adaptation methods in the context of small-scale and highly 

heterogeneous biological data. We describe the benefits and challenges of domain 

adaptation in biological research and critically discuss some of its objectives, strengths, 

and weaknesses through key representative methodologies. We argue for the 

incorporation of domain adaptation techniques to the computational biologist’s toolkit, with 

further development of customized approaches. 

 

Keywords: Machine learning; biological-scale datasets; small datasets; neuroimaging; 

microbiome; domain adaptation; transfer learning. 
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1. Introduction  

 

In the computational biological sciences, we are interested in learning informative “truths” 

about biological systems through machine learning or similar quantitative modeling 

techniques3. Contrary to “purely statistical” correlations, we expect such “truths” to 

generalize beyond a specific dataset or population, indicating that they offer a grounded 

biological meaning. However, collecting (and sometimes labeling) biological datasets is 

difficult, expensive, and time-consuming, leading to many small but related datasets 

which are collected from different sources and under different environmental and 

experimental conditions (e.g. different labs, equipment, settings, humidity, etc). For 

example, in the widely used Autism Brain Imaging Dataset (ABIDE), functional magnetic 

resonance imaging (fMRI) data was collected at multiple sites, which hindered the ability 

to directly aggregate data1. Beyond creating challenges in data curation and metadata 

standards5,6, this variability in the sources of small biological datasets creates different 

domains of data that have different statistical distributions.  

 

While this variety is a strength that can facilitate discovery of generalizable truths, it also 

presents a significant challenge to computational biology: Applying knowledge gained 

from one dataset (a source) to another (a target) will fail if the two datasets possess highly 

divergent distributions – a phenomenon known as domain shift or data bias73,74. In short, 

we cannot blindly apply a model (of any kind) trained on a source dataset collected under 

one set of conditions to new target data and expect it to perform effectively. In an age of 

open datasets and keen interest in adhering to FAIR principles (Findability, Accessibility, 

https://paperpile.com/c/BZcxD5/mhqLV
https://paperpile.com/c/BZcxD5/KpsOL
https://paperpile.com/c/BZcxD5/c3kA9+0EEtb
https://paperpile.com/c/BZcxD5/bFf4A+F9zZU
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Interoperability, and Reuse of digital assets) to accelerate scientific discovery, it is 

increasingly urgent that we acknowledge the strengths and challenges of combining 

datasets. 

 

To best extract generalizable insights while making use of all collected data from varying 

sources – especially in biological disciplines where data are expensive – and to apply 

these insights to newly collected data, we must discover how to best leverage the use of 

all existing and continuously growing small biological datasets4. In the field of machine 

learning, transfer learning aims to use knowledge gained from learning a task on one 

dataset to performing a similar task on a different but related dataset, with the purpose of 

transferring knowledge across datasets75–79. Domain adaptation (DA), a subfield of 

transfer learning, has been developed to address this issue of different statistical 

distributions by aligning the distributions of the source and target domains. Of note, while 

there are some similarities to “batch correction” often applied in high-throughput 

molecular measurements80,81, the objective is different: domain adaptation aims to learn 

generalizable models across domains, while batch correction is primarily aimed at 

removing technical variation. Importantly, DA is more than just “lining up the features” and 

training a model on both datasets; not only is this often impossible to do (especially if 

features are unlabeled), but statistical differences between the domains can often 

guarantee that such a brute force aggregation is doomed to failure. Instead, through DA, 

a model is forced to learn domain invariant features, i.e. features that are common across 

all domains, such that the learned model can be generalized and perform relatively well 

on a separate target domain. Another benefit of DA is that the integration of multiple 

https://paperpile.com/c/BZcxD5/xyDpm
https://paperpile.com/c/BZcxD5/3l9wj+i4uy9+Le0RE+1fY3e+3VzSp
https://paperpile.com/c/BZcxD5/0gDvN+3Ae7k
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datasets effectively increases the sample size, allowing for improved inference of 

statistical signals. This allows better use of available data and resources, reducing the 

need to collect and annotate expensive data82–84.  

 

However, using DA methods to extract informative and generalizable insights from 

different datasets is difficult in general, and is particularly difficult in computational biology. 

Compared to datasets typically used to train machine learning models85–88, many 

“biological-scale” datasets are smaller in sample size, have many more features than 

samples, and have a complicated feature space (e.g. different numbers of features in 

each dataset, missing values, etc.). Therefore, while developing effective DA techniques 

that can work well with these small “biological scale” datasets to find general truths about 

biological systems is highly desirable, it presents a specific set of challenges to machine 

learning research. 

 

In this Review, we aim to critically discuss the benefits and challenges of applying current 

DA methodologies and frameworks to such biological datasets. To this end, we use the 

token examples of functional magnetic resonance imaging (fMRI) and microbiome 

datasets, two seemingly different disciplines in biology, to show the common 

considerations critical to developing effective DA techniques in such data. Our goal is to 

lay out the key components that require consideration in selecting an effective DA 

technique, and highlight important areas of future methodological research in DA methods 

that can be maximally effective in biological datasets – especially as data sharing and 

metadata curation continues to mature. 

https://paperpile.com/c/BZcxD5/VIy6s+ur856+Slbkg
https://paperpile.com/c/BZcxD5/MzLjY+dMxfa+38vfd+uFYaG
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2. Domain adaptation: a powerful tool for biological data 

 

In the biological sciences – and especially as re-analysis and meta-analysis is facilitated 

through open data sharing – researchers often work with multiple distinct datasets 

collected through various procedures and techniques. These datasets may contain 

unique idiosyncrasies that are specific to a dataset, and which may or may not necessarily 

offer any biological insights (for example, different MRI participants or scanners1,29,67,68, 

or different patient populations for microbiome profiling89,90). Additionally, each dataset 

alone may have high feature dimensionality despite small sample size, and thus may be 

overfit by modern, state of the art models30,31,91,92 – making it challenging to learn robust 

models that will generalize. These factors make it particularly attractive to apply DA to 

aggregate such biological datasets, reducing overfitting and facilitating the discovery of 

“generalizable truths”. Before assessing the challenges of doing so, we would like to 

briefly examine three specific benefits of DA for biological research. 

2.1 Mitigating small sample size and large feature space 

Ideally, a successful approach in computational biology is to fit a model with few free 

parameters across many samples. However, complex biological systems often need to 

be modeled with many free parameters, while training samples remain quite few. This 

degree of model complexity in the face of insufficient training exemplars can reduce 

generalizability and increase the risk of overfitting, where a machine learning model fits 

the training data all too well but fails to generalize to new, unseen data (e.g., cross-

validation fails). To address this issue, domain adaptation (DA) can be used to integrate 

https://paperpile.com/c/BZcxD5/Lv9IB+f1U6V+ccPwu+KpsOL
https://paperpile.com/c/BZcxD5/4bMRP+jXL4U
https://paperpile.com/c/BZcxD5/zaIbr+bqJxi+O6LQt+sm6xU
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multiple individual datasets to increase the number of training samples available. This 

approach helps to achieve two essential goals: it  provides access to a larger and more 

diverse set of training data, thereby reducing the potential negative impact of having a 

large number of parameters, and it also encourages models to be more properly regulated 

so they can better extract true signals rather than being overly sensitive to noise. 

Increasing generalizability in this way can also support other benefits, discussed next. 

2.2 Transferring knowledge 

Beyond simply increasing the number of training samples available, DA can also be used 

to transfer knowledge across different biological contexts (different cells, tissues, 

organisms, individuals, ecosystems, in-vitro, and in-vivo) – assuming that domains share 

some commonalities in between features and task or goals. This could help scientists and 

physicians to transfer knowledge from some existing rich datasets to a different (but 

related) dataset that is smaller in size. For instance, in many situations there exists a large 

amount of labeled data from adults’ MRI scans but much less data for infants; therefore, 

DA might be especially helpful to transfer insights gained from adults to newborns93. DA 

could also help transfer drug response insights gained from richly annotated pre-clinical 

cell lines to more poorly annotated human settings94, or to use DNA methylation data from 

multiple distinct tissues to predict donors’ age95. In general, it is highly desirable to transfer 

knowledge gained from existing labeled datasets to other different, but related, datasets 

that are sparse in terms of sample size or annotation. It is easy to envision the benefit of 

applying models trained on publicly-available data to a locally-collected, small dataset – 

a process made potentially much more powerful through DA. 

https://paperpile.com/c/BZcxD5/sP5L7
https://paperpile.com/c/BZcxD5/7pdaA
https://paperpile.com/c/BZcxD5/72Kbd
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2.3 Discovering generalizable patterns 

As introduced above, DA can also help drive at our primary scientific goal: to reveal true, 

meaningful, and generalizable biological insights rather than associations that are merely 

due to artifacts, confounds, idiosyncrasies unique to one dataset, or meaningful biological 

differences between domains which are separable from a particular question at hand. 

This is crucial since biological datasets are often composed of many different small 

cohorts collected from different laboratories and under different environmental and 

experimental conditions87,91. For example, many fMRI96–98 datasets are small, consisting 

of 30 human subjects or fewer per scanning site, but  different hardware components or 

settings across MRI machines may result in data with different statistical distributions – 

e.g., different noise characteristics, signal magnitudes, correlations between features, or 

stationarity of these components across time for each scan site. In the microbiome field, 

the vaginal microbiome has been studied in over a dozen cohorts in the context of preterm 

birth99,100, and the gut microbiome has been similarly studied in the context of colorectal 

cancer101,102, yet variability in microbiome profiling across laboratories has been 

repeatedly noted89.  

 

As these smaller, individual datasets are increasingly shared and curated into large 

databases, challenges of discovering domain-invariant patterns while using as much data 

as possible become immediately apparent. Because of the idiosyncratic nature of each 

individual dataset, machine learning models can learn non-relevant information in one 

single ‘training’ dataset that can lead to incorrect general conclusions about biological 

processes. For example, even sophisticated computer vision models can discover 

https://paperpile.com/c/BZcxD5/O6LQt+38vfd
https://paperpile.com/c/BZcxD5/JhZTG+GOMyG+ExVgI
https://paperpile.com/c/BZcxD5/1khk1+mRSLZ
https://paperpile.com/c/BZcxD5/CK5oa+tNKc4
https://paperpile.com/c/BZcxD5/4bMRP
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‘shortcuts’ when detecting COVID-19 from chest radiographs: Instead of detecting 

clinically relevant factors, they rely on confounding factors such as laterality markers or 

patient positioning. This not only hinders the ability of the models to generalize to new 

data (i.e., when tested on a new patient from a new hospital)103 but also might lead to 

misinterpretation of results within a single dataset. This issue is related also to batch 

effects104 – essentially, the effect of non-biological artifacts that changes the distribution 

of the data for an experimental subset of a particular experiment. When experimental 

batches (e.g., plates for DNA extraction, or days for MRI appointments) are also 

associated with the outcome of interest, it may even lead to incorrect conclusions (batch 

confounding). DA can be used to correct for these domain-specific idiosyncrasies when 

combining batches or cohorts, facilitating discovery of domain-invariant signals which 

may be more meaningful biologically.  

3. Challenges of domain adaptation in bio-scale data and a path forward 

 

Despite the clear utility of DA in biological data, its successful application to small datasets 

with complex features comes with significant challenges – many of which stem from the 

very reasons we would want to use it in the first place. In service of laying out a path 

forward to effective deployment of DA methodologies in biological scale datasets across 

multiple fields, we next explore in more detail why existing DA techniques may not be 

able to perform effectively on biological datasets. The purpose of this discussion is to help 

researchers learn to evaluate DA approaches for appropriateness in their own research, 

as well as to highlight deficiencies in current DA applications to biological questions which 

https://paperpile.com/c/BZcxD5/bztaL
https://paperpile.com/c/BZcxD5/w6hcx
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may be alleviated through improved collaboration between DA researchers and 

computational biologists. 

3.1. Number of samples and features 

Most DA methods have been designed in the fields of computer vision, text mining, or 

language processing105–108 with reference to – and evaluation on – large-scale text and 

image data, where there can be tens of thousands (or even millions) of samples available 

for training (e.g. MNIST, CIFAR10; refs.109–111). In contrast, the number of samples in 

biological datasets is often small, but they simultaneously have many features, a problem 

known as curse of dimensionality112. For instance, in a typical fMRI or microbiome dataset 

we might only have a few dozens to hundreds of samples while the number of features 

could exceed thousands90,113,114. As introduced above, this imbalance between the 

number of samples and features can potentially lead to overfitting problems30,31, which in 

turn hinders the effectiveness of DA techniques on biological datasets112. There do exist 

several datasets typically used to benchmark DA approaches that may be somewhat 

closer in size to biological-scale data, including Office31 (ref. 115), which contains image 

data of objects collected from 3 source domains with different resolutions, for a total of 

4,110 images from 31 object categories (132 images per category). However, while one 

might hope that DA methods that have shown success on Office31116–118 could be useful 

for biological data with similar sample size per category, it must be acknowledged that 

many biological datasets have significantly different properties than imaging data119–122, 

and are even smaller, with only several hundred training samples in total. There is a need 

for DA algorithm development to specifically target success in the face of fewer training 

samples. 

https://paperpile.com/c/BZcxD5/zKNfO+G34xM+Rs3N0+bZuJo
https://paperpile.com/c/BZcxD5/8VMKA+DbnA1+b1Opp
https://paperpile.com/c/BZcxD5/XB141
https://paperpile.com/c/BZcxD5/jXL4U+GiAT4+ZY436
https://paperpile.com/c/BZcxD5/zaIbr+bqJxi
https://paperpile.com/c/BZcxD5/XB141
https://paperpile.com/c/BZcxD5/I7xWt
https://paperpile.com/c/BZcxD5/CWYeW+47Mm6+oAfY6
https://paperpile.com/c/BZcxD5/CsOgr+cxFdZ+Wa1JZ+gQnqr


52 
 

3.2 Differences in feature complexity  

However, simply checking that DA approaches can perform adequately on small datasets 

is unfortunately unlikely to be enough. Another barrier to applying DA approaches to 

biological data is that features in biological domains are inherently much more complex 

than those in image data. For example, in many machine learning datasets such as 

MNIST or Office-31, image data are essentially pixel luminance values in the RGB and 

alpha channels that can be relatively simple to aggregate with other source data, for 

example by resizing the image73,123–126. In the case of biological datasets however, the 

inherent complexity of features can significantly hinder our ability to aggregate different 

sources of data. For example, biological datasets often contain missing values127–130, or 

have different numbers of features with unknown mapping orders between domains67 

(i.e., which features in a source are “the same” as which features in a target domain). 

They can also exhibit non-linear relationships or interactions between features91,130–132, 

and unique data preprocessing requirements for each source can substantially increase 

the complexity of developing DA techniques for biological datasets. In other words, in 

addition to feature-to-sample ratio and number of categories, we need to take into account 

the complexity and heterogeneity of biological domains before using DA techniques on 

biological datasets. This increased complexity stems from several sources which we next 

discuss in more detail. 

3.2.1 Missing values 

Biological samples often contain many missing feature values. For example, microbiome 

data typically only consists of a few taxa that are shared by the majority of samples, and 

even less so across cohorts. Many taxa are rare and are only detected in very low 

https://paperpile.com/c/BZcxD5/rHgl2+563Ak+bFf4A+dYMZp+fTBLj
https://paperpile.com/c/BZcxD5/SEHw5+Y5zNT+3oDrW+TaCaO
https://paperpile.com/c/BZcxD5/ccPwu
https://paperpile.com/c/BZcxD5/vOPtJ+O6LQt+TaCaO+18029
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abundances, a phenomenon known as zero inflation in statistics133. In human 

neuroimaging, PET or MRI scans combined with patients’ genetic information can help 

with early diagnosis of Alzheimer’s disease. However, the very common problem of 

missing values (i.e. not every subject has completed multi-modality data) can impede the 

ability of these multimodal models to make reliable predictions134–136. Missing data is less 

problematic in many traditional datasets used to train DA approaches, meaning that these 

approaches may not deal with missing data well; to be successful with biological data, DA 

algorithms need to adequately handle small data and missing values. 

3.2.2 Heterogeneity of features 

Biological domains also often possess different numbers of features, and the features 

also often do not lie in the same rank order across domains. For example, fMRI data from 

a given brain region will have different numbers of voxels from one human subject to the 

next, and the information represented, for example, in voxel 1 in person A is unlikely to 

functionally align with the information encoded by voxel 1 in person B. While functional 

alignment approaches have been developed67,69, they do not explicitly perform DA 

operations. In microbiome research, it can be unclear whether a particular taxa is the 

same across datasets, especially because sometimes the measurement techniques differ 

(e.g., taxa are characterized using different regions of a marker gene, such that the same 

taxa might be represented by different features in different datasets). These examples 

are in stark contrast to most image-based DA approaches, which can exploit physical 

proximity of features (pixels) through spatial convolution or learn feature importance maps 

based on spatial features alone (e.g., the center of an image may often be more 

informative than the edges).  

https://paperpile.com/c/BZcxD5/2IjUP
https://paperpile.com/c/BZcxD5/Zs8F7+yjFZO+q2hsK
https://paperpile.com/c/BZcxD5/ccPwu+jrPM2
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Additionally, domains may have some overlapping features but also some non-shared 

(distinct) features – i.e., those that are specific to one domain but not the other137. Current 

DA techniques may not be very effective on such datasets since domains may lack 

supplementary information such as labels138 or information about matching features or 

samples between datasets78. This limitation could force researchers to remove domain-

specific features and hence lose the capacity of DA models to benefit from these unique 

features in the learning process. Ideally, DA for biology could benefit from a specific focus 

on both feature alignment (ideally unlabeled) and principled ways to deal with shared 

versus non-shared features. 

3.2.3 Distribution of feature importance 

In biological datasets, feature importance distributions can be more highly skewed than 

in many standard benchmarks used to test DA approaches. That is, in biology, a few 

features can be very important for the ultimate performance of a model; in contrast, in 

typical benchmark datasets, many features can have similar importances119–122. This 

difference in skewness of feature importance distributions can lead to extreme challenges 

for many DA approaches, such that DA models which succeed even on small ‘typical’ 

benchmark datasets may fail in biological applications. 

3.3 Contributions of data collection and preprocessing procedures 

Biological datasets often require extensive preprocessing after the data collection stage 

which can be inconsistent across datasets or laboratories (DADA2 or deblur for 16S rRNA 

amplicon data139,140, fMRIPrep141 versus AFNI142,143, or FSL144–146 for fMRI images147). As 

https://paperpile.com/c/BZcxD5/Jx1tn
https://paperpile.com/c/BZcxD5/dzGCB
https://paperpile.com/c/BZcxD5/1fY3e
https://paperpile.com/c/BZcxD5/CsOgr+cxFdZ+Wa1JZ+gQnqr
https://paperpile.com/c/BZcxD5/SlEel+1CQsW
https://paperpile.com/c/BZcxD5/tYQrk
https://paperpile.com/c/BZcxD5/F5zpm+36zs6
https://paperpile.com/c/BZcxD5/fpBFn+JGVs2+hdLUF
https://paperpile.com/c/BZcxD5/nSolt
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a result, machine learning methods used in biology typically are limited to being highly 

context- and preprocessing-specific, requiring careful design and tailoring to test the 

desired hypothesis appropriately148. This often occurs despite targeted efforts in bridging 

this gap by the means of setting up standards in generating and preprocessing the 

data149, since some lab- and individual-specific idiosyncrasies are wholly unavoidable. 

For example, in fMRI data correction for subject’s head movement, using different 

scanning sequences or scanners can introduce data shifts that makes applying DA 

techniques even more difficult1,150–154. Such preprocessing idiosyncrasies can exacerbate 

or interact with other batch effects, including introducing or altering interdependencies 

among features91. 

3.4 Interpretability of features and feature spaces 

Interpretability is an important aspect of biological research, in contrast to at least some 

other ML applications. However, alignment steps in DA – which often require finding a 

latent representation of data by projecting the domains into a shared feature space155–157 

– are frequently carried out by machine learning and deep learning methods. This means 

that DA in biological data inherits the same problem that plagues machine learning more 

broadly: failures in interpretability due to the black-box nature of these machine learning 

and deep learning methods. In fact, the shared feature space is particularly challenging 

to interpret158 because the shared feature space is defined as a latent space that bridges 

two or more domains, rather than the latent space defined by one domain alone. 

Therefore, DA research can and should aim particularly at understanding how input 

features are related to the common feature space when utilizing these methods159,160. 

https://paperpile.com/c/BZcxD5/R0qtc
https://paperpile.com/c/BZcxD5/PO8Mg
https://paperpile.com/c/BZcxD5/YTFup+PYItZ+DjWwK+KpsOL+MtJCb+sMv6T
https://paperpile.com/c/BZcxD5/O6LQt
https://paperpile.com/c/BZcxD5/oXWuq+128WT+IuLzi
https://paperpile.com/c/BZcxD5/dYNDd
https://paperpile.com/c/BZcxD5/CzN2K+iKCLz


56 
 

3.5 Theoretical limitations of domain adaptation  

It is also important that we discuss a critical theoretical limitation of DA, especially as it 

might impact biological data. The primary driver of DA’s potential success is the 

adaptability between the source and target domains161,162 – essentially, the theoretically 

maximal ability of an ideal model to jointly model them163,164. Failure of adaptability is thus 

a potentially fatal concern. While considering additional source domains provides the 

benefits of a larger and more diverse sample set (or additional labels), these domains 

might have inherently different distributions of features or different joint distribution with 

the labels, which would make a model considering them less accurate. Thus, applying 

DA might ultimately bring more cost than benefit162: in the worst-case scenario, negative 

transfer (i.e., applying knowledge from a source domain negatively affects the 

performance of the model in a target domain) can happen161,165. Crucially, the potential 

for negative transfer can be further amplified when working with biological data, due to its 

already-heterogeneous nature and the smaller sample size of each dataset. Therefore, it 

is imperative that the adaptability of the particular biological datasets in question be 

explicitly quantified or estimated before applying DA methods. Unfortunately, while there 

exist a few methods to quantify adaptability between domains161,163, analysis in the 

context of different biological sub-fields is exceedingly rare. The development of 

adaptability analysis methods thus may be a fruitful and critical area of future research 

into DA application to biological datasets. 

4. Considerations for domain adaptation 

 

https://paperpile.com/c/BZcxD5/z162G+ysZYY
https://paperpile.com/c/BZcxD5/d0QTB+lpHkD
https://paperpile.com/c/BZcxD5/ysZYY
https://paperpile.com/c/BZcxD5/ZnZ1Z+z162G
https://paperpile.com/c/BZcxD5/z162G+d0QTB
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Despite the challenges noted above, even in their current state, DA approaches can still 

provide benefit in biological data at this critical expansion of data sharing and open 

science practices in biology. But there are a great many methods to choose from. How 

should a scientist select the best DA approaches for their own datasets or scientific 

questions? In this section, we outline specific considerations for biologists in selecting 

and applying DA approaches in their own research.  

 

We begin this section by presenting a formal definition of domain and domain adaptation. 

We then present a taxonomy which can be useful in gaining a better understanding of 

what to search for in the literature. In this Review we focus on the primary subcategory of 

DA which addresses data bias or covariate shift; this DA subcategory tries to align shifts 

in the feature spaces between domains (or the change in the marginal distribution of data 

samples across domains). Other specialized subcategories of domain shift include label 

shift166, which indicates that different domains contain different number of labels for each 

class, and concept shift167, in which the data distribution remains the same but the 

conditional distribution changes (i.e. 𝑃𝑃𝑠𝑠(𝑦𝑦|𝑋𝑋) ≠ 𝑃𝑃𝑤𝑤(𝑦𝑦|𝑋𝑋)). Interested readers should refer 

to these surveys7,168 for a comprehensive overview of the different types of shifts in the 

DA field.  

4.1 What is a domain? 

A domain can be defined as 𝐷𝐷 = {𝜒𝜒,𝑃𝑃(𝑋𝑋)}, where 𝜒𝜒 is a feature space, 𝑋𝑋 =  {𝑥𝑥1, 𝑥𝑥2, . . . , 𝑥𝑥𝑛𝑛} 

is an instance set with 𝑥𝑥𝑖𝑖 denoting a given feature, 𝑛𝑛 denotes the number of features or 

dimensions in the data (e.g., in fMRI data voxel activities or taxa in microbiome data), and 

 𝑃𝑃(𝑋𝑋) denotes the marginal probability distribution of all samples in that dataset. This 

https://paperpile.com/c/BZcxD5/vTOen
https://paperpile.com/c/BZcxD5/XA04s
https://paperpile.com/c/BZcxD5/rp5Pk+aMK9y
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formal definition is typically used in discussions of DA across a wide variety of 

disciplines169,170. 

4.2 The terminology of domain adaptation 

For a specific domain, we define the task (e.g., predicting what image a subject is looking 

at from neuroimaging data, or predicting a disease state from microbiome composition) 

as 𝑇𝑇 = {𝑦𝑦,𝑓𝑓(⋅)}, where 𝑦𝑦 denotes the labels to be predicted and 𝑓𝑓(⋅) denotes a decision 

function (i.e., the posterior probability distribution of 𝑃𝑃(𝑦𝑦|𝑋𝑋) of the joint distribution 𝑃𝑃(𝑋𝑋,𝑦𝑦)) 

that needs to be learned in order to map input features to the corresponding labels.  

 

Given these definitions, domain adaptation is faced with the following problem, in which 

distributions or relative alignment of features across domains are different but the task 

remains approximately the same. Thus, a DA problem with covariate shift can be formally 

defined as follows: 

 

𝑃𝑃(𝑋𝑋𝑠𝑠1) ≠ 𝑃𝑃(𝑋𝑋𝑠𝑠2) ≠. . .≠ 𝑃𝑃(𝑋𝑋𝑠𝑠𝑘𝑘) ≠ 𝑃𝑃(𝑋𝑋𝑤𝑤) ,  

𝑇𝑇𝑠𝑠1 ≈ 𝑇𝑇𝑠𝑠2 ≈. . .≈ 𝑇𝑇𝑠𝑠𝑘𝑘 ≈  𝑇𝑇𝑤𝑤 

 

where 𝑠𝑠 denotes the source domain, 𝑓𝑓 denotes the target domain, 𝑘𝑘 is the number of 

source domains, 𝑃𝑃(𝑋𝑋) is the marginal distribution of a specific instance set in a given 

domain, and 𝑇𝑇 is the task performed in each domain. Here, the goal of DA is to improve 

the performance of target decision function 𝑓𝑓(⋅)𝑤𝑤 in target domain 𝐷𝐷𝑤𝑤 by leveraging the 

information from source domain 𝐷𝐷𝑠𝑠 and decision function 𝑓𝑓(⋅)𝑠𝑠 (which is learned on the 

https://paperpile.com/c/BZcxD5/lYlxV+huBBz
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source domain after the source and target domains are aligned). In other words, DA 

intends to adapt the model(s) trained from a source (or sources) to a different, but related, 

target dataset. It does this by aligning the distributions of features and samples belonging 

to different domains so that the models emphasize learning domain invariant features that 

are not dependent on a specific dataset (Figure 2.1).  

 

  

Figure 2.1. A cartoon representation of source and target domains before and after 
alignment. In this cartoon, features vary in their values along two dimensions, and each 
domain’s features take on a different mean and covariance. Unless the domains are 
aligned, these differences could both obscure other meaningful variation in the data that 
is shared across domains, and prevent models trained on one domain from generalizing 
to another.  

4.3 A taxonomy of domain adaptation 

Generally, when undertaking a DA analysis, we should consider three main factors: 

1. The data used to train a model may be collected from multiple sources or just 

from a single source.  

2. Depending on the availability of labels in the target domain, we might choose 

supervised, semi-supervised, or unsupervised models. 
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3. The feature spaces in the source(s) and target domains can be homogenous, 

meaning that they have the same dimensionality and “meaning”, e.g., feat4–

0w5ure A in source 1 represents the same “type” of information as feature A in 

source 2; or heterogenous, meaning that the feature spaces may differ in terms 

of dimensionality and/or meaning.  

 

In the following, we discuss these three factors in more detail. Table 1 also shows a 

summary of these categories accompanied by mathematical annotations. 

4.3.1 Single- vs. Multi-source 

In selecting a DA method, one question you will want to ask is how many domains are 

present. As mentioned above, DA techniques can be divided into two categories of 

“single-source” and “multi-source”12. In single-source DA, the source domain is usually 

labeled, while the target domain belongs to another domain that possesses a different 

distribution79,157. Single-source DA is simpler than multi-source DA since there are only 

two distributions of data – source and target. Therefore, single-source DA is a good 

technique when there is enough data available in both the source and target domains to 

effectively train a model that can perform well on the target domain171,172173,174.  

 

However, in modern real-world data sharing initiatives, most biological data come from 

many sources9,175, and using this data to its full extent can facilitate novel insights. 

Therefore it is advantageous to find models that leverage all available sources. This 

problem can be addressed through multi-source DA, which aims to combine multiple 

sources of labeled data to make predictions about a similar task on a target 

https://paperpile.com/c/BZcxD5/q1Yoz
https://paperpile.com/c/BZcxD5/IuLzi+3VzSp
https://paperpile.com/c/BZcxD5/mXI3M+gDZpE
https://paperpile.com/c/BZcxD5/cg20u+jU5IG
https://paperpile.com/c/BZcxD5/A0AMN+7VkFO
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dataset9,12,176,177. A naive way to solve this problem is to combine multiple sources into 

one big source domain and then approach the problem as a single-source DA12,178. 

However, these methods can show very limited improvement in performance – and 

sometimes even worse performance – in comparison to using only one source179, 

specifically stemming from challenges of aligning the sources to begin with. Another way 

to tackle this problem could be to train a model on each source independently, apply each 

trained model to the target domain, and then vote for the ‘correct’ label in the target 

domain based on the prediction across sources180. One could also attempt to first 

discover domain-invariant features among all source and target domains181, or use a two-

stage alignment technique that first tries to find domain-invariant feature spaces for each 

source-target pairing and then align model outputs across these spaces179. In all cases, 

though, Multi-source DA is significantly more challenging than single-source DA – a 

problem made worse by the particular characteristics of biological data, as discussed 

above.  

4.3.2 Supervised vs. semi-supervised vs. unsupervised 

It is also important to assess what kinds of labels are available for your data, across all 

the domains you need to align; this will dictate whether you should select a supervised, 

semi-supervised, or unsupervised DA method. These labels have been applied in varying 

ways12,79,182–184. Here we have chosen a categorization based strictly on the usage of 

target labels: in unsupervised DA, no label is available in the target domain117,157,185,186; 

in semi-supervised DA187–189, some labels are available to use; and in supervised DA, 

labels in the target domain are available for most samples168. Although the majority of DA 

techniques in existing literature focus on unsupervised DA (since it is often utilized for the 

https://paperpile.com/c/BZcxD5/zIOkw+THiWq+A0AMN+q1Yoz
https://paperpile.com/c/BZcxD5/YeYNg+q1Yoz
https://paperpile.com/c/BZcxD5/ynWDP
https://paperpile.com/c/BZcxD5/xbcyN
https://paperpile.com/c/BZcxD5/Dqj2K
https://paperpile.com/c/BZcxD5/ynWDP
https://paperpile.com/c/BZcxD5/q1Yoz+WnOKl+qStyW+3VzSp+QLGa1
https://paperpile.com/c/BZcxD5/IuLzi+47Mm6+NKiIQ+cUeNV
https://paperpile.com/c/BZcxD5/DHJIa+I8MMD+bg0A3
https://paperpile.com/c/BZcxD5/rp5Pk
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purpose of annotating unlabeled data in the target domain), in the case of biological data, 

any of the supervised, semi-supervised, or unsupervised scenarios is possible. This is 

because the primary goal of domain adaptation in biological settings is to uncover insights 

about biological systems that generalize across domains. Thus, even when labeled data 

are available in the target domain, one can still benefit from utilizing DA techniques on 

different datasets to find generalizable patterns across domains. 

4.3.3 Homogeneous vs. heterogeneous 

Finally, it is important to understand how the features are related across your different 

domains. DA can be divided into two categories based on the relationships between these 

features: homogeneous or heterogeneous12,168,169. In homogeneous DA, the source and 

target domains have the same feature space, 𝜒𝜒𝑠𝑠= 𝜒𝜒𝑤𝑤, but the data distributions of 

instances of these feature spaces are different, 𝑃𝑃(𝑋𝑋𝑠𝑠) ≠ 𝑃𝑃(𝑋𝑋𝑤𝑤). That is, feature 1 in 

domain 1 represents the same “meaning” as feature 1 in domain 2 – for example, they 

both represent a specific voxel at a specific coordinate in the brain, or represent the same 

microbe (Note: 𝜒𝜒𝑠𝑠= 𝜒𝜒𝑤𝑤 means that the feature space in both domains is homogenous, but 

if 𝑋𝑋𝑠𝑠= 𝑋𝑋𝑤𝑤 then it means that 𝑋𝑋𝑠𝑠 and 𝑋𝑋𝑤𝑤 are identical datasets such that there is no difference 

between the source and target datasets at all). In heterogeneous DA, conversely, the 

feature space is related but different between the domains. Many DA techniques that 

have been developed so far tend to focus on homogeneous DA156,190–198. For instance, 

the source data could be the fMRI data obtained from a subject with one scanner and the 

target domain is the fMRI data obtained from the same subject with the same protocol but 

a different scanner. Alternatively, different domains could contain gut metagenomic 

sequencing data from different studies aligned against the same reference database. 

https://paperpile.com/c/BZcxD5/lYlxV+rp5Pk+q1Yoz
https://paperpile.com/c/BZcxD5/dzxRf+vLItA+idOe7+pYiyc+xbsrk+Wby8o+8f0ur+dtd6s+MyKqM+128WT
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Addressing the domain shift in a homogeneous DA problem is relatively simpler since it 

is possible to simply perform the feature alignment directly on the original instances of the 

domains without the need to project them into a common feature space.  

 

Unfortunately, however, most biological datasets are heterogeneous in nature91,130 since 

these data are collected in different laboratories, under different environmental and 

experimental conditions, and sometimes even for answering different but related 

questions. In other words, neither the feature spaces nor the marginal distributions are 

the same (i.e. 𝜒𝜒𝑠𝑠 ≠ 𝜒𝜒𝑤𝑤, 𝑃𝑃(𝑋𝑋𝑠𝑠) ≠ 𝑃𝑃(𝑋𝑋𝑤𝑤)). As a result, biological datasets very often have 

different feature dimensionalities, and sometimes these features even have different 

labels or come from different modalities of data collection (e.g., fMRI versus another 

neuroimaging modality like electroencephalography). For instance, the fMRI data from 

the brains of two individuals have different numbers of voxels (features) which also are 

not meaningfully aligned across individuals regarding their functional properties (e.g., 

voxel 1 in person A is unlikely to encode the same information as voxel 1 in person B) – 

even when the scanner, protocol and performed task are exactly the same. 

 

 

 Categories | 
Definitions 

Domains, 𝑫𝑫 = {𝜒𝜒,𝑷𝑷(𝑿𝑿)}  
& Tasks, 𝑻𝑻 = {𝒀𝒀, 𝒇𝒇(⋅)} Verbal description 

Traditional ML 𝐷𝐷𝑠𝑠 = 𝐷𝐷𝑤𝑤 & 𝑇𝑇𝑠𝑠 = 𝑇𝑇𝑤𝑤 

When the source (i.e. 
training set) and target 
(i.e. test set) have the 
same distribution and the 
task is exactly the same. 

https://paperpile.com/c/BZcxD5/TaCaO+O6LQt
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Transfer 
Learning (TL) 𝐷𝐷𝑠𝑠 ≠ 𝐷𝐷𝑤𝑤 or 𝑇𝑇𝑠𝑠 ≠ 𝑇𝑇𝑤𝑤 or both 

When the source and 
target domains have 
different distributions or 
the performed task on 
source and target are 
different, or both. 

 

Single-source 
DA 𝑃𝑃(𝑋𝑋𝑠𝑠) ≠ 𝑃𝑃(𝑋𝑋𝑤𝑤) & 𝑇𝑇𝑠𝑠  ≈  𝑇𝑇𝑤𝑤 

When there is only one 
source domain and the 
marginal distribution of 
the feature space 
between source and 
target domain is different. 
The task in the target 
domain is similar to that in 
the source domain. 

Multi-source DA 
𝑃𝑃(𝑋𝑋𝑠𝑠1) ≠ 𝑃𝑃(𝑋𝑋𝑠𝑠2) ≠. . .≠ 𝑃𝑃(𝑋𝑋𝑠𝑠𝑘𝑘) ≠

𝑃𝑃(𝑋𝑋𝑤𝑤) ,  
& 𝑇𝑇𝑠𝑠1 ≈ 𝑇𝑇𝑠𝑠2 ≈. . .≈ 𝑇𝑇𝑠𝑠𝑘𝑘 ≈  𝑇𝑇𝑤𝑤 

When there are multiple 
sources available which 
can have different 
distributions, and when 
these distributions differ 
from that of the target 
domain. The task is 
similar across all 
domains. 

Supervised 
𝑃𝑃(𝑋𝑋𝑠𝑠) ≠ 𝑃𝑃(𝑋𝑋𝑤𝑤), with all target 

labels 

When source and target 

domains are both labeled. 

Semi- 

supervised 

𝑃𝑃(𝑋𝑋𝑠𝑠) ≠ 𝑃𝑃(𝑋𝑋𝑤𝑤), with some target 

labels  

When source is labeled 

but target is partially 
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labeled. 

Unsupervised 
𝑃𝑃(𝑋𝑋𝑠𝑠) ≠ 𝑃𝑃(𝑋𝑋𝑤𝑤), with no target 

labels 

When source is labeled 

but target is not labeled. 

 

Homogeneous 

DA 

𝑃𝑃(𝑋𝑋𝑠𝑠) ≠ 𝑃𝑃(𝑋𝑋𝑤𝑤) & 𝜒𝜒𝑠𝑠 = 𝜒𝜒𝑤𝑤 & 𝑇𝑇𝑠𝑠  ≈

 𝑇𝑇𝑤𝑤 

When the feature spaces 

have the same 

dimensionality and same 

meaning. 

Heterogeneous 

DA 

𝑃𝑃(𝑋𝑋𝑠𝑠) ≠ 𝑃𝑃(𝑋𝑋𝑤𝑤) & 𝜒𝜒𝑠𝑠 ≠ 𝜒𝜒𝑤𝑤 & 𝑇𝑇𝑠𝑠  ≈

 𝑇𝑇𝑤𝑤 

When the feature spaces 

have different 

dimensionality or different 

meanings. 

Table 2.1. Difference among traditional machine learning, transfer learning, and 
various kinds of domain adaptation. ML, machine learning; DA, domain adaptation. 𝜒𝜒 
represents feature space, and 𝑃𝑃(𝑋𝑋) is the marginal distribution of instance set 𝑋𝑋, 𝑇𝑇 
denotes the performed task, and 𝑓𝑓(⋅) is the decision function to map each sample to the 
corresponding label. 𝑠𝑠 denotes the source domain, 𝑓𝑓 denotes the target domain, and 𝑘𝑘 is 
the number of source domains.  
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4.4 Case studies and practical examples 

Given the nature of most biological datasets, which often contain limited samples and 

originate from many different sources, the most common DA setting in this field is multi-

source heterogenous DA settings. For instance, aggregating fMRI data from multiple 

subjects or even multiple sites96–98 can be considered a multi-source heterogeneous 

domain adaptation. It is multi-source because the data is coming from multiple subjects 

or multiple sites with different MRI scanners, and it is heterogeneous because the number 

of voxels (i.e. features) from each subject and the information they represent is different. 

(Note: number of voxels can be equated through spatial normalization to a standardized 

template, but this does not address that each voxel will still represent different information 

across individuals.) In the microbiome field, integration of data from multiple microbiome 

datasets in order to predict a phenotype on a held-out study99,100,199 is once again multi-

source and heterogeneous, as data are often amplicons of different regions of the 16S 

rRNA gene. To illustrate the utility of existing DA approaches and explore their 

categorization with the taxonomy discussed above, here we select several methods to 

discuss in slightly more detail.  

 

One DA method, the PRECISE method94, has been used to predict patients’ drug 

response based on available pre-clinical datasets such as cell lines, and patient driven 

xenografts (PDXs). To achieve this, the authors first extracted factors from cell lines, 

PDXs and human tumors using principal component analysis (PCA). Then they aligned 

these subspaces from human tumor data with pre-clinical data using geometric 

transformations, and extracted common features associated with biological processes 

https://paperpile.com/c/BZcxD5/JhZTG+GOMyG+ExVgI
https://paperpile.com/c/BZcxD5/1khk1+mRSLZ+xhicQ
https://paperpile.com/c/BZcxD5/7pdaA
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followed by training a regression model using consensus genes and validated with known 

biomarker-drug associations to accurately predict drug response in patients. In this study, 

DA was homogenous, as the features (genes) in the source and target domains were the 

same; multi-source, as various source domains were used (i.e. cell lines); and supervised, 

as the labels of all samples were used.  

 

Another method, Adversarial Inductive Transfer Learning (AITL)200, similarly aims to 

utilize largely available source domains such as cell lines and clinical trials to predict drug 

responses on small and hard-to-obtain gene expression data from patients. To this end, 

researchers first used a feature extractor network to map the source and target into a 

common feature space. This mapping aimed to alleviate the domain shift by using a global 

discriminator to learn domain-invariant features. Then, these domain-invariant features 

were used to build a regression model for the source task (i.e. predicting IC50) and a 

classification network to make predictions on the target task (i.e. predicting whether there 

is reduction in the size of the tumor). This study aimed to address both prior and covariate 

shifts in the source and target domains. The data used in this study came from multiple 

heterogeneous sources including thousands of cell lines from different cancer types. 

Finally, the target samples were labeled. This study can thus be characterized as a multi-

source and supervised heterogeneous (i.e. drug response is categorized differently 

between preclinical and clinical settings) DA scenario.  

 

Other methods such as WENDA95 (Weighted Elastic Net for unsupervised Domain 

Adaptation) aim to predict a human’s age using DNA methylation data, which are known 

https://paperpile.com/c/BZcxD5/q2cso
https://paperpile.com/c/BZcxD5/72Kbd
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to be different across different tissues. WENDA aims to use the available DNA 

methylation data from some tissues (source domains) to predict the age of the human 

subject using DNA methylation from a different tissue (target domain) by giving more 

importance to features that are more robust and behave in a similar fashion across source 

and target domains. In this study, data from 19 different tissues with chronological age 

ranging from 0 to 103 years old were used as the source domain. The target domain 

came from 13 different tissues, with chronological age ranging from 0 to 70 years old. In 

the application of WENDA, the source domain remained unchanged, while each tissue 

type was viewed as a distinct target domain. This thus represents a multi-source, 

unsupervised, homogenous DA scenario. 

 

In another study, Li and colleagues1 propose a multi-source domain adaptation approach 

by using resting-state fMRI “Autism Brain Imaging Data Exchange” (ABIDE) datasets201 

from multiple academic sites (UMI, NYU, USM, UCLA). Their goal was to improve the 

classification accuracy of autism diagnosis by detecting biomarkers. In this study, the 

feature space, denoted as 𝜒𝜒, was extracted features from fMRI sites such that 𝜒𝜒𝑖𝑖 = 𝜒𝜒𝑖𝑖, 

with 𝑓𝑓 and 𝑗𝑗 representing different institutions (the data can be spatially normalized across 

participants by warping to MNI space). From this perspective, this problem is a 

homogeneous domain adaptation scenario. Subsequently, the authors utilized a Mixture 

of Experts (MoE)202,203, combining multiple neural networks – each of which is specialized 

in solving a specific task – in order to improve the overall performance of the model, and 

adversarial domain alignment methods to minimize the discrepancies between the 

domains, and successfully demonstrated the advantage of using federated domain 

https://paperpile.com/c/BZcxD5/KpsOL
https://paperpile.com/c/BZcxD5/hUESA
https://paperpile.com/c/BZcxD5/K5CjN+aqBS8
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adaptation techniques in using multi-site fMRI dataset to classify autism. Additionally, they 

were able to reveal possible biomarkers in the brain for autism classification. Therefore, 

in this framing this can be considered as a multi-source and supervised homogeneous 

DA problem. 

  

Finally, Gao and colleagues proposed the deep cross-subject adaptation decoding 

(DCAD)204 method: a single source, unsupervised, heterogeneous domain adaptation 

technique. DCAD uses a 3D feature extraction framework using 3D convolution and 

pooling operations based on volume fMRI data to learn common spatiotemporal patterns 

within a source domain to generate labels204. Subsequently, an unsupervised domain 

adaptation method minimizes the discrepancy between source and target distributions. 

This process considers different subjects as different sources and aids in the precise 

decoding of cognitive states (in working memory tasks) across subjects. To validate the 

approach, they applied task-fMRI (tfMRI) data from the HCP205 dataset. The experimental 

outcomes revealed exceptional decoding performance, achieving state-of-the-art 

accuracy rates of 81.9% and 84.9% under two conditions (4 brain states and 9 brain 

states, respectively) during working memory tasks. Additionally, this study demonstrated 

that unsupervised domain adaptation effectively mitigates data distribution shifts, offering 

an excellent solution to enhance cross-subject decoding performance without relying on 

annotations. 

5. Future directions 

 

https://paperpile.com/c/BZcxD5/kmT6M
https://paperpile.com/c/BZcxD5/kmT6M
https://paperpile.com/c/BZcxD5/TxILl
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5.1 What is missing from DA approaches in biological applications? 

Despite these exciting successes, continued development of DA approaches tailored to 

the challenges of biological data is critically needed. This is especially important in light 

of the increasing availability of curated open datasets, complemented by increasing 

standardization of metadata standards5,6. We thus hope the machine learning community 

will continue to develop techniques that can address relevant limitations of biological 

datasets, including: 

1. Models must be able to capture the non-linear and complex patterns in biological 

systems, ideally with minimal or no assumptions. Therefore, many linear-based 

domain adaptation techniques (usually focused on some sort of transformation 

from source to target domain) might not be adequate. 

2. Ideally we want to utilize domain adaptation to discover the underlying 

mechanisms of biological phenomena, rather than simply aggregating data for 

automatic annotation. Unfortunately, many existing techniques are primarily 

developed for addressing automatic annotation of unlabeled data. Therefore, to 

fully unleash the power of DA in biological systems, we must focus on methods 

that seek to discover domain-invariant features that are common across datasets. 

This usually happens by mapping all domains into a common feature space. 

3. This domain-invariant mapping should be done using methods that work with 

limited data in individual cohorts. Although deep learning models are great tools to 

uncover highly nonlinear and complex relations in data with no specific 

assumptions, they often require many samples. Recently, simpler neural network 

architectures such as TRACE2 and Fader networks151 have shown promise with 

https://paperpile.com/c/BZcxD5/c3kA9+0EEtb
https://paperpile.com/c/BZcxD5/WM0Bz
https://paperpile.com/c/BZcxD5/PYItZ


71 
 

small fMRI datasets. However, many of the powerful neural network architectures 

such as GANs might not be suitable for biological datasets as they usually require 

vast amounts of data206,207.  

4. Methods should be developed to address domains’ adaptability with specific focus 

on biological datasets. As mentioned earlier, methods do exist to quantify 

adaptability between domains161,163, but limited attention has been paid to how 

such methods may fare in biological contexts. 

 

In sum, it is incumbent upon us in the biological disciplines to challenge machine learning 

research to design more flexible and broadly applicable DA methods that can perform 

under the constraints of real-world biological datasets. An important step towards this 

goal will be to test and evaluate existing approaches on our own data, and on data 

available through increasingly comprehensive and consistently annotated shared data 

repositories, to comprehensively explore and categorize their current shortcomings. 

Thus, we hope that, with the help of the topics discussed in this Review, researchers in 

biological disciplines will feel empowered to try out existing DA approaches and to help 

catalog their successes and shortcomings. 

 

If you would like to use DA techniques to augment your own data processing pipeline, we 

urge you to begin by gaining a comprehensive perspective on your data using the 

definitions and taxonomy described above. For example, How many sources do you have 

available? What is the sample size in each source? Do these sources contain equal 

amounts of features? If not, what are the nature of features in each source? Are these 

https://paperpile.com/c/BZcxD5/xc4eu+16IUb
https://paperpile.com/c/BZcxD5/z162G+d0QTB
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features in each source known and have a label? What task are you trying to achieve? 

Depending on the answers, you can choose the appropriate DA approaches, and set 

about examining their successes or failures. We hope that the tools and information 

provided in this Review will encourage you to do so, and to report your findings so that 

iterative improvements in DA approaches can be made to best serve our fields. 

5.2 Promises for the future 

In this piece we have focused on human neuroimaging (specifically fMRI) and microbiome 

sciences as token examples to speculate the potential promises of DA in computational 

biology as a whole. We hope that these selected case studies have helped to show off 

the potential of DA in numerous and varied biological disciplines, from electrophysiology, 

multi-omics, DNA sequencing, and scRNA sequencing to and protein localization – all of 

which face similar challenges in data collection and labeling to the case study fields 

discussed here. Differences in equipment, experimental setup, or even individuals can 

lead to a shift in the distribution of data, even when the task is identical. In all cases, 

however, our goal as researchers and clinicians is to go beyond domain-specific or 

dataset-specific models in order to discover domain-general and informative “truths” 

about biological systems.  

 

Thus, DA could be extremely useful to aggregate diverse biological datasets available 

across the Open Science Framework, OpenNeuro, Neurosynth, Dryad, CEDAR, and 

more in search of meaningful and even clinically relevant outcomes208–211. But much work 

is needed to address the existing challenges. It is the intention of this paper to help and 

facilitate these processes by bringing more awareness of DA, and the need to develop 

https://paperpile.com/c/BZcxD5/A3t5g+DAxcW+h9rgE+XdTsT
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new techniques that are compatible with the limitations of biological datasets in order to 

make it accessible to biologists. If we are successful in identifying the challenges of 

performing DA on biological data, we are optimistic that DA and transfer learning 

methodologies can greatly benefit biologists.  
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Chapter 3. Exploring Interactions Between VTC and PFC Using 

Domain Adaptive Task-Relevant Autoencoding 
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Abstract 

 

Understanding the interactions between brain regions during visual processing is crucial 

for decoding the neural basis of cognition. This study focuses on the ventral temporal 

cortex (VTC) and the prefrontal cortex (PFC), key regions involved in object recognition 

and conscious awareness, respectively. We propose a novel machine learning approach, 

Domain Adaptive Task Relevant to Autoencoding via Classifier Enhancement 

(DATRACE), to explore the shared neural representations between these regions. By 

leveraging domain adaptation techniques, DATRACE aims to align and decode the voxel 

activities of the VTC and PFC to find the shared feature space between these two regions. 

Our approach involves an encoder-decoder architecture that predicts voxel activities in 

both the VTC and PFC from a shared latent space, while a logistic classifier ensures the 

relevance of these representations for object recognition tasks. Through rigorous 

evaluation, we determined the optimal dimensionality of the shared representation and 

employed representational similarity analysis to examine the clustering of object 

categories in this shared feature space and within VTC itself. Preliminary results 

demonstrate that the shared representations between VTC and PFC capture similar 

categories of objects (e.g. insects, animals, objects). To interrogate the features in this 

shared space, we conducted a feature perturbation analysis in the shared feature space 

by perturbing one individual feature at a time while keeping the rest of the feature intact. 

However, this perturbation analysis indicated that single feature disruptions do not 

significantly affect classifier performance, implying the need for further studies where we 
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perturb combinations of these features to reveal meaningful semantic interpretations of 

the shared dimensions encoding visual objects in both PFC and VTC.  
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1. Introduction  

 

The human brain functions as a network of interconnected regions that process sensory 

inputs212,213. Visual processing is particularly complex due to the involvement of multiple 

specialized areas214,215. In this study we examine the interactions between two key 

regions involved in conscious visual perception: the ventral temporal cortex (VTC)216 and 

the prefrontal cortex (PFC). The VTC is central to object recognition and categorization, 

while the PFC is instrumental in bringing conscious awareness to visual stimuli217. The 

exchange of information between these regions is essential for transforming static visual 

inputs into enriched, contextually relevant interpretations that guide behavior218,219. 

 

Communication between the VTC and PFC involves both bottom-up and top-down 

processes220. Bottom-up processes typically involve the direct flow of sensory data from 

lower sensory areas to higher cognitive areas, facilitating immediate perceptual 

experiences221. Conversely, top-down processes involve the modulation of sensory 

interpretation by higher cognitive functions such as attention, memory, and expectation, 

which are critical for integrating sensory input with previous experiences and 

knowledge222. Understanding the interplay of these processes is crucial for exploring how 

the brain interprets complex visual scenes223. 

 

Recent advances in neuroimaging and computational neuroscience have shed light on 

the functional connectivity and interactive dynamics of the VTC and PFC224. However, 

many details about the specific features (e.g. animacy, size, color) of visual stimuli that 

https://paperpile.com/c/BZcxD5/yO5h5+OIFtM
https://paperpile.com/c/BZcxD5/YtObi+a7sbM
https://paperpile.com/c/BZcxD5/oauwl
https://paperpile.com/c/BZcxD5/5erc4
https://paperpile.com/c/BZcxD5/YWlEk+arS5i
https://paperpile.com/c/BZcxD5/P80WS
https://paperpile.com/c/BZcxD5/uzL0y
https://paperpile.com/c/BZcxD5/CIOcG
https://paperpile.com/c/BZcxD5/Un0Xr
https://paperpile.com/c/BZcxD5/RQm7b
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are exchanged between these regions and how those shared features influence cognitive 

processes remain poorly understood. A key question in this domain is how information 

transfer occurs at a neural level and which visual features are most significant in these 

inter-regional interactions. 

 

In this study, we incorporate a machine learning approach known as domain adaptation 

(DA) to address this challenging problem. Originally developed within the field of 

computer science, DA is designed to enhance the performance of models to recognize 

and utilize information across different datasets. This is achieved by transferring 

knowledge from a well-labeled "source domain" to an unlabeled or poorly labeled "target 

domain"7,9–11. DA accomplishes this by aligning the distributions of the source and target 

domains, allowing a model trained on the source domain to effectively predict labels in 

the target domain12. In the context of brain imaging, we can take advantage of this 

“byproduct” of DA in order to find a shared representation between different brain regions 

(e.g. VTC and PFC). This alignment helps in understanding what these interconnected 

activity patterns mean between these brain regions. 

 

Our approach, the Domain Adaptive Task Relevant to Autoencoding via Classifier 

Enhancement (DATRACE), is designed to capitalize on this DA methodology. DATRACE 

aims to uncover shared neural representations that facilitate object recognition across 

both brain regions. The initial phase of our model development focuses on determining 

the optimal dimensionality within the network's bottleneck—a critical layer where the most 

important features for both regions are hypothesized to converge. By analyzing how well 

https://paperpile.com/c/BZcxD5/A0AMN+aMK9y+7JW1m+ybwLC
https://paperpile.com/c/BZcxD5/q1Yoz
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the predicted voxel activity in the PFC aligns with actual observed activity, we refine our 

model to better capture the essence of shared cognitive processing between these 

regions. 

 

We also utilize a logistic multi-class classifier connected to the bottleneck of the network. 

This classifier's role is to categorize objects based on the shared representations, thereby 

testing the functional relevance of these neural codes and putting the constraints on 

finding features that solve for the same task in both regions. 

 

Finally, we apply individual feature perturbation to this shared space and conduct 

representational similarity analysis to probe deeper into the nature of the features 

encoded within this shared representation. These analyses aim to disentangle the 

complexities of the encoded features to better understand what categories and attributes 

of objects they represent. Through these analyses, we hope to elucidate the functional 

integration and communication between the VTC and PFC, as well as to explore the 

interpretability and applicability of deep learning models in the realm of neuroscientific 

research. 

 

2. Reconstruction-based domain adaptation 

 

Reconstruction-based domain adaptation (DA) approaches have been gaining attention 

due to their capability to improve the transfer of knowledge between domains by focusing 
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on the reconstruction of data from both the source and target samples225. This 

methodology assumes that successful data reconstruction will help to enhance the 

adaptability and performance of DA algorithms. The main strategies in reconstruction-

based DA can be broadly classified into two categories: encoder-decoder reconstruction 

and adversarial reconstruction. In this study we mainly focus on encoder-decoder 

reconstruction techniques. This approach primarily utilizes stacked autoencoders 

(SAEs)226,227 to implement the encoder-decoder reconstruction mechanism228. An 

encoder in this setup aims to capture a latent low-dimensional representation of the input 

data, whereas the decoder focuses on reconstructing the input data from this abstract 

representation which results in the minimization of reconstruction error. This process not 

only helps in preserving the essential characteristics of the data but also ensures that the 

features learned are robust and significant for DA tasks. 

 

Additionally, autoencoders can be progressively stacked to form a deeper architecture, 

where each layer is trained to refine the feature representation obtained from the previous 

layer. This stacking enhances the model's ability to encode more complex patterns and 

relationships within the data. For instance, the stacked denoising autoencoder introduced 

by Glorot et al228 extends this idea by incorporating a noise reduction mechanism, which 

further improves the robustness of the feature encoding against variations in the input 

data. However, one challenge in using these stacked autoencoders is that these networks 

usually contain many parameters which in turn can lead to overfitting problems – 

especially when we have a dataset with poor sample-to-feature ratio as is common in 

human neuroimaging datasets. For this reason we propose a Domain Adaptive Task 

https://paperpile.com/c/BZcxD5/FnWxi
https://paperpile.com/c/BZcxD5/Eu8bX+I4tMX
https://paperpile.com/c/BZcxD5/lBARj
https://paperpile.com/c/BZcxD5/lBARj
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Relevant to Autoencoding via Classifier Enhancement (DATRACE), which follows a 

similar architecture and logic to that of our previous TRACE model2.  

 

3. Methods 

 

In this section, we outline the dataset used in this study. We then detail the network 

architecture, objective function, and computational analysis employed to identify the 

optimal bottleneck and to measure the distances between different object categories. To 

explore the shared representation between VTC and PFC, we examined representational 

dissimilarity matrices in the shared feature space as well as the low-dimensional 

representation of VTC. Lastly, we perturbed features at the bottleneck layer and observed 

how these perturbations affected the classifier's predictions. 

 

3.1 Dataset 

We utilized a previously collected and partially reported fMRI dataset49 from 60 healthy 

individuals who each viewed 3600 images spanning 40 categories of objects, including 

30 animal types and 10 man-made objects. While these images were being viewed, 

BOLD signals from the ventral temporal cortex (VTC) and prefrontal cortex (PFC) were 

recorded. The number of voxels in the VTC and PFC varied for each individual, but on 

average, there were 2382 ± 303 and 1452 ± 195 voxels for VTC and PFC respectively 

across the 60 subjects. 

 

https://paperpile.com/c/BZcxD5/WM0Bz
https://paperpile.com/c/BZcxD5/FyEQ5
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3.2 DATRACE architecture 

To identify the shared representation between voxel activities in the ventral temporal 

cortex (VTC) and the prefrontal cortex (PFC), we developed an architecture capable of 

uncovering a low-dimensional representation that is shared between VTC and PFC. As 

shown in Figure 3.1, the architecture of DATRACE consists of four main components: an 

encoder, a classifier, and two decoders. 

 

Encoder: This component receives voxel data from the VTC as input features. The data 

passes through a hidden layer with tangent hyperbolic (Tanh) activation function, 

projecting the input into a 500-dimensional space. To prevent overfitting, a dropout layer 

follows with p=0.1 (i.e. 10 percent of neurons are dropped out in the feed forward 

computation). The bottleneck layer then holds the shared representation between the 

VTC and PFC. 

 

Classifier: The second component, a logistic classifier similar to that used in TRACE2, 

ensures that the shared representation is optimized for the specific task (i.e., object 

recognition). This layer uses a softmax activation function to provide a probability 

distribution across all classes, and applies ridge regularization to prevent overfitting. 

 

VTC Decoder: The third component is a decoder that reconstructs VTC voxels from the 

encoded information in the bottleneck. This decoder has a hidden layer of 500 units with 

Tanh activation function, followed by a dropout layer for regularization purposes. The final 

layer matches the original VTC dimensions. 

https://paperpile.com/c/BZcxD5/WM0Bz
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PFC Decoder: The fourth component predicts voxel activities in the PFC based on the 

encoded information in the bottleneck. It also contains a hidden layer of 500 units with 

Tanh activation and is regularized through a dropout layer. The final layer matches the 

original PFC dimensions. 

 

Since this architecture can predict both VTC and PFC activities from the latent 

representation in the bottleneck through 𝑊𝑊𝐵𝐵𝐵𝐵 and 𝑊𝑊𝐵𝐵𝐵𝐵 respectively (Figure 3.1), we 

hypothesize that these features must hold a shared representation between the two 

regions. This shared representation could enhance our understanding of the information 

shared between these regions in object recognition tasks. 
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Figure 3.1. The DATRACE architecture functions as follows: the encoder (𝑊𝑊𝐵𝐵𝐵𝐵) maps 
VTC voxels into a bottleneck layer, while the logistic classifier (𝑊𝑊𝐵𝐵𝐶𝐶) ensures that this 
shared space is optimized for the task at hand. Decoder-1 (𝑊𝑊𝐵𝐵𝐵𝐵) utilizes the shared 
features to reconstruct voxel activities in VTC, and Decoder-2 (𝑊𝑊𝐵𝐵𝐵𝐵) projects the shared 
feature space into PFC. 
 

3.3 DATRACE objective function 

Given the architecture described above, the loss function in DATRACE has three 

components. We used mean absolute error (MAE) for reconstruction and prediction of 

VTC and PFC respectively, and as for the classifier we used multiclass cross-entropy loss 

function. In order to control the contribution of the classifier to network we used a 

parameter 𝛼𝛼 and we set it to 0.1 as was reported by Orouji et al.2 Equation 3.1 describes 

the final objective function of the network. 

𝐿𝐿𝑙𝑙𝑠𝑠𝑠𝑠𝑓𝑓𝑖𝑖𝑛𝑛𝑓𝑓𝑓𝑓 =
1

𝑚𝑚 × 𝑛𝑛𝐵𝐵
 ��𝑎𝑎𝑎𝑎𝑠𝑠( 𝑉𝑉�𝑖𝑖𝑖𝑖 −  𝑉𝑉𝑖𝑖𝑖𝑖) +

1
𝑚𝑚 × 𝑛𝑛𝐵𝐵

 ��𝑎𝑎𝑎𝑎𝑠𝑠( 𝑃𝑃�𝑖𝑖𝑖𝑖 −  𝑃𝑃𝑖𝑖𝑖𝑖) 
𝑛𝑛

𝑖𝑖=1

𝑚𝑚

𝑖𝑖=1

𝑛𝑛

𝑖𝑖=1

𝑚𝑚

𝑖𝑖=1

 

− 𝛼𝛼
𝑚𝑚 

[∑ ∑ 𝑦𝑦𝑐𝑐𝑖𝑖 𝑙𝑙𝑙𝑙𝑙𝑙(𝑦𝑦�𝑐𝑐𝑖𝑖) + 𝜆𝜆∑𝑤𝑤𝐵𝐵𝐶𝐶2𝑘𝑘
𝑐𝑐=1 ]𝑚𝑚

𝑖𝑖=1                  (3.1)              

 

Where 𝑉𝑉 and 𝑃𝑃 denote the actual voxel activities, and 𝑉𝑉�  and 𝑃𝑃� represent the predicted 

voxel activities in the VTC and PFC, respectively. Here, 𝑛𝑛𝐵𝐵 and 𝑛𝑛𝐵𝐵 refer to the 

dimensionality of the VTC and PFC, while 𝑚𝑚 indicates the number of samples, and 𝑐𝑐 

represents the number of classes. 𝑦𝑦 and 𝑦𝑦� denote the actual and predicted class labels, 

respectively, while 𝜆𝜆 is the regularization factor which was set to 0.001.  

 

https://paperpile.com/c/BZcxD5/WM0Bz
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3.4 Training DATRACE 

To train DATRACE, we divided the dataset into training and testing sets. The training set 

consisted of 2700 trials, while the test set included 900 trials. The training data was scaled 

between -1 and 1, and this scaling transformation was also applied to the test set. For 

optimization, we utilized the Adam algorithm229 to minimize the loss function. After 

experimenting with various epoch counts, we settled on 50 epochs, as this number 

achieves the lowest loss on the test set. 

3.4 DATRACE Optimal Bottleneck Dimension 

To evaluate the performance of the network we looked at two metrics. The first metric 

was reconstruction/prediction fidelity which measures the precision of the predictions of 

the voxel activities in VTC and PFC respectively, similar to what was reported previously2. 

The second metric was the classification accuracy of predicted VTC and PFC. For that 

we trained a separate logistic classifier on the predicted VTC and PFC and reported the 

prediction accuracy on the test set. We evaluated these metrics across varying 

dimensions of the bottleneck (i.e. d = 20, 30, 50, 100, 150, 200, 500). This process was 

repeated for all 60 subjects, and we report the mean and standard error. 

 

3.5. Representational Dissimilarity Matrix 

To build the representational dissimilarity matrix (RDM) for each subject, we measured 

the Euclidean distances between the bottleneck activity patterns elicited by each object 

in the test dataset, across all pairs of objects in all the 40 classes. We computed the mean 

Euclidean distance between each pair at the bottleneck layer with an optimal dimension 

https://paperpile.com/c/BZcxD5/GlKp6
https://paperpile.com/c/BZcxD5/WM0Bz
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of d = 100 (see Results for justification of this selected dimensionality). First, we 

calculated the pairwise Euclidean distances across all possible pairs of trials, then 

grouped all instances belonging to the two classes that are being compared. The mean 

distance between these groups was considered as the measure of dissimilarity between 

the two classes. The resulting RDM is a 40x40 matrix which shows the distances between 

each pair of classes. Finally, we normalized the distances in the matrix to lie between 0 

and 1. Equation 3.2. describes how the RDM was calculated. 

𝐷𝐷(𝑓𝑓, 𝑗𝑗)  =  1
𝑆𝑆×𝑀𝑀

∑ ∑ 𝑓𝑓𝑠𝑠,𝑚𝑚(𝑓𝑓, 𝑗𝑗))  𝑀𝑀
𝑚𝑚=1

𝑆𝑆
𝑠𝑠=1     (3.2) 

where 𝑅𝑅 is the number of subjects, 𝑀𝑀 is the number of pairs between categories 𝑓𝑓 and 𝑗𝑗, 

and 𝑓𝑓 is the Euclidean distance between two pairs of exemplars. 

 

To contrast the low-dimensional representation of VTC alone with the shared 

representation, we computed the RDM for the VTC's low-dimensional representation with 

100 dimensions. For that, we first utilized the TRACE model2 as previously reported to 

derive this low-dimensional representation for VTC only, and subsequently calculated its 

RDM following the procedures described above. 

 

3.6. Bottleneck Feature Perturbation 

In the final analysis, we extracted features from the DATRACE bottleneck layer at d=100 

for the test set and trained a separate logistic classifier on these shared representations. 

To understand the role of features in the bottleneck of the network, we perturbed each 

feature individually by setting it to zero while keeping the rest of the feature unchanged, 

https://paperpile.com/c/BZcxD5/WM0Bz
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following by feeding the modified features into the pre-trained classifier, and examined 

the resulting confusion matrix across the trials. As a result, each trial in the confusion 

matrix contained 100 predictions. 

 

4. Results 

 

In this section, we discuss how we determined the optimal dimensionality of the 

DATRACE shared feature space (i.e., bottleneck). We also evaluate the resulting 

representational dissimilarity matrix (RDM) from the shared representations, and examine 

the confusion matrix resulting from feature perturbation to investigate these shared 

spaces in individuals. 

4.1. Optimal bottleneck dimensionality 

To determine the optimal dimensionality for the shared representation in the bottleneck, 

we trained the network with varying bottleneck dimensions (i.e., d = 20, 30, 50, 100, 200, 

250, 500) and evaluated the prediction fidelity and classifier accuracy for both VTC and 

PFC regions, as discussed in the methods section. Figure 3.2 depicts the mean 

prediction fidelity and prediction accuracy for 60 subjects for both VTC and PFC. We 

found that at d = 100, fidelity for both brain regions started to plateau, and the classifier 

accuracy reached its maximum level. Therefore, we selected d = 100 as the optimal 

dimension for these shared representations and conducted the rest of the analysis using 

this dimension. Consistent with the observations reported by Orouji et al.2, we found that 

for both VTC and PFC, it was possible to obtain a more task-relevant (‘purer’) 

https://paperpile.com/c/BZcxD5/WM0Bz
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representation through DATRACE, indicated by the fact that VTC reconstruction and PFC 

prediction classifier accuracy surpassed classifier accuracy for a separate model trained 

on these inputs (for both regions), all without significantly compromising the fidelity score. 

This suggests that our model can effectively capture the essential features needed for 

object recognition tasks while maintaining a high fidelity in its predictions. 
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Figure 3.2. Mean values for Fidelity and Prediction Class Accuracy for 60 subjects across 
various bottleneck dimensions (d = 20, 30, 50, 100, 200, 250, 500) are presented. In the 
top panel, Fidelity plateaus at d=100 for both predicted PFC (dark blue) and reconstructed 
VTC (light blue). Similarly, in the bottom panel, Prediction Class Accuracy for VTC (light 
red) and PFC (dark red) reaches its maximum at d=100. The shaded areas indicate the 
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standard error. Dashed horizontal lines indicate classification accuracy achieved for a 
separate classifier trained on the VTC and PFC empirical data rather than predicted PFC 
or reconstructed VTC. 
 

4.2. Representational Dissimilarity Matrix (RDM) 

We generated a Representational Dissimilarity Matrix (RDM) for each subject as 

described in the methods section, for both (a) the shared representations between VTC 

and PFC and (b) a low-dimensional representation of VTC alone trained via the TRACE 

model. With the RDM we can ask two questions. Firstly, what categories of objects do 

these regions represent in the form of clusters? And secondly, how do these clusters 

differ between VTC-only representations versus shared VTC-PFC representations, if at 

all? To facilitate this approach, we organized the object categories in the RDM such that 

subgroups of insects, reptiles, birds, mammals, aquatic animals, and man-made objects 

are positioned adjacent to each other. Upon analyzing the RDM profile for the shared 

representations between VTC and PFC (Figure 3.3a), we observed some distinct 

clusters. Notably, there exists a cluster for insects and reptiles with similar characteristics. 

Additionally, distinct clusters were evident for birds, mammals, and aquatic animals as 

well as a distinct cluster for man-made objects. This clustering in the shared 

representation illustrates how these brain regions process different categories of visual 

objects. 

 

The RDM profile of the low-dimensional representations for VTC was very similar to the 

shared representation between VTC and PFC. This similarity suggests that the 

categorical object representations in VTC are very similar to those shared with PFC. 

However, to confidently affirm these observations, further detailed investigation is 
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needed. Such studies would help validate the consistency of these findings across 

different data sets and experimental conditions. 

 

Figure 3.3 RDMs for the shared representation of VTC and PFC (left) and for the low 
dimensional representation of VTC (right). Both RDM profiles are very similar (but they 
are not identical), suggesting the information encoded in VTC alone is similar to the 
information being shared between VTC and PFC.  
 

4.3. Feature perturbation  

To analyze the role of each individual feature in the shared representation between VTC 

and PFC within the test set in order to better understand their semantic meaning, we 

implemented a method of perturbation where each feature was set to zero one at a time, 

while keeping the rest of the features’ activities unchanged. We then input these altered 

features into a logistic regression classifier that had been previously trained on the 

training set. This was done to observe how the classifier's predictions varied with each 

feature’s perturbations. The results of these tests were then gathered into a confusion 
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matrix, with the rows representing instances from the test set and the columns 

representing the features when they were set to zero. This analysis was carried out on 

three subjects to explore whether any consistent patterns emerged that might reveal what 

each individual feature encodes in an object. Table 3.1 presents the preliminary results 

for these three subjects. We observed that perturbing individual features does not cause 

the classifier to make mistakes. This is likely because the shared representation consists 

of many features (around 100), making the impact of a single feature negligible. 

Unfortunately, without confusing the classifier, we cannot speculate on what specific 

features in the latent representation are encoding in an object. Therefore, further 

investigation is necessary, in which we might perturb various combinations of features to 

effectively confuse the classifier. 

 

 

Table 3.1. Confusion matrix for the first 10 features of the shared representation of the 
instance “cat" for one subject. Our preliminary results show that perturbing individual 
features will not cause significant confusion in the classifier prediction.  
 

5. Discussion and future directions 

In this study, we explored the information transfer between the ventral temporal cortex 

(VTC) and the prefrontal cortex (PFC) during visual processing. The VTC, essential for 

object recognition and categorization, is known for operating at the interface of perception 

and cognition, while the PFC contributes to the conscious awareness of visual stimuli217. 

https://paperpile.com/c/BZcxD5/5erc4
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Understanding the interaction between these regions is crucial for unraveling the 

cognitive processes underlying visual object recognition. 

 

Our approach, Domain Adaptive Task Relevant to Autoencoding via Classifier 

Enhancement (DATRACE), leverages domain adaptation to uncover shared neural 

representations between VTC and PFC. The encoder-decoder architecture effectively 

predicts voxel activities in both VTC and PFC from the shared representation, while the 

classifier validates the relevance of these representations for object recognition tasks. 

This methodology provides a robust framework for analyzing neural interactions for any 

other regions in the brain. We also arranged classes of objects in a hierarchical manner 

(e.g. insects, birds, mammals, etc), similar to those reported in the THINGS dataset230 

and explored the resulting RDMs between these hierarchical categorization for all 60 

individuals. The preliminary results indicate that VTC encodes object classes by 

representing animacy, which is in agreement with previous findings231. Additionally, we 

found that there are apparent categorizations encoded in VTC based on insects versus 

animals (i.e. birds, mammals, aquatic animals). Our model indicates that the nature of the 

information passed to PFC (i.e. shared with PFC) is very similar to those encoded in VTC. 

Further investigation is needed to examine whether the same pattern exists in other 

regions of the visual stream. 

 

We also performed individual feature perturbation to investigate the nature of these 

features. Preliminary results indicate that individual features do not significantly confuse 

the classifier probably due to the high dimension of the shared space (i.e. d=100). 

https://paperpile.com/c/BZcxD5/CYdv
https://paperpile.com/c/BZcxD5/KIBi7
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Therefore, further investigation is necessary to perturb combinations of features to 

determine what combinations of features encode for specific attributes in objects. 
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DISCUSSION OF THE DISSERTATION 

 

In this dissertation we first introduced TRACE (a task-relevant autoencoding approach) to achieve 

two goals. First to find a lower dimensional representation of high dimensional fMRI data and 

secondly to distill information related to the specific task. We then presented a perspective on 

domain adaptation (DA) techniques and their potential utility in the context of biological dataset. 

Finally, we integrated DA and TRACE (DATRACE) in order to find a shared representation 

between brain regions (i.e. VTC and PFC). Our findings indicate that TRACE and DATRACE are 

able to find a lower dimensional representation that is optimized to represent both the input data 

and the task at hand. Additionally, we demonstrated that DATRACE is indeed capable of finding 

a shared representation between these brain regions. Further investigation is necessary to 

interrogate and explain the nature of this shared representation. 

 

Application of TRACE on Small fMRI Datasets 

In the first chapter, we proposed the Autoencoder with Classifier Enhancement (TRACE) 

model designed to distill task-relevant information small-scale datasets fMRI datasets. 

Many state-of-the-art deep learning models, despite being powerful, tend to overfit when 

used with small datasets due to the poor sample-to-feature ratio in fMRI datasets. TRACE 

mitigates these issues by adopting a simple autoencoder architecture with relatively fewer 

parameters. Central to the architecture of TRACE is the integration of a logistic classifier 

into its bottleneck layer, compelling the model to learn not just low-dimensional 

representations but task-relevant ones. 
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Our results showed that TRACE outperformed principal components analysis (PCA), 

standard autoencoders (AEs), and variational autoencoders (VAEs) across several 

metrics (i.e. reconstruction fidelity, bottleneck classifier accuracy, reconstruction class 

specificity, and reconstruction classifier accuracy). The attachment of a classifier to the 

bottleneck of TRACE not only optimized it to extract task-relevant low-dimensional 

representations but also helped to reduce noise and task-irrelevant information in the 

original input space. This was particularly evident in the fMRI dataset, where TRACE's 

reconstructions achieved higher classification accuracy compared to the raw input. 

Moreover, TRACE maintained its superior performance even under extreme data 

truncation in MNIST and Fashion MNIST datasets which highlighted its robustness in 

dealing with datasets with a poor sampel-to-feature ratio. 

Utility of Domain Adaptation in Biological Data 

Despite advances in transfer learning and domain adaptation (DA), methods that are 

suitable and effective on complex biological data still require further development. The 

growing availability of open datasets highlights the need for models that can capture the 

common knowledge between them .  

Many existing DA techniques are primarily designed for automatic annotation of unlabeled 

data by transferring the knowledge from available labeled datasets. In biological sciences 

however, researchers are more interested in uncovering the underlying biological ‘truths’. 

Fortunately, DA can be a potentially great tool for this purpose. This is because DA 

models align the distributions of different datasets which consequently results in revealing 

domain-invariant features across those data.  
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Exploring and evaluating existing DA approaches on biological data is crucial for 

identifying their current potentials and limitations. Before adopting any DA approach, it is 

important to consider the properties of the data, including the number of sources, sample 

sizes, and feature nature, to choose appropriate DA techniques and examine their 

efficacy.  

DATRACE: Integrating TRACE and Domain Adaptation 

Building on the principles of TRACE and domain adaptation, we proposed Domain 

Adaptive Task Relevant to Autoencoding via Classifier Enhancement (DATRACE) to 

explore neural representations that are transferred between brain regions. Specifically, 

we investigated the interaction between the ventral temporal cortex (VTC) and the 

prefrontal cortex (PFC) during visual tasks. 

DATRACE leverages an autoencoder-based DA to uncover shared neural 

representations between VTC and PFC. Using an encoder-decoder architecture, 

DATRACE predicts voxel activities in both regions from a shared representation, with a 

classifier attached to the bottleneck that ensures the relevance of these representations 

to the visual task. Preliminary results indicated that the encoded object classes in VTC 

are very similar to those shared and transferred to PFC. 

Additionally, we performed feature perturbation to investigate the individual features' role. 

However, we found that single features did not significantly confuse the classifier which 

is probably because many features in this shared space are contributing to the prediction 

of the classifier. Further investigation is needed to understand what combinations of 

features encode for specific object attributes. 
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DATRACE's framework provides a promising method for analyzing the interactions 

between VTC and PFC, and potentially other brain regions. Future research should 

explore DATRACE's applicability and its potential to enhance our understanding of visual 

perception. 
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