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ABSTRACT
The resonant response of é uniform plaéma‘to an external
Plane-wave field is formulated iﬁ terms of the mismatch between_
vfhe driving frequency and the complex nonlinear normal-~-mode
frequency at.thé driving wave number. Simulation exhibits good

agreement with theory.

Whiieimuch_study has been devoted:to the topic of'nonlihear‘
plasma waves, -propagating freely,l relatively little attention has been

paid to the problem of the driven nonlinear piésma wave.2 Suchva :

_problem arisés in two situations of current interest: v(a) The nonlinear
_ . _
interaction of two high—frequency electromagnetic waves (wl,kl),

. > -
: (w2,k2).voccurs through an effective beat pot_ential3 at (w0'= W -,
N . 0.

ko'é ;lv- ;2), which can excite a nonlinear Langmuir'wave if the beat
potential is strbng and neariy resonant, i.e., if e(wo,ib) << 1,
(b) A single nininegr~Langmuif wave (wl’;l) may be.amplifudef
modulated at (wb,ib), and thereby drive a nonlinear ion wavgzé if
kg | |

In the present paper, we study the nonlinear excitation in

detail, taking the driving potential as given (i.e., we ignore the

- reaction back on it) and treating the excitation of a Qne—dimensional_

Langmuir wavé»for definiteness, with the nonlinearity due to electron



o

trapping. We develop an analytic theqry for the response in terms of
the nonlinear eigenfreqﬁency, énd test the theory by computer
-simulation. | |

To illustrate the phenomenon, we show in Fig. 1: .(a) the
driving field Eo(k) and the total plaSma‘response .E(x) at a given
time; (b) the electron phase space (x,v) at that time; and (c) the
“electron velocity distribution at that time. (The parameters are given
in the capti@n.) Figure 2a shéws the magnitude and phase of the res-
ponse relative to the driving field.

The basic idea of our paper is fhat the.amplitude ofvthe,plasma
response is inversely proportional to the frequency mismatch; i.e., té-
the difference between.the driving frequency @O, and the normal mdde:
(complex) frequency w(ib) of a freely propagating wave. The latter,
howevér, is in turn a nonlinear function of wave amplitude, aé is khown
from severalitheories.1’4' The efolution'of the résponse (Fig.‘Za) is
thus tiéd to that of the complex nonlinear eigenfrequency (Fig. 2ﬁ).
Finally; the-asymptotic valﬁé‘of the nonlinear frequency shift, as
deduced from the response in our simulations:for various-nonlinear amp-
litudes, can be compared (Fig. 3) with the theory of Morales and

O'Neil,4

a baéed on trapped-particle orbits.

We consider then é given external‘driviﬁg potential
¢o(x,t) E‘¢0(t) exp(i ko x) + c.c., aﬁd the self—éonsistent plasma
potential . QSc(t) at the same wave number ko (suppreséing hérmonics'

of k.; see Fig. la). The latterlis determined by the Poiésbn’equation

o}
o (1) = (4n/k()2) p(t), while the charge density p(t) 1s determined

by the relevant kinetic equation. We postulate a (weakly) noniinear_

susééptibility kernel i(r) relating the charge density at 't to the

~
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total potential ¢.= ¢, + ¢ = at time t - T: ‘(4n/k62) o(t) =

Co

':L - dt iNi(T) ¢(t - t). (The nonlinearity is implicit in X-) We now

factor out the dominant (wo) time-dependence for each function of

time, e.g., p(t) = p(t) exp(;iAmO t) + c.c., and obtain

(41r/k02)‘ o(t) - félr X (T exp(iwor) o(t - 1)

- fd'r yNL(r) exp_(im(')r - 1d/dt) o(t) ..
Sgbstitutiﬁg this into the Poisson equation % - 5d_= (4n/k62)5,
and using the usual definitions e(w) = 1+ x(Q) .and

x(w) E_[- dr x(1) exp(iwt), we obtain the formal equation for the
0 . - ’

* total response amplitude 5(t):

exp(up * & /dt) 3(t) = () - - (1)

We note that e, depends implicitly on ®, and that if & acts

_only on electrons, but not on ions, the right side of (l)'should be

‘ ' i . )
?eplgced by [l * XNL (wo + 1 d/dt)]@o(t).
To introduce the nonlinear normal mode frequency ‘wNL (at
wévenumber 'ko), we let the driver @O vanish{ whence Eq. (1)Zfeduces

tq eNL(w) = 0 (with w replacing wy + 1 d/dt ). We_define wer

as the complex root of the nonlinear dielectric function ENL(w).

'Definlng:the nonlinear increments .66 = ey - gL and &w = Wyp, = YL

where W is the linear normal mode frequency (i.e., the complex root

of the linear dielectric function eL(m)), we have the relation

Sw = - e/, to lowest order, where € I d¢/du.
Returning to Eq. (l),-we expand ENL(wO + 1 d/dt) in a Taylbf

series about Wy, (where ExL vanishes), and'obtain'to first order
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Where_ eNLrE aeNL/aw at wNL'

- function of ¢, so that this equation of evolution for ¢ 1is nonlinear.

We note that mNL is implicitly a

Writing Eq.. (2) in the form &(t) = (w - wyg * 1 d/dt)” ¢O(£)/ENL, . e
we see that,ln the limit of slow variation, the amplitude of the res- i
ponse varies reciprocally as the complex nonlinear frequency ﬁismatch
;INNL' Thus for small mismatph,thexesponse is large, -thereby _

modifying wNLY and the mismatch, and either enhancing or depressing
the response (depending'oh.the signs of the mismatch and of Sw).

| Since wNL‘ depends on the history of 5, not just oﬁ its
instantanéous value, and since no ﬁhedry\yet exists for this relation-

4a

ship (except qualitatively,™ or asymptotically iﬁ‘time4), we use Eq.
.(2) to determlne the evolution of wNL(t) (Fig. 2b) in terms of the
complex responSe_ratio R(t) = Q(t)/¢0(t). (Figf 2a), where:the_latter
.is obtained.from computef simulation. Specificaily, we have

wNL(t) - wy - [R(t)E]-l + 1 ﬁ/R, whgn 50 is a_stebvfuncﬁion in time.

. We interpret the oscillations (Fig. 2b) of GQV and - 9§y, the
real an& iméginary parts of the frequency shift Gﬁxt), by generalizing
the momentum and energy balance considerations of Mbrales‘and O'Neii4a
to thé driéén case, The total particle momentum density P(t) evolves.,
és dP/dt - i ky o(t) 5*(t) + c.c. As in the derivaiion of EQ (i), we .
have p(t) (k /4n)[l - eNL(m + 1 d/dt)] @(t) Substituting p(t)
above, and expanding ENL about Wy, we obtain to lowest order, B v
(d/dt)[P(t_) - (kgep )k 2/5m)|0(1)]?] - -2y + 6y i Ny /am)[e(1)[.
The left side of this equation is the evolution of the difference 7

‘between the total particle momentum and the wave momentum, and thus of

the momentum of the resonant particles. Since this oscillates at the



trapping frequency, so does the normal-mode nonlinear damping rate
=(vp, + 6v). |
The total particle kinetic energy densit§ K(t) evolves as
o % )
dK/dt = -¢ (t) dp(t)/dt + c.c. After more extensive algebraic manipu-

lation, we obtain analogously’ - |
, '<-d/dt)ﬂ;1<(t_) ,-{[11 + 2wy - 9wy |0 E, - >(~k02/41r)ld>(t)l2:ﬂ
= a{}Z(YL + GY)'? gd(GQ/wo)/dt + [3 _ (GQ/MO)]d/d€>'

x7'QL§L(k02/4n)|¢(p)12, where B = Re(SE/E).

~ (We note that the MbraleseOfNeil version of this equation is consider-

ably simpler,'since they use the linear wave frame, where Qﬁ = 0.)

The left side now represents the evolution of the kinetic energy of the
resonant particles: the total nonlinear kinetic energy appears on the

1eft side with'the linear wave kinetic energy subtracted away

(obtained by taking the difference of the total linear wave energy,

correctedfby the linear mismatch 'mo_- Q , and the field energy). In

“the wave frame only the terms in 6Q survive on the right, from which

Morales and O'Neil deduce oscillations in &R also at twice the

L

':tfapping frequency. (This is less evidenﬁvin our simulations, where

varia;ions at the trapping frequency are observgd but variations at the

harmonic cannot be resolved. We are reminded of the similar time

vdependence of the'nonlinear frequency shift of é single large wave

driven by the beam-plasma instability (see Fig. 2 of Ref. 6)).
ASymptotically in time, a steady state is rééched (d/dt,
YL_¥‘GY > 0),4and the frequency shift &Q can be compared'wifh ihe |

fheory of Morales and O'Neil (Fig. 3), which predicts a dependehce

as |$|*.. Their theofy requires that the trapping veloeity be'small
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'eompared to (thermal speed squared/phase velocity): |e5/m|%:€<

Ov /wo, and that only the tail of the electron velocity distrlbution

is involved: /kO > 4v , whlchaguarantees that llnear Landau damplngf
will be weak Both 1nequalit1es are violated in our simulations, where »
'IeQ/ml% ~ k Ve /w and wo/kO = 3ve; thus the qualitative agreement \
is qulte-satlsfactory. ‘Although the electron distribution function . Y
'suffers,eonSiderable mgdification due to the interaction of many‘reson—

ant particles_with tbe wave?.its‘main body remains Maxwellian (Fig. 1lc).

The algebraic dependence of the frequency shift ou the wave

amplitude 80 « |<I>|é admits the possibility of the existence of multi--
,vple equilibrium solutlons to Eq. (2). In fact under certain circum-.
stances there can be three equilibrium wave amplitudes of which one
is always uustable against small perturbations.7 lFQr the parameters
of our siﬁulatioas, Eq. (2) admits only one equilibrium solution,
which is'stable. (The equilibrium and stability analysis will be con-

sidered elsewhere.%)

uIn conclusion;'we have formulated the resonant response of a
~ plasma wave to excitation, in terms of the mismatch between the

driving ffequency‘and the time-dependent, complex, nonlinear eigen?:
frequency of a normal'mode. Simulatien shows.good'agreement with |

~existing theory.

- We are greatly indebted to G. J. Morales and T. M. O'Neil for {
.many helpful dlscu551ons. We also thank A. B. Langdon and C. K.» )
Birdsall for furnishing_the'original computer code, and.G. Sﬁith fer

'aasisting one of the authors (BC) with code modifications. We enjoyed

useful diacuseions also with D.-L; Book, W. Kruer, C. Max, M. Mostrom,

"and D. Nicholson. This work was supported in part by ERDA.
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Fig. 1. Simulation of resonant response of a Maxwellian (thermal speed

Fig. 2.

Fig. 3.

FIGURE CAPTIONS

ve) electron plasma (uﬁiform positive bacRground) to a plane
wave driving field, of frequency Wy (chosen to equal @p,
the plasma frequency) and phase velocity wo/kO (chosen to
equal 3.0 ve). The linear normal modé frequency QL is
1A17.wp, and the linear Landau damping Y is 0.03 wy . For
a typical simulation, we exhibit at wpt = BOO:

(a) the driving field E, end the total field E, as func-
tions of x, in natural'units;

(b) the electron phase space;

(e¢) the velocity distribution, in arbitrary units.

For the same simulation as in Fig. 1, we show, as functions

of time,

(a) the magnitude r and phase 6 of the relative response
funciion r eprie = 5/50; |
(b) the deduced frequency shift 692 and nonlinear da;nping
NL* | |
Asymptotic (4 + ) frequency shift 6&Q as a function of
asymptotic wave émplitude |5], in natural unifs, as deduéed
from simulations, for sudden driver switch-on (.) and
"adiabatic" switch-onone: _mpt = 50 ™ (O). The solid line

represents the Morales-0'Neil theoretical prediction.
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