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ABSTRACT 

The resonant response of a W1iform plasma to an external 

plane-wave field is formulated in terms of the mismatch between . '. . 

the driving frequency and the complex nonlinear normal-mode 

frequency at the driving wave number. Simulation exhibits good 

agreement with theory. 

While much study has been devoted to the topic of nonlinear 
j 1 

plasma waves, propagating freely, relatively little attention has been 

paid to the problem of the driven nonlinear plasma wave. 2 Such a 

problem arises in two situations of current interest: (a) The nonlinear 
-+ 

interaction of two high-frequency electromagnetic waves (~,k1)' 

(w2,k2 ) occurs through ar: effective beat potential) at (w
O

· = w1 - w
2

' 
-+ -+ -+ 
kO = kl - k2 ), which can excite a nonlinear Langmuir wave if the beat 

-+ 
potential is strong and nearly resonant, i.e., if E(WO,kO)« 1. 

-+ 
(b) A single nonlinear Langmuir wave (~,kl) may be amplitude:-

modulated at ( wO' ko ), and thereby drive a nonlinear ion wave 2a if 

c • s 

In the present pa~er, we study the nonlinear excitation in 

detail, taking the driving potential as given (i.e., we ignore the 

reaction back on it) and treating the excitation of a one-dimensional 

Langmuir wave for definiteness, with the nonlinearity due to electron 



-2-" 

trapping. We develop an analytic theory for the response in terms of 

the nonlinear eigenfrequency, and test the theory by computer 

simulation. 

To illustrate the phenomenon, we show in Fig. 1: (a) the 

driving "field EO(x) and the total plasma response E(x) at a given 

time; (b) the electron phase space (x,v) at that time; and (c) the 

electron velocity distribution at that time. (The parameters are given 

in the caption.) Figure 2a shows the magnitude and phase of the res-

ponse relative to the driving field. 

The basic idea of our paper is that the amplitude of the plasma 

response is inversely proportional to the frequency mismatch, i.e., to 

the difference between the driving frequency Wo and the normal mode 
. ~ 

(complex) frequency w(kO) of a freely propagating wave. The latter, 

however, is in turn a nonlinear function of wave amplitude, as is known 

from several theories. l ,4 The evolution of the response (Fig. 2a) is 

thus tied to that of the complex nonlinear eigenfrequency (Fig. 2b). 

Finally, the asymptotic value of the nonlinear frequency shift, as 

deduced from the response in our simulations for various nonlinear amp-

Ii tudes, can be compared (Fig. J) with the theory of Morales and 

OlNeil,4a based on trapped-particle orbits. 

We consider then a given external driving potential 

~O(x,t) == ~O(t) exp(i kO x) + c.c., and the self-consistent plasma 

potential ~ sc (t) at the same wave number kO (suppressing harmonics 

of kO; see Fig. la). The latter is determined by the Poisson equation 

~ sc (t) = (41T /kO 2 ) p( t ), while the charge density p( t) is determined 

by the relevant kinetic equation. We postulate a (weakly) nonlinear 

susceptibility kernel X(T) relating the charge density at t to the 

, . 
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total potential ~~= ¢o + ~sc at time t - T: (4TI/k0
2 ) p(t) = 

100 

dT X
NL 

(T) ~(t - T). (The nonlinearity is implicit in X.) We now 

factor out the dominant (wO) time-dependence for ~ach function of 

time, e.g., pet) = pet) exp(':iwO t) + C.c., and obtain 

(4TI/kO 
2

) p( t ) = - J dT XNL ( T) exp( iwO T) ¢( t - T) 

= - J dT XNL(T) exp(iwOT - Td/dt) ¢(t) 

-Substituting this into the Poisson equation ~ 
- 2 -
~O = (4TI/kO )p, 

and using the usual definitions c( w) = 1 + X( w) and 

X(w) = Jfooo dT X(T) exp(iwT), we obtain the formal equation for the 

-total response amplitude ~(t): 

(1) 

We note that ENL depends implicitly ein ~,and that if ~O acts 

only on electrons, but not on ions, the right side of (1) should be 

replaced by 

To introduce the nonlinear normal mode frequency ~L (at 

wavenumberkO)' we let the driver ~O vanish, whence Eq. (1) reduces 

to ENL(W) = 0 (with W replacing Wo + i d/dt). We define ~L 

as the complex root of the nonlinear dielectric function ENL(w). 

Defining the nonlinear incrementsoE = ENL - EL and OW = wNL - ~, 

where ~ is the linear normal mode frequency (i.e., the complex root 

of the linear dielectric function EL(W»), we have the relation 

ow = - OE~L to lowest order, where £ = dE/dW. 

Returning to Eq. (1), we expand ENL(wO + i d/dt) in a Taylor 

series about ~L (where ENL vanishes), and obtain to first order 
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(Wo - ~L + i d/dt) ~(t) = (2) 

where We note that ~L is implicitly a 

- -function of ~, so that this equation of evolution for ~ is nonlinear. 

- -1 '- -WritingEq. (2) in the form ~(t) = (wO - ~L + i d/dt) ~O(t)/£NL' 

we see that, in the limit of slow variation, the amplitude of the res-

ponsevaries reciprocally as the complex nonlinear frequency mismatch 

Wo - UWL· Thus for small mismatch, the response is large,thereby 

modifying ~L and the mismatch, and either enhancing or depressing 

the response (depending on the signs of the mismatch and of ow). 

Since ~L depends on the history of' ~, not just on its 

instantaneous value, and since no theorY,yet exists for this relation­

ship (except qualitatively,4a or asymptotically in time4 ), we use Eq. 

(2) to determine the evolution of ~L(t) (Fig. 2b) in terms of the 

complex response ratio Ret):: ~(t)/~o(t). (Fig. 2a), where the latter 

is obtained from computer simulation. Specifically, we have 

~L(t) = Wo - [R(t)£]-l + i R/R, when ~O is a step function in time. 

We interpret the oscillations (Fig. 2b) of on and oy, the 

real and imaginary parts of the frequency shift ow( t ), by generalizing 

the momentum and energy balance considerations of Morales and O'Neil4a 

to the driven case. The total particle momentum density pet) evolves 

as dP/dt = i kO pet) ~*(t) + c.c. As in the derivation of Eq. (1), we 

have pet) = (k0
2/41T )(1 - £NL(wO + i d/dt)] ~(t). Substituting pet) 

above, and expanding ~L about ~L' we obtain to lowest order, 

(d/dt)(P(t)" - (kO£L)(k02/41T)I~(t)12] = -2(YL + OY)(kO£L)(k02/41T)I~(t)12. 
The left side of this equation is the evolution of the difference 

between the total particle momentum and the wave momentum, and thus of 

the momentum of the resonant particles. Since this oscillates at the 
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trapping frequency, so does the normal-mode nonlinear damping rate 

-(YL + oy). 
\ 

The total particle kinetic energy density K(t) evolves as 

* dK/dt = -~ (t) dP(t)/dt + C.c. After more extensive algebraic manipu-

lation, we obtain analogously;' 

(d/dt l[K( t l - {[ 1 + 2("'0 - n.r. )/"'O)OL <r. - 1}(k02 / 4~)' ~(t) ,] 

= {-2(YL + 6yl c 2d(6Sl/"'0'/dt + [8 - (6Q/"'ol)d/d1 

x nLEL(k02/41T)I~(t)12, where B == Re(oE(~). 

(We note that the MOrales-O'Neil version of this equation is consider-

ably simpler, since they use the linear wave frame, where ~ = 0.) 

The left side now represents the evolution of the kinetic energy of the 

resonant particles: the total nonlinear kinetic energy appears on the 

left side with the linear wave kinetic energy subtracted away 

(obtained by taking the difference of the total linear wave energy) 

corrected by the linear mismatchwO - nL, and the field energy). In 

the wave frame only the terms in on survi ve on the right, from which 

Morales and O'Neil deduce oscillations in on also at twice the 

trapping frequency. (This is less evideni in our simulations, where 

variations at the trapping frequency are observ~d but variations at the 

harmonic cannot be resolved. We are reminded of the similar time 

dependence of the nonlinear frequency shift of a single large wave 

driven by the beam';"plasma instability ( see Fig. :2 of Ref. 6») . 

Asymptotically in time, a steady state ~s reached (d/dt, 

YL + oy ~ 0), and the frequency shift on can be compared with the 

theory of MOrales and O'Neil (Fig. 3), which predicts a dependence 

1~li. Their theory requires that the trapping velocity be small as 
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compared to (thermal speed squared/phase velocity): le~/ml!« 
2 kOve /wO' and that only the tail of the electron velocity distribution 

is involved: walko> 4ve, which .guarantees that l~near Landau damping 

will be weak. Both inequalities are violated in our simulations, where 

I -Ii 2 e~/m - kOve /wO and wO/kO = 3ve ; thus the qUalitative agreement 

is quite satisfactory. Although the electron distribution function 

suffers considerable modification due to the interaction of many reson-

ant particles with the wave, its main body remains Maxwellian (Fig. lc~ 

The algebraic dependence of the frequency shift on the wave 

amplitude on ~ 1~li admits the possibility of the existence of multi­

ple equilibrium solutions to Eq. (2). In fact under ce~ain circum-

stances there can be three equilibrium wave amplitudes of which one 

is always unstable against small perturbations. 7 For the parameters 

of our simulations, Eq. (2) admits only one equilibrium solution, 

which is stable. (The equilibrium and stability analysis will be con­

sidered elsewhere. 8 ) 

In conclusion, we have formulated the resonant response of a 

plasma wave to excitation, in terms of the mismatch between the 

driving frequency and the time-dependent, complex, nonlinear eigen-

frequency of a normal mode. Simulation shows good agreement with 

existing theory. 

We are greatly ,indebted to G. J. MOrales and T. M. O'Neil for 

many helpful discussions. We also thank A. B. Langdon and C. K. 

Birdsall for furnishing the original computer code, and G. Smith for 

assisti~g one of the authors (BC) wi thcode modifications. We enjoyed 

useful discussions also with D. L. Book, W. Kruer, C. Max, M. Mostrom, 

and D. Nicholson. This work was supported in part by ERDA. 
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FIGURE CAPTIONS 

Fig. 1. Simulation of resonant response of a Maxwellian (thermal speed 

v) electron plasma (uniform positive bacRground) to a plane e 

wave driving field, of frequency Wo (chosen to equal wp ' 

the plasma frequency) and phase velocity wO/kO (chosen to 

equal J.O ve ). The linear normal mode frequency SGL is 

1.17. wp ' and the linear Landau damping -YL is 0.03 wp. For 

a typical simulation, we exhibit at wpt = 300: 

(a) the driving field EO and the total field E, as fUIlc-

tions of x, in natural units; 

(b) the electron phase space; 

(c) the velocity distribution, in arbitrary uni ts . 

Fig. 2. For the same simulation as in Fig. 1, we show, as functions 

of time, 

(a) the magnitude r and phase 6 of the relative response 

function r exp i6 - ~/~O; 

(b) the deduced frequency shift oSG and nonlinear damping 

YNL • 

Fig. J. Asymptotic (t ~ 00) frequency shift oSG as a function of 

asymptotic wave amplitude I~I, in natural units, as deduced 

from simulations, for sudden driver switch-on (.) and 

"adiabatic" switch-on over W t = 50 TT (0). The solid line 
p . 

represents the Morales-O'Neil theoretical prediction. 
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