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Abstract

Background –—Traditional cardiovascular (CV) risk factors and the underlying genetic risk of 

elevated blood pressure (BP) determine an individual’s composite risk of developing adverse CV 

events. We sought to evaluate the relative contributions of the traditional CV risk factors to the 

development of adverse CV events in the context of varying BP genetic risk profiles.

Methods –—Genome-wide polygenic risk score (PRS) was computed using multi-ancestry 

genome-wide association estimates among US adults who underwent whole-genome sequencing 

in the Trans-Omics for Precision program. Individuals were stratified into high, intermediate, and 

low genetic risk groups (>80th, 20–80th, <20th centiles of systolic BP [SBP] PRS). Based on 

the ACC/AHA Pooled Cohort Equations (PCE), participants were stratified into low and high 
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(10y-ASCVD risk: <10% or ≥10%) CV risk factor profile groups. The primary study outcome was 

incident CV event (composite of incident heart failure, incident stroke, and incident coronary heart 

disease).

Results –—Among 21,897 US adults (median age:56 years; 56.0% women; 35.8% non-White 

race/ethnicity), 1 SD increase in the SBP PRS, computed using 1.08 million variants, was 

associated with systolic BP (β:4.39 [95%CI:4.13–4.65]) and HTN (OR:1.50 [95%CI:1.46–1.55]), 

respectively. This association was robustly seen across racial/ethnic groups. Each SD increase 

in SBP PRS was associated with a higher risk of the incident CVD (HRadj:1.07 [95%CI:1.04–

1.10]) after controlling for ACC/AHA PCE risk scores. Among individuals with a high SBP 

PRS, low ASCVD risk was associated with a 58% lower hazard for incident CVD (HRadj:0.42 

[95%CI:0.36–0.50]) compared to those with high ASCVD risk. A similar pattern was noted in 

intermediate and low genetic risk groups.

Conclusions –—In a multi-ancestry cohort of >21,000 US adults, genome-wide SBP PRS was 

associated with BP traits and adverse CV events. Adequate control of modifiable CV risk factors 

may reduce the predisposition to adverse CV events among those with a high SBP PRS.

Keywords

Hypertension; Coronary Heart Disease; Genomics; Heart Failure; Polygenic Risk Score; Stroke; 
Precision Medicine

Introduction

High blood pressure (BP) is the leading modifiable cause of premature mortality globally.1, 2 

Elevated BP, with an estimated 30–50% heritability, is considered a precursor phenotype 

for the development of cardiovascular disease (CVD) events, including heart failure (HF), 

stroke, and coronary heart disease (CHD).2–4

A polygenic risk score (PRS) aggregates the risk conferred by multiple common DNA 

sequence variants into a single predictor, and a BP PRS can be used to estimate an 

individual’s genetic risk of elevated BP and hypertension (HTN).5–8 A genome-wide 

PRS integrates the cumulative effects of common genetic variants across the genome and 

provides a more inclusive understanding of the genetic risk of CV diseases. PRSs for 

BP (both genome-wide and genome-wide association study [GWAS]-significant variants 

only) have previously demonstrated efficacy in predicting adverse CV events in European 

ancestry populations.5–9 Due to the predominantly European ancestry composition of 

existing genomic biobanks and GWAS populations, a multi-ancestry genome-wide BP PRS 

has not been evaluated for association with BP traits and adverse CV events.9

The ACC/AHA Pooled Cohort Equations (PCE), which includes BP, robustly predicts the 

risk of adverse CV events in the US population.10, 11 To our knowledge, the relative 

contributions of traditional CV risk factors (captured using ACC/AHA PCE11) to the 

risk of developing adverse CV events in the presence of varying genetic risk of elevated 

BP (captured using a genome-wide BP PRS) has not been examined in a multi-ancestry 

population. Further, the incremental contribution of a genome-wide multi-ancestry BP PRS 
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beyond the ACC/AHA PCE for CVD risk prediction has not been assessed in a multi-

ancestry cohort.

This report entails the findings from an investigation of a genome-wide systolic BP (SBP) 

PRS constructed in a multi-ancestry cohort of over 21,000 US adults to examine: 1) the 

association of SBP PRS with BP traits (systolic BP, diastolic BP, mean arterial pressure 

[MAP], pulse pressure [PP], HTN) (overall and stratified by self-reported race/ethnicity); 

2) the association of SBP PRS with CVD events; 3) the association of traditional CV risk 

factor profiles with CVD events stratified by SBP PRS categories; and 4) the incremental 

contribution of SBP PRS to CVD risk prediction using the ACC/AHA PCE.

Methods

Anonymized data and materials are publicly available at the National Center for 

Biotechnology Information (NCBI) database of Genotypes and Phenotypes (dbGaP), and 

All of Us Researcher Workbench and can be accessed at https://www.ncbi.nlm.nih.gov/gap/ 

and https://www.researchallofus.org/. All participants provided written and informed consent 

with approval from the respective local IRBs. The ethical oversight for this study was 

provided by the University of Alabama at Birmingham IRB. The overall study design 

is summarized in Figure 1, and the full study methods are available as Supplementary 

Methods.

Results

Among 21,897 individuals free of prevalent cardiovascular disease in the NHLBI TOPMed 

pooled cohorts, 56.0% were women, and 35.8% were from a racial/ethnic minority group 

(28.2% Black individuals, 4.7% Hispanic individuals, 2.8% Asian individuals, and 0.1% 

other race/ethnicity). Baseline population characteristics stratified by SBP PRS categories 

are presented in Table 1.

Association of SBP PRS with BP Traits Across Multi-Ancestry Populations

Of the candidate genome-wide PRSs examined, we identified the highest performing PRS, 

developed using the PRS-CS-auto Φ (phi) approach utilizing the β estimates for SBP, 

composed of 1,080,806 single nucleotide variants, and having an adjusted R2 of 0.25 for 

association with SBP (Supplementary Table I). Further validation in the multi-ancestry All 
of Us cohort noted that PRS-CS-auto Φ based SBP PRS (adjusted R2: 0.16) performed 

better than the best C+T-based SBP PRS (C+T: P< 0.05, R2=0.8, 500kb window; adjusted 

R2: 0.15) for association with SBP. All subsequent analyses were performed using this 

PRS (hereafter referred to as SBP PRS). In the multi-ancestry NHLBI TOPMed pooled 

cohorts, the SBP PRS, quantified per standard deviation of increase, demonstrated a robust 

relationship with SBP (β:4.39, 95%CI:4.13–4.65 mmHg), DBP (β:2.04, 95%CI:1.89–2.19 

mmHg), MAP (β:2.82, 95%CI:2.65–3.00 mmHg), PP (β:2.35, 95%CI:2.17–2.53 mmHg), 

and HTN (OR:1.50, 95%CI:1.46–1.55) (Figure 2) (P<2.8×10−142 for all). Individuals 

in the high SBP PRS group (132 [118,148] mmHg) had a median SBP 13 mmHg 

higher than those with low SBP PRS (119 [107,135] mmHg) (Table 1). The BP traits 

across SBP PRS categories are shown in Table 1. The distribution of the SBP PRS 
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stratified by prevalent HTN and study outcomes across the study population and among 

individual racial/ethnic subgroups are depicted in Supplementary Figures I–V. Among White 

individuals, the β values (mmHg) per SD increase in SBP PRS for SBP, DBP, MAP, and 

PP were 5.43 (95%CI:5.12–5.74), 2.54 (95%CI:2.35–2.72), 3.50 (95%CI:3.29–3.71), and 

2.90 (95%CI:2.68–3.11), respectively. An increase in SBP PRS among Black individuals 

demonstrated a robust but attenuated association (smaller β coefficients per SD) with SBP 

(2.04, 95%CI:1.53–2.56), DBP (0.99, 95%CI:0.69–1.29), MAP (1.34, 95%CI:0.99–1.69), 

and PP (1.06, 95%CI:0.70–1.41). Among Hispanic individuals, β values per SD increase 

in SBP PRS for SBP, DBP, MAP, and PP were 5.66 (95%CI:4.38–6.95) mmHg, 2.50 

(95%CI:1.84–3.16) mmHg, 3.56 (95%CI:2.74–4.37) mmHg, and 3.16 (95%CI:2.28–4.03) 

mmHg, respectively. Similar to other racial/ethnic groups, SBP PRS had robust associations 

with SBP (β:3.15, 95%CI:1.43–4.87 mmHg), DBP (β:1.25, 95%CI:0.34–2.16 mmHg), MAP 

(β:1.88, 95%CI:0.76–3.01 mmHg), and PP (β:1.90, 95%CI:0.79–3.01 mmHg) among Asian 

individuals. Each SD increase in SBP PRS was associated with increased odds of HTN 

among White (OR:1.67, 95%CI:1.61–1.74), Black (OR:1.19, 95%CI:1.13–1.26), Hispanic 

(OR:1.75, 95%CI:1.50–2.03), and Asian individuals (OR:1.35, 95%CI:1.13–1.26). The 

association of SBP PRS with BP traits across racial/ethnic groups among those not on 

antihypertensive medications is shown in Supplementary Table II. The association of SBP 

PRS with BP traits was validated in the multi-ancestry ACCORD and the All of Us study 

sample, demonstrating a robust association with BP traits (Supplementary Table III).

Risk of Adverse Cardiovascular Events Across SBP PRS Categories

Primary Outcome: Incident CVD—In our multi-ancestry study population, there were 

5,461 incident CVD events over a median follow-up of 14.1 (IQR: 10.1, 21.9) years. 

Incidence rates of incident CVD events among individuals with low, intermediate, and high 

SBP PRS (per 1000-py) were 13.59 (12.75–14.49), 16.20 (15.66–16.76), and 17.85 (16.87–

18.88), respectively (Supplementary Table IV). Compared with individuals in the low SBP 

PRS group (referent group), those in the intermediate (multivariable-adjusted hazards ratio 

[HRadj]: 1.10, 95%CI:1.02–1.19) and high SBP PRS (HRadj:1.16, 95%CI:1.06–1.26) groups 

had higher adjusted hazard ratios for the incident CVD outcome.

Secondary Outcomes—During a median follow-up of 14.5 (10.3, 22.2) years, there 

were 4,615 incident CVD events. The incidence rates among low, intermediate, and high 

SBP PRS groups (per 1000-py) were 11.50 (10.30–11.85), 13.28 (12.80–13.78), and 14.50 

(13.64–15.42), respectively. Individuals with intermediate (1.11, 95%CI:1.03–1.21) and high 

SBP PRS (1.17, 95%CI:1.06–1.29) had higher adjusted hazard ratios for incident CVD 

compared with those with low SBP PRS (referent).

There were 2,435 incident HF events over a median follow-up of 14.6 (10.9, 23.0) years. HF 

incidence rates (per 1000-py) were 5.81 (5.28–6.39), 6.72 (6.38–7.07), and 7.64 (7.03–8.30) 

among individuals with low, intermediate, and high SBP PRS, respectively. Individuals with 

intermediate (HRadj:1.06, 95%CI:0.95–1.19) and high SBP PRS (HRadj:1.16, 95%CI:1.02–

1.32) had higher adjusted hazard ratios for incident HF compared with those with low SBP 

PRS.

Parcha et al. Page 4

Circ Genom Precis Med. Author manuscript; available in PMC 2023 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



During a median follow-up of 14.5 (10.6, 22.8) years, there were 3,120 incident CHD 

events. The CHD incidence rates among low, intermediate, and high SBP PRS groups 

(per 1000-py) were 7.20 (6.60–7.84), 8.89 (8.50–9.30), and 9.51 (8.83–10.25), respectively. 

Compared with those with low SBP PRS, individuals with intermediate (HRadj:1.16, 

95%CI:1.05–1.28) and high SBP PRS (HRadj:1.20, 95%CI:1.06–1.34) had higher adjusted 

hazard ratios for incident CHD.

There were 1,903 incident stroke events over a median follow-up of 14.7 (IQR: 11.8, 

24.7) years. Stroke incidence rates in individuals with low, intermediate, and high 

SBP PRS (per 1000-py) were 4.24 (3.80–4.73), 5.14 (4.85–5.44), and 5.68 (5.17–6.25), 

respectively. Individuals with intermediate (HRadj:1.07, 95%CI:0.94–1.21) and high SBP 

PRS (HRadj:1.15, 95%CI:1.01–1.35) had higher adjusted hazard ratios for incident stroke 

compared with those having low SBP PRS.

Supplementary Table IV and Supplementary Figures VI–X summarize the incidence rates 

and hazard ratios for risks of all study outcomes stratified by racial/ethnic groups. The 

age-stratified risks of study outcomes per SD increase in SBP PRS are in Supplementary 

Table V.

Age at Disease Onset for Study Outcomes—There was a higher proportion 

of individuals with a high SBP PRS among participants who developed the incident 

cardiovascular disease event at age <50 and age 50–60 years (Supplementary Figure XI). 

There was a higher proportion of individuals with a low SBP PRS among participants who 

developed the incident cardiovascular disease event at age ≥70 years.

Risk of Adverse Cardiovascular Events Across Traditional Risk Score Category

The study population was stratified on the basis of traditional risk scores (10-yr ACC/AHA 

PCE-based ASCVD risk ≥ or <10%) and genetic risk for elevated BP (low, intermediate, 

and high SBP PRS). Compared with individuals having low SBP PRS and low ASCVD 

risk (referent group), there was a higher risk of the incident CVD outcome among those 

with low SBP PRS and high ASCVD risk (HRadj:2.59, 95%CI:2.24–2.98), intermediate 

SBP PRS and low ASCVD risk (HRadj:1.14, 95%CI:1.02–1.28), intermediate SBP PRS 

and high ASCVD risk (HRadj:3.10, 95%CI:2.75–3.50), high SBP PRS and low ASCVD 

risk (HRadj:1.36, 95%CI:1.19–1.56), and high SBP PRS and high ASCVD risk (HRadj:3.32, 

95%CI:2.91–3.78) (Figure 3, Supplementary Table VI). There was a statistically significant 

negative interaction between the ASCVD risk group and the SBP PRS group on study 

outcomes (Pinteraction<0.05 for all). Associations of study outcomes with SBP PRS among 

individuals stratified by ASCVD risk are shown in Supplementary Table VII. Among the 

sub-group of individuals with a high genetic risk of elevated BP (high SBP PRS), there was 

a lower risk of the incident CVD outcome (HRadj:0.42, 95%CI:0.36–0.50), incident ASCVD 

(HRadj:0.38, 95%CI:0.32–0.46), incident HF (HRadj:0.45, 95%CI:0.36–0.58), incident CHD, 

(HRadj:0.34, 95%CI:0.27–0.43) and incident stroke (HRadj:0.43, 95%CI:0.33–0.57) among 

the low ASCVD risk group, compared with the high ASCVD risk group (referent)(Table 

2). Within each SBP PRS group, individuals with high ASCVD risk (compared to those 

with low ASCVD risk) had a greater risk of incident ASCVD, incident HF, incident CHD, 
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and incident stroke (Figure 3, Table 2). Similar findings were noted when using the PCE 

threshold of 7.5% (Supplementary Figure XII).

Adverse Cardiovascular Risk Prediction for SBP PRS Compared with Clinical Risk Score

There was a weak correlation (r=0.05; P<0.001) between SBP PRS and the ACC/AHA 

PCE-based risk score (Supplementary Figure XIII). After controlling for the traditional 

CV risk factors (using ACC/AHA PCE ASCVD risk) and population stratification (10 

PCs of genetic ancestry), each SD increase in SBP PRS was associated with a 10-year 

risk of 1.07 (95%CI:1.04–1.10), 1.08 (95%CI:1.05–1.11), 1.05 (95%CI:1.00–1.09), 1.09 

(95%CI:1.05–1.13), and 1.07 (95%CI:1.02–1.12) for incident CVD, incident ASCVD, 

incident HF, incident CHD, and incident stroke, respectively. The risk prediction metrics 

(estimated using C-statistics, χ2 likelihood ratio, and adjusted R2) for the inclusion of 

SBP PRS along with clinical risk score did not demonstrate an improvement in 10-year 

risk prediction for the study outcomes (Table 3). The AUCs depicted in Supplementary 

Figures XIV demonstrate a similar scale of improvement in risk prediction for the study 

outcomes. Using the ACC/AHA PCE risk threshold of 10%, there was a risk reclassification 

improvement of 3.4% for cases and 5.3% for non-cases. On a continuous scale, the addition 

of SBP PRS to ACC/AHA PCE improved reclassification for the incident CVD outcome by 

3.4% for cases and 7.3% for non-cases. A similar modest improvement in reclassification, 

both continuous and categorical, was also noted for all secondary outcomes (Table 4). The 

addition of SBP PRS to ACC/AHA PCE led to a small improvement in risk discrimination 

for all study outcomes (IDI ranging from 0.001 to 0.003). The reclassification metrics using 

the categorical PCE threshold of 7.5% are reported in Supplementary Table VIII.

Validation of the Study Findings in ACCORD Study

In the multivariable-adjusted model in the ACCORD study sample, each SD increase in 

SBP PRS was associated with an increased hazard ratio for the incident CVD outcome 

(HRadj:1.13, 95%CI:1.06–1.19), incident ASCVD (HRadj:1.10, 95%CI:1.03–1.17), incident 

HF (HRadj:1.18, 95%CI:1.06–1.30), incident CHD (HRadj:1.10, 95%CI:1.03–1.17), and 

incident stroke (HRadj:1.15, 95%CI:0.96–1.34). As in the primary analysis, the inclusion 

of SBP PRS along with the clinical risk score did not significantly improve the 10-year risk 

prediction for the study outcomes in the ACCORD study (Supplementary Table IX).

Association of SBP PRS, CHD PRS, and Stroke PRS with Study Outcomes

Table 5 summarizes the association of CHD PRS12 and Stroke PRS13 with all study 

outcomes when accounting for the risk conferred by SBP PRS in the independent ACCORD 

study sample. Notably, the association of SBP PRS with the study outcomes is retained even 

when accounting for the CHD PRS and Stroke PRS, respectively.

Discussion

In this comprehensive investigation involving a multi-ancestry cohort of >21,000 US adults, 

a robust cross-sectional association of a multi-ancestry genome-wide SBP PRS (constructed 

using a Bayesian approach with ~1.1 million variants) with BP traits was observed, both 

overall and across subgroups of self-identified race/ethnicity. Second, increased genetic risk 
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for elevated BP (measured using SBP PRS) also predisposed individuals to an increased 

risk of adverse CV events such as HF, CHD, or stroke, after accounting for traditional CV 

risk factors (including clinically measured BP). Third, among those with a high genetic 

predisposition to elevated BP, a low traditional CV risk factor burden (low ACC/AHA PCE 

risk) was associated with a lower risk of adverse CV events. Fourth, in a multi-ancestry 

cohort of middle-aged adults, SBP PRS did not significantly improve adverse CV risk 

prediction beyond the ACC/AHA PCE. Lastly, the SBP PRS retains its risk prediction ability 

for adverse CV events even when accounting for existing CHD PRS and Stroke PRS.

Elevated BP is a major modifiable risk factor for multiple incident CVD phenotypes (HF, 

CHD, and stroke), and prior studies have established a graded association of elevated BP 

with the development of incident CVD.14–16 This investigation extends these observations to 

a large multi-ancestry cohort by demonstrating that a genome-wide SBP PRS is associated 

with BP traits and HTN, cross-sectionally, and with the risk of adverse CV events 

prospectively, across self-reported racial/ethnic groups. Genomic medicine has generally 

been limited by a focus on primarily populations of European ancestry. The applicability 

of SBP PRS across ancestral groups in our investigation enhances the generalizability and 

potential future clinical utilization of the SBP PRS. There may be substantial heterogeneity 

and variability in the measurement of BP3, but BP-associated genotype (i.e., SBP PRS) 

may provide precise quantification of the lifetime risk for CV events due to elevated 

BP. This study noted that the genetic risk for elevated BP (summarized using SBP PRS) 

was associated with CVD events, even after accounting for traditional CV risk factors, 

including clinically measured BP. This observation substantiates the evidence from other 

investigators demonstrating that genetic risk scores comprising lipids or diabetes-associated 

genetic loci may provide a more consistent and accurate prediction for the development of 

cardiometabolic disease events than standard clinical biomarkers15.17–19 However, it was 

noted that elevated risk for adverse CV events conferred by a high SBP PRS might be offset 

by controlling the traditional CV risk factors. This premise is evidenced by our finding that 

those with a high genetic risk of elevated BP but with a low traditionally measured CV risk 

(10-yr ASCVD <10%) have a lower risk of developing adverse CV events. While the genetic 

risk for elevated BP may be potentially non-modifiable and set at birth, the traditional CV 

risk factors evolve over the life course20, 21 and can be modified through aggressive risk 

factor control. Our findings challenge the traditional deterministic interpretation of inherited 

genetic risk by demonstrating substantially lower incidence rates of CV events (incident 

ASCVD, CHD, HF, and stroke) among individuals with lower traditional CV risk factor 

burdens across genetic risk categories.

With the widespread availability of large-scale genomic sequencing22 and direct-to-

consumer genetic testing, the potential application of SBP PRS for the primary prevention 

of adverse CV events in a multi-ancestry population warrants further investigation. The 

one-time assessment of the genome-wide genetic variations associated with increased BP 

and CV risk, may serve as a tool for predicting adverse CV event risk, alongside the 

evolving clinical CV risk prediction. In addition, SBP PRS may also find utility in predicting 

the response to anti-hypertensive therapy. Despite its appeal, the clinical application of state-

of-the-art PRSs requires careful consideration of the appropriate population. The SBP PRS 

examined in this study faces a similar challenge for implementation in the right population. 
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As noted in our investigation, the SBP PRS in its current form may be of limited utility in 

CV risk prediction in a middle-aged cohort where the ACC/AHA PCE provides similar risk 

quantification.

A prevention paradox for CV diseases has been previously described wherein a sizeable 

proportion of individuals developing adverse CV events are at low predicted risk of CV 

events based on traditional risk factors, and thus preventive efforts may not be directed 

toward them.23 Prior investigations evaluating the genetic risk of CHD in middle-aged adults 

demonstrated modest efficacy in incident CHD risk prediction and net reclassification for 

CHD PRS beyond traditional CV risk factors.10, 24, 25 The current work indicates that SBP 

PRS has numerous clinical applications as it predicts multiple CV outcomes instead of being 

limited to just one phenotype and retains its association even when accounting for prior 

CHD PRS12 and Stroke PRS13. Given the higher proportion of individuals with a high SBP 

PRS among those with early onset CV disease in this investigation, examination of PRS 

utility in the low-risk younger adult population is warranted. Furthermore, as noted by the 

significant negative interaction of the ASCVD risk group on the association of SBP PRS 

groups with study outcomes indicates that the SBP PRS may have greater utility in risk 

prediction among individuals with low ASCVD risk. Hence, SBP PRS may have a role in 

mitigating the prevention paradox. The SBP PRS may be useful for younger adults or those 

with a low traditional risk factor burden, in whom primary prevention efforts are targeted 

through BP-lowering and lipid-lowering therapies, glycemic control, healthy diet adherence, 

physical activity promotion, and smoking cessation. However, there is an unmet need to 

assess the potential benefits (reduction of years lost due to disability from ASCVD events) 

and harms (anxiety, declined adherence to healthy lifestyle in low genetic risk individuals) 

of early disclosure of the genetic risk for CV events, through randomized controlled clinical 

trials in younger adults prior to the onset of ASCVD events.26, 27

The current findings are an advancement over prior literature, which was limited by a 

lack of inclusion of US populations, exclusion of individuals from non-European ancestry, 

or evaluation of only incident CHD events.10, 24, 25 The estimates reported in the current 

investigation are supportive of a multi-ancestry SBP PRS having a robust association with 

BP traits.28 In line with prior investigations, the current study noted a robust albeit relatively 

attenuated association of SBP PRS with BP traits and adverse CV outcomes in individual 

racial/ethnic groups, which may be attributed to trans-ethnic allele frequency differences, 

varying genetic architectures, and differing impact of gene-environment interaction on BP 

traits.29–31 With the growing recognition of the marginalization of non-European ancestry 

individuals from genomic medicine, it is important to assess novel clinical and genomic 

medicine tools in individuals from diverse ancestral backgrounds.9 Limited trans-ethnic 

transferability of PRS has been reported previously, with a reduced or lack of risk prediction 

ability of European ancestry GWAS-based PRSs in non-European ancestry populations.29–31 

The current study attempts to overcome this by using multi-ancestry base data from 

UK Biobank and providing a comprehensive investigation of the SBP PRS through the 

evaluation of its association with BP traits and multiple adverse CV outcomes across varying 

traditional risk-factor profiles in a diverse multi-ancestry US population.
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Limitations

The study has several limitations. First, the SNP weights were derived from the multi-

ancestry pan-UKBB GWAS, with a relatively higher number of European ancestry 

individuals. This may have contributed to the relatively weaker association of the PRS 

with BP traits in Black individuals. However, similar to this report recent investigations 

have noted that multi-ancestry PRSs perform well within overall and within specific 

ancestries than ancestry-specific PRSs (where base data used to derive the effect estimates 

for constructing the PRS is from the same ancestry).32 As genomic discovery expands, 

more multi-ancestry “base” data may help improve the SBP PRS performance across multi-

ancestry populations. Second, the SBP PRS was derived from SBP-associated SNPs, which 

may contribute to the relatively weaker association of the PRS with other BP traits such as 

DBP, MAP, and PP. Third, the included cohorts also contributed to the PCE derivation, and 

this may lead to a potential underestimation of the risk prediction ability of the SBP PRS. 

However, the SBP PRS was noted to be predictive of BP traits and adverse CV outcomes 

in an independent population. Fourth, the estimates for association with study outcomes 

were attenuated in the validation population, which may be attributed to a shorter follow-up 

duration (4.7 years vs. 14.1 years) and lower event frequency (incident CVD outcomes: 

15.5% vs. 24.9%) compared with the NHLBI TOPMed study sample. Fifth, while this 

study used the ACC/AHA PCE 10% threshold to stratify the population based on traditional 

CV risk factors, it is feasible that the PRS performance may vary at different thresholds. 

Hence, a continuous NRI was also computed in the study population. Sixth, the ACC/AHA 

PCE has non-modifiable and modifiable components. Among high SBP PRS individuals, 

the modifiable CV risk factors may be mitigated through pharmacological and lifestyle 

interventions, there may be non-modifiable residual CV risk conferred by age, sex, and 

social determinants of health. Seventh, while the genetic risk is set at birth and exerts its 

effects over the lifetime, this study does not estimate the lifetime risk of CV events. Eighth, 

the pleiotropic effects of SBP PRS on traditional risk factors and adverse CV outcomes 

cannot be accounted for in the current study design. Lastly, the investigation was limited to 

individuals >40 years of age to ensure comparability of SBP PRS with the ACC/AHA PCE.

Conclusions

Among a multi-ancestry cohort of >21,000 US adults, a genome-wide SBP PRS was 

associated with BP traits and an increased risk of incident CV events (HF, CHD, and stroke) 

beyond traditional CV risk factors. This observational study suggests that an increased 

genetic risk for BP and adverse CV events may be mitigated by rigorous control of the 

modifiable traditional CV risk factors, a premise that warrants further investigation.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Overall Structure of the Study Investigation.
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Figure 2. 
Association of Genome-Wide Systolic Blood Pressure Polygenic Risk Score With Blood 

Pressure Traits. All models are adjusted for age, sex, study cohort, and the first 10 principal 

components of genetic ancestry. In Panels A-E, the whiskers represent the 95% confidence 

interval.
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Figure 3. 
Risk of Study Outcomes According to Genetic Risk and Traditional Cardiovascular Risk. 

The figure depicts the incidence rates and adjusted hazard ratio for each of the study 

outcomes, according to the genetic risk (systolic blood pressure polygenic risk score) and 

traditional cardiovascular risk (assessed using pooled cohorts equation). Individuals with 

low genetic risk and low atherosclerotic cardiovascular disease event risk served as the 

referent population. The incidence rates are reported in 1000-person years. The Pinteraction 

(ASCVD Risk Group*SBP PRS Group) for the incident CVD outcome is <0.001 (β±SE: 

−0.15±0.04), for the incident ASCVD is <0.001 (β±SE: −0.22±0.04), for incident heart 
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failure is 0.003 (β±SE: −0.16±0.05), incident CHD is <0.001 (β±SE: −0.24±0.05), and 

incident stroke is 0.005 (β±SE: −0.17±0.06).
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Table 1.

Baseline Characteristics of the Study Population

Characteristics Overall (n=21,897) Low BP PRS 
(n=4,381)

Intermediate BP PRS 
(n=13,135)

High BP PRS 
(n=4,381)

P-Value

Age 56.0 (49.0, 64.4) 56.0 (49.0, 65.0) 56.0 (49.0, 64.7) 55.6 (49.0, 63.5) 0.002

Sex

 Male 9,640 (44.0%) 2,000 (45.7%) 5,765 (43.9%) 1,875 (42.8%)
0.02

 Female 12,257 (56.0%) 2,381 (54.3%) 7,370 (56.1%) 2,506 (57.2%)

BMI (kg/m2) 27.1 (24.2, 30.8) 26.9 (24.1, 30.6) 27.1 (24.2, 30.8) 27.5 (24.4, 31.2) <0.001

Race/Ethnicity

 White 14,069 (64.2%) 2,814 (64.2%) 8,441 (64.3%) 2,814 (64.2%)

0.98

 Black or African 
American 6,186 (28.2%) 1,237 (28.2%) 3,711 (28.3%) 1,238 (28.3%)

 Hispanic 1,022 (4.7%) 205 (4.7%) 621 (4.7%) 205 (4.7%)

 Asian 606 (2.8%) 121 (2.8%) 364 (2.8%) 121 (2.8%)

 Other 14 (0.1%) 4 (0.1%) 7 (0.1%) 3 (0.1%)

Systolic BP (mmHg) 126 (112, 143) 119 (107, 135) 126 (113, 143) 132 (118, 148) <0.001

Diastolic BP (mmHg) 76 (68, 84) 73 (65, 81) 76 (68, 84) 78 (71, 87) <0.001

Mean Arterial Pressure 
(mmHg) 93 (83, 103) 88 (80, 99) 93 (84, 103) 97 (87, 106) <0.001

Pulse Pressure (mmHg) 49 (41, 61) 46 (39, 57) 49 (41, 61) 52 (43, 65) <0.001

LDL (mg/dL) 124.4 (102.0, 149.0) 122.8 (100.9, 148.0) 124.6 (102.0, 149.0) 126.0 (103.0, 150.8) 0.06

HDL (mg/dL) 50.0 (41.0, 61.0) 50.1 (41.0, 62.0) 50.0 (41.0, 61.0) 49.0 (40.0, 60.7) <0.001

Triglycerides (mg/dL) 108.0 (77.0, 155.0) 105.0 (75.0, 149.0) 107.0 (77.0, 155.0) 112.0 (79.0, 161.0) <0.001

Total Cholesterol (mg/dL) 202.0 (178.0, 228.0) 201.0 (177.0, 228.0) 202.0 (178.0, 228.0) 203.0 (179.0, 230.0) 0.02

eGFR (mL/min/1.73 m 2 ) 75.9 (64.1, 89.0) 75.9 (64.8, 89.1) 75.6 (63.9, 88.7) 76.3 (64.0, 90.3) 0.26

Smoking Status

 Never 10,431 (47.6%) 2,038 (46.5%) 6,324 (48.1%) 2,069 (47.2%)

0.002 Former 7,425 (33.9%) 1,565 (35.7%) 4,433 (33.7%) 1,427 (32.6%)

 Current 4,007 (18.3%) 771 (17.6%) 2,363 (18.0%) 873 (19.9%)

Hypertension 9,974 (45.5%) 1,495 (34.1%) 5,956 (45.3%) 2,523 (57.6%) <0.001

Diabetes Mellitus 2,584 (11.8%) 463 (10.6%) 1,494 (11.4%) 627 (14.3%) <0.001

Lipid Lowering Medication 
Use 1,255 (5.7%) 245 (6.2%) 736 (6.3%) 274 (7.0%) 0.20

Anti-Hypertensive 
Medication Use 6,209 (28.4%) 904 (20.6%) 3,695 (28.2%) 1,610 (36.8%) <0.001

Study Cohort

 ARIC 7,944 (36.3%) 1,473 (33.6%) 4,707 (35.8%) 1,764 (40.3%)

<0.001

 MESA 4,587 (20.9%) 1,010 (23.1%) 2,738 (20.8%) 839 (19.2%)

 FHS 2,564 (11.7%) 561 (12.8%) 1,530 (11.6%) 473 (10.8%)

 CHS 2,386 (10.9%) 469 (10.7%) 1,494 (11.4%) 423 (9.7%)

 JHS 2,283 (10.4%) 423 (9.7%) 1,379 (10.5%) 481 (11.0%)
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Characteristics Overall (n=21,897) Low BP PRS 
(n=4,381)

Intermediate BP PRS 
(n=13,135)

High BP PRS 
(n=4,381)

P-Value

 CARDIA 2,133 (9.7%) 445 (10.2%) 1,287 (9.8%) 401 (9.2%)

Study Outcomes

 Incident CVD 5,461 (24.9%) 936 (21.4%) 3,309 (25.2%) 1,216 (27.8%) <0.001

 Incident ASCVD 4,615 (21.1%) 784 (17.9%) 2,805 (21.4%) 1,026 (23.4%) <0.001

 Incident HF 2,435 (11.1%) 420 (9.6%) 1,458 (11.1%) 557 (12.7%) <0.001

 Incident CHD 3,120 (14.2%) 520 (11.9%) 1,912 (14.6%) 688 (15.7%) <0.001

 Incident Stroke 1,903 (8.7%) 318 (7.3%) 1,157 (8.8%) 428 (9.8%) <0.001

Time to Incident CVD 
(Years) 14.1 (10.1, 21.9) 14.2 (10.2, 22.0) 14.0 (10.1, 21.9) 14.0 (10.1, 22.0) 0.25

Time to Incident ASCVD 
(Years) 14.5 (10.3, 22.2) 14.6 (10.4, 22.2) 14.5 (10.2, 22.1) 14.6 (10.2, 22.3) 0.49

Time to Incident HF 
(Years) 14.6 (10.9, 23.0) 14.5 (10.9, 23.0) 14.6 (10.9, 23.0) 14.6 (11.0, 23.2) 0.64

Time to Incident CHD 
(Years) 14.5 (10.6, 22.8) 14.5 (10.7, 22.8) 14.6 (10.9, 23.0) 14.5 (10.7, 23.0) 0.44

Time to Incident Stroke 
(Years) 14.7 (11.8, 24.7) 14.7 (11.8, 24.8) 14.7 (11.8, 24.7) 14.7 (11.8, 24.8) 0.96

Abbreviations: ARIC: Atherosclerosis risk in community; ASCVD: atherosclerotic cardiovascular disease, BP: Blood Pressure, BMI: Body mass 
index, CHS: Cardiovascular health study, CHD: Coronary heart disease, FHS: Framingham heart study, eGFR: estimated Glomerular Filtration 
Rate, HDL: High-density lipoprotein, JHS: Jackson heart study, LDL: Low-density lipoprotein, PRS: Polygenic risk score.

Note: Data are presented as median with interquartile range or counts with percentage. There were 4,062 incident CVD events, 3,529 incident 
ASCVD events, 2,456 incident CHD events, 1,380 incident stroke events, and 1,830 incident heart failure events among White individuals. There 
were 1,195 incident CVD events, 915 incident ASCVD events, 562 incident CHD events, 444 incident stroke events, and 536 incident heart failure 
events among Black individuals. There were 145 incident CVD events, 123 incident ASCVD events, 68 incident CHD events, 63 incident stroke 
events, and 49 incident heart failure events among Hispanic individuals. There were 55 incident CVD events, 45 incident ASCVD events, 31 
incident CHD events, 16 incident stroke events, and 19 incident heart failure events among Asian individuals. There were 4 incident CVD events, 3 
incident ASCVD events, 3 incident CHD events, 0 incident stroke events, and 1 incident heart failure events among other race/ethnicity individuals.
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Table 4.

Risk Discrimination Metrics (Net Reclassification Index and Integrated Discrimination Index) for Systolic 

Blood Pressure Polygenic Risk Score with ACC/AHA Pooled Cohorts Equation

N Continuous NRI Categorical NRI (PCE-10%) IDI

Incident CVD

Cases 5,461 0.0342
(0.0077–0.0607)

0.0342
(0.0077–0.0607) 0.0022

(0.0014–0.0030)
Non Cases 16,436 0.0733

(0.0580–0.0885)
0.0528

(0.0375–0.0681)

Incident Heart Failure

Cases 2,435 0.0185
(−0.0212–0.0582)

0.0136
(−0.0262–0.0533) 0.0012

(0.0004–0.0020)
Non Cases 19,462 0.0608

(0.0468–0.0749)
0.0438

(0.0297–0.0578)

Incident Coronary Heart Disease

Cases 3,120 0.0333
(−0.0017–0.0684)

0.0327
(−0.0024–0.0678) 0.0020

(0.0011–0.0029)
Non Cases 18,777 0.0753

(0.0610–0.0895)
0.0489

(0.0347–0.0632)

Incident Stroke

Cases 1,903 0.0541
(0.0093–0.0990)

0.0520
(0.0072–0.0969) 0.0008

(0.0001–0.0014)
Non Cases 19,994 0.0640

(0.0502–0.0779)
0.0451

(0.0313–0.0590)

Incident ASCVD Event

Cases 4,615 0.0444
(0.0156–0.0732)

0.0427
(0.0139–0.0715) 0.0024

(0.0015–0.0032)
Non Cases 17,282 0.0805

(0.0657–0.0954)
0.0559

(0.0410–0.0708)
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Table 5:

Addition of SBP PRS to CHD PRS and Stroke PRS and their Risk Prediction Ability for Study Outcomes

Polygenic Risk Score (PRS) Adjusted Hazard Ratio (95% CI)

Incident CVD

CHD PRS: Model 1 1.21 (1.14–1.27)

CHD PRS (Model 1 + SBP PRS) 1.20 (1.13–1.26)

Stroke PRS: Model 1 1.06 (1.00–1.13)

Stroke PRS (Model 1 + SBP PRS) 1.04 (0.97–1.11)

SBP PRS: Model 1 1.13 (1.06–1.19)

SBP PRS (Model 1 + CHD PRS) 1.11 (1.05–1.17)

SBP PRS (Model 1 + Stroke PRS) 1.12 (1.05–1.18)

Incident ASCVD

CHD PRS: Model 1 1.23 (1.16–1.3)

CHD PRS (Model 1 + SBP PRS) 1.22 (1.15–1.29)

Stroke PRS: Model 1 1.09 (1.02–1.16)

Stroke PRS (Model 1 + SBP PRS) 1.08 (1.00–1.15)

SBP PRS: Model 1 1.10 (1.03–1.17)

SBP PRS (Model 1 + CHD PRS) 1.08 (1.01–1.15)

SBP PRS (Model 1 + Stroke PRS) 1.09 (1.02–1.16)

Incident Heart Failure

CHD PRS: Model 1 1.12 (1.00–1.24)

CHD PRS (Model 1 + SBP PRS) 1.10 (0.98–1.22)

Stroke PRS: Model 1 0.93 (0.80–1.05)

Stroke PRS (Model 1 + SBP PRS) 0.90 (0.77–1.02)

SBP PRS: Model 1 1.18 (1.06–1.30)

SBP PRS (Model 1 + CHD PRS) 1.17 (1.05–1.30)

SBP PRS (Model 1 + Stroke PRS) 1.20 (1.08–1.33)

Incident CHD

CHD PRS: Model 1 1.27 (1.19–1.34)

CHD PRS (Model 1 + SBP PRS) 1.26 (1.19–1.33)

Stroke PRS: Model 1 1.07 (0.99–1.14)

Stroke PRS (Model 1 + SBP PRS) 1.05 (0.97–1.12)

SBP PRS: Model 1 1.10 (1.03–1.17)

SBP PRS (Model 1 + CHD PRS) 1.08 (1.01–1.15)

SBP PRS (Model 1 + Stroke PRS) 1.09 (1.02–1.17)

Incident Stroke

CHD PRS: Model 1 1.05 (0.86–1.23)

CHD PRS (Model 1 + SBP PRS) 1.04 (0.85–1.22)

Stroke PRS: Model 1 1.26 (1.06–1.45)

Stroke PRS (Model 1 + SBP PRS) 1.23 (1.04–1.43)
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Polygenic Risk Score (PRS) Adjusted Hazard Ratio (95% CI)

SBP PRS: Model 1 1.15 (0.96–1.34)

SBP PRS (Model 1 + CHD PRS) 1.14 (0.95–1.33)

SBP PRS (Model 1 + Stroke PRS) 1.11 (0.91–1.30)

Model 1: PRS + age, sex, randomization arm, BMI, Total Cholesterol, SBP, Smoking Status, first 10 principal components of genetic ancestry

Model 2: Model 1 + Additional PRS (Boldening indicates significant adjusted hazard ratios in model 2)
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