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REVIEW

Hyperspectral retinal imaging in Alzheimer’s 
disease and age-related macular degeneration: 
a review
Xiaoxi Du1†, Jongchan Park1†, Ruixuan Zhao1, R. Theodore Smith2, Yosef Koronyo3, 
Maya Koronyo‑Hamaoui3,4,5 and Liang Gao1* 

Abstract 

While Alzheimer’s disease and other neurodegenerative diseases have traditionally been viewed as brain disorders, 
there is growing evidence indicating their manifestation in the eyes as well. The retina, being a developmental exten‑
sion of the brain, represents the only part of the central nervous system that can be noninvasively imaged at a high 
spatial resolution. The discovery of the specific pathological hallmarks of Alzheimer’s disease in the retina of patients 
holds great promise for disease diagnosis and monitoring, particularly in the early stages where disease progression 
can potentially be slowed. Among various retinal imaging methods, hyperspectral imaging has garnered signifi‑
cant attention in this field. It offers a label‑free approach to detect disease biomarkers, making it especially valuable 
for large‑scale population screening efforts. In this review, we discuss recent advances in the field and outline the cur‑
rent bottlenecks and enabling technologies that could propel this field toward clinical translation.

Keywords Hyperspectral imaging, Retinal imaging, Alzheimer’s disease, Neurodegenerative disease, Age‑related 
macular degeneration

Introduction
Neurodegenerative diseases such as Alzheimer’s dis-
ease (AD) exert substantial social and economic burdens 
on our aging population. With an estimated 6.9 million 

people living with AD in the United States and about 50 
million people worldwide affected by AD and associated 
dementia, this number is projected to triple by 2050 [1, 
2]. This age-related epidemic is particularly concerning 
for the elderly, as the incidence of Alzheimer’s dementia 
sharply increases after 65  years of age, impacting over 
33% of individuals aged 85 and older.

The diagnosis of AD often occurs during the late stage 
when clinical symptoms of dementia become apparent. 
However, clinical studies demonstrate that well before 
these symptoms manifest, neuropathological indicators 
of the disease can be identified through techniques such 
as amyloid positron emission tomography (PET) imag-
ing [3] or cerebrospinal fluid (CSF) assays [4, 5]. This 
preclinical stage of AD, occurring before substantial and 
irreversible brain damage, presents an opportunity for 
intervention with potential therapies aimed at halting or 
slowing disease progression.
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Despite the increasing focus of clinical research on 
developing treatments and strategies to mitigate risk 
or slow disease progression in AD, there’s still a criti-
cal need for reliable and cost-effective clinical assess-
ment and diagnostic tools. This need is especially 
pronounced in the early stages of the disease, where 
interventions are actively being developed. While amy-
loid PET neuroimaging and CSF testing present high 
utility as diagnostic biomarkers in clinical trials, their 
limited availability in the clinical setting, invasiveness, 
time-consuming procedures, and high costs restrict 
their widespread use across populations. Therefore, 
there’s an urgent demand for an early, noninvasive, and 
cost-effective tool that can identify AD biomarkers. 
Such a tool would greatly aid in detecting Alzheimer’s 
pathology during the mild cognitive impairment (MCI) 
stage and even in asymptomatic preclinical AD cases, 
significantly enhancing our ability to predict individu-
als at high risk of developing dementia on a larger scale.

One emerging technology that could address this 
demand is retinal imaging. Despite AD historically 
being viewed as a brain disorder, recent studies indi-
cate its manifestation in the eye, with growing evidence 
of abnormalities in the retina, considered a sensory 
extension of the brain [6–30] (as illustrated in Fig.  1). 
Notably, hallmark AD pathological signs, such as amy-
loid β-protein (Aβ) and hyperphosphorylated (p)Tau 
protein (pTau) that is found in neurofibrillary tangles 
(NFTs), observed in the brain, have also been identi-
fied in the retina[17, 22, 31]. Increasing reports reveal 
abnormal Aβ and pTau deposits in the retinas of AD 
patients at various stages, distinct from non-AD con-
trols [10, 11, 15–19, 22, 23, 26, 27, 32–54]. As the only 
central nervous system (CNS) tissue not protected by 
bone, the retina provides a unique opportunity to study 
neuro-pathological changes at the site of injury.

The evidence of Aβ and pTau accumulation in the ret-
ina at early AD stages supports the notion of using the 
eye for presymptomatic imaging. Notably, research by the 
Koronyo-Hamaoui group and others revealed retinal Aβ 
plaques, oligomers, and vascular Aβ deposits in preclini-
cal, MCI, and early AD patients [10, 11, 16, 17, 26, 35, 46, 
49, 56, 57] and in transgenic AD-model mice at the pre-
symptomatic stage, preceding detection in the brain[17, 
32]. Additional reports have shown pTau, tau oligomers, 
and other pathological tau isoforms in the retina of MCI 
and AD patients [15, 22, 27, 34, 37, 39, 42, 47, 51, 58, 59]. 
Given the direct and noninvasive nature of retinal imag-
ing, detecting retinal AD pathology, particularly early Aβ 
and pTau biomarkers, may enable large-scale screening 
and monitoring of at-risk populations.

While imaging retinal Aβ and pTau deposits holds 
promise for early AD diagnosis, it presents challenges 
due to their similar visual appearance to normal tissue, 
resulting in low contrast with conventional fundus color 
photography. Recently, there has been a surge in inter-
est in using hyperspectral imaging (HSI), which acquires 
both spatial and spectral information of the sample, to 
identify AD and neurodegenerative retinal biomarkers.

Initially designed for remote sensing applications, HSI 
has gained traction in various medical fields. The ration-
ale behind employing HSI in medical imaging lies in 
the fact that the tissue’s intrinsic optical properties, like 
absorption and scattering, undergo changes during dis-
ease progression [60]. The light spectrum emitted from 
tissue carries quantitative diagnostic information about 
tissue pathology. Unlike conventional intensity-based 
cameras that capture only the two-dimensional (2D) 
spatial distribution of light, HSI records light in three 
dimensions (3D), simultaneously capturing spatial coor-
dinates (x, y) and wavelengths (λ) of incident photons. 
This comprehensive dataset provides valuable insights for 
various medical diagnostics and interventions.

HSI is not only valuable for AD but has also proven 
effective in identifying spectral biomarkers associated 
with other neurodegenerative conditions like age-related 
macular degeneration (AMD). AMD is the leading cause 
of blindness in the world. The social and medical costs in 
the United States alone total billions of dollars annually 
[61]. AMD, a late-onset neurodegenerative retinal dis-
ease, shares key clinical and pathological features with 
AD, such as oxidative stress and inflammation responses 
to stress stimuli. Research indicates notable similarities 
in the intra- and extracellular deposits implicated in both 
diseases.

In this review, we discuss the recent advancements in 
hyperspectral retinal imaging and its relevance to neu-
rodegenerative diseases, particularly AD and AMD. We 
believe these strides epitomize cutting-edge research in 

Fig. 1 Schematic illustration of Alzheimer’s pathology across retinal 
cell layers in AD patients. CTRL, control. Illustration was adapted 
from Mirzaei et al., Frontiers in Neuroscience 2020 with permission 
[55]
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the field, showcasing significant progress that is reshap-
ing early AD diagnosis approaches.

Hyperspectral imaging data acquisition strategies
HSI acquires both spatial and spectral information of 
light, resulting in a 3D datacube (x, y, λ) [62, 63]. There 
are four distinct strategies for measuring this datacube, 
illustrated in Fig.  2. The first strategy, point-scanning 
HSI, utilizes a linear array of detectors to capture spec-
tral information (λ) simultaneously, followed by scanning 
across all spatial locations (x, y) to construct the complete 
datacube. The second method, line-scanning HSI, uses 
a 2D detector array to capture one slice of the datacube 
(y, λ) at a time, requiring scanning in only one spatial 
dimension (x) afterward. Both point- and line-scanning 
HSI imagers necessitate extensive scanning during the 
acquisition of a large datacube. This results in prolonged 
acquisition times and makes them susceptible to motion 
artifacts when imaging dynamic scenes.

In contrast, wavelength-scanning HSI, the third 
approach, captures one slice of the datacube (x, y) and 
then scans across all wavelengths (λ). This simultaneous 
acquisition of spatial information results in significantly 
faster imaging speeds compared to point- or line-scan-
ning methods. Examples of systems using this strategy 
include acousto-optic or liquid crystal tunable filter-
based HSI systems [64]. The fourth strategy, snapshot 
HSI, captures the entire datacube in a single exposure, 
offering a means to completely eliminate motion arti-
facts, especially when combined with flash illumination. 
Technologies falling under this category include spec-
trally-resolved detector array (SRDC) [65], image map-
ping spectrometry (IMS) [66, 67], computed tomography 
imaging spectrometry (CTIS) [68], and coded aperture 
snapshot spectral imaging (CASSI) [69]. In the next sec-
tion, we will delve into the detailed implementation of 
these strategies in retinal imaging.

Hyperspectral retinal imaging: implementations
HSI of the retina faces challenges due to the constant 
motion of the in vivo eye, necessitating shorter acquisi-
tion times to prevent motion artifacts. Consequently, 
point scanning or line scanning HSI systems are typically 
employed for ex vivo studies. For in vivo applications, the 
wavelength-scanning approach is favored for its faster 
acquisition and straightforward implementation (Fig. 3a). 
In these systems, a wavelength-scanning unit, such as a 
liquid–crystal or acoustic-optics tunable filter, can be 
placed directly before either the light source or the detec-
tor, allowing for easy integration with a standard fundus 
camera without extensive hardware modifications. It is 
important to note that while the unit functions similarly 
regardless of placement, positioning it before the light 
source is preferred to reduce the illumination dose on the 
retina.

There are several wavelength-scanning-based HSI reti-
nal cameras designed for clinical applications. One such 
example is the Metabolic Hyperspectral Retinal Camera 
(MHRC) by Optina Diagnostics, tailored specifically for 
diagnosing retina-related diseases. The MHRC provides 

Fig. 2 Hyperspectral imaging data acquisition strategies. 
Hyperspectral imaging systems generate a 3D hyperspectral 
datacube (x, y, λ). The point‑scanning method uses a linear detector 
to collect spectral information (λ) from a single point in space. 
The line‑scanning method captures a spatial‑spectral slice (y, λ) 
of the datacube using a 2D detector. In the wavelength‑scanning 
method, a 2D image (x, y) is captured at a specific wavelength. The 
snapshot method captures the entire 3D datacube (x, y, λ) in a single 
camera exposure

(See figure on next page.)
Fig. 3 in vivo hyperspectral retinal imaging implementations for a Wavelength‑scanning‑based HSI. Retina is sequentially illuminated 
by monochromatic light with different wavelengths Desjardins et al. [70]. b Spectrally‑resolved detector array. A thin‑film Fabry–Perot cavity spectral 
filter is fabricated directly on each camera pixel. A total of 16 wavelength bands are achieved Li et al. [71]. c Image mapping spectrometry (IMS). 
(left panel) An image mapper consisting of multiple angled mirror facets slices and redirects the image to various regions of a detector. A prism 
array spectrally disperses the sliced images. (middle panel) IMS is combined with a fundus camera. (right panel) Snapshot hyperspectral imaging 
of human retina in vivo Gao et al. [72]. d Computed tomography imaging spectrometry (CTIS). A holographic grating diffracts the image in various 
directions Johnson et al. [73]. The hyperspectral datacube is reconstructed by using a tomographic image reconstruction algorithm. (right panel) 
Reconstructed hyperspectral images of macula with 75 spectral bands Fawzi et al. [74]. e Coded aperture snapshot spectral imaging (CASSI). (left 
panel) Optical system. The image is encoded with a random binary mask and dispersed by a prism Zhao et al. [75]. The image is reconstructed 
by solving the linear inverse problem associated with the image formation model. (right panel) Hyperspectral autofluorescence imaging of drusen 
in vivo. The spectrum is obtained by averaging the spectra over a drusen area (unpublished data). All panels are used with permission
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Fig. 3 (See legend on previous page.)
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a 30-degree field of view, a pixel resolution of approxi-
mately 8.3 µm, and a spectral resolution of around 5 nm 
within the 450–900 nm spectral range. With an exposure 
time of 0.01  s per wavelength, it can capture the entire 
spectral range in under one second. The MHRC has been 
used in various retinal studies, including retinal oxime-
try [70, 76, 77], Aβ detection [24, 56, 78], and the identi-
fication of retinal ischemia [79] and hydroxychloroquine 
retinopathy [80].

Eliminating eye motion artifacts entirely would ide-
ally involve conducting retinal hyperspectral imaging in 
a snapshot manner. However, snapshot HSI retinal cam-
eras are often complex and have not seen widespread use 
in patient studies. The challenge arises from the ‘dimen-
sionality gap’[81]: while a HSI datacube (x, y, λ) is 3D, 
most current image sensors are in a 2D format. To cap-
ture the spatio-spectral information in a hyperspectral 
datacube, the datacube voxels must be mapped to pixels 
on the camera sensor. Unlike sequential measurements 
used in scanning-based hyperspectral imagers, snapshot 
HSI employs more intricate methods to simultaneously 
measure light datacube voxels on a 2D detector array.

Snapshot HSI techniques can be categorized into two 
main methods based on their underlying principles. The 
first method, known as direct measurement, establishes a 
one-to-one mapping between light datacube voxels and 
camera pixels. By remapping the measured data, the light 
datacube can be reconstructed. Representative modali-
ties employing this method include spectrally-resolved 
detector array (SRDA) and IMS.

The SRDA is a complementary metal-oxide semicon-
ductor (CMOS)-based camera chip that employs pixel-
wise filtering (Fig. 3b). This chip is structured on a CMOS 
architecture, with its pixels grouped into super-pixels, 
also known as HSI pixels, each comprising N × N CMOS 
pixels, thereby representing N2 wavelength channels. 
Within each CMOS pixel in an HSI pixel, a dielectric-
thin-film Fabry–Perot (FP) cavity filter is monolithically 
integrated onto the surface. In the FP cavity, incident 
light undergoes interference with the reflected light, 
allowing only a specific resonant wavelength of light to 
pass through. This resonant wavelength is controlled by 
the thickness of the dielectric film. As a result, the cam-
era sensor equipped with this technology can capture 
multiple spectral channel images in a single snapshot. 
Using an SRDA camera sensor, Li et al. developed a snap-
shot HSI fundus camera and showcased its effectiveness 
in performing retinal oximetry in live rats [71]. Subse-
quently, the same research group extended this technique 
to human retinal imaging [82]. The SRDA image sensor is 
now commercially available through IMEC.

Despite their snapshot acquisition capability, SRDA 
image sensors exhibit low light throughput due to the 

use of narrow-band filters on top of each CMOS pixel, 
limiting the amount of light received by each pixel. Addi-
tionally, there exists a trade-off between the number of 
spectral bands and spatial resolution. Increasing the 
spectral bands necessitates grouping more pixels into 
an HSI pixel, enlarging the super-pixel size and conse-
quently reducing spatial resolution.

In contrast, the IMS allows snapshot HSI with a full 
light throughput without using filters. IMS achieves 
this by employing a custom-designed mirror, known 
as the image mapper, which consists of multiple angled 
facets redirecting different parts of an image to various 
regions on a detector array (Fig. 3c). This redirection of 
image slices on the detector array creates spaces between 
slices, allowing a prism or diffraction grating to spec-
trally disperse light orthogonally to the length of each 
image slice. Consequently, IMS captures a spectrum from 
every spatial location in the image within a single camera 
frame acquisition. The original image can then be recon-
structed through a straightforward remapping of pixel 
information.

The unique tilt angles of the facets in the image map-
per establish a fixed one-to-one correspondence between 
each voxel in the datacube and each pixel on the camera. 
This position-encoded pattern on the camera provides 
simultaneous spatial and spectral information within the 
image. As IMS directly captures object irradiance, no 
reconstruction algorithm is necessary, simplifying the 
process to produce image and data displays. Gao et  al. 
demonstrated the integration of IMS with a standard 
fundus camera for retinal oximetry [72]. Subsequently, 
they showcased its application in imaging eyes affected 
by AMD in a separate study [66].

Direct measurement methods like SRDA and IMS 
encounter a fundamental limitation with a given camera 
sensor: the total number of hyperspectral datacube voxels 
acquired cannot exceed the total number of camera pix-
els due to the one-to-one mapping relation. In contrast, 
the second HSI strategy, referred to as compressed meas-
urement, multiplexes signals from multiple hyperspec-
tral datacube voxels and maps them to the same camera 
pixel, resulting in a higher detector utilization ratio. Rep-
resentative techniques within this category include CTIS 
and CASSI.

In CTIS, a computer-generated holograph (CGH) is 
positioned at the conjugate plane of the aperture stop 
within an imaging system. Unlike conventional diffrac-
tive gratings that disperse light along a single dimension, 
a CGH can disperse light in two dimensions, result-
ing in various combinations of diffraction-order images 
captured by the camera (Fig. 3d). Each diffraction-order 
image represents the outcome of two sequential opera-
tions applied to the hyperspectral datacube of the object: 
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first, shearing the wavelength axis towards the direction 
associated with the image’s diffraction order, and second, 
summing the intensities along the wavelength axis. By 
employing a multiplicative algebraic reconstruction algo-
rithm, the object’s datacube can be reasonably estimated 
from these captured images.

The compact design of a CTIS camera facilitates its 
integration into a standard fundus camera setup. Johnson 
et al. exemplified [73] this integration by employing such 
a system for conducting retinal oximetry in live human 
subjects. In a later study, Fawzi et  al. expanded on its 
application by demonstrating its effectiveness in map-
ping macular pigment in vivo [74]. However, CTIS faces 
a challenge known as the “missing cone” problem in the 
spatial-spectral frequence space, arising from the limited 
spectral dispersion power of the CGH and the finite area 
of the camera sensor. This limitation results in reduced 
spatial–temporal resolution in CTIS imaging.

In contrast, CASSI utilizes a conventional prism or 
grating to disperse the image and records a single spatial-
spectrally multiplexed image (Fig.  3e). To mitigate the 
ill-posed nature of the image formation model, CASSI 
employs an absorption mask to encode the input image 
with a random binary pattern before spectral disper-
sion. Image reconstruction in CASSI involves solving the 
inverse problem of this image formation process, which 
can be achieved using algorithms like gradient projection 
for sparse reconstruction or a two-step iterative shrink-
age/thresholding algorithm. Zhao et  al. built a snapshot 
HSI fundus camera using this technology and demon-
strated its application in in vivo retinal autofluorescence 
imaging of AMD patients (Fig. 3e, middle and right pan-
els) [75].

While simpler in hardware compared to direct meas-
urement approaches mentioned earlier, both CTIS and 
CASSI are computationally intensive. Their image recon-
structions often depend on iterative algorithms, which 
are typically slow and lack immediate feedback. Addi-
tionally, their reliance on compressed sensing necessi-
tates sample sparsity in specific domains, limiting their 
ability to extract complex spectral signatures of under-
lying chromophores. However, recent advancements in 
deep learning show promise in accelerating image recon-
struction and enhancing image quality, offering a poten-
tial solution to these challenges [83].

Hyperspectral retinal imaging: applications 
in neurodegenerative diseases
The overall rationale of using HSI in disease diagnosis is 
that the tissue’s endogenous optical properties, such as 
absorption and scattering, change during the progression 
of the disease, and the spectrum of light emitted from 

tissue carries quantitative diagnostic information about 
tissue pathology.

Two primary retinal biomarkers for AD are amyloid 
beta-protein (Aβ) and hyperphosphorylated (p)Tau, both 
known for their significant neurotoxic effects. The scat-
tering spectral signature of Aβ was first identified ex vivo 
by More and Vince in 2015 [44]. Their study on retinal 
specimens from APP1/PS1 transgenic mice, a standard 
AD animal model, revealed notable differences in the 
scattering spectrum between 480 and 560 nm compared 
to wild-type mice, occurring months before observable 
amyloid plaques in brain tissue. Moreover, they showed 
that treatment with the anti-AD drug ψ-GSH caused a 
shift in retinal spectra towards the saline-treated wild 
type rather than the saline-treated transgenic mice, indi-
cating potential therapeutic effects.

The reduction in spectral intensities at shorter wave-
lengths was postulated to be attributed to Aβ aggregates’ 
scattering properties, with their geometric size being 
much smaller than the visual light wavelength. Conse-
quently, Rayleigh scattering predominated at Aβ aggre-
gated sites, where light intensity inversely correlated with 
the fourth power of the wavelength. This led to greater 
attenuation of short-wavelength light passing through 
these locations, resulting in diminished intensities within 
the corresponding spectrum range. The same research-
ers later demonstrated a similar short-wavelength optical 
density increase both in in vivo APP/PS1 transgenic AD 
mice [84] and AD patients [57]. Particularly in patient 
imaging, they noted an inverse relationship between this 
optical density rise and Mini-Mental State Exam scores, 
highlighting the potential of this optical marker in clini-
cal assessments of neurodegenerative diseases.

The unique scattering spectral signature of Aβ aggre-
gates has also been independently reported by several 
other groups. Lemmens et  al. [1] employed a snapshot 
hyperspectral retina camera to record reflectance spectra 
from both AD patients and control subjects. Their find-
ings revealed a heightened optical density specifically 
within the wavelength range of 460–600  nm. Further-
more, they demonstrated that integrating this spectral 
characteristic with data on retinal nerve fiber layer thick-
ness obtained through optical coherence tomography 
(OCT) can enhance diagnostic accuracy.

In another study, Hadoux et al. [56] reported a signifi-
cant difference in reflectance spectra between individu-
als with high Aβ burden observed on brain PET imaging 
with mild cognitive impairment and age-matched con-
trols. Specifically, the average reflectance spectrum from 
AD patients showed a decrease in wavelengths below 
490  nm compared to controls. This discovery was cor-
roborated in another cohort using a separate hyper-
spectral camera, reinforcing the reliability of these 
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spectral differences. Similar variations in spectra were 
also observed between control subjects and 5xFAD trans-
genic mice known for Aβ accumulation in both brain and 
retina. Noteworthily, in this study, researchers empha-
sized the need to correct measured spectra for sources 
of spectral variability such as lens effects, macular pig-
ment, melanin, and hemoglobin. Failure to make such 
corrections led to non-statistically significant differences 
between AD cases and controls.

Our research team has also detected the scattering 
spectral signature of Aβ42 aggregates, pathognomonic 
to AD, within retinal cross sections from postmortem 
AD patients by using a wavelength-scanning hyperspec-
tral retinal camera [34]. What sets our study apart is we 
measured this spectrum within depth-resolved retinal 
layers, thereby minimizing the influence of non-AD ocu-
lar sources on spectral measurements. By directly com-
paring these findings with immunofluorescence ground 
truth, we observed a reduction in spectral intensities 

between 450 and 600  nm in retinal layers known to be 
rich in Aβ (nerve fiber layer, ganglion cell layer, outer 
plexiform layer, and outer nuclear layer) when com-
pared to normal controls (Fig. 4). To translate this spec-
tral discovery to chromophore mapping, we developed 
a deep-learning-based network capable of transforming 
label-free hyperspectral images into immunofluorescence 
and peroxidase-based immunostaining (also referred 
to as DAB) images. The resultant Aβ42 abundance map 
closely aligned with ground truths (Fig. 5).

Besides identifying the scattering spectral signa-
ture of Aβ42, we also observed the spectral signature of 
pTau. Employing a methodology akin to what we used 
for quantifying Aβ, we first immunolabeled pS396-Tau 
isoforms and identified their mostly aggregated loca-
tions in the retina, including outer plexiform layer, inner 
plexiform layer, and ganglion cell layer, and structures 
that resemble NFTs. We then examined these locations 
in the unstained HSI images acquired from adjacent 

Fig. 4 Hyperspectral imaging of Aβ42 and pS396‑Tau deposits on postmortem retinal cross‑sections of AD patients guided by a‑c peroxidase‑based 
immunostaining (DAB) and d‑g immunofluorescence staining. a, b From left to right, unstained hyperspectral intensity images, spectra 
at arrow‑pointed locations (green, red, and black arrows), and DAB‑labeled images. The purple arrow (b, right) indicates a neurofibrillary 
tangle (NFT) structure in the OPL. Scale bar, 50 µm. c Tile image of a large portion of retinal cross‑section strip from a confirmed AD patient 
immunolabeled for pS396‑Tau DAB substrate. d Aβ42 immunofluorescence channel (green pseudocolored). e pS396‑Tau immunofluorescence 
channel (red pseudocolored). f Unstained hyperspectral intensity images. g Spectra at arrow‑pointed locations (green, red, and black arrows). Scale 
bar, 50 µm.  Source: Du et al. with permission [34]
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retinal cross sections. Figure  4c illustrates the distribu-
tion of pS396-Tau deposits spanning from the central 
to peripheral retina. The pS396-Tau clusters showcase a 
distinct spectral profile that significantly deviates from 
that of typical retinal tissues—exhibiting notably higher 
and more consistent light transmittance in the 550–
650  nm range, akin to a “flat hat.” (Fig.  4b and 4g) This 
prominent characteristic suggests that tissues enriched 
with pTau have a diminished optical density within this 
spectral range, likely due to a lower absorption coeffi-
cient of their constituent chromophores. This led us to 
further scrutinize the HSI images at these wavelengths. 
Our observations revealed that pTau aggregation in the 
outer plexiform layer—which appears dark brown with 
DAB substrate and red in immunofluorescence-stained 
images—correlates with elevated pixel intensities in the 
grey-level HSI images (Fig. 4f ). A similar correlation was 
also evident in the pS396-Tau aggregation area in NFTs 
(Fig. 4b), supporting our findings regarding the spectral 
transmission properties of pTau. Importantly, this marks 
the inaugural identification of pS396-Tau in the human 
retina.

Rather than relying solely on spectral informa-
tion, Thach et  al. [85] introduced a feature-extraction 
approach that combines spatial and spectral data from 
a wavelength-scanning reflectance hyperspectral retinal 

camera. Their method identified 30 significant spatial-
spectral features essential for classifying cerebral PET 
amyloid status, providing a promising means to differ-
entiate between PET amyloid positive and negative indi-
viduals. In another study, Sharafi et  al. [24] reported a 
similar approach, and they extracted eight spatial-spec-
tral features from retinal arterioles and their adjacent 
regions that proved effective in discriminating PET amy-
loid positive and negative subjects.

HSI has also proven effective in identifying spectral 
biomarkers associated with AMD. In early AMD eyes, 
soft drusen and basal linear deposits constitute the lipid-
rich components of the “Oil Spill on Bruch’s membrane” 
[86]. While drusen are clinically identifiable focal depos-
its, basal linear deposits are thin, diffuse, and often invis-
ible even on high-resolution OCT images but detectable 
through hyperspectral autofluorescence imaging [87]. 
This opens the possibility of the earliest possible detec-
tion of AMD with a clinical HSI fundus camera and 
treatment with antioxidant regimens proven to slow its 
progression[88]. For AMD eyes, a distinct short-wave-
length spectrum (SDr) was first identified for drusen and 
sub-RPE deposits, emitting near 510  nm [89]. A subse-
quent study demonstrated that SDr exhibited both high 
sensitivity and specificity for identifying these AMD 
lesions [87].

Fig. 5 Machine learning prediction of Aβ42 and pS396‑Tau based on HSI. a Aβ42 fluorescence model. b pS396‑Tau fluorescence model. c pS396‑Tau 
DAB model, with a focus on a retinal NFT structure. d Aβ42 DAB model. From left to right: HSI intensity image, transformed HSI images, zoomed 
prediction images of specific feature, ground truth images, and zoomed ground truth images of specific feature. Scale bar, 50 µm for large FOV 
images, 10 µm for bordered inserts. Microscope images adapted from Du et al. with permission [34]
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The possibility of early detection of AMD with HSI was 
explored more fully in a study by Mohammed et al. [90]. 
HSI techniques were employed to analyze the autofluo-
rescence properties of lipofuscin fluorophores within the 
retinal pigment epithelium (RPE). Using a wavelength-
scanning HSI camera, they captured spectral images 
ranging from 420 to 720 nm. Employing a tensor decom-
position method [91] on the hyperspectral data, they 
extracted both the spectral signature and abundance 
of constituent fluorophores. Their findings revealed 
smooth, well-defined spectra and tissue abundances con-
sistent with the known perinuclear localization of lipo-
fuscin/melanolipofuscin in the RPE. They also confirmed 
the SDr for drusen and sub-RPE deposits, emitting near 
510  nm (Fig.  6). A subsequent study demonstrated that 
SDr exhibited both high sensitivity and specificity for 
identifying these AMD lesions [87].

The spectral signature of drusen has been observed 
not only in the autofluorescence imaging but also in the 
reflectance imaging mode. In a study [93] conducted 
by Wang et  al., they used a SRDC hyperspectral cam-
era to image the drusen of the AMD patients. They then 
applied a machine learning classification approach to the 
HSI data acquired and demonstrated that HSI offers an 
improved accuracy and sensitivity in classifying drusen 
compared to standard fundus RGB images.

We have summarized the applications of HSI in neuro-
degenerative diseases discussed in this section in Table 1.

Discussion and perspective
A clinical retinal imaging system capable of detecting the 
earliest and most specific molecular markers of AD and 
other neurodegenerative conditions in  vivo could serve 

as an invaluable early warning tool for at-risk individu-
als. It could also aid in the development and evaluation 
of new therapies based on a targeted molecular profile. 
Insights gained from studying presymptomatic individu-
als with AD pathology could significantly enhance our 
understanding of the disease’s onset in the retina, offer-
ing crucial guidance for early detection and potential 
cures. Additionally, the noninvasive, label-free imaging 
technique of HSI makes it particularly well-suited for 
large-scale population screening in routine office set-
tings. This approach could extend significant health and 
social benefits to the aging population by enabling proac-
tive intervention and management strategies.

Although current hyperspectral retinal imaging tech-
niques for AD and other neurodegenerative conditions 
are advancing, they are still in their nascent stages, pri-
marily focusing on spectral discovery and validation. In 
this section, we discuss existing bottlenecks and explore 
new avenues that could potentially expedite their clinical 
translation.

Depth‑resolved HSI
Although multiple studies have observed statistically sig-
nificant spectral differences between patients affected by 
the neurodegenerative disease and age-matched controls, 
there remains considerable variability in the reported 
spectral data. For instance, while most studies indi-
cate increased optical density in Aβ-deposit locations, a 
recent report shows the opposite—a reduced optical den-
sity [94].

One primary reason for these discrepancies is that 
much of the current HSI of the retina is performed 
through reflectance imaging, where the signals 

Fig. 6 Hyperspectral Imaging of AMD Drusen The broad emission spectrum of RPE lipofuscin from a flatmount of RPE/BRM when excited 
by 436 nm light, captured by the Nuance camera, shows a peak around 570 nm, in the yellow range (left panel). The full‑color autofluorescence 
(AF) of the sample with drusen, marked in RGB, highlights the predominantly yellow AF from the lipofuscin surrounding the nuclei in the RPE cells, 
while the AF from the soft drusen is greenish. After mathematical “unmixing” of the AF from the sample, three distinct spectra (S1, S2, S3) are found 
in the RPE, presented in green, blue, and red, with a new spectrum specific for drusen/drusen precursors (SDr) in azure, showing a short wavelength 
emission around 510 nm (right panel). The color‑coded tissue localizations of the fluorophore sources of the spectra S1, S2, and SDr are shown (S3 
not shown) (middle panel). Abbreviations: AF, autofluorescence; BRM, Bruch’s membrane; RGB, composite red–green–blue autofluorescence image; 
LF, lipofuscin; RPE, retinal pigment epithelium; SDr, spectrum for drusen.  Source Orellana‑Rios et al. with permission [92]
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measured at the HSI image sensor reflect the integrated 
light attenuations along the light path. This approach 
is susceptible to variations caused by different ocular 
components contributing to these attenuations, along 
with their spectral characteristics varying from person 
to person and variability in Aβ-deposit in different ana-
tomical regions of the retina. These factors collectively 
render the measured spectra sensitive to individual-
specific variables.

To mitigate this problem and standardize retinal spec-
tral measurement, we advocate for a transformative shift 
in methodology from conventional reflectance imaging 
to depth-resolved imaging. As indicated by our prior 
research, AD biomarkers such as Aβ and pTau aggre-
gates within distinct retinal layers [34]. Additionally, fac-
tors like melanin within the RPE layer and the choroidal 
vascular bed can notably influence the spectral charac-
teristics of reflected light. Thus, to accurately isolate the 

Table 1 Hyperspectral retinal imaging in Alzheimer’s and neurodegenerative diseases

Authors Neurodegenerative 
disease type

HSI technology used Sample type and size Spectral range 
inspected

Major findings

More et al. [44] AD Line‑scanning Retinal flatmounts 
from APP/PS1 mice 
(n = 6) and AD patients 
(sample size unclarified)

400–1000 nm Ex vivo spectral bio‑
marker discovery of Aβ 
aggregates

More et al. [84] AD Wavelength‑scanning In vivo APP/PS1 mice 
(n = 8)

480–705 nm In vivo spectral biomarker 
discovery of Aβ aggre‑
gates in AD mice

More et al. [57] AD Single‑slit spectrograph In vivo AD patients 
(n = 19)

400–1000 nm In vivo spectral biomarker 
discovery of Aβ aggre‑
gates in AD patients

Sharafi et al. [24] AD Wavelength‑scanning In vivo AD patients 
(n = 20)

450–900 nm Inclusion of metrics 
related to the retinal 
vasculature and tissue‑
related textures extracted 
from vessels and sur‑
rounding regions can 
improve AD diagnosis

Hadoux et al. [56] AD Wavelength‑scanning In vivo AD patients 
(n = 15) and in vivo 
5xFAD mice (n = 12)

450–900 nm Significant differences 
in the retinal reflectance 
spectra were found 
between individuals 
with high Aβ burden 
on brain PET imaging 
and mild cognitive 
impairment and age‑
matched PET‑negative 
controls

Lemmens et al. [78] AD Spectrally‑resolved 
detector array (SRDA)

In vivo AD patients 
(n = 17)

460–600 nm Combined use of HSI 
and OCT provides 
enhanced accuracy 
for AD diagnosis

Du et al. [34] AD Wavelength‑scanning Ex vivo retinal cross sec‑
tions from AD patients 
(n = 3)

420–720 nm Ex vivo spectral biomarker 
discovery and validation 
of Aβ42 and pS396‑Tau 
aggregates in AD patients

Thach et al. [85] AD Wavelength‑scanning In vivo AD patients 
(n = 25)

450–905 nm Use of spatial‑spectral 
features can improve 
the AD diagnostic 
accuracy

Mohammed et al. [90] AMD Wavelength‑scanning Ex vivo retinal flat‑
mounts from AMD 
patients (n = 17)

420–720 nm Ex vivo spectral 
biomarker discovery 
of drusen

Wang et al. [93] AMD Spectrally‑resolved 
detector array (SRDA)

In vivo AD patients 
(sample size unclarified)

460–630 nm In vivo classification 
of drusen

Tong et al. [87] AMD Wavelength‑scanning Ex vivo retinal flat‑
mounts from AMD 
patients (n = 4)

420–720 nm Ex vivo spectral 
biomarker discovery 
of drusen
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spectral signature of disease biomarkers, it is essential to 
conduct HSI in a depth-resolved manner.

Among existing depth-resolved retinal imaging tech-
niques, spectroscopic optical coherence tomography 
(S-OCT [95–97]) stands out as particularly promising 
for this objective. Unlike conventional OCT, which pri-
marily offers morphological and layer information, 
S-OCT enhances OCT’s capabilities to encompass both 
structural and molecular imaging with a straightforward 
post-processing approach. S-OCT leverages OCT’s inter-
ferograms to extract depth-resolved spectroscopic pro-
files of samples. This spectroscopic data allows for the 
identification of endogenous chromophores, imbuing 
OCT images with valuable molecular contrast.

Multimodal imaging
Previous research has demonstrated that the progression 
of neurodegenerative diseases often coincides with struc-
tural and microvascular alterations in the retina. These 
changes include thinning of the inner retinal layer [98], 
choroidal layer [99], and peripapillary retinal nerve fiber 
layer [100], as well as reduced capillary density [101]. 
Such structural and microvascular changes have primar-
ily been identified using high-resolution OCT and OCT 
angiography. Moreover, the accumulation of disease-spe-
cific molecules like Aβ on the retina has been visualized 
through noninvasive fluorescence imaging techniques 
employing the food additive curcumin [15]. A compre-
hensive review of these retinal imaging methods for AD 
and neurodegenerative diseases is available elsewhere 
[30].

However, a common limitation across current retinal 
imaging methods for diagnosing neurodegenerative dis-
eases is their lack of specificity. For instance, structural 
changes like retinal thinning may indicate various con-
ditions like glaucoma, diabetes, or inflammatory retin-
opathies, leading to diagnostic ambiguity. As different 
retinal imaging modalities provide unique structural and/
or functional insights, integrating these modalities with 
HSI shows potential for improving diagnostic precision. 
This prospect is substantiated by insights gleaned from 
multiple pilot studies outlined in section “Hyperspectral 
retinal imaging: implementations”.

Given that the spectral signatures of neurodegenera-
tive diseases discovered so far fall within the visible light 
range, the integration of visible OCT with HSI presents 
a compelling approach. Despite visual discomfort from 
visible light, visible OCT [102] has gained growing pop-
ularity in clinical settings due to its superior resolution 
compared to conventional near-infrared OCT systems. 
Importantly, visible OCT naturally aligns with HSI of ret-
inal Aβ and other proteinopathies as its interferograms 
can directly provide spectroscopic information without 

requiring hardware modifications or additions. We antic-
ipate that this synergy will enhance visible OCT’s capac-
ity to detect biomarkers of neurodegenerative diseases, 
thus broadening its utility in this domain.

Artificial intelligence
HSI often produces vast datasets, presenting a compu-
tational challenge for data processing. However, recent 
strides in artificial intelligence, especially deep learning, 
offer promising avenues to expedite HSI data processing 
and exploration. Within medical imaging, deep learning 
techniques have become increasingly favored for han-
dling HSI images [103]. This preference stems from their 
exceptional ability to extract intricate spatial-spectral fea-
tures from tissue, enhancing disease diagnosis and clas-
sification capabilities.

Deep learning models excel at discerning features from 
unstructured data, using these insights to make predic-
tions based solely on data examples. One of the most 
prevalent deep learning architectures for image analy-
sis is the convolutional neural network (CNN). When 
applied to retinal images of neurodegenerative disease 
patients, CNN models can identify known features 
described in scientific literature, uncover new observable 
features, and even detect subtle features beyond human 
perception [104]. This capability positions CNNs as 
highly promising tools for automating decision-making 
processes in neurodegenerative disease diagnosis using 
retinal HSI images, as evidenced in several pilot stud-
ies discussed in section  “Hyperspectral retinal imaging: 
implementations”. Recently, commercialization efforts by 
RetiSpec [105] have been initiated, though their AI solu-
tion is currently available for research use only.

Another highly effective deep learning approach in 
processing hyperspectral retinal images is the genera-
tive adversarial network (GAN). A GAN comprises a 
generator and a discriminator, engaged in a competitive 
learning process. The discriminator is trained to differ-
entiate between real inputs and those generated by the 
generator, enhancing its generalization capability, espe-
cially beneficial with limited training data. GANs excel 
in image transformation tasks. For instance, our prior 
research showcased its ability to convert label-free HSI 
retinal images into immunolabeled counterparts with 
remarkable fidelity, leveraging the spatial-spectral fea-
tures within the HSI dataset [34]. This capability holds 
significant value as it enables the transformation of HSI 
images into clinically interpretable formats familiar to 
physicians, thereby expediting clinical translation.

A significant challenge in employing deep neural 
networks for hyperspectral retinal image analysis has 
been their black-box nature, lacking transparency in 
decision-making processes. Class activation mapping 
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(CAM) offers a solution by pinpointing key features in 
either the original image or within convolutional lay-
ers that heavily influence a model’s decisions, particu-
larly aiding in classification tasks [106]. The advantage 
of CAM lies in its potential to reveal meaningful clini-
cal correlations of model behavior [107]. Despite these 
advancements, there is currently no established classifi-
cation system for neurodegenerative diseases based on 
retinal hyperspectral image findings. Therefore, under-
standing the spatial-spectral features utilized by deep 
neural networks in decision-making processes will be 
crucial for connecting model predictions with physi-
ological features, facilitating more insightful medical 
interpretations.

A notable recent approach in detecting and predict-
ing diseases from retinal images is to use an ophthal-
mic foundation model [108, 109], a generalizable model 
trained using 1.6 million unlabeled retinal images. After 
fine-tuning, the foundation model can perform various 
downstream tasks, ranging from diabetic retinopathy 
screening to predicting progression of neurodegenera-
tive disease. Incorporating HSI into such generalizable 
models will further improve the classification and pre-
diction accuracy of various diseases, although a large 
number of hyperspectral retinal image sets in clinical 
settings is required. Furthermore, the inclusion of the 
additional wavelength dimension will lengthen the net-
work development time and consumes significant com-
putational resources.
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