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Abstract

The microbiome is vital for maintaining good health, with disruptions carrying signifi-

cant consequences. Antibiotics, diseases, environmental changes, and biological sex can

perturb the microbiome, contributing to chronic illnesses. Antibiotic use is a substantial

disruptor, highlighting the need to pinpoint specific microbial species and their functions

for targeted therapies. Our research examined the microbiome, utilizing 16S sequencing

to gain deeper insights into microbial communities at the species level and infer their

functional capacity. Early-life antibiotic exposure was found to have a lasting impact on

the microbiome, with a more pronounced effect observed in males than females. These

effects extended to the respiratory microbiome, demonstrating the interconnectedness

of microbiome composition with physiological factors. Furthermore, our research delved

into predicted metagenomic pathways in the gut and lung microbiomes, revealing shifts in

metabolic functions with antibiotic treatment, particularly in pathways linked to short-

chain fatty acid metabolism, highlighting the potential consequences of such alterations

on host health. Advances in microbiome research stress the importance of considering

sex-specific differences in microbiome responses, leading to tailored health interventions.

In conclusion, this research substantiates the role of the microbiome in maintaining health

and the potential impact of disruptions on the immune system. Our findings emphasize

the need for targeted therapeutic strategies to mitigate the consequences of microbiome

disturbances, thus advancing health and well-being.
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Chapter 1

Exploring the Complex Relationship

Between the Microbiome and

Health: Implications for Antibiotic

Use and Sex Differences

In the field of observation, chance favours only the

prepared mind.

Louis Pasteur

Abstract

The human microbiome is critical in maintaining good health, and disturbances can

have significant consequences. Factors such as antibiotics, disease, tobacco smoke, and

environmental changes can reduce bacterial diversity and alter microbial composition,
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CHAPTER 1. INTRODUCTION

contributing to chronic illnesses. In addition, the immune system is essential for main-

taining microbiome homeostasis, and changes to the immune system can both cause or

result from microbiome disruption. Notably, antibiotic use is a significant factor that

can disrupt the microbiome. Therefore, identifying specific microbial species and their

functions in health and disease is crucial for developing targeted treatments. Further-

more, biological sex can impact the microbiome, and future studies need to account for

this when analyzing data. The use of animal models such as rhesus macaque and murine

models can help us understand the role of the microbiome in health and disease. Ulti-

mately, a better understanding of the interplay between biological sex, the microbiome,

and the immune system can lead to targeted therapies that can mitigate the adverse

effects of microbiome disruption and improve human health.

Introduction

The human body harbors a collection of microorganisms called the microbiome, the gut

microbiome being the most extensively studied. Its crucial role in human health includes

food digestion and immune system influence. However, disrupting the microbiome can

have severe consequences (Kozyrskyj et al. 2016, Yildiz et al. 2018, Gao et al. 2019).

Antibiotics, commonly used to treat bacterial infections, can significantly impact the gut

microbiome by reducing bacterial diversity and altering its composition (Lamberte and

van Schaik 2022).

The respiratory microbiome is gaining increasing attention due to its potential role in res-

piratory diseases, such as asthma, chronic obstructive pulmonary disease, and pneumonia

(Biesbroek et al. 2014b, Biesbroek et al. 2014a, Marsland et al. 2015, He et al. 2017,

Wang et al. 2017, Kuek and Lee 2020). Alterations in respiratory microbiome diversity,
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INTRODUCTION

such as increased abundances of potentially pathogenic bacteria, have been observed in

respiratory infections (Yildiz et al. 2018), while chronic respiratory diseases that may

contribute to disease development and exacerbation have been linked to changes in the

respiratory microbiome (Huang et al. 2015, Mammen and Sethi 2016). Environmental

factors like diet and air pollution can also impact the gut and respiratory microbiota. For

instance, a high-fat, low-fiber diet can alter the gut microbiome’s composition, reducing

bacterial diversity (Cox et al. 2014). Air pollution from PM2.5 and NO2 pollution are

associated with reduced Ružička dissimilarity, a measure of beta-diversity, suggesting a

possible interplay between the nasal microbiota of human infants and air pollution (Gisler

et al. 2021).

Biological factors also play a role in microbiome composition; recent research has high-

lighted sex differences in microbiome composition across various body sites, including

the gut and respiratory tract (Kim et al. 2019, Jo et al. 2021, Valeri and Endres

2021). Women have a higher abundance of specific bacterial genera in the gut, such as

Bacteroides and Prevotella, while men have a higher abundance of other taxa, such as

Allobaculum and Anaeroplasma (Kim et al. 2019). Hormonal fluctuations may influence

these differences, with estrogen promoting the growth of certain gut bacteria associated

with health benefits (Peng et al. 2020). Sex-specific differences in gut microbiome com-

position may contribute to differences in disease susceptibility and outcomes, including

autoimmune diseases, obesity, and colorectal cancer (Markle et al. 2013, Kim et al. 2020,

Daly et al. 2022).

This review aims to comprehensively introduce the gut and respiratory microbiomes

during health and disease, including the significance of sex differences in microbiome

maturation. Finally, we discuss the use of animal models to study the microbiome.
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CHAPTER 1. INTRODUCTION

Gut Microbiome

The gut microbiome is a complex ecosystem that comprises trillions of microorganisms,

including bacteria, viruses, fungi, and archaea (Lloyd-Price et al. 2016). Vaginally-born

human infants start to develop their microbiome when exiting the birthing canal. They

are coated with vaginal microbes, while cesarian-born infants are first introduced to their

mother’s skin microbes (Rautava et al. 2012). There is a debate regarding the persistence

of a placental microbiome due to the inconsistent and unreliable nature of sampling

methods (Kuperman et al. 2020). However, much of the current literature demonstrates

that infants are not exposed to microbes in the womb under healthy conditions (de

Goffau et al. 2019, Kuperman et al. 2020). Breast milk from mothers provides essential

nutrients for an infant’s microbiome development after birth (Harmsen et al. 2000). The

infant gut microbiota undergoes frequent changes until around 3 years of age when it

begins to resemble a stable phenotype with high abundances of bacteria from various

phyla, including Firmicutes, Bacteroidetes, Proteobacteria, Actinobacteria, Fusobacteria,

and Cyanobacteria (Nobel et al. 2015, Marsland et al. 2015). Work on murine models

from the Blaser group highlights the importance of this initial colonization, showing that

early-life disruption of the microbiota in mice can lead to a long-term alteration in the

composition of the gut microbiome (Cox et al. 2014).

Rhesus monkeys are another useful model for studying the gut microbiome as the infant

human and rhesus monkey microbiomes overlap considerably, with Bifidobacteria being

one of the predominant taxa present. Specifically it was found that infant primate gut

microbiome is significantly enriched for Bifidobacterium, Ureaplasma, Collinsella, Cateni-

bacterium, Holdemanella, Anaerostipes, Roseburia, Bacteroides, Dorea, and Senegalimas-

silia and deficient in Anaeroplasma, Prevotellacaea gen., Sphaerochaeta, and Fibrobacter
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GUT MICROBIOME

relative to old macaques (Janiak et al. 2021). Similar results were obtained by both the

Rhoades group in which they identified enrichment of Campylobacter, Bifidobacterium,

Catenibacterium, Succinivibrio, and Helicobacter in infant rhesus monkeys (Rhoades et

al. 2019) and the Slupsky team where infants were enriched for Bifidobacterium and

Blautia (Hasegawa et al. 2018). These findings coincide with what is observed in hu-

man studies in that the gut microbiome tends to be enriched for Bifidobacterium during

infancy and its abundance wanes during adulthood. Despite significant overlap between

many taxa of the microbiome of rhesus monkeys and humans, the rhesus microbiome re-

sembles more of a hunter-gatherer phenotype than that of a typical western microbiome

(Rhoades et al. 2019).

The microbial density of the gut microbiome is far greater than any other mucosal site

(Huttenhower et al. 2012). Being a well-studied mucosal site, researchers have demon-

strated that the gut microbiome can modulate other mucosal sites and play a crucial

role in regulating the gut-lung axis (van Nimwegen et al. 2011, Trompette et al. 2014).

Although the gut and lungs are spatially far apart, they can communicate via the blood

and lymphatic system (He et al. 2017). The gut microbiota produces short-chain fatty

acids (SCFAs) that have been shown to influence the immune system and inflammation

(Sivaprakasam et al. 2016).

Some of the most studied SCFA are acetate, propionate, and butyrate; these molecules

are by-products of bacterial metabolism of indigestible dietary fibers in the gut (Pas-

cale et al. 2018). Butyrate is one of the most extensively studied SCFA due to its

immune capabilities (Vinolo et al. 2011). Among its many properties, butyrate has been

demonstrated to limit NF-κB activation in macrophages residing in the lamina propria in

human patients living with ulcerative colitis (Lührs et al. 2002). More recently, butyrate

has been found to reduce neutrophil inflammatory cytokine production in Inflammatory
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Bowel Disease (IBD) patients (Li et al. 2021). The researchers conducted in vivo DSS col-

itis mouse experiments in the same study. They found that histone deacetylase (HDAC)

activity was responsible for promoting the inflammatory properties of neutrophils in IBD

patients. Blockage with the pan HDAC inhibitor trichostatin A recapitulated the effect

of butyrate, thus perpetuating the role of butyrate as an anti-inflammatory mediator in

the gut. SCFAs also modulate the development of regulatory T cells (Tregs) that play a

role in suppressing the immune response (Park et al. 2015).

Alteration of the gut microbiome through probiotics and fecal microbiome transplants

(FMT) can have global effects on the body. In mice, nasal administration of Lactobacillus

casei or Lactobacillus rhamnosus can reduce symptoms of influenza infection and dampen

viral titers (Marsland et al. 2015). Breastfeeding acts as a form of probiotic in that it

helps seed the infant’s immature microbiome. The oligosaccharides of breast milk serve

as a nutrient source for specific microbes such as Lactobacillus (Kim and Yi 2020). In

addition to providing sugars, breast milk contains secretory IgA and other anti-microbial

factors (Park et al. 2015, Roager and Licht 2018, Kim and Yi 2020). While probiotics

can facilitate the development of a healthy microbiome, colonization of opportunistic

pathogens such as Clostridioides difficile, a diarrhea and colitis-causing bacteria, can dis-

rupt the microbiome. Asymptomatic carriers of this bacterium experience a reduction

in the abundance of Bacteroidetes and Firmicutes and an overabundance of Proteobac-

teria (Zhang et al. 2015). The United States Food and Drug Administration (USFDA)

has recently approved Rebyota, the first FMT product to treat recurrent Clostridioides

difficile (Kempler 2022).
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Lung Microbiome

The lung microbiome is a relatively new area of research, but important insights have al-

ready been revealed into the role of microorganisms in lung health and disease such as less

stable respiratory microbiomes of infants at 2 years are characerized by a trajectory to-

wards Haemophilus and Streptococcus-dominated profiles (Biesbroek et al. 2014a). Due

to the reduced cost of sequencing and the introduction of culture-independent methods

such as 16s sequencing, researchers can discover more information on the respiratory

microbiota (Moffatt and Cookson 2017). Once initially thought to be sterile, it is now

accepted that the respiratory microbiome is home to a diverse community of microor-

ganisms, including bacteria, viruses, fungi, and other microorganisms (Baughman et al.

1987, Thorpe et al. 1987, Moffatt and Cookson 2017). Various factors, such as age,

sex, smoking status, and environmental exposures, influence the composition of the lung

microbiome (Koppen et al. 2015, Chen et al. 2020). The composition also depends upon

the location along the respiratory tract. For example, the nasal microbiome has signif-

icant overlap with skin microbes and tends to comprised primarily or aerobic bacteria

where as the lower has significant anerobic microbial populations such as Prevotella sp.

and Veillonella sp. (Dickson et al. 2017).

The respirory microbiome of mice is highly variable and connections to the hu-

man microbiome are difficult to make due to mice being caprophagic. The family

Erysipelotrichaceae, a microbiome enriched in the feces, is also found in the respiratory

microbiome (Dickson et al. 2018). Another study confirmed the presence of the genera

Ochrobactrum and Rhodococcus in the normal murine respiratory microbiome sampling

by BAL (Kostric et al. 2018). Like human studies, the rhesus macaque respiratory

microbiome is less studied than the gut microbiome. Of what few respiratory microbiome
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studies there for rhesus macaques, all focus on adult populations (Janiak et al. 2021,

Rhoades et al. 2022). Unlike humans, whose lung microbiome is primarily comprised

of Corynebacterium spp., Dolosigranulum spp., and Moraxella spp. (Peterson et al.

2016) the rhesus monkey lung microbiome primarily contains the genus Tropheryma as

a dominant community member however the genera Streptococcus, Fusobacterium, and

Actinobacillus are also seen across lung samples (Rhoades et al. 2022).

Upper airway Microbiome

The upper respiratory tract, which consists of the nasal passages and pharynx, is respon-

sible for transporting air from and to the lower respiratory tract. This area is commonly

referred to as the nasopharynx and is also a physical barrier that can prevent potential

pathogens from seeding the lower lung (Zhao et al. 2023). The nasopharynx is the point

where the respiratory tract meets the external environment and can be impacted by ex-

ternal factors, including the type of feeding, such as breastfeeding versus formula feeding

(Biesbroek et al. 2014b).

Under normal conditions, a healthy nasal cavity is enriched with microbes such as, but

not limited to, Corynebacterium spp., Dolosigranulum spp., and Moraxella spp. (Pe-

terson et al. 2016). The nasal, like the gut microbiome, can also be impacted by the

method of delivery, as shown by Bosch et al., where they collected 112 nasopharynx

swabs from healthy term infants either delivered vaginally or cesarian and compared the

nasal microbiome composition between the mode of birth. They found the infants deliv-

ered vaginally had their nasal microbiomes colonized by a more diverse set of microbes,

including Corynebacterium and Dolosigranulum, during the first week of life compared

to infants born cesarian (Bosch et al. 2016).
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Lower airway microbiome

The lower lung microbiome is distinct from the nasopharyngeal microbiome, harboring

more anaerobic microbes (Huffnagle et al. 2017). The lung is a less hospitable environ-

ment to bacteria proliferation than the gut, as the gut’s function is to acquire and absorb

nutrients from ingested food, thus supporting a high microbial density. Conversely, the

lack of microbes in the lower lung is due to its maintaining the bronchial epithelial fluid

lining, which promotes gas exchange rather than nutrient acquisition. Due to this pur-

pose, the adult human airway has a surface area roughly 40 times larger than the skin’s

(Weibel 1963). The composition of microbes in the lower airways includes gram-negative

bacteria, such as Provotella and Veillonella (Hilty et al. 2010), and gram-positive bac-

teria, like Coprococcus and Dorea (Tong et al. 2019). Samples of microbial communities

from this site are highly contaminated as one has to go through the upper respiratory

tract to collect a sample. A bronchoscope usually accomplishes this task (Dickson et al.

2017). The lower microbial density of the distal airways also makes collecting sufficient

amounts for analysis challenging (Segal et al. 2013, Bassis et al. 2015). Despite current

issues in studying the lower lung microbiome, research suggests that the lower respiratory

microbiome is seeded through microaspiration or inhaling bacteria from the air (Huxley

et al. 1978, Gleeson et al. 1997, Dickson et al. 2017).

Under healthy conditions, the microbiome of the lower lung should be sparse; however,

bacterial communities can plume during diseased states such as COPD and cystic fibro-

sis, leading to further respiratory issues (Mammen and Sethi 2016, Zhao et al. 2023).

Furthermore, whether the lower respiratory microbiome is transient or persistent is de-

batable (Dickson et al. 2018). However, the abundance of innate-immune features such

as mucociliary clearance (Kuek and Lee 2020), pulmonary surfactant (SPD, SPB) (Se-
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ungHye and Mallampalli 2015), and innate immune cells (macrophages and neutrophils)

(Grimaldi et al. 2002, Hewitt and Lloyd 2021) suggests the lower lung environment

prevents bacteria from establishing a niche.

Gut-Lung Axis

Changes in the microbiome are observed in lung diseases such as cystic fibrosis, asthma,

and chronic obstructive pulmonary disease (COPD), indicating essential cross-talk be-

tween mucosal sites in the human body (Zhang et al. 2020). The gut-lung axis is a

bidirectional communication system between the gut and lung microbiomes that influ-

ences host health and disease.

Although most studies on the gut-lung axis investigate how the gut affects the lung

microbiome, it is crucial to note that respiratory infection causes disturbances in the gut

microbiota (Yildiz et al. 2018). Various mechanisms mediate the gut-lung axis, including

migrating immune cells between the gut and lung, circulating microbial metabolites, and

releasing cytokines and other signaling molecules. One study found that group 3 innate

lymphoid cells (ILC3) in the gut responded to a Streptococcus pneumonia infection by

migrating from the gut to the lung, mediating IL22-dependent host defense in mice. In

this same study, disrupting the microbiome with antibiotics diminished this response.

Thus, demonstrating that protective ILC3 influx depended on the sensing of commensal

microbes in the gut by dendritic cells that in turn mediated ILC3 migration to the lungs

(Gray et al. 2017). Another study investigating the effect of microbiome ablation via

antibiotics on the response to influenza infection in mice found that antibiotic treatment

impaired DC homeostasis and migration. As a result, animals treated with antibiotics

had reduced CD4 and CD8 T-cell activation (Ichinohe et al. 2011).
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The metabolites such as tryptophan and SCFAs derived from the gut can enter circulation

via the portal vein or lymphatic system, thus exerting protective properties such as

immune regulation (Roager and Licht 2018, Zhang et al. 2020). Mouse studies have

confirmed that fermentation products of dietary fibers, primarily SCFAs, can protect

against allergic airway inflammation by modulating immune function (Marsland et al.

2015). In a recent study, the gut microbiome of neonates was investigated, and the

researchers found that bacterial epoxide hydrolase genes were elevated in infants who

develop atopy or asthma during childhood. Further investigation using a murine model

found that when mice in an asthma challenge model were treated with the metabolite

12,13-diHOME, a product of epoxide hydrases, a reduction in regulatory T-cells was

observed (Levan et al. 2019).

Ablation or disruption of the gut microbiome can have distant effects on pulmonary im-

munity in the lung. Thus reconstitution of the gut microbiome with healthy microbes has

the ability to treat or alleviate the severity of respiratory disease. In a 10-month random-

ized, double-blind, parallel, and placebo-controlled study, scientists demonstrated that

oral Bifidobacterium longum BB53 significantly reduced the incidence of respiratory ill-

nesses throughout the study (Lau et al. 2017). Furthermore, studies on mice have shown

that oral administration of probiotics can induce antigen-specific T cells, which have

been found to help dampen allergic responses (Marsland et al. 2015). In particular, this

phenomenon has been observed with inactivated Mycobacterium vaccea (Zuany-Amorim

et al. 2002), Lactobacillus rhamnusus (Feleszko et al. 2007, Jang et al. 2012), and Bifi-

dobacterium breve (Sagar et al. 2014). Given the close relationship between the gut and

lung microbiomes, it is likely that probiotics made to control respiratory disease will be

utilized in the future.
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Sex differences

Data on sex differences in non-human primates remains sparse, but the physiological

similarities to humans make them excellent models for studying sex differences in the mi-

crobiome. Recent studies report no sex difference in gut microbiome diversity, precisely

alpha diversity (Adriansjach et al. 2020, Janiak et al. 2021). The finding is not spe-

cific to the gut as the study, which characterized the microbiomes of free-ranging rhesus

macaques, reached a similar column in the oral microbiome (Janiak et al. 2021). Phys-

iological studies on the sex-dependent effects of microbiome alteration, such as research

from the Gao group, suggest antibiotic exposure has no significant effect on weight gain

in both males and females in rhesus macaques. Their study evaluated antibiotic usage as

a binary variable, meaning that the number of courses was not considered. Although this

study sheds light on how antibiotic exposure impacts weight in rhesus monkeys across

the life span, the lack of information regarding response to antibiotic regimens makes its

findings hard to extrapolate to human populations where multiple courses of antibiotics

are frequent (Sidener et al. 2017).

The ease of mechanistic studies is one benefit of using murine models over human and non-

human primate studies. We can observe how multiple factors can impact the microbiome

using murine studies. In adult mice, environmental factors such as high-fat diet and

antibiotic treatment have less of an impact on the gut microbiome than sex (Peng et al.

2020, Stepanauskaite et al. 2023, Zhu et al. 2023). The microbiome of male mice differs

heavily from that of females, and Peng et al., 2020 demonstrated this was independent of

diet. In their study, which investigated the impact of environmental factors and sex on the

microbiome, the researchers found increased abundance of the genera Parabacteroides,

Lactobacillus, Bacteroides, and Bifidobacterium in females relative to males (Peng et al.
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2020).

Recent human studies have revealed sex-specific differences in the composition and func-

tion of the microbiome, highlighting the role of sex hormones in shaping the microbial

landscape (Gomez et al. 2015, Baars et al. 2018, Gao et al. 2019, Zhang et al. 2021).

Estrogen, testosterone, and their intermediates facilitate differences in the microbiome.

Men have a more stable testosterone level, while women have fluctuating estrogen lev-

els (Klein 2000, Valeri and Endres 2021). These hormonal differences might explain

why women have a more diverse and variable microbiome than men and if these different

microbiomes, in turn, can give rise to sex differences in the immune response. Such differ-

ences are observed with females tending to develop autoimmune diseases more frequently

(Gomez et al. 2015). At the same time, males are more regularly plagued by increased

intensity and prevalence of bacterial, parasitic, and viral infections (Klein 2000).

Estrogen and testosterone have been shown to affect the gut microbiome and immune

cells directly. For example, β-estradiol has been demonstrated to promote the trans-

formation of dendritic cells to produce IL-12 and IFN-γ by driving the development of

CD11b+CD11c+ DCs which have increased expression of MHCII, CD40, and CD86 from

BM precursors (Siracusa et al. 2008). This increased activation, in turn, activates path-

ways for pro-inflammatory cytokines. Similarly, when B cells are exposed to a sustained

concentration of estradiol, polyclonal B cells’ activation and prolongation in B cells’ sur-

vival are observed (Grimaldi et al. 2002). Estrogen has been shown to influence the

composition and diversity of the gut microbiome in women, with higher levels of estro-

gen associated with a higher abundance of Lactobacillus species and a lower abundance

of Bacteroides species (Kozyrskyj et al. 2016).

On the other hand, testosterone is associated with increased diversity and richness and

a higher abundance of Clostridia and Ruminococcaceae species in the gut microbiome of
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males (Flores et al. 2012). A recent study showed, using regression analysis, that the

abundance of Firmicutes and Lachnospirales demonstrated a negative correlation with

testosterone levels (Liu et al. 2022). Comamonas testosteroni can digest androgens,

suggesting that microbes can feed off testosterone (Chen et al. 2016). Testosterone has

also been shown to modulate the immune system, which can affect the microbiome (Yoon

and Kim 2021). Dihydrotestosterone (DHT) and estradiol, intermediates of estrogen and

testosterone, can impact the gut microbiome. DHT, a testosterone metabolite, increases

the abundance of Lactobacillus species (Markle et al. 2013), while estradiol, an estrogen

metabolite, can regulate gut permeability and impacts the gut microbiome’s composition

and function (Valeri and Endres 2021).

These findings suggest that sex hormones can influence the microbiome and may con-

tribute to sex-specific differences in susceptibility to diseases such as inflammatory bowel

disease, colorectal cancer, and urinary tract infections. Further research is needed to

fully understand the mechanisms underlying these sex-specific differences and to develop

targeted interventions that can modulate the microbiome in a sex-specific manner.

Microbiome disruption

Microbiome disruption can occur through many avenues, including antibiotics, disease

development, tobacco smoke, and environmental changes. One can only discuss the

topic of microbiome disruption by acknowledging the immune system’s influence on the

microbiome’s homeostasis. Changes in the immune system are often the cause and the

result of microbiome disruption. One study demonstrated that changes in microbial

composition were associated with distinct changes in host immune tone after studying

lower airway samples from infants (Pattaroni et al. 2018).
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Antibiotics are widely used to treat bacterial infections, and their efficacy in combating

infectious diseases has improved public health. However, antibiotics also significantly

impact the microbiome, notably the gut microbiome. Antibiotics can disrupt the balance

of the gut microbiome by reducing the diversity of bacterial species and altering the

microbiome’s composition. This disruption can lead to the overgrowth of opportunistic

pathogens, which can cause infections and increase the risk of antibiotic resistance (Blaser

2016). Studies have also shown that antibiotic use can lead to long-term changes in the

gut microbiome, which may increase the risk of certain diseases, including inflammatory

bowel disease (Manichanh et al. 2010, Cho et al. 2012, Korpela et al. 2016, Turta and

Rautava 2016, Bokulich et al. 2016).

The gut microbiome has been extensively studied, and its disruption is linked to various

health conditions, including inflammatory bowel disease, obesity, and diabetes (Jovel et

al. 2018). Gastrointestinal infections, such as those caused by Salmonella and Campy-

lobacter, can also disrupt the gut microbiome (Jacobson et al. 2018, Rouhani et al. 2020).

These infections can lead to changes in the composition and diversity of the gut micro-

biome, which may persist long after the infection has resolved (Khan et al. 2019). In

some cases, gastrointestinal infections can lead to chronic conditions, such as inflamma-

tory bowel disease, which is associated with long-term gut microbiome changes (Seyedian

et al. 2019). A nationwide case–control study had findings that suggested that enteric

infections may induce the microbiome dysbiosis that contributes to the development of

inflammatory bowel disease (Axelrad et al. 2019).

There is growing interest in the potential role of the respiratory tract microbiome in res-

piratory diseases, such as asthma, chronic obstructive pulmonary disease (COPD), and

pneumonia. Respiratory infections, such as those caused by RSV, influenza, and Pseu-

domonas aeruginosa, can also disrupt the respiratory microbiome (Collie et al. 2015,
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Groves et al. 2018). These infections can alter the composition of the respiratory micro-

biome, leading to an increase in potentially pathogenic bacteria (Dickson et al. 2014).

Moreover, respiratory infections can lead to inflammation, further disrupting the micro-

biome and impairing lung function in mice (Liu et al. 2021). Chronic respiratory diseases,

such as asthma and COPD, are also associated with changes in the respiratory micro-

biome, which may contribute to developing or exacerbating these conditions (Huang et

al. 2015). Tobacco smoke is a well-known risk factor for respiratory diseases, including

lung cancer and COPD. Tobacco smoke can also disrupt the respiratory microbiome by

altering the composition and diversity of the microbiome (Öberg et al. 2011, Mayhew et

al. 2018). Environmental factors like diet and pollution can also impact the gut and res-

piratory microbiome. Studies have shown that a high-fat, low-fiber diet can alter the gut

microbiome’s composition, reducing bacterial diversity (Trompette et al. 2014, Cox et al.

2014, Stepanauskaite et al. 2023). Pollution, notably air pollution, has additionally been

linked to changes in the respiratory microbiome, with studies showing that exposure to

air pollution can alter the composition and diversity of the microbiome (Gao et al. 2017,

Fouladi et al. 2020). These disruptions can lead to an increase in potentially pathogenic

bacteria, a reduction in bacterial diversity, and changes in the microbiome.

Conclusion

The human microbiome plays a crucial role in maintaining the host’s health, and dis-

rupting this microbial ecosystem can have significant consequences for human health.

Microbial imbalance can stem from various sources, such as antibiotic usage, respira-

tory and gastrointestinal infections, tobacco smoke exposure, and environmental factors.

Such disruptions can lead to a reduction in bacterial diversity, an increase in potentially
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pathogenic bacteria, and changes in microbial composition, which may contribute to the

development of chronic diseases such as inflammatory bowel disease, obesity, diabetes,

asthma, and chronic obstructive pulmonary disease.

Antibiotic use is one of the most significant factors that disrupt the microbiome. While

antibiotics are effective in combating bacterial infections, they can reduce the diversity

of bacterial species and alter the microbiome’s composition, leading to the overgrowth of

opportunistic pathogens and increasing the risk of antibiotic resistance. Therefore, the

use of antibiotics must be carefully considered and balanced against the potential conse-

quences of disrupting the microbiome. Lastly, biological sex should be considered a factor

when covering topics related to microbiome alteration, as it is becoming increasingly evi-

dent that sexual dimorphisms influence the microbiome. Future research should focus on

identifying specific microbial species and their functions in health and disease, consider-

ing the sex-specific effects of microbiome changes and associated diseases, on developing

targeted treatments for microbiome-associated conditions in males and females.

In conclusion, the human microbiome is a complex ecosystem that plays a crucial role

in human health, and disrupting this microbial community can have significant conse-

quences. Understanding the complex interplay between the microbiome and the immune

system and identifying specific microbial species’ functions can lead to the development of

targeted therapies to mitigate the adverse effects of microbiome disruption and improve

human health.
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Chapter 2

Early-life antibiotic treatment

results in persistent microbiome

alterations in association with sex

No data is clean, but most is useful.

Dean Abbott

Abstract

Background: Antibiotic treatment commonly occurs shortly after birth and is admin-

istered to infants suspected of having an infection. However, this antibiotic treatment

can alter the developing microbiome, which can have detrimental effects on host health.

Sex differences in the microbiome are often unexamined or unreported, leaving a gap

in knowledge about whether sex influences the response to perturbations of the micro-

biome. We hypothesized that antibiotic treatment during infancy would cause persistent
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changes to the developing microbiome and alter host physiology and that these effects

could be sex-dependent. Using an infant rhesus macaque model to recapitulate human

pediatric populations, we assessed how early-life administration of antibiotics impacted

the development of the gut microbiome during the first 6 months of life. Results: Infant

rhesus macaques were administered an antibiotic cocktail during the first week of life,

with controls receiving saline during the same time period. Antibiotic-treated infants

had higher weight and neutrophil-to-lymphocyte ratio z-scores compared to controls, an

effect that was influenced by sex. Accordingly, we observed sexually dimorphic changes

in α-diversity and taxa abundance in response to antibiotic treatment, with more sig-

nificant differences observed between antibiotic-treated and control males compared to

female groups. Metagenomic pathways of the gut microbiome examined using picrust

showed that metabolic functional differences were altered with antibiotic treatment, par-

ticularly pathways related to short-chain fatty acid metabolism. Conclusions: We found

that early-life antibiotic exposure resulted in persistent changes to physiology and the

gut microbiome. These effects of antibiotics were sex-dependent, with differences more

prevalent in males and not females. Our data demonstrates the importance of examin-

ing sex-dependent differences and that future studies should take sex into account when

determining the effects of an altered microbiome on health.

Introduction

Infections can cause significant morbidity and mortality in infants, in part due to their

immature immune responses (PrabhuDas et al. 2011, Ruf and Knuf 2014). Clinicians

commonly administer antibiotics shortly after birth to mitigate the potential risk of sepsis

(Raymond et al. 2017). However, the actual rates of neonatal sepsis are significantly lower

19



CHAPTER 2. DEVELOPING GUT MICROBIOME

compared to the frequency of antibiotic treatment. In an analysis of antibiotic use in a

neonatal intensive care unit, 99.8% of infants received at least one dose of an antibiotic,

while only 5% of suspected infections were confirmed with positive blood cultures (Cantey

et al. 2015). Antibiotics can disrupt the commensal microbiota, the community of

microbes that colonize the human body. The gut microbiota is resilient against external

perturbations, but this commensal microbial community can be significantly altered if

exposed to antibiotics early in its development. Antibiotic-induced alterations in the

adult microbiota are relatively transient, while the effects of antibiotics on the infant

microbiota may have a much longer and more significant impact. The infant microbiota

may be particularly susceptible to perturbations, as the microbiota has not yet reached

a stable phenotype.

A relatively sterile unborn child becomes coated with microbes during the birthing pro-

cess (Vangay et al. 2015, Tamburini et al. 2016). The microbiome “matures” during

early life, undergoing successional changes in composition and resembling an adult-like

microbiome by about 2 to 3 years of age. In addition to altering the microbiome compo-

sition, antibiotics delay this microbiome maturation (Bokulich et al. 2016). The health

and developmental consequences of these alterations in the microbiome are poorly under-

stood. It is known that early life antibiotic treatment can impact the growth of infants.

There is a greater risk of obesity later in life following infant treatment to antibiotics

(Bailey et al. 2014, Vangay et al. 2015), and more recently, antibiotics have been shown

to impact height and weight gain during the first years of life (Kamphorst et al. 2019,

Uzan-Yulzari et al. 2021). While antibiotics are commonly associated with increased

weight gain, it has been demonstrated that the timing of antibiotic treatment can influ-

ence whether an infant has increased or decreased weight gain with age. These effects

on weight can be sex-dependent and are more apparent in male infants (Uzan-Yulzari
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et al. 2021). Sex-dependent effects of antibiotics could suggest either sex differences

in the microbiome or in response to alterations of the microbiome. Unfortunately, sex

differences in the infant microbiome are often not reported, though sex differences in the

microbiome have been shown to exist in infants (Cong et al. 2016), adults (Mueller et

al. 2006, Ding and Schloss 2014, Haro et al. 2016), and in animal models (Yurkovetskiy

et al. 2013, Haro et al. 2016, Johnson et al. 2020) . Whether there are sex differences in

the infant microbiome following antibiotic treatment has not been reported.

Since much of what is known about antibiotics and the microbiome comes from epidemi-

ological studies (Ding and Schloss 2014, Mueller et al. 2015, Cong et al. 2016), we set out

to investigate the longitudinal effect of early-life antibiotic treatment on the infant rhesus

macaque microbiome in a controlled setting. We were interested in how long antibiotics

would disrupt the infant microbiome, whether we would observe sex differences in re-

sponse to antibiotics and hypothesized that antibiotic treatment during infancy would

cause persistent changes to the developing microbiome and alter host physiology. Since

antibiotics have been shown to influence weight gain (Kamphorst et al. 2019, Uzan-

Yulzari et al. 2021), we assessed infant weights throughout this study; additionally, as

the immune system is also developing and maturing alongside the microbiome (Vangay

et al. 2015, Tamburini et al. 2016). Therefore, we examined whether antibiotic treat-

ment was associated with altered developmental trajectories of circulating white blood

cells. We found that antibiotics altered the microbiome for up to six months after antibi-

otic treatment and that sex could influence its effects on the microbiome and physiology.

These results indicate that sex is an important variable to consider in microbiome studies,

as the response to external perturbations may differ by sex.
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Materials and Methods

Rhesus Macaques.

Infant colony-bred Indian rhesus macaques (Mucaca mulatta) born and housed at the

California National Primate Research Center (CNPRC) were used in this study. The

animals were negative for simian immunodeficiency virus (SIV), simian T lymphotropic

virus (STLV), and simian retrovirus (SRV), and they did not have a history of pharma-

cological or dietary intervention with known influences on the microbiome. All animals

were healthy for the duration of the study. Animals were enrolled in the study on a

tapered schedule and, although samples were collected once per month, the exact age in

days of each animal may have differed slightly. Age in months and age in days are used

to assess differences on continuous and discrete scales.

Diet, housing, and antibiotics.

All animals were housed indoors and breast-fed by their respective dams until weaning

age at 5 months. Infant monkeys were assigned to a control group (n=8; male n=3,

female n=5) and antibiotic (ABX) treatment group (n=10; male n=5, female n=5).

Antibiotics or saline were administered to animals for 7 consecutive days. We previously

found that intramuscular (I.M.) administration of a broad-spectrum antibiotic cocktail

on postnatal days 1-7 results in an altered intestinal microbiome in rhesus monkeys (data

not shown). Control animals were not administered antibiotics of any kind. In contrast,

the antibiotic-treated animals received an intramuscular (I.M.) broad-spectrum antibiotic

cocktail containing Gentamicin (5 mg/kg), Ampicillin (50 mg/kg), and Vancomycin (15

mg/kg) daily at postnatal days 4 or 5 for 7 days. This cocktail was used because it
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is commonly administered to human infants suspected of having an infection, making

the dosage and regimen in this study clinically relevant. Control animals were given a

saline injection as a substitute for antibiotics via the same administration route, age, and

antibiotic course duration.

Collection of Clinical Data.

Animal weights were measured at least once per month. CBC differentials were conducted

by the California National Primate Research Center research services staff. Animals were

anesthetized with ketamine hydrochloride (5-30 mg/kg) for femoral venipuncture. CBC

differentials were performed on EDTA anticoagulated blood using a Sysmex XT2000i

and blood chemistry was performed using Beckman AU480 chemistry analyzer.

Microbiome Profiling.

DNA extraction.

The fecal microbiota was assessed in total DNA from fecal swabs (Copan fecal swabs).

Fecal swabs were collected monthly for 6 months and stored in Copan collection tubes

at -80◦. Swabs were thawed on ice and vortexed in Clary-Blair media until homoge-

nous. Aliquots of approximately 200 µl were used for total bacterial DNA extraction.

DNA was isolated using the Qiagen DNeasy PowerSoil kit (Qiagen) with the following

modifications. After adding buffer C1, samples were incubated at 65◦ for 10 min and

then subjected to homogenization using a Qiagen TissueLyser (Qiagen) for 10 min at 20

cycles per second. The samples were then turned 180 degrees and subjected to further

homogenization for an additional 10 min at 20 cycles per second, per the manufacturer’s

recommendation. Samples were eluted in 60 µl of buffer C6.
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PCR amplification.

Amplification of the V3-V4 domain of the 16S rRNA gene was performed using a DNA

template and primers 319F (F stands for forward) [TCGTCGGCAGCGTCAGATGTG-

TATAAGAGACAG(spacer)GTAC TCCTACGGGAGGCAGCAGT] and 806R (R stands

for reverse) [GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAG(spacer)CCGGA

CTACNVGGGTWTCTAAT] using a two-step PCR procedure. In step one of the

amplification procedure, both forward and reverse primers contained an Illumina tag

sequence, a variable length spacer to increase diversity and improve the quality of the

sequencing run, a linker sequence, and the 16S target sequence. Each PCR contained 1U

Kapa2G Robust Hot Start Polymerase (Kapa Biosystems), 1.5 mM MgCl2, 0.2 mM final

concentration of deoxynucleotide triphosphate (dNTP) mix, 0.2 µl final concentration

of each primer, and 1 µl of DNA for each sample. PCR conditions were as follows:

an initial incubation of 95◦ for 45 s, 50◦ for 30 s, 72◦ for 30 s, and a final extension

of 72◦ for 3 min. In step two, each sample was barcoded with a unique forward and

reverse barcode combination using forward and reverse primers with an Illumina P5

adaptor sequence, a unique 8-nucleotide (nt) barcode, a partial matching sequence of

the forward adaptor used in step one and reverse primers with an Illumina P7 adaptor,

unique 8-nt barcode, and a partial matching sequence of the reverse adaptor used in

step 1. The PCR in step two contained 1 U Kapa2G Robust Hot Start polymerase

(Kapa Biosystems). 1.5 mM MgCl2, 0.2 mM final concentration dNTP mix, 0.2 µM

final concentration of each uniquely barcoded primer, and 1 µl of the product from the

PCR in step one diluted at 7:1 ratio in water. PCR conditions were as follows: (i) an

initial incubation at 95◦ for 3 min; (ii) 8 cycles, with 1 cycle consisting of 95◦ for 30 s,

58◦ for 30 s, and 72◦ for 30 s; and (iii) a final extension step of 72◦ for 3 min. The final

product was quantified on a Qubit instrument using the Qubit Broad Range DNA kit
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(Invitrogen), and individual amplicons were pooled in equal concentrations. The pooled

library was cleaned utilizing Ampure XP beads (Beckman Coulter). The library was

quantified via qPCR followed by 300-bp paired-end sequencing using an Illumina Miseq

instrument in the Genome DNA Technologies Core, University of California, Davis.

Bioinformatics.

All samples were sequenced on an Illumina MiSeq platform at the Genome DNA Technol-

ogy Core at the University of California, Davis. Analysis began with demultiplexing se-

quence reads. Demultiplexing of the raw FASTQ files and adapter trimming of sequences

were performed using dbcAmplicons version 0.8.5. (https://github.com/msettles/

dbcAmplicons). The unmerged forward and reverse reads were imported into QIIME2

version 2020.8 (https://docs.qiime2.org/2020.8/), and amplicon sequencing variants

(ASVs) were determined following the DADA2 analysis pipeline (Callahan et al. 2016).

Snakemake (Köster and Rahmann 2012) was used as workflow manager to manage the QI-

IME2 environment (https://github.com/nasiegel88/tagseq-qiime2-snakemake-1).

Each sequence was assigned to its given samples based on the given barcode. Reads that

did not match any barcode were discarded (failed to meet minimum quality thresholds).

Barcoded forward and reverse sequencing reads were quality filtered and merged. Se-

quences that were only observed one time or only in a single sample were also discarded.

Chimeras were detected and filtered from paired end reads. Comparison of clustered

sequences was performed against SILVA 138. All data generated in this study utilize

the same instrumentation, technician reference database, packages, and pipeline. Data

processing and filtering and trimming of reads.

The data were filtered as follows: ambiguous phyla were removed, phyla with a mean

prevalence of less than 10 were removed. Taxa were agglomerated at the genus level if
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possible and all taxa without genus-level taxonomic assignments were retained. Samples

with less than 5000 reads were removed.

Statistical analysis.

All R packages involved in analyses were installed in R 4.0.3 and managed by the R

package manager, renv (version 0.12.5) unless otherwise stated. Statistical analysis of

microbial communities was performed primarily using the Bioconductor package Phyloseq

(version 1.34.0). Differential abundance analyses were performed using Linear discrimi-

nant analysis effect size (LEfSe) as described in the literature (Segata et al. 2011). Alpha

diversity indices were computed in Qiime2 and measured as Shannon index, Pielou’s even-

ness, observed ASVs, and phylogenetic diversity. Alpha diversity indices were analyzed

with the permuspliner function in SplinectomeR (version 0.1.0), a permutation-based

package in R that uses weighted local polynomials (loess splines) to test for group dif-

ferences in longitudinal data (Shields-Cutler et al. 2018). This method is less sensitive

to the limitations of using aggregate data over time. We performed 1000 permutations.

Metagenomic analysis of Picrust2 predicted Kegg pathways was analyzed in Statistical

Analysis of Metagenomic Profiles (STAMP, version 2.1.3). Differences in bacterial path-

way % mean proportions were assessed with Welch’s t-test and significance was taken

at p <0.05. All mixed effects models used in this study were fitted using the R pack-

age lmerTest (3.1-3). Animal weights and CBC concentrations were transformed into

z-scores using the study mean and study average to calculate z-scores. Animal weight

was measured across early development with treatment, sex, and age as fixed effects and

animals as random effects. Neutrophil to lymphocyte ratio was measured across early

development with treatment, sex, and age as fixed effects and animals as random effects.

Loess spines were used to account for the non-linear relationship between CBC concen-
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tration and age as previously described in the literature (Pembrey et al. 2008). Splines

were permuted using the Spline base R package (version 4.0.3).

Data availability.

Raw reads were deposited to the Sequence Read Archive (insert project number) and

are available on Open Science Framework (https://osf.io/87gsx/). The figures and

code present in this study can be found on GitHub (https://github.com/lmillergrp/

siegel_et_al_2021).

Results

Study Design.

Infant rhesus macaques enrolled in this study were born and raised indoors. Antibiotic-

treated infants received a broad-spectrum antibiotic cocktail of ampicillin, gentamicin,

and vancomycin during the first week of life, with controls receiving saline. The antibiotic

cocktail in our study is commonly used in clinical settings, making it a relevant model

of antibiotic-induced dysbiosis in pediatric populations. All infants were breastfed by

their mothers until weaned at approximately 5 months of age. We collected fecal swabs,

weights, and blood monthly from postnatal days 4 or 5 until 6 months of age (Fig. 2.1).

Effect of early-life antibiotic treatment on clinical parameters.

We aimed to determine if there were any physiological changes specific to antibiotic-

treated animals. We measured the CBC trajectory from postnatal days 4 or 5 until
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6 months of age. A non-linear mixed-effects model was used to determine if antibiotic

treatment and sex significantly impacted neutrophil-to-lymphocyte ratio (NLR) for age z-

scores. We observed a significant effect of treatment and sex on NLR-for-age z-scores over

six months, with antibiotic-treated animals having fluctuating NLR z-scores and control

animals having a steady decline in NLR-for-age z-scores (p=0.006) (Fig. 2.2a, Table. 2.1).

Other lymphocyte and leukocyte z-scores were assessed, but significant differences were

not observed (Supp. Fig. 2.1a-2.1d).

Given that previous studies implicated an altered microbiome to changes in weight (Cho

et al. 2012, Nobel et al. 2015, Cox and Blaser 2015, Bokulich et al. 2016), we interrogated

whether treatment and sex had a significant effect on weight over 6 months. Animal

weights were transformed into z-scores, and a linear mixed-effects model was constructed

to ascertain the impact of sex and early-life antibiotic treatment on weight-for-age z-

scores. There was a significant impact of sex and age on weight-for-age z-scores (p=0.027)

(Fig. 2.2b, Table. 2.2). Similarly, sex and treatment also significantly impacted weight

over the first six months of life (p=0.017) (Fig. 2.2b, Table. 2.2).

Microbiome composition.

16s rRNA sequencing revealed the most abundant phyla during the first six months

to be Firmicutes, Proteobacteria, Actinobacteria, and Bacteriodota (Fig. 2.3a). De-

spite the top four taxa’s dominant abundances during early life, we observed several

phyla that made up less than 1% of the total composition (Fig. 2.3b). Independent

of antibiotic treatment, Firmicutes made up most of the fecal microbiome composi-

tion every month and consistently increased in proportion while the phyla Proteobac-

teria, Actinobacteria, and Bacteriodota decreased in proportion, albeit to a lesser ex-

tent for Bacteriodota (Fig. 2.3b). The changes in the abundances of Firmicutes, Pro-
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teobacteria, Actinobacteria, and Bacteriodota occurred primarily in antibiotic-treated

infant males (Fig. 2.4b, 2.4e, 2.4h, 2.4k). Firmicutes abundance was significantly re-

duced in antibiotic-treated males at 2 and 3 months, while few alterations were observed

in females (Fig. 2.4b, 2.4c). Actinobacteria had low abundance regardless of antibi-

otic treatment. Despite antibiotic treated infants having increased abundance of Acti-

nobacteria relative to controls, and more pronounced changes in males, by 6 months of

age, Actinobacteria were readily undetectable regardless of previous antibiotic treatment

(Fig. 2.4g, 2.4h, 2.4i). Bacteriodota was most resilient to persistent alterations after

antibiotic treatment (Fig. 2.4d-2.4f).

Differential abundance of taxa and microbiome diversity.

We assessed the microbiome’s diversity on discrete (monthly) and continuous (daily)

scales to understand whether the diversity of the microbiome of antibiotic-treated and

control infants differed over 6 months and where those differences were most pronounced.

Using Loess splines, we demonstrate that early-life antibiotics persistently altered the mi-

crobiome’s alpha diversity, with significant alterations observed in males but not females

(Fig. 2.5a, 2.5b, 2.5c). A longitudinal effect of early-life antibiotic treatment on alpha di-

versity was not observed (Supp. Fig. 2.2). We observed that male infants have reductions

alpha diversity at months 1 and 2, following antibiotic treatment, although these results

did not reach significance. However, by 6 months of age, antibiotic-treated males had

increased alpha diversity compared to control males (Fig. 2.5d, 2.5e, 2.5f). Similar find-

ings were not observed in female infants, further implicating sex as a critical factor in the

persistent effects of early-life antibiotic treatment. Linear discriminant analysis effect size

(LEfSe) was used to assess differential abundance of taxa at each month and to assess sub-

sequent compositional differences in taxa abundance post-early-life antibiotic treatment.

29



CHAPTER 2. DEVELOPING GUT MICROBIOME

Variation in bacteria differential abundance between control and antibiotic-treated infants

primarily resided at 6 months of age (Fig. 2.6a-2.6c). We observed most of the differ-

entially abundant taxa from the phyla Proteobacteria, Firmicutes, and Bacteriodota, in-

cluding o bradymonadales and o delsulfuromonadia for Proteobacteria; o oscillospirales,

f lachnospiraceae, and f oscillospiraceae for Firmicutes ; and f rikenellaceae for Bacte-

riodota in antibiotic-treated infants. Although control infants had fewer differentially

abundant taxa, they were observed to have increased proportions of short-chain fatty

acid-producing bacteria from f lactobacillaceae and another unclassified taxon from the

Lactobacillus group (Fig. 2.6a).

Next, we questioned whether there were sex differences in bacterial differential abun-

dance. We observed prominent differences in the overall number of differentially abun-

dant taxa between antibiotic-treated males and females and control males and females

at 6 months, suggesting that the effects of early-life antibiotic treatment do not become

substantial until later in life (Fig. 2.6b, 2.6c). These differences could be associated

with the instability of the fecal microbiome at such a young age. The number of dif-

ferentially abundant taxa between antibiotic-treated males and females differed between

control males and females (Fig. 2.6b, 2.6c). Control males and females possessed com-

parable numbers of differentially abundant taxa with different taxa increased in each

group (Fig. 2.6b). The results were strikingly different from antibiotic-treated males and

females, which had 20 and 2 differentially abundant taxa, respectively (Fig. 2.6c).

Taxa from the phyla Firmicutes, Bacteriodota, Proteobacteria, Actinobacteria, and

Cyanobacteria were increased in antibiotic treated males, including f erysipelotrichia

from Firmicutes ; f prevotellaceae from Bacteriodota; o rickettsiales from Proteobacte-

ria; g eggerthella and g enterohabdus from Actinobacteriota; and f coriobacteriaceae,

o gastroanerophilales, and g vampirovibrio from Cyanobacteria (Fig. 2.6b). Conversely,
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antibiotic-treated females had increased taxa abundances from the phyla Firmicutes,

specifically g allisonella (Fig. 2.6b). Bacteria from the phylum Fibrobacterota made

up most of the differentially abundant phyla in control males. Also, males had

increased g eubacterium at month 6, whereas control females primarily had increased

abundances of bacteria from the phyla Proteobacteria, including o pasteurellales and

f pasteurellaceae; and Firmicutes, specifically g faecalibacterium. Additionally, control

females had increased taxa abundances from the order lactobacillus, including g weissel

and f leuconostocaceae (Fig. 2.6b, 2.6c).

Similar to what was observed at six months of age, we report many differentially abundant

taxa after the first week of life (at month 0) in control animals (Fig. 2.5a). Furthermore,

control females had higher proportions of Actinobacteria, of which g bifidobacteria is a

part, at months two and four (Fig. 2.5b, 2.5d). The number of differentially abundant

taxa at months 0-5 was relatively small compared to the differences observed at six

months, suggesting that the temporal changes in the microbiome after early-life antibiotic

treatment are most pronounced later in life. Taxa that were often increased at months 0-5

in antibiotic-treated infants were Actinobacteria and g bifidobacteria. Control infants had

significantly increased proportions of g campylobacter and g helicobacter pronounced at

1 month (Fig. 2.6b). Captive rhesus monkeys are commonly colonized with helicobacter

suggesting the bacteria is part of the normal microbiota of rhesus macaques (Fernandez

et al. 2002).

The metagenomic function of the developing microbiome.

Given that many taxa have redundant metabolic processes, we aimed to determine if

changes in predicted metagenomic function accompanied the observed changes in the

microbiome composition. We used Phylogenetic Investigation of Communities by Re-
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construction of Unobserved States 2 (picrust2) to interrogate the mean proportion of

differentially abundant bacteria metabolic pathways (Douglas et al. 2020). Variation in

predicted metagenomic pathways occurred between antibiotic-treated and control infants

(Fig. 2.7a); however, fewer differences in metabolic pathways were observed between sex

(Fig. 2.7b, 2.7c). 6 months of age was characterized by the most pronounced changes

in bacteria metabolic pathways. Of note, pathways known to convert pyruvate to short-

chain fatty acids, such as acetate, were observed to be reduced in infants treated with

antibiotics during the first week of life (Fig. 2.7a). A pathway responsible for converting

pyruvate to acetate was significantly increased in control infants relative to antibiotic-

exposed infants.

Despite the majority of metagenomic differences occurring primarily at six months of age,

we also observed metagenomic functional changes throughout the study. For example, the

first week of life was when most differences in predicted metabolic pathways were observed

between antibiotic-treated and control infants (Supp. Fig. 2.6a) compared to other ages.

However, by 1-month of age, much of the differences in metagenomic pathways between

antibiotic-treated and control infants were resolved, suggesting a slight but temporary

return to normal microbiome function (Supp. Fig. 2.6b-2.6f). Four months of age was

when most differences in metagenomic pathways between sexes in the control group were

observed (Supp. Fig. 2.8e) however, fewer differences in metagenomics function were

observed between sexes in the antibiotic group (Supp. Fig. 2.7a-2.7c).

Discussion

The effects of early life antibiotic treatment on the developing infant microbiome are

poorly defined. Additionally, the sex-dependent effects of antibiotics are often not ex-
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amined. To address this, we set out to investigate the impact of antibiotic treatment

during the first week of life on physiology and the microbiome in a longitudinal manner.

We found that the most abundant phyla in the infant rhesus macaque microbiome were

Firmicutes, Proteobacteria, Actinobacteria, and Bacteriodota (Fig. 2.2a). This finding

is comparable with that of Rhoades et al. 2019, which demonstrated that the develop-

ing rhesus microbiome is primarily Firmicutes and Bacteriodota (Rhoades et al. 2019).

Similarly, they found that Actinobacteria decreased with age, which we also observed

(Fig. 2.3g, 2.3h, 2.3i). Antibiotic treatment influenced the temporal abundance of these

phyla, with more pronounced changes in antibiotic treated males than control males

(Fig. 2.3). Changes in alpha diversity were also significantly impacted in antibiotic-

treated males (Fig. 2.5b, 2.5e). While alpha diversity was initially lower in antibiotic-

treated males relative to control males, it was significantly higher by 6-months of age.

These results concur with a recent study which showed that human infants exposed to

antibiotics early in life developed an altered microbiome composition and increased alpha

diversity that surpasses the control group by about two years of age (Uzan-Yulzari et al.

2021).

We found that antibiotic administration during the first week of life was associated with

alterations in weight-for-age z-scores, with antibiotic-treated infants having a trend to-

wards higher weight-for-age z-scores during 5 and 6 months of age (Fig. 2.4b). While

antibiotic treatment alone was not associated with alterations in weight-for-age z-scores,

sex and antibiotic treatment together did (Table 2.2) , indicating that the effects of an-

tibiotics on weight-for-age z-scores are sex-dependent. Other studies that have examined

the effects of antibiotics on growth have also found sex differences in weight gain fol-

lowing antibiotic treatment (Cox et al. 2014, Uzan-Yulzari et al. 2021). The timing

of antibiotic exposure matters, as antibiotic treatment during the first few weeks of life
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is associated with decreased weight gain with age, while antibiotic treatment later in

infancy and childhood is associated with increased weight gain (Kamphorst et al. 2019,

Uzan-Yulzari et al. 2021). Unlike others, we found that antibiotic treatment during the

first week of life was associated with a trend towards increased weight with age. Such a

difference could be partially attributable to our study’s duration, as we assessed weights

during the first six months of life while other studies monitored weight for the first few

years of life (Kamphorst et al. 2019, Uzan-Yulzari et al. 2021). Our study also took

place in a controlled environment in contrast to epidemiological studies where there can

be variability in the type of antibiotics infants receive and the duration of treatment.

Uzan-Yulzari et al., 2021 demonstrated that increased antibiotic treatment during in-

fancy causes significant changes in weight-for-age z scores relative to untreated controls

(Uzan-Yulzari et al. 2021). Thus, the effects of antibiotics on weight may be influenced

by the type and duration of antibiotic treatment. Of the clinical parameters we ex-

amined, the most significant difference we found between antibiotic-treated infants and

controls was in the NLR-for-age z-score (Fig. 2.4a, Table 2.1). Antibiotic-treated infants

had fluctuating NLR-for-age z-scores, initially lower during early-life and then higher

than control infants around five to six months of age. Control infants had decreased

NLR-for-age z-scores with age. NLR is a marker of subclinical inflammation; thus, an

increase in NLR-for-age z-scores could suggest mild inflammation. Antibiotics have been

shown to influence inflammation, though generally in a more acute fashion (Knoop et al.

2016). However, the microbiome was also altered at 6 months of age in our infants and

could provoke inflammation, even months after antibiotic treatment.

Although control infants had fewer differentially abundant taxa, they were observed to

have increased proportions of short-chain fatty acid-producing bacteria from Lactobacil-

laceae and another unclassified taxon from the Lactobacillus group (Fig. 2.6a). Metage-
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nomic analysis of the microbiome further supported this difference, as pathways related

to short-chain fatty acid (SCFA) metabolism were reduced in antibiotic-treated infants

compared to controls (Fig. 2.7a). Short-chain fatty acids have anti-inflammatory prop-

erties, in addition to many other health benefits (Park et al. 2015, Tang and Offermanns

2017, Ratajczak et al. 2019, Venegas et al. 2019). Antibiotic-treated infants did have

greater microbiome diversity at six months compared to controls, and it is conventionally

thought that greater diversity of the microbiome is more beneficial for health. Various

diseases are associated with reduced microbiome diversity (DiGiulio et al. 2015, Wlo-

darska et al. 2015, Needell and Zipris 2016, Tremlett et al. 2017, Levy et al. 2017, Weiss

and Hennet 2017). However, this is not always the case, as higher diversity of the vagi-

nal microbiome is associated with pre-term birth (Biagi et al. 2016) and inflammation

(Anahtar et al. 2015). Our results suggest that although antibiotic-treated infants have

increased diversity metrics relative to control infants, not all the taxa contributing to

increased diversity are necessarily beneficial.

LEfSe analysis (Fig. 2.6a) showed that the most significant differences in bacteria differ-

ential abundance between antibiotic-treated infants and controls were at six months of

age, in accordance with our finding that the most significant differences in alpha diversity

were seen at that age. The number of differentially abundant taxa was similar between

control males and females (Fig. 2.6c), which was not the case in antibiotic-treated infants.

Antibiotic-treated males had twenty differentially abundant taxa, while antibiotic-treated

females had two (Fig. 2.6b). While it has been demonstrated that there are sex differ-

ences in the microbiome, it has not previously been shown that antibiotics can have a

sex-dependent effect on the microbiome. Aside from pre-existing sex differences in the

microbiome, the only environmental factor that has been shown to exert sex-dependent

effects on the microbiome is diet. Analysis and re-analysis of microbiome studies demon-
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strated that sex*diet interactions could modify the microbiome (Bolnick et al. 2014).

Administration of an oligofructose supplement caused reduced fecal community richness

in males, while increasing it in females (Shastri et al. 2015). The effects of diet on the mi-

crobiome can be sex-dependent, and thus it is not unsurprising that antibiotics can also

affect the microbiome in a sex-dependent manner. Although we found compositional

differences in the microbiome with respect to sex, few metagenomic functions differed

between the sexes. We could not detect differences in metagenomic pathways for every

month (Supp. Fig. 2.7, Supp. Fig. 2.8).

Our study has limitations, for example, the samples size for control males was small

(n=3) which limited our ability to detect statistically significant differences. Changes

in metabolic functions will need to be confirmed by examining differences in circulat-

ing levels of metabolites. While we have data supporting the differences during infancy,

we cannot say whether these antibiotic-induced alterations persist into adulthood. Fur-

thermore, while we have detected sex differences in the microbiome and response to

antibiotic treatment, this data does not reveal the mechanism by which this is happen-

ing. Sex differences in the microbiome could be influenced by genetics, differences in

mucosal immunity, and sex hormone (Yurkovetskiy et al. 2013, Org et al. 2016).

In summary, our results indicate that antibiotic treatment during the first week of life in

infant rhesus macaques can have lasting effects on the microbiome months after treatment

at a compositional and functional level. Furthermore, antibiotic treatment impacted

weight-for-age z-scores, an effect influenced by sex. We also found that there were sex-

dependent effects of antibiotics on the microbiome, with changes most pronounced in

antibiotic-treated male infants. Our study is the first to report sex-dependent changes

in the microbiome following antibiotic treatment. These findings indicate the possibility

that other environmental factors could have sex-dependent effects on the microbiome.
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Figures

Figure 2.1: Experimental Design. Study design (Fig. 1)
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FIGURES

Figure 2.2: Early-life antibiotics causes persistent physiological changes in neutrophil-
to-lymphocyte ratio and weight. Mixed effects model of Neutrophil-to-lymphocyte ratio
over the first 6 months of life (age measured in days). Weight increase over the first 6
months of life (age measured in days) (Fig. 2a). The area around the splines in the
NLR model represent 95% confidence intervals. The weight model is represented by age
in months for simplicity (Fig. 2b). Error bars in weight mixed effected model represent
the standard error of the mean. Age in days and sex were included as covariates the
NLR and weight mixed effects models. Sample sizes were as follows: Antibiotic exposed
infants (n=14), Control infants (n=12), Antibiotic exposed males (n=9), antibiotic ex-
posed females (n=5), control males (n=6), and control females (n=6). We were able to
include an additional 8 animals for our regression analyses for months 0-5 bringing the
total samples size to 26 for those time points.
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FIGURES

Figure 2.3: Proteobacteria, Firmicutes, Bacteroidota, and Actinobacteria make up the
majority of developing fecal microbiota composition during the first 6 months of life.
Percent abundance of all phyla >1% of total reads (Phyla representing <1% of the total
reads were binned as “Remainder”) (Fig. 3a) and total composition of antibiotic treated
animals (top) and control animals (bottom) over 6-months (Fig. 3b).
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Figure 2.4: Early-life antibiotic exposure has both transient and lasting effects on the
composition of the infant rhesus microbiome. Prominent changes are observed in males
(Fig. 4a, 4e, 4h, 4k) relative to females (Fig. 4c, 4f, 4i, 4l). Abundance trajectories of
Firmicutes (Fig. 4a, 4b, 4c), Bacteroidota (Fig. 4d, 4e, 4f), Actinobacteria (Fig. 4g,
4h, 4i) and Proteobacteria (Fig. 4j, 4k, 4l) were measured as the percent of read reads
mapped to a given phyla for each sample. Sample sizes were as follows: Antibiotic ex-
posed infants (n=10), Control infants (n=8), Antibiotic exposed males (n=5), antibiotic
exposed females (n=5), control males (n=3), and control females (n=5). Due to a collec-
tion issue, one month-6 fecal swab is missing from the female control group. P <0.05 by
ANOVA with paired samples t-test and Bonferroni correction. *, P <0.05; **, P <0.005.
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Figure 2.5: Persistent changes in alpha diversity are most pronounced at 6 months and
in males. Changes in alpha diversity were more pronounced in males than females. Bac-
teria evenness of richness (Pielou’s evenness) over time distinguishes from control (group
spline in blue) and ABX (group spline in red) infants. Pielou’s evenness between antibi-
otic treated and untreated males and females (1000 permutations, p=0.21) (Fig. 5a),
evenness between antibiotic treated and untreated males (1000 permutations, p=0.02)
(Fig. 5b), and evenness between antibiotic treated and untreated females (1000 permu-
tations, p=0.98) (Fig. 5c). Pielou’s evenness for both sexes (Fig. 5d), males (Fig. 5e),
and females (Fig. 5f). Alpha diversity measured as Shannon index for box sexes (Fig.
5g), males (Fig. 5h), and females (Fig 5i). Sample sizes were as follows: Antibiotic ex-
posed infants (n=10), Control infants (n=8), Antibiotic exposed males (n=5), antibiotic
exposed females (n=5), control males (n=3), and control females (n=5). Due to a collec-
tion issue, one month-6 fecal swab is missing from the female control group. P <0.05 by
ANOVA with paired samples t-test and Bonferroni correction. *, P <0.05; **, P <0.005.
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Figure 2.6: Early antibiotic exposure promotes differences in taxa abundances. Differ-
ential abundance was assessed using LEfSe to determine how different the microbiome
of antibiotic-exposed and unexposed infants (Fig. 6a), antibiotic-exposed males and fe-
males (Fig. 6b), and control male and females (Fig. 6c), are at 6 months of age. Sample
sizes were as follows: Antibiotic exposed infants (n=10), Control infants (n=8), Antibi-
otic exposed males (n=5), antibiotic exposed females (n=5), control males (n=3), and
control females (n=5). Due to a collection issue, one month-6 fecal swab is missing from
the female control group. (α= 0.05, logarithmic LDA score threshold = 2.0)
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Figure 2.7: Metagenomic pathways are altered with early-life antibiotic treatment. Kegg
biomarkers significantly different between antibiotic-treated (red) control (blue) infants
(Fig. 7a). Kegg biomarkers significantly different between control (Fig. 7b) and antibi-
otic (Fig. 7c) exposed males (purple) and females (pink) at 6 months of age. Sample
sizes were as follows: Antibiotic exposed infants (n=10), Control infants (n=8), Antibi-
otic exposed males (n=5), antibiotic exposed females (n=5), control males (n=3), and
control females (n=5). Due to a collection issue, one month-6 fecal swab is missing from
the female control group.
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Supplementary Figure 2.1: Effect of early-life antibiotic exposure on clinical parameters.
Mixed- effects models of eosinophil (Supp. 1a), total white blood cell (Supp. 1b), mono-
cyte (Supp. 1c), and lymphocyte (Supp. 1d) concentration (cell/µl) z scores over the first
6 months of life. Loess splines were used to smooth data to account for the non-linear
relationship between blood cell differential concentration and age. Age in days, sex, and
antibiotic treatment status were used as covariates in the mixed-effects models.
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Supplementary Figure 2.2: Longitudinal effect of early antibiotic exposure on alpha
diversity. Alpha diversity was measured as Shannon entropy (Supp. 2a-2c), observed
ASVs (Supp. 2e-2f), and phylogenetic diversity (Supp. 2g-2i). Splines were permuted
using the permuspliner function in the SplinectomeR to assess the longitudinal effect of
antibiotics on infant’s alpha diversity in the fecal microbiome.
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Supplementary Figure 2.3: LEfSe Differential abundance of taxa (antibiotic exposed and
control). Differential abundance between antibiotic exposed and unexposed infants at
month 0 (Supp. 3a), month 1 (Supp. 3b), month 2 (Supp. 3c), month 3 (Supp. 3d),
month 4 (Supp. 3e), and month 5 (Supp. 3f). (α= 0.05, logarithmic LDA score threshold
= 2.0)
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Supplementary Figure 2.4: LEfSe Differential abundance of taxa (antibiotic exposed
males and females). Differential abundance between antibiotic treated males and females
at month 0 (Supp. 4a), month 1 (Supp. 4b), month 2 (Supp. 4c), month 3 (Supp. 4d),
month 4 (Supp. 4e), and month 5 (Supp. 4f). (α= 0.05, logarithmic LDA score threshold
= 2.0)
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Supplementary Figure 2.5: LEfSe Differential abundance of taxa (control males and
females). Differential abundance between control males and females at month 0 (Supp.
5a), month 2 (Supp. 5b), month 3 (Supp. 5c), month 4 (Supp. 5d), and month 5 (Supp.
5e). There were no differentially abundant taxa observed at 1 month between control
males and females. (α= 0.05, logarithmic LDA score threshold = 2.0)
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Supplementary Figure 2.6: The metagenomic function of the developing microbiome be-
tween antibiotic-exposed and control infants. Predicted KEGG biomarkers significantly
different between antibiotic exposed (red) and control (blue) infants at 0 months (Supp.
6a), 1 month (Supp. 6b), 2 months (Supp. 6c), 3 months (Supp. 6d), 4 months (Supp.
6e), and 5 months (Supp. 6f).
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Supplementary Figure 2.7: The metagenomic function of the developing microbiome
between antibiotic-exposed males and females. KEGG biomarkers significantly different
between antibiotic exposed males (purple) and females (pink) at 1 month (Supp. 7a), 2
months (Supp. 7b), 3 months (Supp. 7c). There were not significantly different Kegg
biomarkers observed at 0 months.
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Supplementary Figure 2.8: The metagenomic function of the developing microbiome
between control males and females. KEGG biomarkers significantly different between
control males (purple) and females (pink) at 0 months (Supp. 8a), 1 month (Supp. 8b),
2 months (Supp. 8c), 3 months (Supp. 8d), 4 months (Supp. 8e), 5 months (Supp. 8f).
There were not significantly different Kegg biomarkers observed at 5 months.
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Tables

Table 2.1: Neutrophil to lymphocyte ratio z-score non-linear mixed-effects model.
Variance of fixed effects were assessed through ANOVA.

Neutrophil to lymphocyte ratio z-score non-linear mixed-effects model.

V ariables SumSq MeanSq NumDF DenDF Fvalue Pr(> F )

ns(age days, df = 5) 0.428 0.086 5 108.17 0.152 0.979

Sex 0.824 0.824 1 94.876 1.467 0.229

Treatment 0.242 0.242 1 94.876 0.431 0.513

ns(age days, df = 5) : Sex 5.301 1.06 5 108.17 1.889 0.102

ns(age days, df = 5) : Treatment 1.035 0.207 5 108.17 0.369 0.869

Sex : Treatment 1.017 1.017 1 94.876 1.811 0.182

ns(age days, df = 5) : Sex : Treatment 10.134 2.027 5 108.17 3.611 0.005
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Table 2.2: Weight z-score linear mixed-effects model. Variance of fixed effects were
assessed through ANOVA.

Weight z-score linear mixed-effects model.

V ariables SumSq MeanSq NumDF DenDF Fvalue Pr(> F )

sex 0.021 0.021 1 26.984 0.62 0.438

treatment 0.004 0.004 1 26.984 0.119 0.733

age days 150.164 150.164 1 159.231 4513.809 0

sex : treatment 0.022 0.022 1 26.984 0.667 0.421

sex : age days 0.165 0.165 1 159.231 4.955 0.027

treatment : age days 0.108 0.108 1 159.231 3.254 0.073

sex : treatment : age days 0.193 0.193 1 159.231 5.79 0.017

59



Chapter 3

Early Life Antibiotic Exposure

affects the Nasopharyngeal

Microbiota and Pulmonary Function

in Rhesus Macaques

The first scientific postulate is the objectivity of nature:

nature does not have any intention or goal.

Jacques Lucien Monod

Abstract

Background: Judicial use of antibiotics is essential for human health; however, overuse

of antibiotics has been linked to allergy development and other maladies. Whether pre-

ventative or curative, use of antibiotics can persistently affect the architecture of the
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ABSTRACT

developing respiratory microbiome is unknown. External factors such as tobacco smoke

and infection have been implicated in the alteration of the gut and respiratory micro-

biomes of adults. Infants are susceptible to the effects of excessive antibiotic usage as

disruption of microbiome maturation has been associated with persistent and pathologi-

cal microbiome changes in rodent models. In addition to microbiome maturation, early

development includes important lung developmental milestones necessary for proper lung

function in adulthood. Here, we aimed to define the developing upper respiratory micro-

biome and assess whether antibiotic treatment would alter the microbiome of the upper

respiratory tract in addition to altering pulmonary function. Results: Administration

of a broad-spectrum antibiotic cocktail during the first week of life had transient effects

on respiratory microbiome composition and function—alterations in microbiome com-

position were more pronounced when sex was considered. Lung function was reduced

in antibiotic-treated male infants, and lung gene expression correlated with taxa abun-

dances in the upper respiratory tract microbiome. Microbiome function was assessed

using PiCrust, and metagenomic functional changes to the microbiome occurred in ad-

dition to microbiome changes in composition. Fewer bacteria pathway expression was

observed in antibiotic-treated infants. Conclusion: Antibiotic treatment altered the

respiratory microbiome, particularly in male infants. Changes in the composition of the

respiratory microbiome occurred in parallel with physiological changes in lung function

and expression of growth and development genes. Microbiome function was altered in

conjunction with both microbiome and lung function changes.
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Introduction

The lung serves is an important site for gas exchange in the body and is essential for

respiration. In humans, the lung completes most of its growth during the first few years

of life, and continued alveolarization and microvascular maturation commence into young

adulthood (Schittny 2017). Recent findings demonstrate the interaction between the gut

and lung in the complex interplay of the gut-lung axis (Gray et al. 2017). This interaction

is partly due to bacteria and their bi-products, which can, directly and indirectly, interact

with the immune system (Niu et al. 2023). Despite evidence of bi-directional crosstalk

between the gut and lung, most studies focus on how the gut modulates the lung (Levan

et al. 2019). However, researchers are increasingly studying lung and gut microbiome

relationships (Segal et al. 2013, Dickson et al. 2014). Tobacco and some viral infections

such as influenza and SARS-CoV-2 can alter the composition of the gut microbiome (Gu

et al. 2020, Prakash et al. 2021, Zuo et al. 2021). Changes to the microbiome of the

respiratory tract locally alter pulmonary physiology and immune function (Wang et al.

2013, Li et al. 2017).

We have previously demonstrated that early-life antibiotic treatment in infant rhesus

monkeys leads to long-term alterations in microbiome diversity of the gut microbiome

(unpublished). Additionally, we found that antibiotic treatment results in physiological

changes, including reduced neutrophil-to-lymphocyte (NLR) ratio and elevated weight

z-scores in antibiotic-treated infants. These findings suggested that antibiotics, when

administered during an early window, can persistently alter the microbiome of rhesus

monkeys. Acquiring a microbiome begins when an infant exits through the birth canal,

and once born, the infant’s microbiota is highly susceptible to change (Marques et al.

2010, Koenig et al. 2011, Natividad et al. 2022). Perturbation of the microbiome at this
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early juncture is known to promote increased weight and asthma severity (Strömberg

Celind et al. 2018, Uzan-Yulzari et al. 2021). Other researchers have made similar

conclusions, primarily in murine models (Cox et al. 2014, Adami et al. 2018). However,

whether antibiotics administered in early life can affect the microbiome in other mucosal

sites, such as the upper respiratory tract, is unknown.

The respiratory microbiome is much less studied due to its low microbial density and

transient nature than the gut microbiome. However, evidence suggests the lung mi-

crobiome affects lung function as both Actinobacteria and Gemella abundance in the

respiratory tract is associated with decreasing Forced Vital Compacity (FCV) (Lee et al.

2019). We hypothesized that antibiotic treatment during the first week of life would be

associated with nasopharyngeal microbiome alternations and physiological detriments in

the respiratory tract.

To understand how early-life antibiotic treatment affects the developing microbiome and

the lung, infant rhesus monkeys were given an antibiotic cocktail containing broad-

spectrum antibiotics daily for 7 days. We define the developing rhesus monkey mi-

crobiome with 16s rRNA sequencing for 6 months and further investigate the effects of

early antibiotic disruption on the developing nasopharyngeal microbiome.

Materials and Methods

Rhesus Macaques.

Infant colony-bred Indian rhesus macaques (Mucaca mulatta) born and housed at the

California National Primate Research Center (CNPRC) were used in this study. The

animals were negative for simian immunodeficiency virus (SIV), simian T lymphotropic
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virus (STLV), and simian retrovirus (SRV), and they did not have a history of pharma-

cological or dietary intervention with known influences on the microbiome. All animals

were healthy for the duration of the study. Animals were enrolled in the study on a

tapered schedule, and although samples were collected once per month, the exact age in

days of each animal may have differed slightly. Age in months and age in days are used

to assess differences on continuous and discrete scales.

Diet, housing, and antibiotics.

All animals were housed indoors and breast-fed by their respective dams until weaning at

5 months. Infant monkeys were assigned to a control group (n=8; male n=3, female n=5)

and an antibiotic (ABX) treatment group (n=10; male n=5, female n=5). Antibiotics

or saline were administered to animals for 7 consecutive days. We previously found that

intramuscular (I.M.) administration of a broad-spectrum antibiotic cocktail on postnatal

days 1-7 results in an altered intestinal microbiome in rhesus monkeys (data not shown).

Control animals were not administered antibiotics of any kind.

In contrast, the antibiotic-treated animals received an intramuscular (I.M.) broad-

spectrum antibiotic cocktail containing Gentamicin (5 mg/kg), Ampicillin (50 mg/kg),

and Vancomycin (15 mg/kg) daily at postnatal days 4 or 5 for 7 days. This cocktail

was used because it is commonly administered to human infants suspected of having

an infection, making the dosage and regimen in this study clinically relevant. Control

animals were given a saline injection as a substitute for antibiotics via the same

administration route, age, and antibiotic course duration.
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RT-PCR.

Left cranial lobes were collected at necropsy, inflated with RNAlater, and micro-dissected

into 3 sections: proximal, mid-level, and respiratory bronchioles. Tissue was frozen in

RNAlater (Thermo Scientific) and stored at -80◦C until RNA was ready to be collected.

Tissue was thawed on ice with Trizol (Life Technologies). RNA was extracted using the

manufacturer’s instructions. RNA was treated using the Turbo DNA-free Kit (Invit-

rogen). RNA concentration was measured using the NanoDrop (ND-1000 Spectropho-

tometer). To generate cDNA, 500 ng of RNA was loaded into a 50 uL reaction with the

MultiScribe Reverse Transcriptase (Applied Biosystems). 2µL of cDNA was loaded into

the qPCR reaction with TaqMan Gene Expression Master Mix (Applied Biosystems).

FAM TaqMan probes (Thermo Scientific) specific for rhesus FGF10 (Rh00610298 m1)

and FGF7 (Rh02888111 m1) were used to amplify targets. Samples were run on the

QuantStudio at the CNPRC in the PAL Core.

Microbiome Profiling.

DNA extraction.

The nasopharyngeal microbiota was assessed in total DNA from nasal swabs (Copan

nasal swabs). Nasal swabs were collected monthly for 6 months and stored in Copan

collection tubes at -80◦. Swabs were thawed on ice and vortexed in Clary-Blair media

until homogenous. Aliquots of approximately 200 µl were used for total bacterial DNA

extraction. DNA was isolated using the Qiagen DNeasy PowerSoil kit (Qiagen) with the

following modifications. After adding buffer C1, samples were incubated at 65◦ for 10

min and then subjected to homogenization using a Qiagen TissueLyser (Qiagen) for 10
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min at 20 cycles per second. The samples were then turned 180 degrees and subjected

to further homogenization for an additional 10 min at 20 cycles per second, per the

manufacturer’s recommendation. Samples were eluted in 60 µl of buffer C6.

PCR amplification.

Amplification of the V3-V4 domain of the 16S rRNA gene was performed using a DNA

template and primers 319F (F stands for forward) [TCGTCGGCAGCGTCAGATGTG-

TATAAGAGACAG(spacer)GTAC TCCTACGGGAGGCAGCAGT] and 806R (R stands

for reverse) [GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAG(spacer)CCGGA

CTACNVGGGTWTCTAAT] using a two-step PCR procedure. In step one of the

amplification procedure, both forward and reverse primers contained an Illumina tag

sequence, a variable length spacer to increase diversity and improve the quality of the

sequencing run, a linker sequence, and the 16S target sequence. Each PCR contained 1 U

Kapa2G Robust Hot Start Polymerase (Kapa Biosystems), 1.5 mM MgCl2, 0.2 mM final

concentration of deoxynucleotide triphosphate (dNTP) mix, 0.2µL final concentration

of each primer, and 1µL of DNA for each sample. PCR conditions were as follows: an

initial incubation of 95◦ for 45 s, 50◦ for 30 s, 72◦ for 30 s and a final extension of 72◦ for

3 min. In step two, each sample was barcoded with a unique forward and reverse barcode

combination using forward and reverse primers with an Illumina P5 adaptor sequence,

a unique 8-nucleotide (nt) barcode, a partial matching sequence of the forward adaptor

used in step one and reverse primers with an Illumina P7 adaptor, unique 8-nt barcode,

and a partial matching sequence of the reverse adaptor used in step 1. The PCR in

step two contained 1U Kapa2G Robust Hot Start polymerase (Kapa Biosystems). 1.5

mM MgCl2, 0.2 mM final concentration dNTP mix, 0.2 µM final concentration of each

uniquely barcoded primer, and 1µL of the product from the PCR in step one diluted at
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7:1 ratio in water. PCR conditions were as follows: (i) an initial incubation at 95◦ for

3 min; (ii) 8 cycles, with 1 cycle consisting of 95◦ for 30 s, 58◦ for 30 s, and 72◦ for 30

s; and (iii) a final extension step of 72◦ for 3 min. The final product was quantified on

a Qubit instrument using the Qubit Broad Range DNA kit (Invitrogen), and individual

amplicons were pooled in equal concentrations. The pooled library was cleaned utilizing

Ampure XP beads (Beckman Coulter). The library was quantified via qPCR followed

by 300-bp paired-end sequencing using an Illumina Miseq instrument in the Genome

DNA Technologies Core, University of California, Davis.

Bioinformatics.

All samples were sequenced on an Illumina MiSeq platform at the Genome DNA

Technology Core at the University of California, Davis. Analysis began with

demultiplexing sequence reads. Demultiplexing of the raw FASTQ files and

adapter trimming of sequences were performed using dbcAmplicons version 0.8.5.

(https://github.com/msettles/dbcAmplicons). The unmerged forward and reverse

reads were imported into QIIME2 version 2020.8 (https://docs.qiime2.org/2020.8/),

and amplicon sequencing variants (ASVs) were determined following the DADA2

analysis pipeline (Callahan et al. 2016). Snakemake (Köster and Rahmann

2012) was used as a workflow manager to manage the QIIME2 environment

(https://github.com/nasiegel88/tagseq-qiime2-snakemake-1). Each sequence

was assigned to its given samples based on the given barcode. Reads that did not match

any barcode were discarded (failed to meet minimum quality thresholds). Barcoded

forward and reverse sequencing reads were quality-filtered and merged. Sequences that

were only observed one time or only in a single sample were also discarded. Chimeras

were detected and filtered from paired-end reads. Comparison of clustered sequences
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was performed against SILVA 138. All data generated in this study utilize the same

Data processing, filtering and trimming of reads, instrumentation, technician reference

database, packages, and pipeline.

The data were filtered as follows: ambiguous phyla were removed and phyla with a mean

prevalence of less than 10 were removed. Taxa were agglomerated at the genus level if

possible and all taxa without genus-level taxonomic assignments were retained. Samples

with less than 5000 reads were removed.

Statistical analysis.

All R packages involved in analyses were installed in R 4.0.3 and managed by the pack-

age manager, mamba, unless otherwise stated. Linear correlations were done using the

stat cor function from the ggpubr (version 0.4.0) R package. Statistical analysis of mi-

crobial communities was performed primarily using the Bioconductor package Phyloseq

(version 1.34.0). Differential abundance analyses were performed using Linear discrimi-

nant analysis effect size (LEfSe) as described in the literature (Segata et al. 2011). Al-

pha diversity indices were computed in Qiime2 and measured as Shannon index, Pielou’s

evenness, observed ASVs, and phylogenetic diversity. This method is less sensitive to

the limitations of using aggregate data over time. We performed 1000 permutations.

Metagenomic analysis of Picrust2 predicted Kegg pathways was analyzed in Statistical

Analysis of Metagenomic Profiles (STAMP, version 2.1.3). Differences in bacterial path-

way % mean proportions were assessed with Welch’s t-test and significance was taken at

p <0.05.
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Data availability.

Raw reads were deposited to the Sequence Read Archive (insert project number) and

are available on Open Science Framework (https://osf.io/87gsx/). The figures and

code present in this study can be found on GitHub (https://github.com/lmillergrp/

siegel_et_al_2021).

Results

Microbiome composition

The developing infant rhesus monkey microbiome was measured to be predominantly

composed of the phyla Firmicutes, Actinobacteriodota, Fusobacteriota, and Proteobac-

teria. These four phyla accounted for 99% of the detectable microbes in the nasal

microbiome. In contrast, the remaining phyla accounted for 1% (Fig. 3.1a). Of the

predominant phyla of the upper respiratory microbiome, significant differences in taxa

abundance were only observed between antibiotic-treated and control monkeys in Firmi-

cutes, Fusobacteriota, and Proteobacteria. A significant increase in Firmicutes abundance

was observed at 6-months. When sex was considered it was observed that the difference

in Firmicutes abundance was primarily driven by males and not females (Fig. 3.7a-

3.7c). Antibiotic-treated females demonstrated elevated Fusobacteriota at months 0 and

2. Additionally, Proteobacteria abundance was elevated on month 4 for antibiotic-treated

females (Fig. 3.7i). Lastly, although the phylum Actinobacteriodota was the most highly

abundant phylum in the nasal microbiome, no significance of early-life antibiotic treat-

ment was observed with or without taking sex into account.
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Pulmonary function

Pulmonary function testing was conducted on all animals at 6 months of age. Our re-

sults demonstrated a sexually dimorphic reduction in vital compacity, a measure of lung

function, in antibiotic-treated males compared to control males. At the same time, no

significant difference was observed in females (Fig. 3.1b). We suspected that the respira-

tory microbiome may have a role in the changes observed in pulmonary function. Thus,

the composition of the nasopharyngeal microbiome was assessed using 16S sequencing.

Diversity is a standard marker of microbiome health, with changes marking a change

in health status (Lloyd-Price et al. 2016, Jackson et al. 2018). We first correlated

measures of lung function to both nasal microbiome diversity and bacterial abundance

of the nasal microbiome. The only microbe that correlated with pulmonary function

was g [Eubacterium] coprostanoligenes group (LDA=3.88) (Fig. 3.5d). However, mea-

sures of microbiome diversity correlated with multiple measures for pulmonary function,

including Total Lung Volume, and Vital and Inspiratory Capacity (Fig. 3.5a-3.5c).

Lefse was used to identify differentially abundant taxa between antibiotic and control an-

imals each month (Segata et al. 2011). To determine if changes in gene expression could

be associated with reduced lung function, we then focused on genes related to growth

and development (data not shown). Micro-dissected airways from rhesus monkeys were

separated into 3 components: proximal, middle-level, and respiratory bronchioles. Next,

correlations were conducted to determine whether the microbiome abundance of specific

taxa at 6 months of age correlated with lung gene expression. Fibroblast Growth Factor

10 and 7 (FGF10 and FGF7) expression in the proximal airways were 2 of the only

genes investigated that showed a prominent relationship between taxa abundance in the

upper respiratory tract (Fig. 3.2, Fig. 3.3). Except for p Actinobacteriota (LDA=5.13)
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which negatively correlated with FGF10 expression, taxa positively correlated with

increasing FGF10 expression included: c Clostridia (LDA=4.75), f Eggerthellaceae

(LDA=4.37), f Ruminococcaceae (LDA=4.65), g Ruminococcaceae (LDA=4.65),

g Slackia (LDA=4.37), o Oscillospirales (LDA=4.67), p Firmicutes (LDA=4.87)

(Fig. 3.2). Of these taxa, f Eggerthellaceae, and g Slackia positively correlated with

FGF10 expression in control animals; conversely c Clostridia, f Ruminococcaceae,

g Ruminococcaceae, and p Firmicutes positively correlated with the growth factor’s

expression antibiotic-treated animals. For FGF7 f Eggerthelaceae (LDA=4.37),

f Ruminococcaceae (LDA=4.65), g Helicobacter (LDA=4.32), g Slackia (LDA=4.37),

p Campilobacterota (LDA=4.32) posively correlated with increasing gene expression.

f Eggerthellaceae, g Helicobacter, g Slackia, and p Campilobacterota positively correlated

with FGF7 expression control animals while only f Ruminococcaceae positively correlated

with FGF7 expression following antibiotic treatment (Fig. 3.3).

Most of our correlations showed the most robust relationships when comparing lung gene

expression in the proximal airways to bacteria abundances in the upper respiratory tract.

However, the mid-level lung region also demonstrated relationships between gene expres-

sion in the lung and bacteria abundance in the upper respiratory tract. We report that

g [Eubacterium] coprostanoligenes group positively correlated with increasing SFTPA1

expression in antibiotic-treated animals while o Coriobacteriales negatively correlated

with MMP16 expression (Fig. 3.6).

Differential abundance

We wanted to see the significantly different taxa abundances between antibiotic-exposed

and unexposed infant rhesus monkeys. To accomplish this, LefSe was used to assess

the differential abundances of bacteria between treatment groups for each month. In all
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months save for months 1 and 6, the upper respiratory microbiome of antibiotic-treated

monkeys had more differentially abundant taxa than controls (Fig. 3.4). c Clostridia was

enriched in the respiratory microbiome of antibiotic-exposed infants each month, while

control animals were consistently enriched for g Corynebacterium, a known commensal

of the respiratory microbiome (De Steenhuijsen Piters et al. 2020, Andrade et al. 2022).

Because we have reported sex differences in gut microbiome composition following early-

life antibiotic treatment, we also assessed whether sex drove changes in respiratory mi-

crobiome abundance. We next compared respiratory microbiomes of antibiotic-treated

males to females. Months 1 and 3 only showed enrichment of microbes in the respiratory

microbiome of antibiotic females (Supp. Fig. 3.2). Conversely, there was no time-point

where antibiotic-exposed males exclusively demonstrated differentially abundant bacteria

(Supp. Fig. 3.2). At months 1 and 5, antibiotic-exposed males had significantly more dif-

ferentially abundant taxa than females. Lastly, months 4 and 6 favored control animals

with more differentially abundant taxa than antibiotic-exposed animals during these time

points (Supp. Fig 3.1, 3.2).

To better understand how the developing respiratory microbiome differs between males

and females at baseline, we next used LefSe to see how the abundances of key taxa

differed by sex. At baseline control male monkeys had more differentially abundant taxa

than females for months 0, 2, 3, and 4 (Supp. Fig. 3.1). Conversely, females have more

significantly enriched microbes at months 1, 5, and 6 (Supp. Fig. 3.1). Surprisingly, no

microbes were consistently enriched in the respiratory microbiome of males or females

during the 6-month study. This finding supports the transient nature of the respiratory

microbiome (Pérez-Cobas et al. 2023).
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Bacteria metagenomic function

Since bacteria metabolism bi-products have been documented to alter host physiology

(Ma et al. 2022), we also wanted to see if any predicted bacteria products could be

driving the lung function changes we observed. Picrust, a tool used to infer bacteria

metagenomic function based on 16S sequencing data, was used for each month of the

study (Douglas et al. 2020). Tricarboxylic acid cycle (TCA) related pathways such

as TCA cycle IV (2-oxoglutarate decarboxylase), incomplete reductive TCA cycle, and

reductive TCA cycle 1, were only elevated in control animals during the first 2 months

(Fig. 3.8a-3.8c). Conversely, for antibiotic-treated animals in months 5 and 6 TCA cycle

I (prokaryotic), TCA cycle V (2-oxoglutarate:ferredoxin oxidoreductase), TCA cycle VIII

(Helicobacter), and TCA cycle VII (acetate-producers) (Fig. 3.8f, 3.8g) were elevated.

Additionally, antibiotic-treated animals had more enriched metagenomic pathways than

control animals except for months 4 and 6 (Fig. 3.8e, 3.8h).

We then considered the effect of sex on bacteria metagenomic function in the upper respi-

ratory microbiome. Upon faceting by sex, it was found that metagenomic function could

not be inferred at most time points except for months 0 and 6, suggesting the antibiotic

treatment affects bacteria colonization of the upper respiratory tract (Supp. Fig. 3.3).

None of the pathways identified when comparing antibiotic-treated males to females were

involved in the TCA cycle, further suggesting a marked reduction in microbial function in

the respiratory microbiome following antibiotic treatment. Our suspicion was confirmed

when assessing the metagenomic function of control animals where function could be

inferred at all time points (Supp. Fig. 3.3-3.4). The sex that contained the most enriched

pathway expression varied from month to month, and a TCA-related pathway occurred

only in control females at month 3 for TCA cycle VIII (Helicobacter) (Supp. Fig. 3.4).
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Discussion

Our earlier study defined the healthy rhesus gut microbiome and demonstrated early-life

antibiotic treatment’s physiological and microbiome effects. In this study, we aimed to

characterize the rhesus monkey upper respiratory microbiome at baseline and after early-

life antibiotic treatment. Utilizing a rhesus monkey model enabled us to investigate the

microbiome and lung changes in a controlled manner while using a highly translatable

model of human infant development (Asgharian et al. 2012, Phillips et al. n.d.).

This study defined the composition of the upper respiratory microbiome in healthy in-

fant rhesus monkeys and assessed the impact of early-life antibiotic treatment on lung

development. We found that the upper respiratory microbiome of infant rhesus monkeys

is sparse in microbial density. The transient nature of this microbial site is clear from

the fact that it did not achieve a stable abundance within a 6-month period. Our results

indicated the developing upper respiratory microbiome is predominantly composed of the

phyla Actinobacteriota, which accounted for an average of 75% of the total microbiome

for any given sample or time point. The respiratory microbiome also had a substan-

tial proportion of Firmcutes and Proteobacteria. Together these 3 populations account

for 99% of the total microbiome. The most abundant genera were g Corynebacterium,

g Staphylococcus, and g Streptococcus. These genera are known commensals of the upper

respiratory tract (De Steenhuijsen Piters et al. 2020, Andrade et al. 2022). This study

partially concurs with a similar one that characterized the nasopharyngeal microbiota

in children aged 18 months. This study found that the nasopharyngeal microbiome was

dominated by Proteobacteria, Firmicutes, Bacteroidetes, Actinobacteria and Fusobacte-

ria, and made note of the high variability between samples. Out of the 5 most dominant

taxa in the previous study, 4 were consistent with our results, differing only in the abun-
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dance of Bacteroidetes, which was absent in our study. This difference could be due

to the age of the subjects as the study by Bogaert et al. was conducted on children 18

months of age (Bogaert et al. 2011).

Pulmonary function analysis has been shown to correlate with bacteria abundance in

the microbiome(Lee et al. 2019). Indeed, when comparing young and elderly patients,

researchers demonstrated that lung function decline, specifically in elderly patients, neg-

atively correlated with Firmicutes and Fusobacteria abundance, while positively corre-

lating with Actinobacteria abundance. Although we did not see a correlation with the

same taxa and lung function testing parameters, we did observe a correlation between

g [Eubacterium] coprostanoligenes group, a member of the Firmicutes phylum, abun-

dance, and lung function. This correlation was seen in the vital capacity of the lung,

which is a measure of the maximum amount of air a person can expel from the lungs

after a maximum inhalation. This result is consistent with previous studies that have

shown that Firmicutes abundance is negatively correlated with lung function (Takahashi

et al. 2018, Albedewi et al. 2022).

Currently, the invasive nature of sampling the lungs makes it difficult to study the lung

microbiome in pediatric populations. Furthermore, interrogating the lung transcriptome

is also challenging due to the difficulty in obtaining lung tissue samples. Researchers

working with human patients will use blood as a substitute for lung tissue when making

a connection between the lung microbiome and the host transcriptome. Such techniques

supply data that suggest that interactions between RSV and nasopharyngeal microbiota

can modulate the host immune response, potentially affecting clinical disease severity

(de Steenhuijsen Piters et al. 2016). However, the use of blood as a proxy for lung

tissue is not without its limitations. For example, the blood transcriptome is not a

direct representation of the lung transcriptome, and the blood microbiome is not a direct
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representation of the lung microbiome. Using the non-human primate model, we were

able to obtain lung tissue samples from infant rhesus monkeys. With discordance in

gene function or expression as a plausible reason behind by reduced vital compacity

that was observed in antibiotic-treated males, we assessed the expression of growth and

development genes in the lung. We selected genes based on literature searches for those

with prominent expression in the lung and with known involvement in lung development

and maturation. We then correlated the expression of these genes with the abundance of

bacteria in the upper respiratory tract. This was conducted by micro-dissecting the lungs

of euthanized rhesus monkeys into 3 components: proximal, mid-level, and respiratory

bronchioles. The components are 3 major divisions of the lung including the large airways,

the mid-level branches, and respiratory bronchioles where gas exchange occurs. The

expression of genes related to growth and development was assessed in each of these

regions and we showed that gene expression in different lung regions correlated with the

nearby microbiomes. The gene expression of growth and development genes from the

proximal airways correlated with the greatest number of taxa abundances. We suspect

this is because the proximal airways are physically closer to the nasopharynx than the

mid-level or respiratory bronchioles.

Sex differences in the gut microbiome, sparse as they are, have been reported in humans

more often than sex differences in the respiratory microbiome (Gomez et al. 2015, Baars

et al. 2018, Gao et al. 2019, Zhang et al. 2021). To the best of our knowledge this the first

study highlight sex differences in the respiratory microbiome of rhesus macaques. Our

data suggest that early-life antibiotic treatment affects the developing microbiome past

the juncture when antibiotics are administered. Although we did not see longitudinal

effects of antibiotics on the developing microbiome, we report sexually dimorphic changes

in the Firmicutes abundance at 6 months of age, with control males having increased
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abundance (Fig. 3.4b). This result agrees with published literature which asserts that

the upper respiratory microbiome is sparse in microbial density and transient (Bogaert

et al. 2011, Claassen-Weitz et al. 2020).

Due to the substantial genetic variation associated with non-human primate studies, our

study was not without limitations (Vallender and Miller 2013). Outbred animals are

more prone to higher variability due to differences in genetic factors for example, MHC

genotype significantly influences antibody responses against commensal microbes in the

gut, and these responses have been proven to correlate with the establishment of distinct

microbial communities (Kubinak et al. 2015). Furthermore, the microbiome is known to

be influenced by environmental factors such as diet, and housing conditions (Kuthyar et

al. 2022). Although we controlled for these factors in our study, we cannot rule out the

possibility that these factors influenced our results. Microbial density is always an issue

when dealing with microbiomes of the respiratory tract and our study is no exception.

Due to issue issues obtaining enough microbial DNA to sequence at early time points, we

were unable to sequence the microbiome of all animals at all time points. Additionally,

our sample size was small as most of our treatment groups had a sample size of 5, and

the control male group only had a sample size of 3.

FGF10 is the primary morphogen promoting lung branching morphogenesis in mouse

models and the absence of Fgf10 or its receptor FGFR2b results in incomplete lung

agenesis in mice (Moerlooze et al. 2000). Similarly, FGF7, along with FGF10 important

for patterning and growth of the lung bud in early pulmonary development (Lebeche et

al. 1999). Although we looked at various lung growth and development genes, only FGF7

and FGF10 demonstrated significant correlations with the microbiome. This result does

not prove that the reduced vital compacity observed in antibiotic-treated male infants

was caused by changes in FGF expression in response to changes in the microbiome.
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A more thorough study needs to be conducted to understand the effects of antibiotic

treatment on FGF expression, and changes in their expression could result in reduced

lung function.

The tricarboxylic acid (TCA) cycle is a series of chemical reactions used by all aerobic

organisms to release stored energy through the oxidation of acetyl-CoA derived from

carbohydrates, fats, and proteins into carbon dioxide and chemical energy in the form

of adenosine triphosphate (ATP). TCA cycle intermediates have been observed to cor-

relate with host cardiometabolic risk factors among underweight, normal-weight, and

overweight adults in the gut microbiome [wanOverweightUnderweightStatus2020]. Fur-

thermore, TCA cycle intermediates are altered in the gut microbiome of patients with

inflammatory bowel disease (Aldars-Garćıa et al. 2021). Detecting TCA cycle path-

ways in the upper respiratory microbiome suggests the presence of active and functional

microbes. However, figuring out their activity in the upper respiratory microbiome is

challenging because Picrust infers metagenomic function from 16s sequencing data, even

though TCA cycle pathways were enriched in path antibiotic and control animals. Thus,

future studies will need to measure the metabolism of the respiratory tract microbiome

using techniques such as GC-MS. 16S is suitable for explorative studies where the compo-

sition of the microbial site is not well known; however, to obtain a holistic understanding

of the microbes present, such as function, whole genome sequencing should be conducted

(Sulaiman et al. 2021).

In summary, our study defines the developing rhesus monkey nasal microbiome and as-

sesses the impact of early-life antibiotic treatment in normal lung development. These

observations suggest an active upper respiratory microbiome; however, our current study

could not confirm whether the nasopharynx microbiomes are alive and functional. Still,

our results show an interaction between the microbes of the upper respiratory tract and

78



ACKNOWLEDGMENTS

lung development and function. Ours is the first study to characterize the developing

rhesus monkey nasopharyngeal microbiome in health and after early-life antibiotic treat-

ment.

Acknowledgments

This publication was made possible by an NIEHS-funded diversity supplement awarded

to Noah Siegel (P51OD011107). Its contents are solely the responsibility of the authors

and do not necessarily represent the official views of the NIEHS or NIH.

Disclosure

The authors have no relevant affiliations or financial involvement with any organization or

entity with a financial interest in or financial conflict with the subject matter or materials

discussed in the manuscript.

79



CHAPTER 3. DEVELOPING UPPER RESPIRATORY MICROBIOME

Figures

Supplementary Figure 3.1: Nasal microbiome composition and lung function. Percent
abundance of all phyla >1% of total reads (Phyla representing <1% of the total reads
were binned as “Remainder”) (Fig. 1a). Inspiratory capacity for antibiotic-treated and
control animals separated by sex (P <0.05) (Fig. 1b).
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FIGURES

Supplementary Figure 3.2: Proximal lung expression of FGF10 positively correlates with
nasal microbiome abundance. Linear correlations were constructed to correlate FGF10
expression to bacteria relative abundance in the nasopharynx.

Supplementary Figure 3.3: Proximal lung expression of FGF7 positively correlates with
nasal microbiome abundance. Linear correlations were constructed to correlate FGF7
expression to bacteria relative abundance in the nasopharynx.
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FIGURES

Supplementary Figure 3.4: Early-life antibiotic treatment alters bacteria relative abun-
dance. Differential abundance was assessed using LEfSe to determine how different the
microbiome of antibiotic-exposed and unexposed infants. Lefse was done for each month
compared antibiotic-treated (red) and control (blue) at month 0 (4a), month 1 (4b),
month 2 (4c), month 3 (4d), month 4 (4e), month 5, (4f), month 6 (4g).
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Supplementary Figure 3.5: Lung function correlates with alpha diversity and bacteria
relative abundance. Linear correlations were constructed to relate lung function to alpha
diversity and bacteria abundance.

Supplementary Figure 3.6: Mid-level lung gene expression and lung function correlate
with bacteria relative abundance. Linear correlations were made between bacteria abun-
dance and lung function or lung gene expression.

84



FIGURES

Supplementary Figure 3.7: Early-life antibiotic exposure has transient on the composition
of the infant rhesus microbiome. Prominent changes are observed in males (Fig. 7a, 7e,
7h, 7k) relative to females (Fig. 7c, 7f, 7i, 7l). Abundance trajectories of Firmicutes
(Fig. 7a, 7b, 7c), Actinobacteriodota (Fig. 7d, 7e, 7f), Actinobacteria (Fig. 7g, 7h, 7i)
and Proteobacteria (Fig. 7j, 7k, 7l) were measured as the relative abundnace. (P <0.05)
by ANOVA with paired samples t-test and Bonferroni correction. *, (P <0.05)
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Supplementary Figure 3.8: Metagenomic pathways are altered with early-life antibiotic
treatment. Kegg biomarkers significantly different between antibiotic-treated (red) and
control (blue) infants at month 0 (8a), month 1 (8b), month 2 (8c), month 3 (8d), month
4 (8e), month 5, (8f), month 6 (8g).
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FIGURES

Supplementary Figure 3.1: Baseline sex differences in bacteria relative abundance. Dif-
ferential abundance was assessed using LEfSe to determine how different the microbiome
of antibiotic-exposed and unexposed infants. Lefse was done for each month compared
to control male (dark blue) and control (teal) at month 0 (3a), month 1 (3b), month 2
(3c), month 3 (3d), month 4 (3e), month 5, (3f), month 6 (3g).
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Supplementary Figure 3.2: Sex differences following early-life antibiotic treatment on
bacteria relative abundance. Differential abundance was assessed using LEfSe to deter-
mine how different the microbiome of antibiotic-exposed and unexposed infants. Lefse
was done for each month compared antibiotic-treated male (orange) and control (pink)
at month 0 (4a), month 1 (4b), month 2 (4c), month 3 (4d), month 4 (4e), month 5, (4f),
month 6 (4g).
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FIGURES

Supplementary Figure 3.3: Metagenomic pathways are altered with early-life antibiotic
treatment. Kegg biomarkers significantly different between antibiotic-treated male (or-
ange) and female (pink) infants at month 0 (2a) and month 6 (2g).
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Supplementary Figure 3.4: Metagenomic pathways are altered with early-life antibiotic
treatment. Kegg biomarkers significantly different between control male (dark blue) and
female (teal) infants at month 0 (2a), month 1 (2b), month 2 (2c), month 3 (2d), month
4 (2e), month 5, (2f), month 6 (2g).
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Conclusion

There is no real ending. It’s just the place where you stop

the story.

Frank Herbert

The use of culture-independent techniques to understand the microbiome has come a

long way since it was first introduced in the 1980s. The development of high-throughput

sequencing technologies has enabled researchers to study the microbiome in various con-

texts, including the human microbiome. The human microbiome is a complex ecosystem

that is shaped by a variety of factors, including host genetics, diet, and environment.

The microbiome plays a critical role in human health and disease, and understanding the

factors that shape the microbiome is essential for developing novel therapeutics.

We first explored the current field of microbiome research, acknowledging the contribution

of sex on its development and function. What is known about the gut and respiratory

microbiomes was introduced, as well as how that information was ascertained, such as

the models used to understand the microbiome. Murine models give us flexibility in

understanding the microbiome, but they are not without their limitations. The use of

non-human primates, such as the rhesus macaque, allows us to better understand the

microbiome in a model that is more similar to humans. However, studies on the rhesus

microbiome are sparse in comparison to murine models. Therefore, the primary goal of
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this project was to better understand the developing rhesus monkey microbiome and how

it is impacted by early-life antibiotic exposure.

As the use of antibiotics continues to remain prevalent, it is important to understand

the impact they have on the developing microbiome. This dissertation has explored the

development of the gut, lung, and upper respiratory microbiome in rhesus macaques. In

utilizing the rhesus monkey model, we can better understand how perturbations of my

microbiome in early translate to humans. The second chapter explored the effects of

early-life antibiotic exposure on the gut microbiome.

The third chapter explored the effects of early-life antibiotic exposure on the lung micro-

biome. It is now evident that the lung microbiome is not sterile and that it plays a critical

role in lung health and disease. The lung microbiome is shaped by a variety of factors,

including the gut microbiome. This is due to the gut-lung axis, a bi-directional form of

communication between the gut microbiome and the lung. The lower lung microbiome

is also shaped by the upper respiratory microbiome. The upper respiratory microbiome

is the first point of contact for microbes entering the lung.

The field of microbiome research is still in its infancy. There is still much to be learned

about the microbiome and how it impacts human health and disease. The use of non-

human primate models, such as the rhesus macaque, will continue to be an important

tool in understanding the microbiome. The use of non-human primate models will allow

us to better understand the microbiome in a model that is more similar to humans. Using

non-human primate models also allows us to better understand the impact of early-life

antibiotic exposure on the microbiome.

This dissertation primarily uses 16S amplicon sequencing to inter microbial populations

based on slight variations in the 16S rRNA gene. However, 16S amplicon sequencing

is limited in its ability to identify microbes at the species level. The use of shotgun
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metagenomic sequencing will allow us to better understand the microbiome at the species

level. Shotgun metagenomic sequencing will also allow us to better understand the

functional capacity of the microbiome. Shotgun metagenomic sequencing can provide

insight into early-life antibiotic exposure effects on the microbiome. Additionally, the

use of shotgun metagenomic sequencing will allow us to better understand the impact of

early-life antibiotic exposure on the functional capacity of the microbiome.

Exploring the potential ramifications of a respiratory virus infection in infants who have

previously been administered antibiotics represents an alternative avenue for this research

project. The concept of early life commensal colonization is new, but it is becoming

increasingly evident that it plays a critical role in immune development.
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