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Abstract

The microbiome is vital for maintaining good health, with disruptions carrying signifi-
cant consequences. Antibiotics, diseases, environmental changes, and biological sex can
perturb the microbiome, contributing to chronic illnesses. Antibiotic use is a substantial
disruptor, highlighting the need to pinpoint specific microbial species and their functions
for targeted therapies. Our research examined the microbiome, utilizing 16S sequencing
to gain deeper insights into microbial communities at the species level and infer their
functional capacity. Early-life antibiotic exposure was found to have a lasting impact on
the microbiome, with a more pronounced effect observed in males than females. These
effects extended to the respiratory microbiome, demonstrating the interconnectedness
of microbiome composition with physiological factors. Furthermore, our research delved
into predicted metagenomic pathways in the gut and lung microbiomes, revealing shifts in
metabolic functions with antibiotic treatment, particularly in pathways linked to short-
chain fatty acid metabolism, highlighting the potential consequences of such alterations
on host health. Advances in microbiome research stress the importance of considering
sex-specific differences in microbiome responses, leading to tailored health interventions.
In conclusion, this research substantiates the role of the microbiome in maintaining health
and the potential impact of disruptions on the immune system. Our findings emphasize
the need for targeted therapeutic strategies to mitigate the consequences of microbiome

disturbances, thus advancing health and well-being.
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Chapter 1

Exploring the Complex Relationship
Between the Microbiome and
Health: Implications for Antibiotic

Use and Sex Differences

In the field of observation, chance favours only the

prepared mind.
Louis Pasteur

Abstract

The human microbiome is critical in maintaining good health, and disturbances can
have significant consequences. Factors such as antibiotics, disease, tobacco smoke, and

environmental changes can reduce bacterial diversity and alter microbial composition,
1



CHAPTER 1. INTRODUCTION

contributing to chronic illnesses. In addition, the immune system is essential for main-
taining microbiome homeostasis, and changes to the immune system can both cause or
result from microbiome disruption. Notably, antibiotic use is a significant factor that
can disrupt the microbiome. Therefore, identifying specific microbial species and their
functions in health and disease is crucial for developing targeted treatments. Further-
more, biological sex can impact the microbiome, and future studies need to account for
this when analyzing data. The use of animal models such as rhesus macaque and murine
models can help us understand the role of the microbiome in health and disease. Ulti-
mately, a better understanding of the interplay between biological sex, the microbiome,
and the immune system can lead to targeted therapies that can mitigate the adverse

effects of microbiome disruption and improve human health.

Introduction

The human body harbors a collection of microorganisms called the microbiome, the gut
microbiome being the most extensively studied. Its crucial role in human health includes
food digestion and immune system influence. However, disrupting the microbiome can
have severe consequences (Kozyrskyj et al. 2016, Yildiz et al. 2018, Gao et al. 2019).
Antibiotics, commonly used to treat bacterial infections, can significantly impact the gut
microbiome by reducing bacterial diversity and altering its composition (Lamberte and

van Schaik 2022).

The respiratory microbiome is gaining increasing attention due to its potential role in res-
piratory diseases, such as asthma, chronic obstructive pulmonary disease, and pneumonia
(Biesbroek et al. 2014b, Biesbroek et al. 2014a, Marsland et al. 2015, He et al. 2017,

Wang et al. 2017, Kuek and Lee 2020). Alterations in respiratory microbiome diversity,
2



INTRODUCTION

such as increased abundances of potentially pathogenic bacteria, have been observed in
respiratory infections (Yildiz et al. 2018), while chronic respiratory diseases that may
contribute to disease development and exacerbation have been linked to changes in the
respiratory microbiome (Huang et al. 2015, Mammen and Sethi 2016). Environmental
factors like diet and air pollution can also impact the gut and respiratory microbiota. For
instance, a high-fat, low-fiber diet can alter the gut microbiome’s composition, reducing
bacterial diversity (Cox et al. 2014). Air pollution from PM2.5 and NO2 pollution are
associated with reduced Ruzicka dissimilarity, a measure of beta-diversity, suggesting a
possible interplay between the nasal microbiota of human infants and air pollution (Gisler

et al. 2021).

Biological factors also play a role in microbiome composition; recent research has high-
lighted sex differences in microbiome composition across various body sites, including
the gut and respiratory tract (Kim et al. 2019, Jo et al. 2021, Valeri and Endres
2021). Women have a higher abundance of specific bacterial genera in the gut, such as
Bacteroides and Prevotella, while men have a higher abundance of other taxa, such as
Allobaculum and Anaeroplasma (Kim et al. 2019). Hormonal fluctuations may influence
these differences, with estrogen promoting the growth of certain gut bacteria associated
with health benefits (Peng et al. 2020). Sex-specific differences in gut microbiome com-
position may contribute to differences in disease susceptibility and outcomes, including
autoimmune diseases, obesity, and colorectal cancer (Markle et al. 2013, Kim et al. 2020,

Daly et al. 2022).

This review aims to comprehensively introduce the gut and respiratory microbiomes
during health and disease, including the significance of sex differences in microbiome

maturation. Finally, we discuss the use of animal models to study the microbiome.
3



CHAPTER 1. INTRODUCTION

Gut Microbiome

The gut microbiome is a complex ecosystem that comprises trillions of microorganisms,
including bacteria, viruses, fungi, and archaea (Lloyd-Price et al. 2016). Vaginally-born
human infants start to develop their microbiome when exiting the birthing canal. They
are coated with vaginal microbes, while cesarian-born infants are first introduced to their
mother’s skin microbes (Rautava et al. 2012). There is a debate regarding the persistence
of a placental microbiome due to the inconsistent and unreliable nature of sampling
methods (Kuperman et al. 2020). However, much of the current literature demonstrates
that infants are not exposed to microbes in the womb under healthy conditions (de
Goffau et al. 2019, Kuperman et al. 2020). Breast milk from mothers provides essential
nutrients for an infant’s microbiome development after birth (Harmsen et al. 2000). The
infant gut microbiota undergoes frequent changes until around 3 years of age when it
begins to resemble a stable phenotype with high abundances of bacteria from various
phyla, including Firmicutes, Bacteroidetes, Proteobacteria, Actinobacteria, Fusobacteria,
and Cyanobacteria (Nobel et al. 2015, Marsland et al. 2015). Work on murine models
from the Blaser group highlights the importance of this initial colonization, showing that
early-life disruption of the microbiota in mice can lead to a long-term alteration in the

composition of the gut microbiome (Cox et al. 2014).

Rhesus monkeys are another useful model for studying the gut microbiome as the infant
human and rhesus monkey microbiomes overlap considerably, with Bifidobacteria being
one of the predominant taxa present. Specifically it was found that infant primate gut
microbiome is significantly enriched for Bifidobacterium, Ureaplasma, Collinsella, Cateni-
bacterium, Holdemanella, Anaerostipes, Roseburia, Bacteroides, Dorea, and Senegalimas-

silia and deficient in Anaeroplasma, Prevotellacaea gen., Sphaerochaeta, and Fibrobacter
4



GUT MICROBIOME

relative to old macaques (Janiak et al. 2021). Similar results were obtained by both the
Rhoades group in which they identified enrichment of Campylobacter, Bifidobacterium,
Catenibacterium, Succinivibrio, and Helicobacter in infant rhesus monkeys (Rhoades et
al. 2019) and the Slupsky team where infants were enriched for Bifidobacterium and
Blautia (Hasegawa et al. 2018). These findings coincide with what is observed in hu-
man studies in that the gut microbiome tends to be enriched for Bifidobacterium during
infancy and its abundance wanes during adulthood. Despite significant overlap between
many taxa of the microbiome of rhesus monkeys and humans, the rhesus microbiome re-

sembles more of a hunter-gatherer phenotype than that of a typical western microbiome

(Rhoades et al. 2019).

The microbial density of the gut microbiome is far greater than any other mucosal site
(Huttenhower et al. 2012). Being a well-studied mucosal site, researchers have demon-
strated that the gut microbiome can modulate other mucosal sites and play a crucial
role in regulating the gut-lung axis (van Nimwegen et al. 2011, Trompette et al. 2014).
Although the gut and lungs are spatially far apart, they can communicate via the blood
and lymphatic system (He et al. 2017). The gut microbiota produces short-chain fatty
acids (SCFAs) that have been shown to influence the immune system and inflammation

(Sivaprakasam et al. 2016).

Some of the most studied SCFA are acetate, propionate, and butyrate; these molecules
are by-products of bacterial metabolism of indigestible dietary fibers in the gut (Pas-
cale et al. 2018). Butyrate is one of the most extensively studied SCFA due to its
immune capabilities (Vinolo et al. 2011). Among its many properties, butyrate has been
demonstrated to limit NF-xB activation in macrophages residing in the lamina propria in
human patients living with ulcerative colitis (Liithrs et al. 2002). More recently, butyrate

has been found to reduce neutrophil inflammatory cytokine production in Inflammatory
5
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Bowel Disease (IBD) patients (Li et al. 2021). The researchers conducted in vivo DSS col-
itis mouse experiments in the same study. They found that histone deacetylase (HDAC)
activity was responsible for promoting the inflammatory properties of neutrophils in IBD
patients. Blockage with the pan HDAC inhibitor trichostatin A recapitulated the effect
of butyrate, thus perpetuating the role of butyrate as an anti-inflammatory mediator in
the gut. SCFAs also modulate the development of regulatory T cells (Tregs) that play a

role in suppressing the immune response (Park et al. 2015).

Alteration of the gut microbiome through probiotics and fecal microbiome transplants
(FMT) can have global effects on the body. In mice, nasal administration of Lactobacillus
casei or Lactobacillus rhamnosus can reduce symptoms of influenza infection and dampen
viral titers (Marsland et al. 2015). Breastfeeding acts as a form of probiotic in that it
helps seed the infant’s immature microbiome. The oligosaccharides of breast milk serve
as a nutrient source for specific microbes such as Lactobacillus (Kim and Yi 2020). In
addition to providing sugars, breast milk contains secretory IgA and other anti-microbial
factors (Park et al. 2015, Roager and Licht 2018, Kim and Yi 2020). While probiotics
can facilitate the development of a healthy microbiome, colonization of opportunistic
pathogens such as Clostridioides difficile, a diarrhea and colitis-causing bacteria, can dis-
rupt the microbiome. Asymptomatic carriers of this bacterium experience a reduction
in the abundance of Bacteroidetes and Firmicutes and an overabundance of Proteobac-
teria (Zhang et al. 2015). The United States Food and Drug Administration (USFDA)
has recently approved Rebyota, the first FMT product to treat recurrent Clostridioides
difficile (Kempler 2022).



LUNG MICROBIOME

Lung Microbiome

The lung microbiome is a relatively new area of research, but important insights have al-
ready been revealed into the role of microorganisms in lung health and disease such as less
stable respiratory microbiomes of infants at 2 years are characerized by a trajectory to-
wards Haemophilus and Streptococcus-dominated profiles (Biesbroek et al. 2014a). Due
to the reduced cost of sequencing and the introduction of culture-independent methods
such as 16s sequencing, researchers can discover more information on the respiratory
microbiota (Moffatt and Cookson 2017). Once initially thought to be sterile, it is now
accepted that the respiratory microbiome is home to a diverse community of microor-
ganisms, including bacteria, viruses, fungi, and other microorganisms (Baughman et al.
1987, Thorpe et al. 1987, Moffatt and Cookson 2017). Various factors, such as age,
sex, smoking status, and environmental exposures, influence the composition of the lung
microbiome (Koppen et al. 2015, Chen et al. 2020). The composition also depends upon
the location along the respiratory tract. For example, the nasal microbiome has signif-
icant overlap with skin microbes and tends to comprised primarily or aerobic bacteria
where as the lower has significant anerobic microbial populations such as Prevotella sp.

and Veillonella sp. (Dickson et al. 2017).

The respirory microbiome of mice is highly variable and connections to the hu-
man microbiome are difficult to make due to mice being caprophagic. The family
Erysipelotrichaceae, a microbiome enriched in the feces, is also found in the respiratory
microbiome (Dickson et al. 2018). Another study confirmed the presence of the genera
Ochrobactrum and Rhodococcus in the normal murine respiratory microbiome sampling
by BAL (Kostric et al. 2018). Like human studies, the rhesus macaque respiratory

microbiome is less studied than the gut microbiome. Of what few respiratory microbiome
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studies there for rhesus macaques, all focus on adult populations (Janiak et al. 2021,
Rhoades et al. 2022). Unlike humans, whose lung microbiome is primarily comprised
of Corynebacterium spp., Dolosigranulum spp., and Morazella spp. (Peterson et al.
2016) the rhesus monkey lung microbiome primarily contains the genus Tropheryma as
a dominant community member however the genera Streptococcus, Fusobacterium, and

Actinobacillus are also seen across lung samples (Rhoades et al. 2022).

Upper airway Microbiome

The upper respiratory tract, which consists of the nasal passages and pharynx, is respon-
sible for transporting air from and to the lower respiratory tract. This area is commonly
referred to as the nasopharynx and is also a physical barrier that can prevent potential
pathogens from seeding the lower lung (Zhao et al. 2023). The nasopharynx is the point
where the respiratory tract meets the external environment and can be impacted by ex-
ternal factors, including the type of feeding, such as breastfeeding versus formula feeding

(Biesbroek et al. 2014b).

Under normal conditions, a healthy nasal cavity is enriched with microbes such as, but
not limited to, Corynebacterium spp., Dolosigranulum spp., and Morazella spp. (Pe-
terson et al. 2016). The nasal, like the gut microbiome, can also be impacted by the
method of delivery, as shown by Bosch et al., where they collected 112 nasopharynx
swabs from healthy term infants either delivered vaginally or cesarian and compared the
nasal microbiome composition between the mode of birth. They found the infants deliv-
ered vaginally had their nasal microbiomes colonized by a more diverse set of microbes,
including Corynebacterium and Dolosigranulum, during the first week of life compared

to infants born cesarian (Bosch et al. 2016).
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Lower airway microbiome

The lower lung microbiome is distinct from the nasopharyngeal microbiome, harboring
more anaerobic microbes (Huffnagle et al. 2017). The lung is a less hospitable environ-
ment to bacteria proliferation than the gut, as the gut’s function is to acquire and absorb
nutrients from ingested food, thus supporting a high microbial density. Conversely, the
lack of microbes in the lower lung is due to its maintaining the bronchial epithelial fluid
lining, which promotes gas exchange rather than nutrient acquisition. Due to this pur-
pose, the adult human airway has a surface area roughly 40 times larger than the skin’s
(Weibel 1963). The composition of microbes in the lower airways includes gram-negative
bacteria, such as Provotella and Veillonella (Hilty et al. 2010), and gram-positive bac-
teria, like Coprococcus and Dorea (Tong et al. 2019). Samples of microbial communities
from this site are highly contaminated as one has to go through the upper respiratory
tract to collect a sample. A bronchoscope usually accomplishes this task (Dickson et al.
2017). The lower microbial density of the distal airways also makes collecting sufficient
amounts for analysis challenging (Segal et al. 2013, Bassis et al. 2015). Despite current
issues in studying the lower lung microbiome, research suggests that the lower respiratory
microbiome is seeded through microaspiration or inhaling bacteria from the air (Huxley

et al. 1978, Gleeson et al. 1997, Dickson et al. 2017).

Under healthy conditions, the microbiome of the lower lung should be sparse; however,
bacterial communities can plume during diseased states such as COPD and cystic fibro-
sis, leading to further respiratory issues (Mammen and Sethi 2016, Zhao et al. 2023).
Furthermore, whether the lower respiratory microbiome is transient or persistent is de-
batable (Dickson et al. 2018). However, the abundance of innate-immune features such

as mucociliary clearance (Kuek and Lee 2020), pulmonary surfactant (SPD, SPB) (Se-
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ungHye and Mallampalli 2015), and innate immune cells (macrophages and neutrophils)
(Grimaldi et al. 2002, Hewitt and Lloyd 2021) suggests the lower lung environment

prevents bacteria from establishing a niche.

Gut-Lung Axis

Changes in the microbiome are observed in lung diseases such as cystic fibrosis, asthma,
and chronic obstructive pulmonary disease (COPD), indicating essential cross-talk be-
tween mucosal sites in the human body (Zhang et al. 2020). The gut-lung axis is a
bidirectional communication system between the gut and lung microbiomes that influ-

ences host health and disease.

Although most studies on the gut-lung axis investigate how the gut affects the lung
microbiome, it is crucial to note that respiratory infection causes disturbances in the gut
microbiota (Yildiz et al. 2018). Various mechanisms mediate the gut-lung axis, including
migrating immune cells between the gut and lung, circulating microbial metabolites, and
releasing cytokines and other signaling molecules. One study found that group 3 innate
lymphoid cells (ILC3) in the gut responded to a Streptococcus pneumonia infection by
migrating from the gut to the lung, mediating IL22-dependent host defense in mice. In
this same study, disrupting the microbiome with antibiotics diminished this response.
Thus, demonstrating that protective ILC3 influx depended on the sensing of commensal
microbes in the gut by dendritic cells that in turn mediated ILC3 migration to the lungs
(Gray et al. 2017). Another study investigating the effect of microbiome ablation via
antibiotics on the response to influenza infection in mice found that antibiotic treatment
impaired DC homeostasis and migration. As a result, animals treated with antibiotics

had reduced CD4 and CD8 T-cell activation (Ichinohe et al. 2011).
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The metabolites such as tryptophan and SCFAs derived from the gut can enter circulation
via the portal vein or lymphatic system, thus exerting protective properties such as
immune regulation (Roager and Licht 2018, Zhang et al. 2020). Mouse studies have
confirmed that fermentation products of dietary fibers, primarily SCFAs, can protect
against allergic airway inflammation by modulating immune function (Marsland et al.
2015). In a recent study, the gut microbiome of neonates was investigated, and the
researchers found that bacterial epoxide hydrolase genes were elevated in infants who
develop atopy or asthma during childhood. Further investigation using a murine model
found that when mice in an asthma challenge model were treated with the metabolite
12,13-diHOME, a product of epoxide hydrases, a reduction in regulatory T-cells was

observed (Levan et al. 2019).

Ablation or disruption of the gut microbiome can have distant effects on pulmonary im-
munity in the lung. Thus reconstitution of the gut microbiome with healthy microbes has
the ability to treat or alleviate the severity of respiratory disease. In a 10-month random-
ized, double-blind, parallel, and placebo-controlled study, scientists demonstrated that
oral Bifidobacterium longum BB53 significantly reduced the incidence of respiratory ill-
nesses throughout the study (Lau et al. 2017). Furthermore, studies on mice have shown
that oral administration of probiotics can induce antigen-specific T cells, which have
been found to help dampen allergic responses (Marsland et al. 2015). In particular, this
phenomenon has been observed with inactivated Mycobacterium vaccea (Zuany-Amorim
et al. 2002), Lactobacillus rhamnusus (Feleszko et al. 2007, Jang et al. 2012), and Bifi-
dobacterium breve (Sagar et al. 2014). Given the close relationship between the gut and
lung microbiomes, it is likely that probiotics made to control respiratory disease will be

utilized in the future.
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Sex differences

Data on sex differences in non-human primates remains sparse, but the physiological
similarities to humans make them excellent models for studying sex differences in the mi-
crobiome. Recent studies report no sex difference in gut microbiome diversity, precisely
alpha diversity (Adriansjach et al. 2020, Janiak et al. 2021). The finding is not spe-
cific to the gut as the study, which characterized the microbiomes of free-ranging rhesus
macaques, reached a similar column in the oral microbiome (Janiak et al. 2021). Phys-
iological studies on the sex-dependent effects of microbiome alteration, such as research
from the Gao group, suggest antibiotic exposure has no significant effect on weight gain
in both males and females in rhesus macaques. Their study evaluated antibiotic usage as
a binary variable, meaning that the number of courses was not considered. Although this
study sheds light on how antibiotic exposure impacts weight in rhesus monkeys across
the life span, the lack of information regarding response to antibiotic regimens makes its
findings hard to extrapolate to human populations where multiple courses of antibiotics

are frequent (Sidener et al. 2017).

The ease of mechanistic studies is one benefit of using murine models over human and non-
human primate studies. We can observe how multiple factors can impact the microbiome
using murine studies. In adult mice, environmental factors such as high-fat diet and
antibiotic treatment have less of an impact on the gut microbiome than sex (Peng et al.
2020, Stepanauskaite et al. 2023, Zhu et al. 2023). The microbiome of male mice differs
heavily from that of females, and Peng et al., 2020 demonstrated this was independent of
diet. In their study, which investigated the impact of environmental factors and sex on the
microbiome, the researchers found increased abundance of the genera Parabacteroides,

Lactobacillus, Bacteroides, and Bifidobacterium in females relative to males (Peng et al.
12



SEX DIFFERENCES

2020).

Recent human studies have revealed sex-specific differences in the composition and func-
tion of the microbiome, highlighting the role of sex hormones in shaping the microbial
landscape (Gomez et al. 2015, Baars et al. 2018, Gao et al. 2019, Zhang et al. 2021).
Estrogen, testosterone, and their intermediates facilitate differences in the microbiome.
Men have a more stable testosterone level, while women have fluctuating estrogen lev-
els (Klein 2000, Valeri and Endres 2021). These hormonal differences might explain
why women have a more diverse and variable microbiome than men and if these different
microbiomes, in turn, can give rise to sex differences in the immune response. Such differ-
ences are observed with females tending to develop autoimmune diseases more frequently
(Gomez et al. 2015). At the same time, males are more regularly plagued by increased

intensity and prevalence of bacterial, parasitic, and viral infections (Klein 2000).

Estrogen and testosterone have been shown to affect the gut microbiome and immune
cells directly. For example, [-estradiol has been demonstrated to promote the trans-
formation of dendritic cells to produce IL-12 and IFN-v by driving the development of
CD11b*CD11c™ DCs which have increased expression of MHCII, CD40, and CD86 from
BM precursors (Siracusa et al. 2008). This increased activation, in turn, activates path-
ways for pro-inflammatory cytokines. Similarly, when B cells are exposed to a sustained
concentration of estradiol, polyclonal B cells” activation and prolongation in B cells’” sur-
vival are observed (Grimaldi et al. 2002). Estrogen has been shown to influence the
composition and diversity of the gut microbiome in women, with higher levels of estro-
gen associated with a higher abundance of Lactobacillus species and a lower abundance

of Bacteroides species (Kozyrskyj et al. 2016).

On the other hand, testosterone is associated with increased diversity and richness and

a higher abundance of Clostridia and Ruminococcaceae species in the gut microbiome of
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males (Flores et al. 2012). A recent study showed, using regression analysis, that the
abundance of Firmicutes and Lachnospirales demonstrated a negative correlation with
testosterone levels (Liu et al. 2022). Comamonas testosteroni can digest androgens,
suggesting that microbes can feed off testosterone (Chen et al. 2016). Testosterone has
also been shown to modulate the immune system, which can affect the microbiome (Yoon
and Kim 2021). Dihydrotestosterone (DHT) and estradiol, intermediates of estrogen and
testosterone, can impact the gut microbiome. DHT, a testosterone metabolite, increases
the abundance of Lactobacillus species (Markle et al. 2013), while estradiol, an estrogen
metabolite, can regulate gut permeability and impacts the gut microbiome’s composition

and function (Valeri and Endres 2021).

These findings suggest that sex hormones can influence the microbiome and may con-
tribute to sex-specific differences in susceptibility to diseases such as inflammatory bowel
disease, colorectal cancer, and urinary tract infections. Further research is needed to
fully understand the mechanisms underlying these sex-specific differences and to develop

targeted interventions that can modulate the microbiome in a sex-specific manner.

Microbiome disruption

Microbiome disruption can occur through many avenues, including antibiotics, disease
development, tobacco smoke, and environmental changes. One can only discuss the
topic of microbiome disruption by acknowledging the immune system’s influence on the
microbiome’s homeostasis. Changes in the immune system are often the cause and the
result of microbiome disruption. One study demonstrated that changes in microbial
composition were associated with distinct changes in host immune tone after studying

lower airway samples from infants (Pattaroni et al. 2018).
14



MICROBIOME DISRUPTION

Antibiotics are widely used to treat bacterial infections, and their efficacy in combating
infectious diseases has improved public health. However, antibiotics also significantly
impact the microbiome, notably the gut microbiome. Antibiotics can disrupt the balance
of the gut microbiome by reducing the diversity of bacterial species and altering the
microbiome’s composition. This disruption can lead to the overgrowth of opportunistic
pathogens, which can cause infections and increase the risk of antibiotic resistance (Blaser
2016). Studies have also shown that antibiotic use can lead to long-term changes in the
gut microbiome, which may increase the risk of certain diseases, including inflammatory
bowel disease (Manichanh et al. 2010, Cho et al. 2012, Korpela et al. 2016, Turta and

Rautava 2016, Bokulich et al. 2016).

The gut microbiome has been extensively studied, and its disruption is linked to various
health conditions, including inflammatory bowel disease, obesity, and diabetes (Jovel et
al. 2018). Gastrointestinal infections, such as those caused by Salmonella and Campy-
lobacter, can also disrupt the gut microbiome (Jacobson et al. 2018, Rouhani et al. 2020).
These infections can lead to changes in the composition and diversity of the gut micro-
biome, which may persist long after the infection has resolved (Khan et al. 2019). In
some cases, gastrointestinal infections can lead to chronic conditions, such as inflamma-
tory bowel disease, which is associated with long-term gut microbiome changes (Seyedian
et al. 2019). A nationwide case—control study had findings that suggested that enteric
infections may induce the microbiome dysbiosis that contributes to the development of

inflammatory bowel disease (Axelrad et al. 2019).

There is growing interest in the potential role of the respiratory tract microbiome in res-
piratory diseases, such as asthma, chronic obstructive pulmonary disease (COPD), and
pneumonia. Respiratory infections, such as those caused by RSV, influenza, and Pseu-

domonas aeruginosa, can also disrupt the respiratory microbiome (Collie et al. 2015,
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Groves et al. 2018). These infections can alter the composition of the respiratory micro-
biome, leading to an increase in potentially pathogenic bacteria (Dickson et al. 2014).
Moreover, respiratory infections can lead to inflammation, further disrupting the micro-
biome and impairing lung function in mice (Liu et al. 2021). Chronic respiratory diseases,
such as asthma and COPD, are also associated with changes in the respiratory micro-
biome, which may contribute to developing or exacerbating these conditions (Huang et
al. 2015). Tobacco smoke is a well-known risk factor for respiratory diseases, including
lung cancer and COPD. Tobacco smoke can also disrupt the respiratory microbiome by
altering the composition and diversity of the microbiome (Oberg et al. 2011, Mayhew et
al. 2018). Environmental factors like diet and pollution can also impact the gut and res-
piratory microbiome. Studies have shown that a high-fat, low-fiber diet can alter the gut
microbiome’s composition, reducing bacterial diversity (Trompette et al. 2014, Cox et al.
2014, Stepanauskaite et al. 2023). Pollution, notably air pollution, has additionally been
linked to changes in the respiratory microbiome, with studies showing that exposure to
air pollution can alter the composition and diversity of the microbiome (Gao et al. 2017,
Fouladi et al. 2020). These disruptions can lead to an increase in potentially pathogenic

bacteria, a reduction in bacterial diversity, and changes in the microbiome.

Conclusion

The human microbiome plays a crucial role in maintaining the host’s health, and dis-
rupting this microbial ecosystem can have significant consequences for human health.
Microbial imbalance can stem from various sources, such as antibiotic usage, respira-
tory and gastrointestinal infections, tobacco smoke exposure, and environmental factors.

Such disruptions can lead to a reduction in bacterial diversity, an increase in potentially
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pathogenic bacteria, and changes in microbial composition, which may contribute to the
development of chronic diseases such as inflammatory bowel disease, obesity, diabetes,

asthma, and chronic obstructive pulmonary disease.

Antibiotic use is one of the most significant factors that disrupt the microbiome. While
antibiotics are effective in combating bacterial infections, they can reduce the diversity
of bacterial species and alter the microbiome’s composition, leading to the overgrowth of
opportunistic pathogens and increasing the risk of antibiotic resistance. Therefore, the
use of antibiotics must be carefully considered and balanced against the potential conse-
quences of disrupting the microbiome. Lastly, biological sex should be considered a factor
when covering topics related to microbiome alteration, as it is becoming increasingly evi-
dent that sexual dimorphisms influence the microbiome. Future research should focus on
identifying specific microbial species and their functions in health and disease, consider-
ing the sex-specific effects of microbiome changes and associated diseases, on developing

targeted treatments for microbiome-associated conditions in males and females.

In conclusion, the human microbiome is a complex ecosystem that plays a crucial role
in human health, and disrupting this microbial community can have significant conse-
quences. Understanding the complex interplay between the microbiome and the immune
system and identifying specific microbial species’ functions can lead to the development of
targeted therapies to mitigate the adverse effects of microbiome disruption and improve

human health.
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Chapter 2

Early-life antibiotic treatment
results in persistent microbiome

alterations 1n association with sex

No data is clean, but most is useful.

Dean Abbott

Abstract

Background: Antibiotic treatment commonly occurs shortly after birth and is admin-
istered to infants suspected of having an infection. However, this antibiotic treatment
can alter the developing microbiome, which can have detrimental effects on host health.
Sex differences in the microbiome are often unexamined or unreported, leaving a gap
in knowledge about whether sex influences the response to perturbations of the micro-

biome. We hypothesized that antibiotic treatment during infancy would cause persistent
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changes to the developing microbiome and alter host physiology and that these effects
could be sex-dependent. Using an infant rhesus macaque model to recapitulate human
pediatric populations, we assessed how early-life administration of antibiotics impacted
the development of the gut microbiome during the first 6 months of life. Results: Infant
rhesus macaques were administered an antibiotic cocktail during the first week of life,
with controls receiving saline during the same time period. Antibiotic-treated infants
had higher weight and neutrophil-to-lymphocyte ratio z-scores compared to controls, an
effect that was influenced by sex. Accordingly, we observed sexually dimorphic changes
in o-diversity and taxa abundance in response to antibiotic treatment, with more sig-
nificant differences observed between antibiotic-treated and control males compared to
female groups. Metagenomic pathways of the gut microbiome examined using picrust
showed that metabolic functional differences were altered with antibiotic treatment, par-
ticularly pathways related to short-chain fatty acid metabolism. Conclusions: We found
that early-life antibiotic exposure resulted in persistent changes to physiology and the
gut microbiome. These effects of antibiotics were sex-dependent, with differences more
prevalent in males and not females. Our data demonstrates the importance of examin-
ing sex-dependent differences and that future studies should take sex into account when

determining the effects of an altered microbiome on health.

Introduction

Infections can cause significant morbidity and mortality in infants, in part due to their
immature immune responses (PrabhuDas et al. 2011, Ruf and Knuf 2014). Clinicians
commonly administer antibiotics shortly after birth to mitigate the potential risk of sepsis

(Raymond et al. 2017). However, the actual rates of neonatal sepsis are significantly lower
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compared to the frequency of antibiotic treatment. In an analysis of antibiotic use in a
neonatal intensive care unit, 99.8% of infants received at least one dose of an antibiotic,
while only 5% of suspected infections were confirmed with positive blood cultures (Cantey
et al. 2015). Antibiotics can disrupt the commensal microbiota, the community of
microbes that colonize the human body. The gut microbiota is resilient against external
perturbations, but this commensal microbial community can be significantly altered if
exposed to antibiotics early in its development. Antibiotic-induced alterations in the
adult microbiota are relatively transient, while the effects of antibiotics on the infant
microbiota may have a much longer and more significant impact. The infant microbiota
may be particularly susceptible to perturbations, as the microbiota has not yet reached

a stable phenotype.

A relatively sterile unborn child becomes coated with microbes during the birthing pro-
cess (Vangay et al. 2015, Tamburini et al. 2016). The microbiome “matures” during
early life, undergoing successional changes in composition and resembling an adult-like
microbiome by about 2 to 3 years of age. In addition to altering the microbiome compo-
sition, antibiotics delay this microbiome maturation (Bokulich et al. 2016). The health
and developmental consequences of these alterations in the microbiome are poorly under-
stood. It is known that early life antibiotic treatment can impact the growth of infants.
There is a greater risk of obesity later in life following infant treatment to antibiotics
(Bailey et al. 2014, Vangay et al. 2015), and more recently, antibiotics have been shown
to impact height and weight gain during the first years of life (Kamphorst et al. 2019,
Uzan-Yulzari et al. 2021). While antibiotics are commonly associated with increased
weight gain, it has been demonstrated that the timing of antibiotic treatment can influ-
ence whether an infant has increased or decreased weight gain with age. These effects

on weight can be sex-dependent and are more apparent in male infants (Uzan-Yulzari
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et al. 2021). Sex-dependent effects of antibiotics could suggest either sex differences
in the microbiome or in response to alterations of the microbiome. Unfortunately, sex
differences in the infant microbiome are often not reported, though sex differences in the
microbiome have been shown to exist in infants (Cong et al. 2016), adults (Mueller et
al. 2006, Ding and Schloss 2014, Haro et al. 2016), and in animal models (Yurkovetskiy
et al. 2013, Haro et al. 2016, Johnson et al. 2020) . Whether there are sex differences in

the infant microbiome following antibiotic treatment has not been reported.

Since much of what is known about antibiotics and the microbiome comes from epidemi-
ological studies (Ding and Schloss 2014, Mueller et al. 2015, Cong et al. 2016), we set out
to investigate the longitudinal effect of early-life antibiotic treatment on the infant rhesus
macaque microbiome in a controlled setting. We were interested in how long antibiotics
would disrupt the infant microbiome, whether we would observe sex differences in re-
sponse to antibiotics and hypothesized that antibiotic treatment during infancy would
cause persistent changes to the developing microbiome and alter host physiology. Since
antibiotics have been shown to influence weight gain (Kamphorst et al. 2019, Uzan-
Yulzari et al. 2021), we assessed infant weights throughout this study; additionally, as
the immune system is also developing and maturing alongside the microbiome (Vangay
et al. 2015, Tamburini et al. 2016). Therefore, we examined whether antibiotic treat-
ment was associated with altered developmental trajectories of circulating white blood
cells. We found that antibiotics altered the microbiome for up to six months after antibi-
otic treatment and that sex could influence its effects on the microbiome and physiology.
These results indicate that sex is an important variable to consider in microbiome studies,

as the response to external perturbations may differ by sex.
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Materials and Methods

Rhesus Macaques.

Infant colony-bred Indian rhesus macaques (Mucaca mulatta) born and housed at the
California National Primate Research Center (CNPRC) were used in this study. The
animals were negative for simian immunodeficiency virus (SIV), simian T lymphotropic
virus (STLV), and simian retrovirus (SRV), and they did not have a history of pharma-
cological or dietary intervention with known influences on the microbiome. All animals
were healthy for the duration of the study. Animals were enrolled in the study on a
tapered schedule and, although samples were collected once per month, the exact age in
days of each animal may have differed slightly. Age in months and age in days are used

to assess differences on continuous and discrete scales.

Diet, housing, and antibiotics.

All animals were housed indoors and breast-fed by their respective dams until weaning
age at 5 months. Infant monkeys were assigned to a control group (n=8; male n=3,
female n=>5) and antibiotic (ABX) treatment group (n=10; male n=>5, female n=5).
Antibiotics or saline were administered to animals for 7 consecutive days. We previously
found that intramuscular (I.M.) administration of a broad-spectrum antibiotic cocktail
on postnatal days 1-7 results in an altered intestinal microbiome in rhesus monkeys (data
not shown). Control animals were not administered antibiotics of any kind. In contrast,
the antibiotic-treated animals received an intramuscular (I.M.) broad-spectrum antibiotic
cocktail containing Gentamicin (5 mg/kg), Ampicillin (50 mg/kg), and Vancomycin (15

mg/kg) daily at postnatal days 4 or 5 for 7 days. This cocktail was used because it
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is commonly administered to human infants suspected of having an infection, making
the dosage and regimen in this study clinically relevant. Control animals were given a
saline injection as a substitute for antibiotics via the same administration route, age, and

antibiotic course duration.

Collection of Clinical Data.

Animal weights were measured at least once per month. CBC differentials were conducted
by the California National Primate Research Center research services staff. Animals were
anesthetized with ketamine hydrochloride (5-30 mg/kg) for femoral venipuncture. CBC
differentials were performed on EDTA anticoagulated blood using a Sysmex XT2000i

and blood chemistry was performed using Beckman AU480 chemistry analyzer.

Microbiome Profiling.

DNA extraction.

The fecal microbiota was assessed in total DNA from fecal swabs (Copan fecal swabs).
Fecal swabs were collected monthly for 6 months and stored in Copan collection tubes
at -80°. Swabs were thawed on ice and vortexed in Clary-Blair media until homoge-
nous. Aliquots of approximately 200 ul were used for total bacterial DNA extraction.
DNA was isolated using the Qiagen DNeasy PowerSoil kit (Qiagen) with the following
modifications. After adding buffer C1, samples were incubated at 65° for 10 min and
then subjected to homogenization using a Qiagen TissueLyser (Qiagen) for 10 min at 20
cycles per second. The samples were then turned 180 degrees and subjected to further
homogenization for an additional 10 min at 20 cycles per second, per the manufacturer’s

recommendation. Samples were eluted in 60 pl of buffer C6.
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PCR amplification.

Amplification of the V3-V4 domain of the 16S rRNA gene was performed using a DNA
template and primers 319F (F stands for forward) [TCGTCGGCAGCGTCAGATGTG-
TATAAGAGACAG(spacer) GTAC TCCTACGGGAGGCAGCAGT] and 806R (R stands
for reverse) [GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAG(spacer)CCGGA
CTACNVGGGTWTCTAAT] using a two-step PCR procedure. In step one of the
amplification procedure, both forward and reverse primers contained an Illumina tag
sequence, a variable length spacer to increase diversity and improve the quality of the
sequencing run, a linker sequence, and the 16S target sequence. Each PCR contained 1U
Kapa2G Robust Hot Start Polymerase (Kapa Biosystems), 1.5 mM MgCl2, 0.2 mM final
concentration of deoxynucleotide triphosphate (ANTP) mix, 0.2 ul final concentration
of each primer, and 1 pl of DNA for each sample. PCR conditions were as follows:
an initial incubation of 95° for 45 s, 50° for 30 s, 72° for 30 s, and a final extension
of 72° for 3 min. In step two, each sample was barcoded with a unique forward and
reverse barcode combination using forward and reverse primers with an Illumina P5
adaptor sequence, a unique 8-nucleotide (nt) barcode, a partial matching sequence of
the forward adaptor used in step one and reverse primers with an Illumina P7 adaptor,
unique 8-nt barcode, and a partial matching sequence of the reverse adaptor used in
step 1. The PCR in step two contained 1 U Kapa2G Robust Hot Start polymerase
(Kapa Biosystems). 1.5 mM MgCl2, 0.2 mM final concentration dNTP mix, 0.2 pM
final concentration of each uniquely barcoded primer, and 1 pl of the product from the
PCR in step one diluted at 7:1 ratio in water. PCR conditions were as follows: (i) an
initial incubation at 95° for 3 min; (ii) 8 cycles, with 1 cycle consisting of 95° for 30 s,
58° for 30 s, and 72° for 30 s; and (iii) a final extension step of 72° for 3 min. The final

product was quantified on a Qubit instrument using the Qubit Broad Range DNA kit
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(Invitrogen), and individual amplicons were pooled in equal concentrations. The pooled
library was cleaned utilizing Ampure XP beads (Beckman Coulter). The library was
quantified via qPCR followed by 300-bp paired-end sequencing using an Illumina Miseq

instrument in the Genome DNA Technologies Core, University of California, Davis.

Bioinformatics.

All samples were sequenced on an [llumina MiSeq platform at the Genome DNA Technol-
ogy Core at the University of California, Davis. Analysis began with demultiplexing se-
quence reads. Demultiplexing of the raw FASTQ files and adapter trimming of sequences
were performed using dbcAmplicons version 0.8.5. (https://github.com/msettles/
dbcAmplicons). The unmerged forward and reverse reads were imported into QIIME2
version 2020.8 (https://docs.qiime2.0rg/2020.8/), and amplicon sequencing variants
(ASVs) were determined following the DADA2 analysis pipeline (Callahan et al. 2016).
Snakemake (Koster and Rahmann 2012) was used as workflow manager to manage the QI-
IME2 environment (https://github.com/nasiegel88/tagseq-qiime2-snakemake-1).
Each sequence was assigned to its given samples based on the given barcode. Reads that
did not match any barcode were discarded (failed to meet minimum quality thresholds).
Barcoded forward and reverse sequencing reads were quality filtered and merged. Se-
quences that were only observed one time or only in a single sample were also discarded.
Chimeras were detected and filtered from paired end reads. Comparison of clustered
sequences was performed against SILVA 138. All data generated in this study utilize
the same instrumentation, technician reference database, packages, and pipeline. Data

processing and filtering and trimming of reads.

The data were filtered as follows: ambiguous phyla were removed, phyla with a mean

prevalence of less than 10 were removed. Taxa were agglomerated at the genus level if
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possible and all taxa without genus-level taxonomic assignments were retained. Samples

with less than 5000 reads were removed.

Statistical analysis.

All R packages involved in analyses were installed in R 4.0.3 and managed by the R
package manager, renv (version 0.12.5) unless otherwise stated. Statistical analysis of
microbial communities was performed primarily using the Bioconductor package Phyloseq
(version 1.34.0). Differential abundance analyses were performed using Linear discrimi-
nant analysis effect size (LEfSe) as described in the literature (Segata et al. 2011). Alpha
diversity indices were computed in Qiime2 and measured as Shannon index, Pielou’s even-
ness, observed ASVs, and phylogenetic diversity. Alpha diversity indices were analyzed
with the permuspliner function in SplinectomeR, (version 0.1.0), a permutation-based
package in R that uses weighted local polynomials (loess splines) to test for group dif-
ferences in longitudinal data (Shields-Cutler et al. 2018). This method is less sensitive
to the limitations of using aggregate data over time. We performed 1000 permutations.
Metagenomic analysis of Picrust2 predicted Kegg pathways was analyzed in Statistical
Analysis of Metagenomic Profiles (STAMP, version 2.1.3). Differences in bacterial path-
way % mean proportions were assessed with Welch’s t-test and significance was taken
at p <0.05. All mixed effects models used in this study were fitted using the R pack-
age lmerTest (3.1-3). Animal weights and CBC concentrations were transformed into
z-scores using the study mean and study average to calculate z-scores. Animal weight
was measured across early development with treatment, sex, and age as fixed effects and
animals as random effects. Neutrophil to lymphocyte ratio was measured across early
development with treatment, sex, and age as fixed effects and animals as random effects.

Loess spines were used to account for the non-linear relationship between CBC concen-
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tration and age as previously described in the literature (Pembrey et al. 2008). Splines

were permuted using the Spline base R package (version 4.0.3).

Data availability.

Raw reads were deposited to the Sequence Read Archive (insert project number) and
are available on Open Science Framework (https://osf.i0/87gsx/). The figures and
code present in this study can be found on GitHub (https://github.com/Imillergrp/

siegel_et_al_2021).

Results

Study Design.

Infant rhesus macaques enrolled in this study were born and raised indoors. Antibiotic-
treated infants received a broad-spectrum antibiotic cocktail of ampicillin, gentamicin,
and vancomycin during the first week of life, with controls receiving saline. The antibiotic
cocktail in our study is commonly used in clinical settings, making it a relevant model
of antibiotic-induced dysbiosis in pediatric populations. All infants were breastfed by
their mothers until weaned at approximately 5 months of age. We collected fecal swabs,

weights, and blood monthly from postnatal days 4 or 5 until 6 months of age (Fig. 2.1).

Effect of early-life antibiotic treatment on clinical parameters.

We aimed to determine if there were any physiological changes specific to antibiotic-

treated animals. We measured the CBC trajectory from postnatal days 4 or 5 until
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6 months of age. A non-linear mixed-effects model was used to determine if antibiotic
treatment and sex significantly impacted neutrophil-to-lymphocyte ratio (NLR) for age z-
scores. We observed a significant effect of treatment and sex on NLR-for-age z-scores over
six months, with antibiotic-treated animals having fluctuating NLR z-scores and control
animals having a steady decline in NLR-for-age z-scores (p=0.006) (Fig. 2.2a, Table. 2.1).
Other lymphocyte and leukocyte z-scores were assessed, but significant differences were

not observed (Supp. Fig. 2.1a-2.1d).

Given that previous studies implicated an altered microbiome to changes in weight (Cho
et al. 2012, Nobel et al. 2015, Cox and Blaser 2015, Bokulich et al. 2016), we interrogated
whether treatment and sex had a significant effect on weight over 6 months. Animal
weights were transformed into z-scores, and a linear mixed-effects model was constructed
to ascertain the impact of sex and early-life antibiotic treatment on weight-for-age z-
scores. There was a significant impact of sex and age on weight-for-age z-scores (p=0.027)
(Fig. 2.2b, Table. 2.2). Similarly, sex and treatment also significantly impacted weight
over the first six months of life (p=0.017) (Fig. 2.2b, Table. 2.2).

Microbiome composition.

16s TRNA sequencing revealed the most abundant phyla during the first six months
to be Firmicutes, Proteobacteria, Actinobacteria, and Bacteriodota (Fig. 2.3a). De-
spite the top four taxa’s dominant abundances during early life, we observed several
phyla that made up less than 1% of the total composition (Fig. 2.3b). Independent
of antibiotic treatment, Firmicutes made up most of the fecal microbiome composi-
tion every month and consistently increased in proportion while the phyla Proteobac-
teria, Actinobacteria, and Bacteriodota decreased in proportion, albeit to a lesser ex-

tent for Bacteriodota (Fig. 2.3b). The changes in the abundances of Firmicutes, Pro-
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teobacteria, Actinobacteria, and Bacteriodota occurred primarily in antibiotic-treated
infant males (Fig. 2.4b, 2.4e, 2.4h, 2.4k). Firmicutes abundance was significantly re-
duced in antibiotic-treated males at 2 and 3 months, while few alterations were observed
in females (Fig. 2.4b, 2.4c). Actinobacteria had low abundance regardless of antibi-
otic treatment. Despite antibiotic treated infants having increased abundance of Acti-
nobacteria relative to controls, and more pronounced changes in males, by 6 months of
age, Actinobacteria were readily undetectable regardless of previous antibiotic treatment
(Fig. 2.4g, 2.4h, 2.4i). Bacteriodota was most resilient to persistent alterations after

antibiotic treatment (Fig. 2.4d-2.4f).

Differential abundance of taxa and microbiome diversity.

We assessed the microbiome’s diversity on discrete (monthly) and continuous (daily)
scales to understand whether the diversity of the microbiome of antibiotic-treated and
control infants differed over 6 months and where those differences were most pronounced.
Using Loess splines, we demonstrate that early-life antibiotics persistently altered the mi-
crobiome’s alpha diversity, with significant alterations observed in males but not females
(Fig. 2.5a, 2.5b, 2.5¢). A longitudinal effect of early-life antibiotic treatment on alpha di-
versity was not observed (Supp. Fig. 2.2). We observed that male infants have reductions
alpha diversity at months 1 and 2, following antibiotic treatment, although these results
did not reach significance. However, by 6 months of age, antibiotic-treated males had
increased alpha diversity compared to control males (Fig. 2.5d, 2.5e, 2.5f). Similar find-
ings were not observed in female infants, further implicating sex as a critical factor in the
persistent effects of early-life antibiotic treatment. Linear discriminant analysis effect size
(LEfSe) was used to assess differential abundance of taxa at each month and to assess sub-

sequent compositional differences in taxa abundance post-early-life antibiotic treatment.
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Variation in bacteria differential abundance between control and antibiotic-treated infants
primarily resided at 6 months of age (Fig. 2.6a-2.6c). We observed most of the differ-
entially abundant taxa from the phyla Proteobacteria, Firmicutes, and Bacteriodota, in-
cluding o_bradymonadales and o_delsulfuromonadia for Proteobacteria; o_oscillospirales,
f-lachnospiraceae, and f-oscillospiraceae for Firmicutes; and f.rikenellaceae for Bacte-
riodota in antibiotic-treated infants. Although control infants had fewer differentially
abundant taxa, they were observed to have increased proportions of short-chain fatty
acid-producing bacteria from f.lactobacillaceae and another unclassified taxon from the

Lactobacillus group (Fig. 2.6a).

Next, we questioned whether there were sex differences in bacterial differential abun-
dance. We observed prominent differences in the overall number of differentially abun-
dant taxa between antibiotic-treated males and females and control males and females
at 6 months, suggesting that the effects of early-life antibiotic treatment do not become
substantial until later in life (Fig. 2.6b, 2.6¢). These differences could be associated
with the instability of the fecal microbiome at such a young age. The number of dif-
ferentially abundant taxa between antibiotic-treated males and females differed between
control males and females (Fig. 2.6b, 2.6¢). Control males and females possessed com-
parable numbers of differentially abundant taxa with different taxa increased in each
group (Fig. 2.6b). The results were strikingly different from antibiotic-treated males and

females, which had 20 and 2 differentially abundant taxa, respectively (Fig. 2.6¢).

Taxa from the phyla Firmicutes, Bacteriodota, Proteobacteria, Actinobacteria, and
Cyanobacteria were increased in antibiotic treated males, including f_erysipelotrichia
from Firmicutes; f-prevotellaceae from Bacteriodota; o_rickettsiales from Proteobacte-
ria; g-eggerthella and g_enterohabdus from Actinobacteriota; and f coriobacteriaceae,

o_gastroanerophilales, and g vampirovibrio from Cyanobacteria (Fig. 2.6b). Conversely,
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antibiotic-treated females had increased taxa abundances from the phyla Firmicutes,
specifically g_allisonella (Fig. 2.6b). Bacteria from the phylum Fibrobacterota made
up most of the differentially abundant phyla in control males. Also, males had
increased g_eubacterium at month 6, whereas control females primarily had increased
abundances of bacteria from the phyla Proteobacteria, including o_pasteurellales and
f-pasteurellaceae; and Firmicutes, specifically g¢_faecalibacterium. Additionally, control
females had increased taxa abundances from the order lactobacillus, including g_weissel

and f-leuconostocaceae (Fig. 2.6b, 2.6¢).

Similar to what was observed at six months of age, we report many differentially abundant
taxa after the first week of life (at month 0) in control animals (Fig. 2.5a). Furthermore,
control females had higher proportions of Actinobacteria, of which g_bifidobacteria is a
part, at months two and four (Fig. 2.5b, 2.5d). The number of differentially abundant
taxa at months 0-5 was relatively small compared to the differences observed at six
months, suggesting that the temporal changes in the microbiome after early-life antibiotic
treatment are most pronounced later in life. Taxa that were often increased at months 0-5
in antibiotic-treated infants were Actinobacteria and g_bifidobacteria. Control infants had
significantly increased proportions of g_campylobacter and g_helicobacter pronounced at
1 month (Fig. 2.6b). Captive rhesus monkeys are commonly colonized with helicobacter
suggesting the bacteria is part of the normal microbiota of rhesus macaques (Fernandez

et al. 2002).

The metagenomic function of the developing microbiome.

Given that many taxa have redundant metabolic processes, we aimed to determine if
changes in predicted metagenomic function accompanied the observed changes in the

microbiome composition. We used Phylogenetic Investigation of Communities by Re-
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construction of Unobserved States 2 (picrust2) to interrogate the mean proportion of
differentially abundant bacteria metabolic pathways (Douglas et al. 2020). Variation in
predicted metagenomic pathways occurred between antibiotic-treated and control infants
(Fig. 2.7a); however, fewer differences in metabolic pathways were observed between sex
(Fig. 2.7b, 2.7¢). 6 months of age was characterized by the most pronounced changes
in bacteria metabolic pathways. Of note, pathways known to convert pyruvate to short-
chain fatty acids, such as acetate, were observed to be reduced in infants treated with
antibiotics during the first week of life (Fig. 2.7a). A pathway responsible for converting
pyruvate to acetate was significantly increased in control infants relative to antibiotic-

exposed infants.

Despite the majority of metagenomic differences occurring primarily at six months of age,
we also observed metagenomic functional changes throughout the study. For example, the
first week of life was when most differences in predicted metabolic pathways were observed
between antibiotic-treated and control infants (Supp. Fig. 2.6a) compared to other ages.
However, by 1-month of age, much of the differences in metagenomic pathways between
antibiotic-treated and control infants were resolved, suggesting a slight but temporary
return to normal microbiome function (Supp. Fig. 2.6b-2.6f). Four months of age was
when most differences in metagenomic pathways between sexes in the control group were
observed (Supp. Fig. 2.8e) however, fewer differences in metagenomics function were

observed between sexes in the antibiotic group (Supp. Fig. 2.7a-2.7¢).

Discussion

The effects of early life antibiotic treatment on the developing infant microbiome are

poorly defined. Additionally, the sex-dependent effects of antibiotics are often not ex-
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amined. To address this, we set out to investigate the impact of antibiotic treatment
during the first week of life on physiology and the microbiome in a longitudinal manner.
We found that the most abundant phyla in the infant rhesus macaque microbiome were
Firmicutes, Proteobacteria, Actinobacteria, and Bacteriodota (Fig. 2.2a). This finding
is comparable with that of Rhoades et al. 2019, which demonstrated that the develop-
ing rhesus microbiome is primarily Firmicutes and Bacteriodota (Rhoades et al. 2019).
Similarly, they found that Actinobacteria decreased with age, which we also observed
(Fig. 2.3g, 2.3h, 2.31). Antibiotic treatment influenced the temporal abundance of these
phyla, with more pronounced changes in antibiotic treated males than control males
(Fig. 2.3). Changes in alpha diversity were also significantly impacted in antibiotic-
treated males (Fig. 2.5b, 2.5¢). While alpha diversity was initially lower in antibiotic-
treated males relative to control males, it was significantly higher by 6-months of age.
These results concur with a recent study which showed that human infants exposed to
antibiotics early in life developed an altered microbiome composition and increased alpha
diversity that surpasses the control group by about two years of age (Uzan-Yulzari et al.

2021).

We found that antibiotic administration during the first week of life was associated with
alterations in weight-for-age z-scores, with antibiotic-treated infants having a trend to-
wards higher weight-for-age z-scores during 5 and 6 months of age (Fig. 2.4b). While
antibiotic treatment alone was not associated with alterations in weight-for-age z-scores,
sex and antibiotic treatment together did (Table 2.2) , indicating that the effects of an-
tibiotics on weight-for-age z-scores are sex-dependent. Other studies that have examined
the effects of antibiotics on growth have also found sex differences in weight gain fol-
lowing antibiotic treatment (Cox et al. 2014, Uzan-Yulzari et al. 2021). The timing

of antibiotic exposure matters, as antibiotic treatment during the first few weeks of life
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is associated with decreased weight gain with age, while antibiotic treatment later in
infancy and childhood is associated with increased weight gain (Kamphorst et al. 2019,
Uzan-Yulzari et al. 2021). Unlike others, we found that antibiotic treatment during the
first week of life was associated with a trend towards increased weight with age. Such a
difference could be partially attributable to our study’s duration, as we assessed weights
during the first six months of life while other studies monitored weight for the first few
years of life (Kamphorst et al. 2019, Uzan-Yulzari et al. 2021). Our study also took
place in a controlled environment in contrast to epidemiological studies where there can
be variability in the type of antibiotics infants receive and the duration of treatment.
Uzan-Yulzari et al., 2021 demonstrated that increased antibiotic treatment during in-
fancy causes significant changes in weight-for-age z scores relative to untreated controls
(Uzan-Yulzari et al. 2021). Thus, the effects of antibiotics on weight may be influenced
by the type and duration of antibiotic treatment. Of the clinical parameters we ex-
amined, the most significant difference we found between antibiotic-treated infants and
controls was in the NLR-for-age z-score (Fig. 2.4a, Table 2.1). Antibiotic-treated infants
had fluctuating NLR-for-age z-scores, initially lower during early-life and then higher
than control infants around five to six months of age. Control infants had decreased
NLR-for-age z-scores with age. NLR is a marker of subclinical inflammation; thus, an
increase in NLR-for-age z-scores could suggest mild inflammation. Antibiotics have been
shown to influence inflammation, though generally in a more acute fashion (Knoop et al.
2016). However, the microbiome was also altered at 6 months of age in our infants and

could provoke inflammation, even months after antibiotic treatment.

Although control infants had fewer differentially abundant taxa, they were observed to
have increased proportions of short-chain fatty acid-producing bacteria from Lactobacil-

laceae and another unclassified taxon from the Lactobacillus group (Fig. 2.6a). Metage-
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nomic analysis of the microbiome further supported this difference, as pathways related
to short-chain fatty acid (SCFA) metabolism were reduced in antibiotic-treated infants
compared to controls (Fig. 2.7a). Short-chain fatty acids have anti-inflammatory prop-
erties, in addition to many other health benefits (Park et al. 2015, Tang and Offermanns
2017, Ratajczak et al. 2019, Venegas et al. 2019). Antibiotic-treated infants did have
greater microbiome diversity at six months compared to controls, and it is conventionally
thought that greater diversity of the microbiome is more beneficial for health. Various
diseases are associated with reduced microbiome diversity (DiGiulio et al. 2015, Wlo-
darska et al. 2015, Needell and Zipris 2016, Tremlett et al. 2017, Levy et al. 2017, Weiss
and Hennet 2017). However, this is not always the case, as higher diversity of the vagi-
nal microbiome is associated with pre-term birth (Biagi et al. 2016) and inflammation
(Anahtar et al. 2015). Our results suggest that although antibiotic-treated infants have
increased diversity metrics relative to control infants, not all the taxa contributing to

increased diversity are necessarily beneficial.

LEfSe analysis (Fig. 2.6a) showed that the most significant differences in bacteria differ-
ential abundance between antibiotic-treated infants and controls were at six months of
age, in accordance with our finding that the most significant differences in alpha diversity
were seen at that age. The number of differentially abundant taxa was similar between
control males and females (Fig. 2.6¢), which was not the case in antibiotic-treated infants.
Antibiotic-treated males had twenty differentially abundant taxa, while antibiotic-treated
females had two (Fig. 2.6b). While it has been demonstrated that there are sex differ-
ences in the microbiome, it has not previously been shown that antibiotics can have a
sex-dependent effect on the microbiome. Aside from pre-existing sex differences in the
microbiome, the only environmental factor that has been shown to exert sex-dependent

effects on the microbiome is diet. Analysis and re-analysis of microbiome studies demon-
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strated that sex*diet interactions could modify the microbiome (Bolnick et al. 2014).
Administration of an oligofructose supplement caused reduced fecal community richness
in males, while increasing it in females (Shastri et al. 2015). The effects of diet on the mi-
crobiome can be sex-dependent, and thus it is not unsurprising that antibiotics can also
affect the microbiome in a sex-dependent manner. Although we found compositional
differences in the microbiome with respect to sex, few metagenomic functions differed
between the sexes. We could not detect differences in metagenomic pathways for every

month (Supp. Fig. 2.7, Supp. Fig. 2.8).

Our study has limitations, for example, the samples size for control males was small
(n=3) which limited our ability to detect statistically significant differences. Changes
in metabolic functions will need to be confirmed by examining differences in circulat-
ing levels of metabolites. While we have data supporting the differences during infancy,
we cannot say whether these antibiotic-induced alterations persist into adulthood. Fur-
thermore, while we have detected sex differences in the microbiome and response to
antibiotic treatment, this data does not reveal the mechanism by which this is happen-
ing. Sex differences in the microbiome could be influenced by genetics, differences in

mucosal immunity, and sex hormone (Yurkovetskiy et al. 2013, Org et al. 2016).

In summary, our results indicate that antibiotic treatment during the first week of life in
infant rhesus macaques can have lasting effects on the microbiome months after treatment
at a compositional and functional level. Furthermore, antibiotic treatment impacted
weight-for-age z-scores, an effect influenced by sex. We also found that there were sex-
dependent effects of antibiotics on the microbiome, with changes most pronounced in
antibiotic-treated male infants. Our study is the first to report sex-dependent changes
in the microbiome following antibiotic treatment. These findings indicate the possibility

that other environmental factors could have sex-dependent effects on the microbiome.
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Figure 2.2: Early-life antibiotics causes persistent physiological changes in neutrophil-
to-lymphocyte ratio and weight. Mixed effects model of Neutrophil-to-lymphocyte ratio
over the first 6 months of life (age measured in days). Weight increase over the first 6
months of life (age measured in days) (Fig. 2a). The area around the splines in the
NLR model represent 95% confidence intervals. The weight model is represented by age
in months for simplicity (Fig. 2b). Error bars in weight mixed effected model represent
the standard error of the mean. Age in days and sex were included as covariates the
NLR and weight mixed effects models. Sample sizes were as follows: Antibiotic exposed
infants (n=14), Control infants (n=12), Antibiotic exposed males (n=9), antibiotic ex-
posed females (n=>5), control males (n=6), and control females (n=6). We were able to
include an additional 8 animals for our regression analyses for months 0-5 bringing the
total samples size to 26 for those time points.
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Figure 2.4: Early-life antibiotic exposure has both transient and lasting effects on the
composition of the infant rhesus microbiome. Prominent changes are observed in males
(Fig. 4a, 4e, 4h, 4k) relative to females (Fig. 4c, 4f, 4i, 41). Abundance trajectories of
Firmicutes (Fig. 4a, 4b, 4c), Bacteroidota (Fig. 4d, 4e, 4f), Actinobacteria (Fig. 4g,
4h, 4i) and Proteobacteria (Fig. 4j, 4k, 41) were measured as the percent of read reads
mapped to a given phyla for each sample. Sample sizes were as follows: Antibiotic ex-
posed infants (n=10), Control infants (n=8), Antibiotic exposed males (n=5), antibiotic
exposed females (n=>5), control males (n=3), and control females (n=>5). Due to a collec-
tion issue, one month-6 fecal swab is missing from the female control group. P <0.05 by
ANOVA with paired samples t-test and Bonferroni correction. *, P <0.05; ** P <0.005.
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Figure 2.5: Persistent changes in alpha diversity are most pronounced at 6 months and
in males. Changes in alpha diversity were more pronounced in males than females. Bac-
teria evenness of richness (Pielou’s evenness) over time distinguishes from control (group
spline in blue) and ABX (group spline in red) infants. Pielou’s evenness between antibi-
otic treated and untreated males and females (1000 permutations, p=0.21) (Fig. b5a),
evenness between antibiotic treated and untreated males (1000 permutations, p=0.02)
(Fig. 5b), and evenness between antibiotic treated and untreated females (1000 permu-
tations, p=0.98) (Fig. 5¢). Pielou’s evenness for both sexes (Fig. 5d), males (Fig. 5e),
and females (Fig. 5f). Alpha diversity measured as Shannon index for box sexes (Fig.
5g), males (Fig. bh), and females (Fig 5i). Sample sizes were as follows: Antibiotic ex-
posed infants (n=10), Control infants (n=8), Antibiotic exposed males (n=>5), antibiotic
exposed females (n=5), control males (n=3), and control females (n=>5). Due to a collec-
tion issue, one month-6 fecal swab is missing from the female control group. P <0.05 by
ANOVA with paired samples t-test and Bonferroni correction. *, P <0.05; ** P <0.005.
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Figure 2.6: Early antibiotic exposure promotes differences in taxa abundances. Differ-
ential abundance was assessed using LEfSe to determine how different the microbiome
of antibiotic-exposed and unexposed infants (Fig. 6a), antibiotic-exposed males and fe-
males (Fig. 6b), and control male and females (Fig. 6c¢), are at 6 months of age. Sample
sizes were as follows: Antibiotic exposed infants (n=10), Control infants (n=8), Antibi-
otic exposed males (n=>5), antibiotic exposed females (n=>5), control males (n=3), and
control females (n=>5). Due to a collection issue, one month-6 fecal swab is missing from
the female control group. (a= 0.05, logarithmic LDA score threshold = 2.0)
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