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ABSTRACT OF THE DISSERTATION

Graphical Models for Inference with Missing Data

by

Karthika Mohan

Doctor of Philosophy in Computer Science

University of California, Los Angeles, 2017

Professor Judea Pearl, Chair

We address inference problems associated with missing data using causal Bayesian networks

to model the data generation process. We show that procedures based on graphical models can

overcome limitations of conventional missing data methods and provide meaningful performance

guarantees even when data are Missing Not At Random (MNAR). In particular, we identify condi-

tions that guarantee consistent estimation of parameters of interest in broad categories of missing

data problems, and derive procedures for implementing this estimation. We derive testable im-

plications for missing data problems in both MAR (Missing At Random) and MNAR categories.

Finally, we apply these techniques to develop a suite of algorithms for closed form estimation of

Bayesian network parameters.
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CHAPTER 1

Introduction

Missing data, also known as incomplete data, are data in which values of one or more variables are

not recorded. All branches of empirical sciences are plagued by missing data - sensors don’t work

reliably; patients are unable to recall treatments, outcomes or episodes; and respondents do not

answer all questions in questionnaires. Missing data analysis is an active research area, as attested

by the huge volume of published works in this field. Google Scholar, for instance, returns over 2

million results on this topic. However, despite the plethora of literature, missing data is a thorny

problem that leaves many questions unanswered.

The overarching goal of this thesis is to examine the missing data problem from a causal per-

spective, develop model-guided estimation procedures and devise tests for detecting model mis-

specifications. To this end, we use causal graphs as a tool to model and analyze the missing data

generation processes, in order to reduce the damage due to missingness1. To remedy shortcomings

in the traditional theoretical framework, we identify and answer open questions in this area. In

order to place these questions in context and clarify basic notations, we exemplify a missing data

problem below:

Example 1. Let D be a dataset (shown in Table 1.1) comprising variables Gender, Age and Drug

Use, where Gender and Age are fully observed and Drug Use is corrupted by missing values. Let

M be the causal model encoding the assumption that missingness is caused by the reluctance of

teenage respondents in revealing information about their drug use. Let Q denote the query we are

interested in estimating. An example of a query is the probability of drug use among women, i.e.

Q = P (Drug Use = true|Gender = female).

1In missing data literature, the word ‘missingness’ is commonly used as the noun form of missing.

1



We list below a set of open questions that are of interest to researchers burdened with missing

data.

Q-1 Given missing data D, the missingness model M and a target query Q, can we determine

whether or not Q is consistently2 estimable?

Q-2 If the answer to Q-1 is in the affirmative, then what is the procedure for computing Q?

Q-3 If the answer to Q-1 is in the negative, then what additional assumptions are necessary for

consistent estimation? For instance, will it help to make parametric assumptions about the

model, such as linearity? In the worst case, can we compute informative bounds on Q?

Q-4 How can we efficiently compute Q in practice given finite samples?

Q-5 Finally, how can we detect mis-specifications in the model? This is important since the

answers to all questions from Q-1 to Q-4 are highly model-sensitive.

Prior to deliberating over these questions, we explain the need to analyze missing data from a

causal perspective. Additionally, we informally introduce the notion of Missing At Random (MAR)

[Rub76], since the existing theoretical framework of missing data is almost exclusively built around

it.

1.1 The Causal Element in Missing Data Problems

Re-examine the dataset in table 1.1 that depicts samples from a drug abuse study conducted in a

school. When presented with this data, one cannot but wonder why data are missing - i.e., what

caused missingness? Is the cause of missingness,

1. a random computer error that accidentally deleted some values, or

2Consistent estimate of a target quantity Q is the estimate produced by an estimator/procedure whose esti-
mates/outputs converge to the true value of Q as the sample size increases indefinitely. Example: sample mean of
a normal random variable.
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2. a function of the fully observed variables Age and Gender - e.g., teenage boys that rebelled

and decided not to participate in the study, or

3. the underlying true value of the variable - e.g., students who used drugs and refused to answer

questions about drug use for fear of repercussions?

Of these plausible causes, data generated by (1) and (2) belong to missing at random (MAR)3 while

(3) belong to missing not at random (MNAR) category [Rub76]. Specifically, data are MNAR

when missingness in variables is caused by the underlying true value of the variables and/or by

other variables that are themselves afflicted by missingness; all other missing data are MAR.

While two missingness processes as distinct as (1) and (3) can produce data that are identical

(proved in Chapter 7), we will show that the method needed to overcome missingness depends

strongly on the causal story. In other words, causal assumptions are central to missing data analysis.

Table 1.1: Raw data in which Age and Gender are fully observed and Drug Use is partially ob-

served. ‘?’ indicates missing values in Drug Use.

# Age Gender Drug Use

1 13 F No

2 15 F ?

3 15 M ?

4 14 F No

5 13 M No

6 15 M Yes

7 14 F Yes

The following section briefly outlines the weaknesses of conventional, non-causal methods of

overcoming missingness, and explicates the need to embrace causal assumptions and model-guided

3A reader well acquainted with missing data will identify (i) as missing completely at random (MCAR). While (1)
is typically classified in literature as MCAR, it is not incorrect to call it MAR as MCAR implies MAR. This is further
discussed in chapter 2.
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analysis.

1.2 Deficiencies in the Conventional Treatment of Missing Data: An

Overview

Essentially all the literature on missing data assumes that the data are missing at random ([LR02],

page 22). Estimation procedures (such as multiple imputation), software packages (such as MICE

in R) and books ( such as [Gra12]) were developed, implemented and authored keeping MAR in

mind. These developments have engendered a culture with a tendency to blindly assume MAR,

with the consequence that the MNAR class of problems remains relatively unexplored. Rarely can

we find procedures for handling MNAR data, and this poses a major problem because, in reality,

data are more likely to be MNAR [RGP11, Ada07, Osb12, Osb14, Sve15, SK16].

A researcher handling missing data would find MAR appealing for a number of reasons. First,

the widespread availability of tools to manage MAR data makes such an assumption convenient.

Second, since MAR as defined in [Rub76] is untestable, it might seem tempting to assume that it

holds - after all, it is impossible to prove otherwise. Third, assuming that data are MAR spares one

the time and effort in determining why data are missing in the first place. Some experts advise not

to waste valuable time building missingness models ([SG02], page 171).

Despite its popularity, MAR is rather unintuitive [New14]. It is a misnomer - the missingness

process behind even legitimately MAR data is obviously not random (described in scenario (2) in

section 1.1). Furthermore, MAR as originally defined in [Rub76] in terms of event-level condi-

tional independence statements is cognitively formidable, making it very hard for a researcher to

judge its plausibility in any given problem. We exemplify and elaborate further on this topic in

chapter 2.

For all of these reasons, the traditional theory neglects the commonly-occurring MNAR cate-

gory of missingness, the handling of which requires explicit modeling of the missingness process

and developing model-guided procedures to compute queries of interest. This is a major deficiency

Yet another shortcoming of conventional methods is their overreliance on untestable assump-
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tions. Assumptions about the missingness process are the building blocks of missing data theory.

Therefore it is imperative that we test them whenever they are testable. Unfortunately, such tests

are far and few between [All02]. The price one pays for making invalid assumptions is high, for

they can completely distort and bias the outcome of research, making the whole endeavor fruitless.

Using causal assumptions in analysis, developing model-guided estimation procedures and de-

vising tests to detect violation of assumptions are the measures to be taken to overcome deficiencies

in this field.

The following section briefly summarizes answers to questions Q-1 to Q-6, and points to chap-

ters that present full answers in the form of algorithms, theorems and lemmata.

1.3 Our Contributions

1.3.1 Missingness in the Language of Causal Graphs

Recent years have witnessed a growing interest in analysing missing data from a causal perspective

using graphical models to encode assumptions about the causes of missingness. This development

is natural since graphical models provide efficient representation of the independence conditions

that are implied by causal assumptions ([Daw79, Lau96, CW96, Pea09]).

We demonstrate that graphical models depicting the data generating process play a critical role

in analyzing missing data problems, determining if theoretical impediments exist to eliminating

bias due to data missingness, finding procedures that will produce consistent estimates in the ab-

sence of impediments, and devising techniques to overcome impediments, if they exist.

1.3.2 Recoverability (Consistent Estimation) of Probabilistic and Causal Queries

Informally, recoverability is the ability to compute a consistent estimate of the query from data

generated by the model.

We formalize the notion of recoverability and show that relations are always recoverable when

data are MAR and, more importantly, that in many commonly occurring cases recoverability can
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be achieved even when data are MNAR. We further present sufficient graph-based conditions to

ensure recoverability of joint, conditional distributions and causal effects in MNAR problems. Fi-

nally we identify graph structures that forbid recovery of probabilistic and causal queries. For a

broad class of problems we also have necessary and sufficient conditions for recovering probabilis-

tic queries.

The work described above provides answers to questions Q-1 and Q-2.

1.3.3 Overcoming Theoretical Impediments to Recoverability

Consider a dataset consisting of one variable, Income. Assume that both people with high income

and people with low income are reluctant to reveal their income. Obviously we do not know if

missing values are all high, all low or a combination thereof. This problem poses an impediment

to consistent estimation of the average value of income. It is in fact impossible to correctly estimate

the average value of income, even when given infinitely many samples.

We present three strategies for overcoming impediments to consistent estimation in problems

similar to the example above. The first, based on matrix inversion, can recover joint distributions

and is applicable to discrete variables with finite states. The second is applicable to variables

governed by linear Gaussian models. Finally, for problems that cannot be handled by either of the

preceding strategies, we compute bounds for the target queries.

The work described above answers question Q-3.

1.3.4 Testability under Missingness

It is well known that graphical models provide testable implications which can be detected using

d-separation conditions in the graph [Pea09]. For example, a model with two nodes X and Y ,

with no edges between them, implies the independence of X and Y , which can be tested in the

distribution P (X, Y ). If the independence claim holds in the data, we can verify that the model

and data are compatible. Otherwise, this test can be used to refute the model.

However, when the distribution P (X, Y ) is corrupted by missingness we cannot verify an

6



independence claim because the part of the data masked by missing values may contain information

that defies the claim. Nevertheless there exist some independence claims that can be refuted by

data and they are called testable.

We develop syntactic rules for identifying conditional independence claims that are testable.

We further present conditions for non-testability of a conditional independence statement and dis-

cuss a general impediment to testability in missing data. We show that the popular class of models

known as MAR are testable whenever there exist two or more partially observed variables in the

dataset. Finally, we demonstrate sensitivity of missing data recovery procedures to structure of

hypothesized models and prove that this sensitivity is inevitable in datasets classified as MNAR.

The work described above answers question Q-5.

1.3.5 Application: Robust Algorithms for Closed Form Estimation

We apply our recoverability results [MPT13] to the problem of estimating parameters of a Bayesian

network. In particular, we propose a family of efficient and scalable algorithms for learning the

parameters of Bayesian networks from MCAR and MAR datasets, and from some MNAR datasets

[BMC15]. Our parameter estimates are asymptotically consistent, and further, they are obtained

inference-free and in closed-form. Empirically, we demonstrate the practicality of our method,

showing that it can scale to much larger datasets, and much larger Bayesian networks, than EM.

The work discussed above answers question Q-4.

1.4 Thesis Roadmap

In chapter 2, we discuss notations and technical preliminaries and formally introduce missingness

graphs (m-graphs). Chapters 3 and 4 present algorithms for recovering probabilistic and causal

queries. Methods to overcome theoretical impediments to recoverability are discussed in chapters

5 and 6. Testability results are discussed in chapter 7 and estimation algorithms given finite samples

are detailed in chapter 8. We draw conclusions and discuss future research directions in the last

chapter.
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CHAPTER 2

Missingness in the Language of Graphs

In this chapter we describe modeling of missing data generation process using causal Bayesian

networks and discuss the relevant notations and terminologies used in this thesis. This is followed

by a discussion of graph based categorization of missing data with a focus on the category, ‘Missing

At Random’. Finally we wrap up with an overview of related work in this area.

2.1 Preliminaries

We use causal graphs to portray the underlying missingness process. Causal graphs are directed

acyclic graphs where vertices correspond to variables and edges represent not just dependencies

but also functional relationship between the variables they connect. Independencies embedded in

a graphical model are read off it using the d-separation criterion described below.

Definition 1 (d-separation [Pea09]). A path p is said to be d-separated by a set of nodes Z if and

only if:

(1) p contains a chain i→ m→ j or a fork i← m→ j such that the middle node m is in Z, or

(2) p contains an inverted fork (or collider) i → m ← j such that the middle node m is not in Z

and such that no descendant of m is in Z.

A set Z is said to d-separate X from Y if and only if Z blocks every path from a node in X to

a node in Y and is denoted by Y ⊥⊥X|Z.

Remark 1 (Minimal Separator). Given two sets of nodes X and Y in DAG and a set Z that d-

separates X from Y , Z is a minimal separator if no proper subset of Z d-separates X from Y .

There are polynomial time algorithms to find minimal separators [AD96, TPP98].
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2.2 Graphical Models for Missing Data: Missingness Graphs (m-graphs)

The following example, inspired by [LR02] (example-1.6, page 8), describes how graphical models

can be used to explicitly model the missingness process and encode the underlying causal and

statistical assumptions. Consider a study conducted in a school that measured three (discrete)

variables: Age (A), Gender (G) and Obesity (O).

Figure 2.1: (a) Causal graph under no missingness (b), (c) & (d) m-graphs modeling distinct

missingness processes.

No Missingness If all three variables are completely recorded, then there is no missingness.

The causal graph1 depicting the interrelations between variables is shown in Figure 2.1 (a). Nodes

correspond to variables and edges indicate the existence of a relationship between pairs of nodes

they connect. The value of a child node is a function of the values of its parent nodes. i.e. Obesity

is a function of Age and Gender. The absence of an edge between Age and Gender indicates that

A and G are independent, denoted by A⊥⊥G.

Representing Missingness Assume that Age and Gender are are fully observed since they can

be obtained from school records. Obesity however is corrupted by missing values due to some

students not revealing their weight. When the value of O is missing we get an empty measurement

which we designate by m. Table 2.1 exemplifies a missing dataset. The missingness process can

be modelled using a proxy variable Obesity∗(O∗) whose values are determined by Obesity and its

1For a quick introduction to causal graphical models refer section 1.2 in [Pea09]
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Table 2.1: Missing dataset in which Age and Gender are fully observed and Obesity is partially

observed.

# Age Gender Obesity∗ RO

1 11 F Obese RO

2 15 F m 1

3 15 M m 1

4 14 F Not Obese 0

5 13 M Not Obese 0

6 15 M Obese 0

7 14 F Obese 0

missingness mechanism RO.

O∗ = f(RO, O) =


O if RO = 0

m if RO = 1

Ro governs the masking and unmasking of Obesity. WhenRo = 1 the value of obesity is concealed

i.e. O∗ assumes the values m as shown in samples 2 and 3 in table 2.1. When Ro = 0, the true

value of obesity is revealed i.e. O∗ assumes the underlying value of Obesity as shown in samples

1, 4, 5, 6 and 7 in table 2.1.

Choosing the correct estimation procedure is paramount to the outcome of any study involv-

ing missing data. Two identical datasets may require disparate estimation strategies which in turn

are determinable only from the causes of missingness. Missingness can be caused by random

processes or can depend on other variables in the dataset. An example of random missingness is

students forgetting to return their questionnaires. This is depicted in figure 2.1 (b) by the absence

of parent nodes for Ro. Teenagers rebelling and not reporting their weight is an example of miss-

ingness caused by a fully observed variable. This is depicted in figure 2.1 (c) by an edge between

A and Ro. Partially observed variables can be causes of missingness as well. For instance consider

obese students who are embarrassed of their obesity and hence reluctant to reveal their weight.
10



This is depicted in figure 2.1 (d) by an edge between O and Ro indicating the O is the cause of its

own missingness.

The following subsection formally introduces missingness graphs (m-graphs) as discussed in

[MPT13].

2.2.1 Missingness Graphs: Notations and Terminology

LetG(V, E) be the causal DAG where V = Vo∪Vm∪U ∪V ∗∪R. Nodes in the graph correspond

to variables in the data set. U is the set of unobserved nodes (also called latent variables). E is the

set of edges in the DAG. We use bi-directed edges as a shorthand notation to denote the existence

of a U variable as common parent of two variables in Vo ∪ Vm ∪ R. Vo is the set of variables

that are observed in all records in the population and Vm is the set of variables that are missing in

at least one record. Variable X is termed as fully observed if X ∈ Vo and partially observed if

X ∈ Vm. Rvi and V ∗i are two variables associated with every partially observed variable, where V ∗i

is a proxy variable that is actually observed, and Rvi represents the status of the causal mechanism

responsible for the missingness of V ∗i ; formally,

v∗i = f(rvi , vi) =


vi if rvi = 0

m if rvi = 1

(2.1)

V ∗ is the set of all proxy variables and R is the set of all causal mechanisms that are responsible

for missingness. Unless stated otherwise it is assumed that no variable in V ∪ U is a child of

an R variable. We call this graphical representation Missingness Graph (or m-graph). Figure 2.1

exemplifies three m-graphs in which Vo = {A,G}, Vm = {O}, V ∗ = {O∗}, U = ∅ andR = {Ro}.

Proxy variables may not always be explicitly shown in m-graphs in order to keep the figures simple

and clear. The missing data distribution, P (V ∗, Vo, R) is referred to as the manifest distribution

and the distribution that we would have obtained had there been no missingness, P (Vo, Vm, R) is

called as the underlying distribution. Testing the compatibility of a manifest distribution with an

underlying distribution is discussed in appendix A.1.1. Conditional Independencies are read off

the graph using the d-separation2 criterion ([Pea09]).

2For a quick introduction to d-separation see, http://www.dagitty.net/learn/dsep/index.html
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2.3 Classification of Missing Data Problems based on Missingness

Mechanism

[Rub76] classified missing data into three categories: Missing Completely At Random (MCAR),

Missing At Random (MAR) and Missing Not At Random (MNAR) based on the statistical de-

pendencies between the missingness mechanisms (R variables) and the variables in the dataset

(Vm, Vo). We capture the essence of this categorization in graphical terms below.

1. Data are MCAR if Vm ∪ Vo⊥⊥R holds in the m-graph. In words, missingness occurs at

random and is entirely independent of both the observed and the partially observed variables.

This condition can be easily identified in an m-graph by the absence of edges between the R

variables and variables in Vo ∪ Vm.

2. Data are MAR if Vm⊥⊥R|Vo holds in the m-graph. In words, conditional on the fully ob-

served variables Vo, missingness occurs at random. In graphical terms, MAR holds if (i) no

edges exist between an R variable and any partially observed variable and (ii) no bidirected

edge exists between an R variable and a fully observed variable. MCAR implies MAR, ergo

all estimation techniques applicable to MAR can be safely applied to MCAR.

3. Data that are not MAR or MCAR fall under the MNAR category.

m-graphs in figure 2.1 (b), (c) and (d) are typical examples of MCAR, MAR and MNAR categories,

respectively. Notice the ease with which the three categories can be identified. Once the user

lays out the interrelationships between the variables in the problem, the classification is purely

mechanical.

2.4 Missing At Random: A Brief Discussion

The original classification used in [Rub76] is very similar to the one defined in the preceding

paragraphs; it is expressed however in terms of event-level conditional independencies as opposed

to variable-level independencies. We will clarify the distinction between the former (which we
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call Rubin-MAR) and the latter (referred to as MAR) with an example. Consider a dataset with

three variables such that two variables, A and B are partially observed and the third one C is

fully observed. For data to be MAR, we require (A,B)⊥⊥(RA, RB)|C to hold. On the other

hand, Rubin-MAR requires that, “ missingness depends only on the components Yobs of Y that are

observed and not on the components that are missing”([LR02]), where Y denotes the dataset. We

exemplify Rubin-MAR in table 2.2. The primary difference between the two definitions is that

MAR is a succinct statement comprising of a single conditional independence: Vm⊥⊥R|Vo, where

as Rubin-MAR is a set of distinct conditional independencies of the form: Ymis⊥⊥R|Yobs, one

for each subpopulation as described by the pattern of missingness3. Observe that both definitions

coincide when |Vm| = 1.

Table 2.2: Rubin-MAR detailed for the dataset in which A and B are partially observed variables

and C is a fully observed variable.

Missing Observed Rubin-MAR Description of Samples

Components Components Conditions

Ymis Yobs Ymis⊥⊥R|Yobs

A B,C A⊥⊥R|B,C Samples in which A is missing and B

is observed

B A,C B⊥⊥R|A,C Samples in which B is missing and A

is observed

A,B C (A,B)⊥⊥R|C Samples in which both A and B are

missing

− A,B,C − Samples in which all variables are ob-

served.

Over the years the classification proposed in [Rub76] has been criticized both for its nomen-

3Each instantiation of R variables corresponds to a pattern of missingness. In the case of the ongoing example with
Vm = {A,B} and Vo = {C}, there are 4 patterns of missingness: (RA = 0, RB = 0), (RA = 0, RB = 1), (RA =
1, RB = 0) and (RA = 1, RB = 1) ([DMG08, CW15]).
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clature and its opacity. Several authors noted that MAR is a misnomer ([Sch02, PE02, MGG06,

Gra09]). What is currently defined as MCAR should have been called Missing At Random and as

pointed out by Grace-Martin4, what is currently defined as Missing At Random should have been

called Missing Conditionally At Random.

However, the opacity of the assumptions embedded in Rubin MAR presents a more serious

problem. The number of conditional independence relations that need be verified is exponen-

tial in the number of partially observed variables. This is shown in Table 2.2, which displays

the conditional independencies claimed by Rubin-MAR condition: Ymis⊥⊥R|Yobs. Clearly, a re-

searcher would find it cognitively taxing, if not impossible to even decide if these assumptions

are reasonable. This, together with the fact that Rubin-MAR is untestable ([All02]) motivates the

variable-based taxonomy presented above.

Nonetheless, Rubin-MAR has an interesting theoretical property: It is the weakest simple con-

dition under which the process that causes missingness can be ignored while still making correct

inferences about the data ([Rub76]). It was probably this theoretical result that changed missing

data practices in the 1970s. The popular practice prior to 1976 was to assume that missingness was

caused totally at random ([GS75, Hai68]). With Rubin’s identification of the MAR condition as

sufficient for drawing correct inferences, MAR became the main focus of attention in the statistical

literature.

Estimation procedures such as Multiple Imputation and Maximum Likelihood were developed

and implemented with MAR assumptions in mind, and popular textbooks were authored exclu-

sively on MAR ([Gra12]). These developments have engendered a culture with a tendency to

blindly assume MAR, with the consequence that the more commonly occurring MNAR class of

problems remains relatively unexplored ([RGP11, Ada07, Osb12, Osb14, Sve15, SK16])).

Need for Model Guided Estimation Procedures To overcome these limitations one must ex-

plicitly model the missingness process and [Rub76] made similar recommendations. In his words,

4http://www.theanalysisfactor.com/mar-and-mcar-missing-data/
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The graphical tools described in this paper provide a flexible way of modelling the missingness

process and thus overcome the limitations identified in blindly assuming MAR. These tools enable

researchers to both encode assumptions about the type of missingness that may occur in their data,

and to extend the analysis of estimation techniques to the vast class of MNAR problems.

2.5 Related Work

For detailed discussion of missing data theory and practice we direct readers to the books ([All02,

End10, LR02, MMS07]). Among all methods used for handling missing data, listwise deletion

and pairwise deletion are the easiest to implement and have been found to be popular among prac-

titioners ([PE04]) even though estimates produced by these methods are guaranteed to converge

only under MCAR.

Listwise deletion or (complete case analysis) refers to the simple technique in which samples

with missing values are deleted ([BGN08]). Unless data are missing completely at random, listwise

deletion can bias the outcome ([Wot00]). Evidently this technique results in wastage of data.

Pairwise deletion (or available case analysis) is a deletion method that drastically reduces data

loss by operating on all samples in which the variables of interest are observed [SBC10]. For

example, to compute the covariance of variables X and Y , all samples in which both X and Y are

observed are used, regardless of whether other variables in the dataset have missing values.

Another approach to handling missing data is imputation: substituting a reasonable guess for

each missing value [All02]. A simple example is mean Substitution, in which all missing ob-

servations of variable X are substituted with the mean of all observed values of X . Hot-deck

imputation, cold-deck imputation [MMS07], regression imputation [Sch02] and Multiple Imputa-

tion [Rub87, Rub96] are examples of popular imputation procedures. Among these techniques,

regression imputation guarantees consistent estimates for MAR data [PE04]. While many other
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imputation techniques are attractive in practice, performance guarantees (eg: convergence and un-

biasedness) are based primarily on simulation experiments.

Whenever data are Missing At Random, Maximum Likelihood (ML) based methods can be

used for computing consistent estimates of parameters of interest [LR02]. Recent increase in the

popularity of ML based procedures can be attributed to its quick and easy availability in the form of

software packages. The expectation-maximization (EM) algorithm [DLR77] is a general technique

for finding maximum likelihood (ML) estimates from MAR data.

Weighting procedures for missing data are based on creating weighted copies of complete cases

and are succinctly summarized in [LSL13]. These procedures that are primarily based on [HT52]

and have been generalized to address missing data problems in [RRZ94], [RRZ95] and [RHB00].

The handling of MNAR data is more or less limited to performing sensitivity analysis [RGP11].

Methods of performing sensitivity analysis have been suggested in research publications such as

[RRS98, MKG01] and [TMM02]. Special handling of MNAR problems based on use of selection

models [Hec77] and pattern mixture models is discussed in [End11].

The use of graphical models for handling missing data is a relatively new development. [DKC12]

discussed sufficient criteria under which consistent estimates can be computed exclusively from

complete cases (i.e. samples in which all variables are fully observed). [TR13] (and later on

[TM15]) developed techniques that guide the selection of auxiliary variables to improve estima-

bility from incomplete data. In machine learning, particularly while estimating parameters of

Bayesian Networks, graphical models have long been used primarily as a pedagogical tool when

dealing with missing data ([Dar09, KF09]).

Missing data discussed so far is a special case of coarse data, namely data that contains obser-

vations made in the power set rather than the sample space of variables of interest [HR91]. The

notion of coarsening at random (CAR) was introduced in [HR91] and identifies the condition un-

der which coarsening mechanism can be ignored while drawing inferences on the distribution of

variables of interest [GVR97]. The notion of sequential CAR has been discussed in [GR97]. For a

detailed discussion on coarsened data refer to [LR03].
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CHAPTER 3

Recoverability of Probabilistic and Interventional Distribution

Recoverability refers to the task of determining from an assumed model whether any method exists

that produces a consistent estimate of a target quantity for all data generated by the model, and if

so, how. If the answer is negative, then an inconsistent estimate should be expected even with

large samples. On the other hand, if the answer is affirmative then there exists a procedure that can

exploit the features of the problem and produces consistent estimates.

If the problem is MAR or MCAR, joint distribution and hence all probabilistic relations and

all identifiable causal effects are recoverable. But if a problem is MNAR, some queries of inter-

est cannot be estimated by any method whatsoever while others can. We will show that MNAR

problems exhibit this dichotomy, and more importantly that estimable parameters can often be

identified directly from the structure of the graph. In this chapter we present several methods of

deriving consistent estimators for both statistical and causal parameters.

Chapter Outline: In section 3.1 we define and exemplify recoverability and present conditions

for recoverability when data are MCAR and MAR. In sections 3.2 and 3.4 we present graphical

conditions for recoverability of MNAR problems. Non-recoverability is discussed and formalized

in section 3.3. Recoverability of causal effects is detailed in 3.5.

3.1 Recoverability

Recoverability addresses the question of whether a quantity/parameter of interest can be estimated

from incomplete data as if the data were complete.

Definition 2 (Recoverability of target quantity Q). Given m-graph G and the manifest distribution

P ∗, Q is recoverable if there exists an algorithm that can compute a consistent estimate of Q for
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all strictly positive data distributions P (V ∗, Vo, R) that G can generate.

Typical target quantities Q that shall be considered are conditional/joint distributions and con-

ditional causal effects. Note that for a given target Q, recoverability is a property of the m-graph

G, and not of the data. The reason for restricting the definition above to strictly positive manifest

distributions, P (V ∗, Vo, R), is mainly technical, to avoid division by zero. We allow however in-

stances of zero probabilities as specified in equation 2.1. We note that recoverability is sometimes

feasible even when strict positivity does not hold. We exemplify such an instance in appendix

A.2.1.

Corollary 1. A relation Q is recoverable in G if Q can be expressed in terms of the probability

P (O) where O = {R, V ∗, Vo} is the set of observable variables in G. In other words, for any two

models M1 and M2 inducing distributions PM1 and PM2 respectively, if PM1(O) = PM2(O) > 0

then QM1 = QM2 .

Proof: (sketch) The corollary merely rephrases the requirement of obtaining a consistent esti-

mate to that of expressibility in terms of observables.

Practically, what recoverability means is that if the data D are generated by any process com-

patible with G, a procedure exists that computes an estimator Q̂(D) such that, in the limit of large

samples, Q̂(D) converges to Q. Such a procedure is called a “consistent estimator.” Thus, recov-

erability is the sole property of G and Q, not of the data available, or of any routine chosen to

analyze or process the data.

3.1.1 Recoverability when data are MAR

When data are MAR, we have R⊥⊥Vm|Vo. Therefore P (V ) = P (Vm|Vo)P (Vo) = P (Vm|Vo, R =

0)P (Vo). Hence the joint distribution P (V ) is recoverable.

Example 2. Consider the problem of recovering the joint distribution given the m-graph in Fig.

2.1 (c) and dataset in table 3.1. Let it be the case that 15-18 year olds were reluctant to reveal their

weight, thereby making O a partially observed variable i.e. Vm = {O} and Vo = {G,A}. This is

a typical case of MAR missingness, since the cause of missingness is the fully observed variable:
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Age. The following three steps detail the recovery procedure.

1. Factorization: The joint distribution may be factorized as:

P (G,O,A) = P (G,O|A)P (A)

2. Transformation into observables: G embeds the conditional independence (G,O)⊥⊥Ro|A

which is read using d-separation criterion. Thus,

P (G,O,A) = P (G,O|A,Ro = 0)P (A)

3. Conversion of partially observed variables into proxy variables: When Ro = 0, O∗ = O (by eq

2.1). Hence,

P (G,O,A) = P (G,O∗|A,Ro = 0)P (A) (3.1)

The RHS of equation 3.1 is in terms of variables in the manifest distribution. Therefore, P (G,A,O)

can be consistently estimated (i.e. recovered) from the available data. The recovered joint distri-

bution is shown in table 3.2.

Remark 2. Notice that in equation 3.1, factors are estimated from different subsets of data. For

instance, the factor P (G,O∗|A,Ro = 0) is computed exclusively from samples in which O is

observed where as the factor, P (A), is computed from all samples, regardless of the missingness

status of O.

Remark 3. Furthermore, in the preceding example P (G,O,A) was factorized as P (G,O|A)P (A)

as opposed to other options such as, P (A|G,O)P (G,O). The former facilitates recovery, while

the latter does not. The initial order of factorization thus plays a pivotal role in the recovery

procedure.

3.1.2 Recoverability when data are MCAR

When data are MCAR we have R⊥⊥(Vo ∪ Vm). Therefore, we can write P (V ) = P (V |R) =

P (Vo, V
∗|R = 0). Since both R and V ∗ are observables, the joint probability P (V ) is consistently
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Table 3.1: Manifest Distribution P (GAO∗Ro) where Gender (G) and Age (A) are fully observed

and Obesity’s proxy (O∗) is observed in its place. Age is partitioned into three groups: [10 −

13), [13 − 15), [15 − 18). Gender and Obesity are binary variables and can take values Male (M)

and Female (F), and Yes (Y) and No (N), respectively.

G A O∗ RO P (G,A,O∗, RO)

M 10− 13 Y 0 p1

M 13− 15 Y 0 p2

M 15− 18 Y 0 p3

M 10− 13 N 0 p4

M 13− 15 N 0 p5

M 15− 18 N 0 p6

F 10− 13 Y 0 p7

F 13− 15 Y 0 p8

F 15− 18 Y 0 p9

G A O∗ RO P (G,A,O∗, RO)

F 10− 13 N 0 p10

F 13− 15 N 0 p11

F 15− 18 N 0 p12

M 10− 13 m 1 p13

M 13− 15 m 1 p14

M 15− 18 m 1 p15

F 10− 13 m 1 p16

F 13− 15 m 1 p17

F 15− 18 m 1 p18

estimable (hence recoverable) by considering complete cases only (listwise deletion), as shown in

the following example.

Example 3. Let X be the treatment and Y be the outcome as depicted in the m-graph in Fig. 3.1

(a). Let it be the case that we accidentally deleted the values of Y for a handful of samples, hence

Y ∈ Vm. Can we recover P (X, Y )?

From D, we can compute P (X, Y ∗, Ry). From the m-graph G, we know that Y ∗ is a collider and

hence by d-separation, (X ∪ Y )⊥⊥Ry. Thus P (X, Y ) = P (X, Y |Ry). In particular, P (X, Y ) =

P (X, Y |Ry = 0). When Ry = 0, by eq. (2.1), Y ∗ = Y . Hence,

P (X, Y ) = P (X, Y ∗|Ry = 0) (3.2)

The RHS of Eq. 3.2 is consistently estimable from D; hence P (X, Y ) is recoverable.

The assumption of MCAR allows an estimation procedure that amounts (asymptotically) to list-
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Table 3.2: Recovered joint distribution corresponding to dataset in table 3.1 and m-graph in figure

2.1(c)

G A O P (G,A,O)

M 10− 13 Y p1∗(p1+p4+p7+p10+p13+p16)
p1+p4+p7+p10

M 13− 15 Y p2∗(p2+p5+p8+p11+p14+p17)
p2+p5+p8+p11

M 15− 18 Y p3∗(p3+p6+p9+p12+p15+p18)
p3+p6+p9+p12

M 10− 13 N p4∗(p1+p4+p7+p10+p13+p16)
p1+p4+p7+p10

M 13− 15 N p5∗(p2+p5+p8+p11+p14+p17)
p2+p5+p8+p11

M 15− 18 N p6∗(p3+p6+p9+p12+p15+p18)
p3+p6+p9+p12

G A O P (G,A,O)

F 10− 13 Y p7∗(p1+p4+p7+p10+p13+p16)
p1+p4+p7+p10

F 13− 15 Y p8∗(p2+p5+p8+p11+p14+p17)
p2+p5+p8+p11

F 15− 18 Y p9∗(p3+p6+p9+p12+p15+p18)
p3+p6+p9+p12

F 10− 13 N p10∗(p1+p4+p7+p10+p13+p16)
p1+p4+p7+p10

F 13− 15 N p11∗(p2+p5+p8+p11+p14+p17)
p2+p5+p8+p11

F 15− 18 N p12∗(p3+p6+p9+p12+p15+p18)
p3+p6+p9+p12

wise deletion, while MAR dictates a procedure that amounts to listwise deletion in every stratum

of Vo. Applying MAR procedure to MCAR problem is safe, because all conditional independen-

cies required for recoverability under the MAR assumption also hold in an MCAR problem, i.e.

R⊥⊥(Vo, Vm)⇒ R⊥⊥Vm|Vo. The converse, however, does not hold, as can be seen in Fig. 3.1 (b).

Applying listwise deletion is likely to result in bias, because the necessary condition R⊥⊥(Vo, Vm)

is violated in the graph.

3.1.3 Recoverability when data are MNAR

Data that are neither MAR nor MCAR are termed MNAR.

Example 4. Fig. 3.1 (d) depicts a study where (i) some units who underwent treatment (X = 1) did

not report the outcome (Y ) and (ii) we accidentally deleted the values of treatment for a handful

of cases. Thus we have missing values for both X and Y which renders the dataset MNAR. We

shall show that P (X, Y ) is recoverable. From D, we can compute P (X∗, Y ∗, Rx, Ry). From the

m-graph G, we see that X ⊥⊥Rx and Y ⊥⊥(Rx ∪ Ry)|X . Thus P (X, Y ) = P (Y |X)P (X) =

P (Y |X,Ry = 0, Rx = 0)P (X|Rx = 0). When Ry = 0 and Rx = 0 we have (by Equation (2.1) ),

Y ∗ = Y and X∗ = X . Hence,

P (X, Y ) = P (Y ∗|X∗, Rx = 0, Ry = 0)P (X∗|Rx = 0) (3.3)
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Therefore, P (X, Y ) is recoverable.

Y*

Ry

(a)

X Y

Y*

Ry

X Y

(b)

Y**X

RyRx

(c)

X Y

Y**X

RyRx

X Y

(d)

Figure 3.1: m-graphs that depict: (a) MCAR, (b) MAR, (c) & (d) MNAR.

An interesting property which evolves from this discussion is that recoverability of certain

relations does not require RVi ⊥⊥Vi|Vo ; a subset of Vo would suffice as shown below.

Property 1. P (Vi) is recoverable if ∃W ⊆ Vo such that RVi ⊥⊥V |W .

Proof: P (Vi) may be decomposed as: P (Vi) =
∑

w P (V
∗
i |Rvi = 0,W )P (W ) since Vi⊥⊥RVi|W

and W ⊆ Vo. Hence P (Vi) is recoverable.

Our next question is: how can we determine if a given relation is recoverable? The following

theorem provides a sufficient condition for recoverability.

3.1.4 Conditions for Recoverability

Theorem 1. A query Q defined over variables in Vo ∪ Vm is recoverable if it is decomposable into

terms of the form Qj = P (Sj|Tj) such that Tj contains the missingness mechanism Rv = 0 of

every partially observed variable V that appears in Qj .

Proof: If such a decomposition exists, every Qj is estimable from the data, hence the entire

expression for Q is recoverable.

Example 5. Equation (3.3) demonstrates a decomposition of Q = P (X, Y ) into a product of two

terms Q1 = P (Y |X,Rx = 0, Ry = 0) and Q2 = P (X|Rx = 0) that satisfy the condition of

Theorem 1. Hence Q is recoverable.

In the following section we define the notion of Ordered factorization which leads to a criterion

for sequentially recovering conditional probability distributions.
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3.2 Recovery by Sequential Factorization

Definition 3 (Ordered factorization of P (Y |Z)). Let Y1 < Y2 < . . . < Yk be an ordered set of all

variables in Y , 1 ≤ i ≤ |Y | = k and Xi ⊆ {Yi+1, . . . , Yn} ∪ Z. Ordered factorization of P (Y |Z)

is the product of conditional probabilities i.e. P (Y |Z) =
∏

i P (Yi|Xi), such that Xi is a minimal

set for which Yi⊥⊥({Yi+1, . . . , Yn} \Xi)|Xi holds.

Figure 3.2: (a) & (c) m-graphs in which joint distribution is recoverable. (b) m-graph in which

conditional distribution P (X|Y ) is recoverable.

The following theorem presents a sufficient condition for recovering conditional distributions

of the form P (Y |X) where {Y,X} ⊆ Vm ∪ Vo.

Theorem 2. Given an m-graph G and a manifest distribution P (V ∗, Vo, R), a target quantity Q is

recoverable if Q can be decomposed into an ordered factorization, or a sum of such factorizations,

such that every factorQi = P (Yi|Xi) satisfies Yi⊥⊥(Ryi , Rxi)|Xi. Then, eachQi may be recovered

as P (Y ∗i |X∗i , RYi = 0, RXi
= 0).

Proof of the preceding theorem is presented in appendix A.2.3.

An ordered factorization that satisfies theorem 2 is called as an admissible factorization. Heuris-

tics for finding admissible factorizations is discussed in appendix A.2.2.

Example 6. Let G be the m-graph obtained by removing the edge between X and Ry in figure

3.2 (a). G depicts an MNAR problem since missingness in X is caused by the partially observed

variable Y . Let the query of interest be P (X, Y ). The factorization P (X|Y )P (Y ) is admissible
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since both X ⊥⊥Rx, Ry|Y and Y ⊥⊥Ry hold in G. P (X, Y ) can thus be recovered using theorem

2 as P (X∗|Y ∗, Rx = 0, Ry = 0)P (Y ∗|Ry = 0).

The following theorem gives a sufficient condition for recovering the joint distribution in a

Markovian model, without resorting to the use of an admissible factorization.

Theorem 3. Given am-graph with no latent variables (i.e., Markovian) the joint distribution P (V )

is recoverable if no missingness mechanism RX is a descendant of its corresponding variable X .

Moreover, if recoverable, then P (V ) is given by

P (v) =
∏

i,Vi∈Vo

P (vi|paoi , pami , RPami
= 0)

∏
j,Vj∈Vm

P (vj|paoj , pamj , RVj = 0, RPamj
= 0), (3.4)

where Paoi ⊆ Vo and Pami ⊆ Vm are the parents of Vi.

Proof: Refer Appendix-A.2.4

3.3 Non-recoverability Criteria for Joint and Conditional Distributions

Up until now, we dealt with sufficient conditions for recoverability. It is important however to

supplement these results with criteria for non-recoverability in order to alert the user to the fact

that the available assumptions are insufficient to produce a consistent estimate of the target query.

Such criteria have not been treated formally in the literature thus far. In the following theorem we

introduce two graphical conditions that preclude recoverability.

Theorem 4 (Non-recoverability of P (V )). Given a semi-Markovian model G, the following con-

ditions are necessary for recoverability of the joint distribution:

(i) ∀X ∈ Vm, X and Rx are not neighbors and

(ii) ∀X ∈ Vm, there does not exist a path from X to Rx in which every intermediate node is both a

collider and a substantive variable.

Proof Refer appendix A.2.5

While models satisfying (i) in theorem 4 are called self-masking, those satisfying (ii) are called

collider-induced.
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In the following corollary, we leverage theorem 4 to yield necessary conditions for recovering

conditional distributions.

Corollary 2. [Non-recoverability of P (Y |X)] Let X and Y be disjoint subsets of substantive

variables. P (Y |X) is non-recoverable in m-graph G if one of the following conditions is true:

(1) Y and Ry are neighbors

(2) G contains a collider path p connecting Y and Ry such that all intermediate nodes in p are in

X .

X Y

Ry Rx

X Y

Ry Rx

Z

(a) (b)

Figure 3.3: m-graphs depicting entangled models in which joint distribution is non-recoverable.

Figure 3.3 exemplifies other models, called entangled, in which joint distribution is non-

recoverable. Proofs pertaining to non-recoverability of these models are presented in appendix

A.2.6.

3.4 Recovery by R Factorization

Example 7. Consider the problem of recovering Q = P (X, Y ) from the m-graph of Fig. 3.2 (a).

Attempts to decompose Q by the chain rule, as was done in Eqs. (3.1) and (3.3) would not satisfy

the conditions of Theorem 2. To witness we write P (X, Y ) = P (Y |X)P (X) and note that the

graph does not permit us to augment any of the two terms with the necessary Rx or Ry terms; X is

independent of Rx only if we condition on Y , which is partially observed, and Y is independent of

Ry only if we condition on X which is also partially observed. This deadlock can be disentangled

however using a non-conventional decomposition:

Q = P (X, Y ) = P (X, Y )
P (Rx, Ry|X, Y )

P (Rx, Ry|X, Y )

=
P (Rx, Ry)P (X, Y |Rx, Ry)

P (Rx|Y,Ry)P (Ry|X,Rx)
(3.5)
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where the denominator was obtained using the independenciesRx⊥⊥(X,Ry)|Y andRy⊥⊥(Y,Rx)|X

shown in the graph. The final expression above satisfies Theorem 2 and renders P (X, Y ) recover-

able. This example again shows that recovery is feasible even when data are MNAR.

The following theorem formalizes the recoverability scheme exemplified above.

Theorem 5 (Recoverability of the Joint P (V )). Given a m-graph G with no edges between R

variables the necessary and sufficient condition for recovering the joint distribution P (V ) is the

absence of any variable X ∈ Vm such that:

1. X and Rx are neighbors

2. X and Rx are connected by a path in which all intermediate nodes are colliders and elements

of Vm ∪ Vo. When recoverable, P (V ) is given by

P (v) =
P (R = 0, v)∏

i P (Ri = 0|Mbori ,Mbmri , RMbmri
= 0)

, (3.6)

where Mbori ⊆ Vo and Mbmri ⊆ Vm are the Markov blanket of Ri.

Proof: Refer appendix A.2.7

The preceding theorem can be applied to immediately yield an estimand for joint distribution.

For instance, given the m-graphs in figure 3.2 (c), joint distribution can be recovered in one shot

as:

P (X, Y, Z) = P (X,Y,Z,Rx=0,Ry=0,Rz=0)

P (Rx=0|Y,Ry=0,Z,Rz=0)P (Ry=0|X,Rx=0,Z,Rz=0)P (Rz=0|Y,Ry=0,X,Rx=0)

3.5 Recovering Causal Queries

Given a causal query and a causal Bayesian network a complete algorithm exists for deciding

whether the query is identifiable or not ([SP06]). Obviously, a query that is not identifiable in

the substantive model is not recoverable from missing data. Therefore, a necessary condition

for recoverability of a causal query is its identifiability which we will assume in the rest of our

discussion.
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RI

I*

Q*

Experience (X) Income (I)

Missingness Mechanism

of Income

Proxy variable for Income

U
Latent Variable

Sex (S) Qualifcation (Q)

Figure 3.4: m-graph associated with example 8 where Vo = {S,X}, Vm = {I,Q}, V ∗ = {I∗, Q∗},

R = {Ri, Rq} and U is the latent common cause.

Definition 4 (Trivially Recoverable Query). A causal query Q is said to be trivially recoverable

given an m-graph G if it has an estimand (in terms of substantive variables) in which every factor

is recoverable.

Classes of problems that fall into the MCAR (Missing Completely At Random) and MAR

(Missing At Random) category are much discussed in the literature (([Rub76])) because in such

categories probabilistic queries are recoverable by graph-blind algorithms. An immediate but im-

portant implication of trivial recoverability is that if data are MAR or MCAR and the query is

identifiable, then it is also recoverable by model-blind algorithms.

Example 8. In the gender wage-gap study example in Figure 3.4, the effect of sex on income,

P (I|do(S)), is identifiable and is given by P (I|S). By theorem 2, P (S,X,Q, I) is recoverable.

Hence P (I|do(S)) is recoverable.

3.5.1 Recovering P (y|do(z)) when Y and Ry are inseparable

The recoverability of P (V ) hinges on the separability of a partially observed variable from its

missingness mechanism (a condition established in theorem 4). Remarkably, causal queries may

circumvent this requirement. The following example demonstrates that P (y|do(z)) is recoverable

even when Y and Ry are not separable.

Example 9. Examine Figure 3.5. By backdoor criterion, P (y|do(z)) =
∑

w P (y|z, w)P (w). One

might be tempted to conclude that the causal relation is non-recoverable because P (w, z, y) is non-

recoverable (by theorem 4) and P (y|z, w) is not recoverable (by corollary 2). However, P (y|do(z))
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Ry W Z Y

Figure 3.5: m-graph in which Y and Ry are not separable but still P (Y |do(Z)) is recoverable.

is recoverable as demonstrated below:

P (y|do(z)) = P (y|do(z), R′y) =
∑
w

P (y|do(z), w,R′y)P (w|do(z), R′y) (3.7)

P (y|do(z), w,R′y) = P (y|z, w,R′y) (by Rule-2 of do-calculus ([Pea09])) (3.8)

P (w|do(z), R′y) = P (w|R′y) (by Rule-3 of do-calculus) ) (3.9)

Substituting (3.8) and (3.9) in (3.7) we get:

P (y|do(z)) =
∑
w

P (y|z, w,R′y)P (w|R′y) =
∑
w

P (y∗|z, w,R′y)P (w|R′y)

The recoverability of P (y|do(z)) in the previous example follows from the notion of d*-

separability and dormant independence ([SP08]).

Definition 5 (d∗-separation ([SP08])). Let G be a causal diagram. Variable sets X , Y are d∗-

separated in G given Z, W (written X ⊥w Y |Z), if we can find sets Z,W , such that X ⊥ Y |Z in

Gw, and P (y, x|z, do(w)) is identifiable.

Definition 6 (Inducing path ([VP91])). An path p betweenX and Y is called inducing path if every

node on the path is a collider and an ancestor of either X or Y .

Theorem 6. Given an m-graph in which |Vm| = 1 and Y and Ry are connected by an inducing

path, P (y|do(x)) is recoverable if there exists Z,W such that Y ⊥w Ry|Z and for W = W \X ,

the following conditions hold:

(1) Y ⊥⊥W1|X,Z in GX,W1
and

(2) P (W1, Z|do(X)) and P (Y |do(W1), do(X), Z,R′y) are identifiable.

Moreover, if recoverable then,

P (y|do(x)) =
∑

W1,Z
P (Y |do(W ), do(X), Z,R′y)P (Z,W1|do(X))
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We can now quickly glance at the m-graph in figure 3.5 and conclude that P (y|do(z)) is recov-

erable by verifying that the conditions in theorem 6 hold in the m-graph.

3.6 Attrition

Attrition (i.e. participants dropping out from a study/experiment), is a ubiquitous phenomenon,

especially in longitudinal studies. In this section, we shall discuss a special case of attrition called

‘Simple Attrition’ (for an in-depth treatment see [Gar13]). In this problem, a researcher conducts

a randomized trial, measures a set of variables (X,Y,Z) and obtains a dataset where outcome (Y)

is corrupted by missing values (due to attrition). Clearly, due to randomization, the effect of

treatment (X) on outcome (Y), P (y|do(x)), is identifiable and is given by P (Y |X). We shall now

demonstrate the usefulness of our previous discussion in recovering P (y|do(x)). Typical attrition

problems are depicted in figure 3.6. In Figure 3.6 (b) we can apply theorem 2 to recover P (y|do(x))

as given below: P (Y |X) =
∑

Z P (Y
∗|X,Z,R′y)P (Z|X). In Figure 3.6 (a), we observe that Y

and Ry are connected by a collider path. Therefore by corollary 2, P (Y |X) is not recoverable;

hence P (y|do(x)) is also not recoverable.

3.6.1 Recovering Joint Distributions under simple attrition

The following theorem yields the necessary and sufficient condition for recovering joint distribu-

tions from semi-Markovian models with a single partially observed variable i.e. |Vm| = 1 which

includes models afflicted by simple attrition.

Theorem 7. Let Y ∈ Vm and |Vm| = 1. P (V ) is recoverable in m-graphG if and only if Y andRy

are not neighbors and Y and Ry are not connected by a path in which all intermediate nodes are

colliders. If both conditions are satisfied, then P (V ) is given by, P (V ) = P (Y |VO, Ry = 0)P (VO)
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Figure 3.6: (a) m-graphs in which P (y|do(x)) is not recoverable (b) m-graphs in which P (y|do(x))

is recoverable.

3.6.2 Recovering Causal Effects under Simple Attrition

Theorem 8. P (y|do(x)) is recoverable in the simple attrition case (with one partially observed

variable) if Y and Ry are neither neighbors nor connected by an inducing path. Moreover, if

recoverable,

P (Y |X) =
∑
z

P (Y ∗|X,Z,R′y)P (Z|X) (3.10)

where Z is the separating set that d-separates Y from Ry.

3.7 Summary

We presented graphical conditions for recovering joint and conditional distributions and sufficient

conditions for recovering causal queries. We further identified conditions that forbid recovery of

joint and conditional distributions. We exemplified the recoverability of causal queries of the form

P (y|do(x)) despite the existence of an inseparable path between Y and Ry. We applied our results

to problems of attrition and presented necessary and sufficient graphical conditions for recovering

causal effects in such problems.
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CHAPTER 4

Advanced Algorithms for Recoverability

The recoverability procedures presented thus far relied entirely on conditional independencies that

are read off the m-graph using the d-separation criterion. Interestingly, recoverability can some-

times be accomplished by graphical patterns other than conditional independencies. These patterns

represent distributional constraints which can be detected using mutilated versions of the m-graph.

In this chapter we develop techniques for constraint based recovery assisted by do-calculus.

This chapter builds on our previous work [SMP15], that developed an algorithm to recover

joint distributions in Markovian models. However, the algorithm in [SMP15] is sufficient but not

complete as evidenced by example 10 (section 4.2.1), in which recoverability of joint distribution

in a Markovian model cannot be established using results in [SMP15].

This chapter presents a unified approach to recovering causal and pribabilistic queries. To

this end, we develop a general algorithm that can recover conditional probability distributions and

conditional causal effects in Semi-markovian models.

Chapter Outline: In Section 4.1 we present the definition of inducing path and rules of do-

calculus. Examples of recoverability of probabilistic queries using do-calculus are in section 4.2.

Sections 4.3, 4.4 and 4.5 present an overview of this approach, define the factorization scheme

and detail a general algorithm for recovering conditional probabilistic/interventional distributions.

Finally, section 4.6 summarizes the results.

4.1 Preliminaries: Inducing Path, do-calculus

Definition 7 (Inducing Path [VP91]). A path p between nodes A and B is called an inducing path

if all the intermediate nodes on p are colliders and ancestors of A and/or B.
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In the presence of such an inducing path, @C such that A⊥⊥B|C. In this chapter we detail how

P (X) can be recovered when Rx and X are connected by inducing path(s).

The following description of do-calculus has been modified from [Pea09], Theorem 3.4.1.

4.1.1 do-calculus [Pea09]

Let G be a causal Bayesian network and and let P (·) stand for the probability distribution induced

by that model. GX is the graph obtained by deleting from G all arrows pointing to nodes in X.

Likewise, we denote byGX the graph obtained by deleting from G all arrows emerging from nodes

in X. For any disjoint subsets of variables X, Y, Z, and W, we have the following rules.

Rule 1 (Insertion/deletion of observations):

P (y|x̂, z, w) = P (y|x̂, w) if Y ⊥⊥Z|X,W in GX .

Rule 2 (Action/observation exchange):

P (y|x̂, ẑ, w) = P (y|x̂, z, w) if Y ⊥⊥Z|X,W in GX Z .

Rule 3 (Insertion/deletion of actions):

P (y|x̂, ẑ, w) = P (y|x̂, w) if Y ⊥⊥Z|X,W in GX Z(W ).

where Z(W) is the set of Z-nodes that are not ancestors of any W-node in GX .

4.2 Constraint based Recoverability: Examples

In this section we present two examples of recoverability in the presence of inducing paths. In

the first one the inducing path is explicitly visible in the m-graph whereas in the second one, the

inducing path is hidden and surfaces later on during the analysis.

Example 10. Let G be the m-graph in figure 4.1 (a) and let the query of interest be P (X). The

absence of a set that d-separates X from Rx, makes it impossible to apply any of the techniques

discussed previously. While it may be tempting to conclude that P (X) is not recoverable, we prove

otherwise, using Verma constraints ([VP91, TP02b]). The proof presented below is based on the
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Figure 4.1: (a) & (c) m-graphs from which conditional distributions can be recovered aided by

intervention, (b) latent structure [Pea09, Chapter 2] corresponding to m-graph in (a) when X is

treated as a latent variable.

rules of do-calculus.

P (X) = P (X|do(Rz = 0)) (Rule-3 of do-calculus)

= P (X|do(Rz = 0), Rx = 0) (Rule-1 of do-calculus)

= P (X∗|do(Rz = 0), Rx = 0) (using equation 2.1) (4.1)

Note that the query of interest is now a function of X∗ and not X . Therefore the problem now

amounts to identifying a conditional interventional distribution using the m-graph in figure 4.1(b).

A complete analysis of such problems is available in [SP06] and [HV12]. The causal effect in eq

4.1 is identified as:

P (X) =
∑
Y

P (X∗|Y,Rx = 0, Rz = 0)
P (Rx = 0|Y,Rz = 0)P (Y )∑
Y P (Rx = 0|Y,Rz = 0)P (Y )

The above equaltion is not in its recovered form because it contains Y , a partially observed vari-

able. However, since X∗⊥⊥Ry|Rx, Y, Rz and (Y,Rx, Rz)⊥⊥Ry, we have the license to insert

Ry = 0 as shown below,

P (X) =
∑
Y

P (X∗|Y ∗, Rx = 0, Rz = 0, Ry = 0)
P (Rx = 0|Y ∗, Rz = 0, Ry = 0)P (Y ∗|Ry = 0)∑
Y P (Rx = 0|Y ∗, Rz = 0, Ry = 0)P (Y ∗|Ry = 0)

(4.2)
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In addition to P (X), this graph also allows recovery of P (X,Z) as shown below.

P (X,Z) = P (X)P (Z)

=
∑
Y

P (X∗|Y ∗, Rx = 0, Rz = 0, Ry = 0)
P (Rx = 0|Y ∗, Rz = 0, Ry = 0)P (Y ∗|Ry = 0)∑
Y P (Rx = 0|Y ∗, Rz = 0, Ry = 0)P (Y ∗|Ry = 0)

P (Z)

=
∑
Y

P (X∗|Y ∗, Rx = 0, Rz = 0, Ry = 0)
P (Rx = 0|Y ∗, Rz = 0, Ry = 0)P (Y ∗|Ry = 0)∑
Y P (Rx = 0|Y ∗, Rz = 0, Ry = 0)P (Y ∗|Ry = 0)

P (Z∗|Rz = 0)

The decomposition in the first line uses X ⊥⊥Z while recoverability of P (XY ) in the last line

follows from theorem 2, since Z ⊥⊥Rz.

Remark 4. In the preceding example we were able to recover P (X) despite the fact that X and

Rx were not independent. The ability to exploit such cases further underscores the need for graph

based analysis.

A more complex example detailing recoverability of joint distribution from the m-graph in

figure 4.1 (c), where the inducing path is not immediately visible, is presented below.

4.2.1 A Complex Example of Recoverability

We use R = 0 as a shorthand for the event where all variables are observed i.e. RVm = 0.

Example 11. Given the m-graph in figure 4.1 (c), we will now recover the joint distribution.

P (W,X, Y, Z) = P (W,X, Y, Z)
P (W,X, Y, Z,R = 0)

P (W,X, Y, Z,R = 0)
=
P (W,X, Y, Z,R = 0)

P (R = 0|W,X, Y, Z)

Factorization of the denominator based on topological ordering of R variables yields:

P (W,X, Y, Z) =
P (W,X, Y, Z,R = 0)

P (Ry = 0|W,X, Y, Z,Rx = 0, Rw = 0, Rz = 0)P (Rx = 0|W,X, Y, Z,Rw = 0, Rz = 0)

1

P (Rw = 0|W,X, Y, Z,Rz = 0)P (Rz = 0|W,X, Y, Z)

On simplifying each factor of the form: P (Ra = 0|B), by removing from it all B1 ∈ B such

that Ra⊥⊥B1|B −B1, we get:

P (W,X, Y, Z) =
P (W,X, Y, Z,R = 0)

P (Rz = 0)P (Rw = 0|Z)P (Ry = 0|X,W,Rx = 0)P (Rx = 0|Y,W )
(4.3)

P (WXY Z) is recoverable if all factors in the preceding equation are recoverable. Examining

each factor one by one we get:
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• P (W,X, Y, Z,R = 0): Recoverable as P (W ∗, X∗, Y ∗, Z∗, R = 0) using equation 2.1.

• P (Rz = 0): Directly estimable from the manifest distribution.

• P (Rw = 0|Z): Recoverable as P (Rw = 0|Z∗, Rz = 0), using Rw⊥⊥Rz|Z and equation

2.1.

• P (Ry = 0|X,W,Rx = 0): Recoverable as P (Ry = 0|X∗,W ∗, Rx = 0, Rw = 0), using

Ry⊥⊥Rw|X,W,Rx and equation 2.1.

• P (Rx = 0|Y,W ): The procedure for recovering P (Rx = 0|Y,W ) is rather involved and

requires converting the probabilistic sub-query to a causal one as detailed below.

P (Rx = 0|Y,W = w) = P (Rx = 0|Y, do(W = w))(Rule-2 of do calculus)

=
P (Rx = 0|Y,Ry = 0, do(w))

P (Rx = 0|Y,Ry = 0, do(w))
P (Rx = 0|Y, do(W = w))

= P (Rx = 0|Y,Ry = 0, do(w))
P (Ry = 0|Y, do(w))

P (Ry = 0|Y, do(w), Rx = 0)
(4.4)

To prove recoverability of P (Rx = 0|Y,W = w), we have to show that all factors in equation 4.4

are recoverable.

Recovering P(Ry = 0|Y,do(w),Rx = 0) : Observe that P (Ry = 0|Y, do(w), Rx = 0) =

P (Ry = 0|do(w), Rx = 0) by Rule-1 of do calculus. Recoverability of P (Ry = 0|do(w), Rx = 0)

follows from recoverability of P (X∗, Y ∗, Rx, Ry, Z|do(w)) in G′, the m-graph corresponding to G

in which X and Y are treated as latent variables.

P (X∗, Y ∗, Rx, Ry, Z|do(w)) = P (X∗, Y ∗, Rx, Ry|Z, do(w))P (Z|do(w))

= P (X∗, Y ∗, Rx, Ry|Z,w)P (Z|do(w)) (Rule-2 of do-calculus)

= P (X∗, Y ∗, Rx, Ry|Z,w)P (Z) (Rule-3 of do-calculus)

Using (X∗, Y ∗, Rx, Ry)⊥⊥(Rz, Rw)|(Z,W ), equation 2.1 and Z ⊥⊥Rz we show that the causal

effect is recoverable as:

P (X∗, Y ∗, Rx, Ry, Z|do(w)) = P (X∗, Y ∗, Rx, Ry|Z∗, w∗, Rw = 0, Rz = 0)P (Z∗|Rz = 0)

(4.5)
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Recovering P(Rx = 0|Y,do(w),Ry = 0) : Using equation 2.1, we can rewrite P (Rx = 0|Y,

do(w), Ry = 0) as P (Rx = 0|Y ∗, do(w), Ry = 0). Its recoverability follows from equation 4.5.

Recovering P(Ry = 0|Y,do(w)) :

P (Ry = 0|Y, do(w)) = P (Ry = 0, Y |do(w))∑
Rx
P (Ry = 0, Y, Rx|do(w)) + P (Ry = 1, Y, Rx|do(w))

=
P (Ry = 0, Y ∗|do(w))∑

Rx
P (Ry = 0, Y ∗, Rx|do(w)) + P (Ry = 1, Y, Rx|do(w))

(using eq 2.1)

P (Ry = 0, Y ∗|do(w)) and P (Ry = 0, Y ∗, Rx|do(w)) are recoverable from equation 4.5. We will

now show that P (Ry = 1, Y ∗, Rx|do(w)) is recoverable as well.

P (Ry = 1, Y, Rx|do(w)) =
P (Ry = 0, Y, Rx|do(w))
P (Ry = 0|Rx, Y |do(w))

− P (Ry = 0, Rx, Y |do(w))

Using equation 2.1 and Rule-1 of do-calculus we get,

=
P (Ry = 0, Y ∗, Rx|do(w))
P (Ry = 0|Rx, do(w))

− P (Ry = 0, Rx, Y
∗|do(w))

Each factor in the preceding equation is estimable from equation 4.5. Hence P (Ry = 1, Y, Rx,

do(w)) and therefore, P (Ry = 0|Y, do(w)) is recoverable. Since all factors in equation 4.4 are

recoverable, the joint distribution is recoverable.

We formalize a general procedure for recoverability in the following sections.

4.3 Unified Approach to Recoverability of Causal and Probabilistic

Queries: An Overview

Previous examples clearly show that general procedures for recovering conditional probability

distributions should be able to recover conditional causal effects as well. Similarly, our discussions

on recovering causal effects in chapter 3 confirm the need for procedures recovering conditional

causal effects to be able to handle conditional probability distributions. Our solution to recovering

both probabilistic and causal queries relies on the notion of partial-recoverability. A query of the
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form P (A|B, do(C)) is said to be partially-recovered if (A∪B)∩Vm = ∅. In words, while A and

B can contain proxy variables, fully observed variables or even R variables, they must not contain

partially observed variables.

We shall now outline the steps for recovering causal effects of the form P (X|Y, do(D)). First

using rules of algebra, probability theory and do-calculus, factorize P (X|Y, do(D)), so that each

factor is partially recoverable. Second apply causal identification algorithm to obtain an estimand

in terms of conditional probability distributions, P (Ai|Bi). Finally if P (Ai|Bi) is recoverable for

all i, output the recovered estimand. On the other hand, if the query of interest is a conditional

probability distribution of the form P (X|Y ), we proceed in a similar manner, with the exception

that we will skip the second step if all the factors are purely probabilistic.

The following section presents a general factorization scheme inspired by theorem 5, that can

be applied to recover probabilistic and causal queries from missing data.

4.4 General Missingness Factorization

Definition 8 (General Missingness Factorization). Let X and Y be sets of variables. Let D ⊆

Xm ∪ Ym be a maximal set such that ∀D1 ∈ D, RD1 /∈ X ∪ Y . The factorization:

P (X|Y, ŵ) = P (X|Y,RD = 0, ŵ)P (RD = 0|Y, ŵ)
P (RD = 0|X, Y, ŵ)

(4.6)

is called General Missingness Factorization.

Remark 5. X and Y in the preceding definition are not restricted to being subsets of Vm∪Vo. Fur-

thermore, the above factorization is applicable to both conditional interventional and probabilistic

distributions.

Let A1 < A2 < ... < An denote a topological ordering of variables in set A such that all child

nodes are ordered before their respective parent nodes. A(i) denotes the set {Ai, Ai+1, ..., An} and

A(0) = ∅. For example, in figure 4.1(c), a valid topological ordering of R variables is RZ < RW <

RX < RY .
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Lemma 1. Given eq 4.6, P (RD = 0|Y, ŵ) and P (RD = 0|X, Y, ŵ) can be factorized as:

P (X|Y, ŵ) =
P (X|Y,RD = 0, ŵ)

∏
Ri∈(RD) P (Ri = 0|Y,R(i−1), ŵ)∏

Ri∈RD
P (Ri = 0|Y,X,R(i−1), ŵ)

(4.7)

Let Zi = {Y,R(i−1)}. Then the factors in the numerator and denominator are compactly

denoted as P (Ri = 0|Zi) and P (Ri = 0|Zi, X), respectively.

Lemma 2. If Ri⊥⊥X|Zi in GW , equation 4.7 can be further simplified by removing from it both

P (Ri = 0|Zi, ŵ) and P (Ri = 0|X,Zi, ŵ).

Observe that there exists a term P (Ri = 0|Zi, ŵ) in the numerator corresponding to every

term P (Ri = 0|Zi, X, ŵ) in the denominator and the following lemma details a procedure for

recoverability of P (Ri = 0|Zi, ŵ) when P (Ri = 0|Zi, X, ŵ) is recoverable.

Lemma 3 (Recoverability of P (Ri = 0|Zi, ŵ) from P (Ri = 0|Zi, X, ŵ)). If P (Ri = 0, Zi|ŵ) and

∀X = x, P (Ri = 0|X,Zi, ŵ) and P (Ri = 0, X, Zi|ŵ) are recoverable, then P (Ri = 0|Zi, ŵ) can

be recovered as, P (Ri=0,Zi|ŵ)∑
X P (Ri=0,X,Zi|ŵ)+

P (Ri=0,X,Zi|ŵ)

P (Ri=0|X,Zi,ŵ)
−P (Ri=0,X,Zi|ŵ)

.

Proof. P (Ri = 1, X, Zi|ŵ) = P (Ri=0,X,Zi|ŵ)
P (Ri=0|X,Zi,ŵ)

− P (Ri = 0, X, Zi|ŵ) (a)

P (Ri = 0|Zi, ŵ)= P (Ri=0,Zi|ŵ)∑
X P (Ri=0,X,Zi|ŵ)+P (Ri=1,X,Zi|ŵ) (b)

Substituting (a) in (b), we get the estimand for P (Ri = 0|Zi, ŵ).

4.5 Algorithm for Recovering P (X|Y )

The following is an algorithm to recover both conditional causal and probabilistic distributions.

Algorithm 1: Recover(P(X|Y, D̂),P,G,History)

1: if querySeenBefore(History, P (X|Y, D̂), G) then

2: return FAIL

3: Y ← pruneQuery(P(X|Y, D̂),G)
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4: G← getAncestralGraph(X ∪Y ∪D,G)

5: if E ← getRecoveredEstimand(P (X|Y, D̂), G) ! = FAIL then

6: if D 6= ∅ then

7: E ← recoverCausal(E,P,G,History ∪ {E,G})

8: return E

9: S ← addVariables(P(X|Y, D̂),G)

10: F1

F2
← gmf(P (X ∪ S|Y, D̂), G)

11: if S == ∅ & F2 == ∅ & F1 == P (X|Y, D̂) then return FAIL

12: A← ∅

13: (B,Latent, flag)← recoverFactors(P (X ∪ S|Y, D̂), F2, P,G,History)

14: if flag then

15: return
∑

S B

16: if B == FAIL then

17: if Latent == ∅ then

18: return FAIL

19: G∗ ← getLatentGraph(Latent,G)

20: return Recover(P (X|Y, D̂), P,G∗, History ∪ {P (X|Y, D̂), G∗})

21: for every factor P (Rvi = 0|Zi) in F1 do

22: if P (Rvi = 0|Zi) can be recovered using lemma 3 then

23: Let E be the estimand returned by lemma 3

24: A← A ∪ E

25: Let F be the factors of the form P (Rvi = 0|Zi) in F1 that were not recoverable using lemma

3 in the previous step

26: (C,Latent, f lag)← recoverFactors(P (X|Y, D̂), F, P,G,History)

27: if flag then

28: return
∑

S C

29: if C == FAIL then

30: if Latent == ∅ then
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31: return FAIL

32: G∗ ← getLatentGraph(Latent,G)

33: return Recover(P (X|Y, D̂), P,G∗, History ∪ {P (X|Y, D̂), G∗})

34: Let f be the factor in F1 corresponding to P (X|Y,RW = 0, , D̂) in equation 4.7

35: E ← Recover(f, P,G,History ∪ {f,G})

36: if E == FAIL then return FAIL

37: return
∑

S E
∏

i A[i]
∏

j C[j]∏
k B[k]

Following subsection briefly describes each function that the algorithm invokes.

4.5.1 Description of Functions Invoked by Algorithm 1

The following function checks if the current query has been processed in the current context (call

stack). The goal is to prevent infinite recursion of the recover procedure.

Function querySeenBefore(History,Q,G)

1. if (Q,G) ∈ History then return TRUE

2. if History == ∅ then History ← History ∪ (Q,G)

3. return FALSE

The following function removes redundant variables from the query. For instance given G : X →

Y → Z → Rx and the query P (X|Y, Z) as input, the function would prune the set {Y, Z} to

{Y }. This is permissible since X ⊥⊥Z|Y and recovering P (X|Y ) is equivalent to recovering

P (X|Y, Z).

Function pruneQuery(P(X|Y, D̂),G)

1. ∀Y1 ∈ Y , if X ⊥⊥Y1|Y − {Y1}, D in GD, then Y ← Y − {Y1}

2. return Y
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The following function recursively removes variables that are not pertinent to the recovery pro-

cedure. License for this operation follows from the d-separation criterion. As stated in step-9, in

cases where a partially observed variable X is removed in the resultant graph while its mechanism

Rx is retained, Rx will henceforth be treated as a fully observed variable as opposed to an R vari-

able.

Function getAncestralGraph(X,G)

1. Y ← X

2. ∀x ∈ X, if ∃Rx, then add Rx to Y

3. Mark all y ∈ Y in G

4. A = ∅

5. ∀y ∈ Y add parent(y) to A, as long as parent(y) /∈ Y

6. if A 6= ∅ then return getAncestralGraph(A,G)

7. Let G∗ be the sub-graph of G comprising of all marked nodes in G.

8. ∀ partially observed variablesX inG∗, add toG∗ proxy variableX∗, and the edgesRx → X∗

and X → X∗

9. ∀Rx ∈ G∗ such that X /∈ G∗

R← R− {Rx}

Vo ← Vo ∪ {Rx}

10. return G∗

The following function checks if P (X|Y, D̂) is partially recoverable.

Function getRecoveredEstimand(P (X|Y, D̂), G)

1. if X == ∅, return ∅

2. P (X|Y, D̂)← toProxy(P (X|Y, D̂))

3. Let Z ← (X ∪ Y ) ∩ Vm
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4. if Z == ∅ return P (X|Y )

5. if X 6⊥⊥Rz|Y,D in GD return FAIL

6. return toProxy(P (X|Y ∪ {RZ = 0}, D̂))

The following function applies equation 2.1 to the input query, P (X|Y, D̂) to convert partially

observed variables in the query to proxy variables.

Function toProxy(P(X|Y, D̂))

1. ∀Z ∈ Y ∩ Vm such that Rz ∈ Y and Rz assumes the value 0, Y ← (Y − {Z}) ∪ {Z∗}

2. ∀Z ∈ X ∩ Vm such that Rz ∈ Y ∪X and Rz assumes the value 0, X ← (X −{Z})∪ {Z∗}

3. return P (X|Y, D̂)

The following function adds variables that could possibly aid the recovery procedure, while taking

care not to add variables (such as colliders and their descendants) that can open the path between

anyXi ∈ X andRXi
. For instance, to recover P (X) givenG : X → Y → Rx, it is vital to include

Y in the analysis, whereas given G : X → Y < −− > Rx, it is important to not include Y .

Function addVariables(P(X|Y, D̂),G)

1. S ← ∅

2. ∀Z ∈ Vm ∪ Vo − {X, Y,D}

(a) if there does not exist X1 ∈ X ∩Vm such that Z is a collider or descendant of a collider

on any path between X1 and RX1 , then S ← S ∪ {Z}

3. return S
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The following function performs general missingness factorization on the input query P (A|B, ŵ)

and further simplifies the estimand by invoking lemmata 1 and 2, before returning the resulting

estimand.

Function gmf(P(A|B, ŵ),G)

1. Let F1

F2
correspond to the fraction returned by applying definition 8 and lemmata 1 and 2

respectively on P (A|B, ŵ)

2. return F1

F2

The following function constructs a latent projection [VP91, Pea09, SMP15] and returns the re-

sulting graph Gl in which all variables in X will be treated as latent and not explicitly portrayed in

the graph. An example is shown in figure 4.1(b).

Function getLatentGraph(X,G)

1. Let Gl be the latent projection corresponding to X

2. Return Gl

The following function handles inducing paths by first identifying variables to be intervened upon

and then converting the probabilistic query to a causal one, using rules of do-calculus. If the causal

effect is recoverable, the recovered estimand is returned, else a FAIL message is returned.

C-component of X (also known as district of X) is the set of variables (including X) that is con-

nected to X by a path comprising bi-directed edges.

Function handleInducingPath(P (Y |X, Ŵ ), Z, P,G,H)

1. Let C denote the set of all C-components of RZ

2. D ← (Parents(C)− C) ∩ Ancestors(RZ)

3. ∀ minimal D1 ⊆ D such that no inducing paths exist between Zi and RZi
, ∀i in GD1
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(a) Let (D2 ← D1 ∩X)

(b) if P (Y |X, Ŵ )! = P (Y |X −D2, D̂2, Ŵ ) as per Rule-2 of do-calculus

continue

(c) if P (Y |X −D2, D̂2, Ŵ )! = P (Y |X −D2, D̂1, Ŵ ) as per Rule-3 of do-calculus

continue

(d) if (E ← Recover(P (Y |X−D2, D̂1, Ŵ ), P,G,H∪{P (Y |X−D2, D̂1, G}))! = FAIL

return E

4. return FAIL

The following function recovers factors of the form P (Ri = 0|Zi) contained in set F . The function

performs the following tasks: (i) Partitioning the factors into ‘recovered’ and ‘failed to recover’

groups stored in lists SuccessList and FailList respectively (lines 8-11). (ii) Identifying variables

which when removed from analysis (i.e. treated as latent) will most likely result in recovery of the

query of interest (lines 14-20). (iii) Throwing a FAIL when FailList is not empty and ensuring that

the variables to be removed are not part of the query of interest (lines 21,22).

Function recoverFactors(P(X|Y, D̂),F,P,G,History)

1: SuccessList← ∅, FailList← ∅, G∗ ← G

2: for every factor P (Rvi = 0|Zi, Ŵ ) in F do

3: if Vi /∈ Z then G∗ ← getLatentGraph (Vi, G)

4: if (Z ← detectInducingPath(P (X|Y, D̂), G∗))! = ∅ then

5: E ← handleInducingPath(P (X|Y, D̂), Z, P,G,History)

6: if E! = FAIL then

7: return (E, ∅, true)

8: else

9: E ← Recover(P (Rvi = 0|Zi, Ŵ ), P,G∗, History ∪ {P (Rvi = 0|Zi, Ŵ ), G∗})

10: if E 6= FAIL then

11: SuccessList← SuccessList ∪ E
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12: else

13: FailList← FailList ∪ P (Rvi = 0|Zi, Ŵ )

14: if FailList ! = ∅ then

15: Latent← ∅

16: for every factor P (Rvi = 0|Zi, Ŵ ) in FailList do

17: t← true

18: for every Vj ∈ Zi ∩ Vm do

19: if P (Rvj = 0|Zj, Ŵ ) ∈ FailList then

20: t← false

21: if t then

22: Latent← Latent ∪ Vi

23: if Latent ∩ {X, Y } 6= ∅ then return (FAIL, ∅, false)

24: return (FAIL,Latent, false)

25: return (SuccessList, ∅, false)

To better understand how this function works, consider the following example.

Example 12. Let G be X → Z → W → Rx and Z → RZ , and the query of interest be P (X).

The function addVariables will modify the query as,

P (X) =
∑
Z,W

P (X,Z,W )

On applying gmf function we get,

=
P (X,Z,W |RX = 0, RZ = 0)P (Rx = 0|RZ = 0)P (RZ = 0)

P (Rx = 0|Z,X,W,Rz = 0)P (Rz = 0|Z,X,W )

While processing the factors in the denominator of the above equation, FailList will contain

P (Rz = 0|Z,X,W ) and SuccessList will contain all other factors. Lines 16-20 will add Z to

‘Latent’.

Notice that by treating Z as a latent variable and removing it entirely from the analysis, P (X) can

be recovered as
∑

W P (XW ) = P (X∗,W |Rx=0)P (Rx=0)
P (Rx=0|W )

. On the other hand, if instead of P (X), the

query was P (X,Z), we could not have removed Z from the analysis.
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The following function uses the function identify to invoke an appropriate algorithm [SP06, HV12,

TP02a] to recover causal effect. E as returned by this algorithm will comprise of summations and

conditional probability distributions and is assumed to be in its simplified form. In other words,

recoverability of E is guaranteed by recoverability of constituent conditional distributions of the

form P (Ai|Bi).

Function recoverCausal(P(X|Y, D̂),P,G,History)

1: if {X, Y } ∩ Vm 6= ∅ then return FAIL

2: Z∗ ← {X, Y } ∩ V ∗

3: G∗ ← getLatentGraph(Z,G)

4: Let P ∗ be the manifest distribution corresponding to m-graph G∗, computed from P .

5: E ← identify(P (X|Y, D̂), P ∗, G∗)

6: if E == FAIL then return FAIL

7: for every P (Ai|Bi) ∈ E do

8: if t← recover(P (Ai|Bi), P,G,History ∪ {P (Ai|Bi), G}) then

9: if t == FAIL then return FAIL

10: Replace P (Ai|Bi) in E with the recovered estimand t

11: return E

The following function returns the list of allXi ∈ X that are connected toRX1 by inducing path(s).

Function detectInducingPath(P (X|Y, D̂), G)

1: IP ← ∅

2: P (X|Y, D̂)← toProxy (P (X|Y, D̂))

3: for every X1 ∈ X ∩ Vm do

4: if there exists inducing paths between X1 and RX1 in G then

5: IP ← IP ∪X1

6: for every Rw ∈ X ∩R do

46



7: if W ∈ Y and there exists inducing paths between W and Rw in G then

8: IP ← IP ∪W

9: return IP

4.5.2 Description of Algorithm 1

The algorithm initially pre-processes the input query and graph, then applies general missingness

factorization and finally establishes recoverability (or not) of the input query by recursively invok-

ing itself on the individual factors. The soundness of the algorithm follows from the soundness of

general missingness factorization and the soundness of individual functions. The algorithm mod-

ifies the graph via getLatentGraph and getAncestralGraph functions, and the query using prune-

Query and addVariables functions. Furthermore, if the query or graph remains unchanged between

consecutive iterations, gmf function will return input query itself as the output. This is checked

and when it happens the algorithm returns a FAIL message. Finally, the function querySeenBefore

ensures that a query seen before in the same call stack is not processed again on the same graph.

4.6 Summary and Discussion

In this chapter we exemplified recoverability in cases where a variable and its mechanism are

connected by an inducing path. We presented a new factorization scheme that is general and

applicable to both probabilistic and causal queries. Using this factorization scheme, we developed

a general algorithm to recover conditional probability and interventional distributions.

A pertinent question at this juncture is whether or not the algorithm, recover, is complete, and our

answer is that we do not know. The hardness of proving non-recoverability is in generalizing the

proof over all non-recoverable models, as opposed to proving non-recoverability given a specific

model. We devoted our efforts in developing procedures that can, using additional information,

recover queries in non-recoverable models. This is covered in the next two chapters.
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CHAPTER 5

Overcoming Theoretical Impediments to Recoverability

The most common type of missingness that one encounters in the real world is that of a variable

causing its own missingness. In other words, missingness RX in a variable X is a function of

its underlying true value, represented graphically as X → Rx. Examples of such missingness

are: smokers not answering questions about their smoking behavior in insurance applications,

longitudinal studies with attrition [Lit95], people with high income not revealing their income and

a general reluctance to answer questions about sensitive topics such as religion, sexual habits and

abortion. We call missingness problems such as these that are characterized by non-recoverability

of joint distribution as hard-MNAR problems.

This chapter develops an algorithm for recovering joint distribution in hard-MNAR problems by

exploiting properties of the data. In the event of non-recoverability despite these new assumptions,

the chapter exemplifies computation of informative bounds.

Chapter Outline: In section 5.1, we exemplify recoverability of joint distribution in self-masking

models, formalize the recoverability procedure as a theorem, and develop an algorithm based on

the theorem for handling hard-MNAR problems. In section 5.2 we compute informative upper and

lower bounds for queries of interest.

5.1 Restricted Recoverability in Non-Recoverable Models

Recoverability of a target quantityQ, as defined in chapter 3, is a strong criterion in the sense that it

requires Q to be consistently estimable for all data that the m-graph generates. Therefore, if there

exists even one datasetD generated by the graph for whichQ cannot be consistently estimated,Q is

termed non-recoverable. In this chapter we relax this strong requirement and decide recoverability

by examining properties of both m-graph G and manifest distribution P ∗ as opposed to relying
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exclusively on the m-graph. In other words, we view recoverability as a property of both data

and m-graph. Therefore, it is quite possible that given m-graph G and data distribution P ∗1 , query

Q may be recoverable, but given the same m-graph G but a different distribution P ∗2 , Q may be

non-recoverable.

Interestingly, for some m-graphs such as the one discussed in example 13 below, queries can be

non-recoverable for all data generated by them.

Example 13. Consider a missing dataset comprising of a single variable, Income (I), obtained

from a population in which the very rich and the very poor were reluctant to reveal their income.

Obviously, under these circumstances the true distribution over income, P (I), cannot be computed

even given infinitely many samples, for we are neither given nor able to compute the fraction of

rich (or poor) who refused to disclose their income.

However, upon embellishing the m-graph with more variables as illustrated in the ensuing example,

queries become recoverable for a large number of datasets.

(a) X1

Y

Rx1

X1

Y

Rx1

Y Ry

Y Ry

(b)

(c)

(d)

Figure 5.1: m-graphs depicting self masking model in (a) and collider induced models in (b), (c)

and (d).

5.1.1 Recoverability by Matrix Inversion

Example 14. Consider the m-graph X → I → RI . The query of interest is P (X, Y ). Let X and I

be binary variables. Both P (X) and P (X|I) may be recovered usingX ⊥⊥Rx andX ⊥⊥(Rx, Ri)|I
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respectively, as shown below:

P (X) = P (X|r′x)) = P (X∗ = X|r′x)

P (X|I) = P (X|I, r′x, r′i) = P (X∗ = X|I∗ = I, r′x, r
′
i)

Expressing P (X) =
∑

y P (X|I)P (I) in matrix form, we get:

 P (x′)

P (x)

 =

 P (x′|y′) P (x′|y)

P (x|y′) P (x|y)


 P (y′)

P (y)


Assuming that the square matrix on R.H.S is invertible, P (I) can be estimated as: P (x′|y′) P (x′|y)

P (x|y′) P (x|y)


−1 P (x′)

P (x)


Having recovered P (I), the query P (X, I) may be recovered as P (X|I)P (I).

Notice that recoverability is incumbent upon the invertibility of the matrix. If X and I are inde-

pendent, then matrix won’t be invertible and recovery will not be feasible. Therefore to facilitate

recovery it is important to choose an X that is strongly correlated with I . For instance in the

example if I denotes Income then X denoting years of work experience, is a promising candidate.

The following theorem presents sufficient conditions under which the procedure described in ex-

ample 14 yields a consistent estimate. MWY = P (W |I) denotes a square matrix with non-negative

entries such that entries in each column sum to one. For example, for binary variables W and I ,

MWY =

 P (w = 0|y = 0) P (w = 0|y = 1)

P (w = 1|y = 0) P (w = 1|y = 1)

 . For any variable W , |W | denotes the the

cardinality of W . Given a set W = {W1,W2, ...Wn}, we define |W | =
∏

i |Wi|

Theorem 9 (Sufficiency). Let G be an m-graph, V = Vo ∪ Vm and W be a set of variables in the

super graph of G but not in G such that

1. P (W ) and P (W |V ) are recoverable

2. |W | = |V |
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Given G and W , P (V ) and P (WV ), are recoverable if MWY is invertible.

Proof. P (W ) =
∑

V P (W |V )P (V ). By re-writing this equation in the matrix format and then

inverting MWV we recover P (V ) as: P (V ) =M−1
WV P (W ).

P (WV ) = P (W |V ) ∗ P (V )

Variables in set W that satisfy conditions 1 and 2 in the preceding theorem are referred to as

ancillary variables. They can be any set of variables that meets the criteria in theorem 9. In fact,

they can even include R variables so long as the corresponding partially observed variables are not

part of the recovery procedure.

5.1.2 Algorithm for recovering joint distribution in hard-MNAR problems

Theorem 9 relies on the inversion of MWV and hence requires |W | = |V | so that MWV is a square

matrix. While cardinality mismatch is an impediment for theorem 9, it is not for recoverability.

Algorithm recoverHardMNAR describes how to proceed with recovery even when |W | 6= |V |.

Algorithm 2 handles cardinality mismatch by clustering values of X if |X| > |W | and W if |X| <

|W |. However, clustering or state space abstraction is known to create dependencies between the

neighbors of the clustered variable [WL94, CF13]. For example, in the graph A → C → B,

if variable C is clustered then in the post-clustered distribution, A⊥⊥B|C, may no longer hold.

To account for such dependencies we define the function getClusteredGraph that constructs and

returns a graph Gc compatible with the new distribution over clustered variables.

Algorithm 2: recoverHardMNAR(W,X,P,G)

1: if |W | == |X| then

2: return invert&recover(W,X,P,G)

3: if |W | > |X| then

4: Cluster |W | − |X| + 1 values of W into a single value w+ to form the clustered variable

W c whose state space comprises of w1, w2, ...w|X|−1, w+.

5: Gc ← getClusteredGraph(W,G)

6: Let P c be the new data distribution compatible with the clustering process

7: return invert&recover(Wc,X,Pc,Gc)
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8: Gc ← getClusteredGraph(X,G)

9: Create |W | sized partitions Parts by picking |W | − 1 values of X and clustering the rest to

form new value x+.

10: Let V ectorX be a vector indexed by values of X .

11: for all Parts[i] ∈ Parts do

12: Xc
i ← Parts[i], where xi+ is the clustered value

13: Let P c
i be the new data distribution compatible with the clustering process

14: recovered← invert&recover(W,Xc
i ,P

c
i ,G

c)

15: if recovered == FAIL then

16: return FAIL

17: Store all variables in recovered to V ectorX except the one corresponding to xi+

18: return V ectorX

The following function checks to see if theorem 9 can be applied to recover P (X). If so it returns

the estimand computed using the theorem, otherwise it returns FAIL.

Function invert&recover(W,X,P,G)

1: if |W | == |X| and (P (W ) and P (W |X) are recoverable in G) then

2: if MWX is invertible then

3: Let E be the estimand computed using theorem 9

4: return E

5: return FAIL

Clustering creates dependencies among neighbors of the variables being clustered. The following

function constructs and returns a graph that reflects the dependencies introduced by clustering.

The function uses latent projection [VP91, Pea09, SMP15] to ensure that the model contains no

conditional independence of the form X ⊥⊥Y |Z, in which Z contains a clustered variable.

Function getClusteredGraph(W,X,G)
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1: Let Gl be the latent projection constructed with respect to W

2: Let E1 be the set of edges in Gl that are not in G.

3: Add the edges in E1 to G

4: return G

Consider the m-graph G : W → X → RX . We will detail how algorithm recoverHardMNAR

recovers P (X) in each of the following cases. When |W | and |X| are equal, recoverability is

straightforward as exemplified in example 14. When |W | > |X|, we will cluster values of W .

For instance let W = {w1, w2, w3} and X = {x1, x2}. We shall now cluster W to form W c =

{w1, w+}, where w+ was created by clustering w2 and w3. Gc is the same as G. Using Wc, X and

the distribution P c(Wc, X,RX), we can now apply theorem 9 to recover P (X). When |W | < |X|,

X is the variable to be clustered. Gc : W → X → RX W → RX . P (W |X) is not recoverable in

Gc and hence theorem 9 is not applicable.

5.1.3 Scope of Theorem 9

Applicability of Theorem 9 to problems in which joint distribution is recoverable Clearly,

theorem 9 is not restricted to any specific graph structure and can be applied to all missing data

problems that satisfy its conditions, including m-graphs that are not hard-MNAR as exemplified

below.

Example 15. Let G be W → X → Y → Rx and the query of interest be P (X). Although the

model is MAR and P (X) can be recovered as
∑

Y P (X
∗|Y,Rx = 0)P (Y ), it can also be recovered

using theorem 9.

The following example presents a scenario where theorem 9 will be particularly helpful, even when

the joint distribution is recoverable in the model.

Example 16. Let G be W → X → Y → Rx Ry and the query of interest be P (X). P (X) can

be recovered using theorem 2 as
∑

Y P (X
∗|Y ∗, Rx = 0, Ry = 0)P (Y ∗|Ry = 0). Suppose Y

is a variable that is significantly affected by missingness i.e. only in a small number of samples

Y is observed. Then the estimand above is likely to not yield good ‘quality’ estimates in practice.

However, the estimand yielded by theorem 9 is independent of Y and can be used to compute P (X).
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Recall that a requirement for recoverability is that the manifest distribution P (X∗, Y ∗, Rx, Ry) be

strictly positive. Interestingly, even when this requirement is not met, theorem 9 can be used for

recovery as long as P (W,X∗, Rx = 0) is strictly positive.

The following theorem states that theorem 9 presents a necessary condition for recoverability in

hard-MNAR problems.

Theorem 10 (Necessity). Given an m-graph G encoding a hard-MNAR problem and ancillary

variables W , P (V ) is recoverable only if MWV is invertible.

Proof: See appendix A.3.1

Remark 6. Given ancillary variables W , theorem 9 presents a necessary and sufficient condition

for recoverability of joint distributions in hard-MNAR problems.

We note that theorem 9 presents only a sufficient criterion for problems that are ‘not’ hard-MNAR.

For example, consider the disconnected m-graph G: W Y Ry, comprising binary variable. While

P (X, Y ) is recoverable using theorem 3, it cannot be recovered using theorem 9 since MWY will

not be invertible in this case.

The results presented in this section are inspired by similar results in epidemiology ([RGL08]),

regression analysis ([CRS06]) and causal inference ([Pea12, KP14]). In contrast to [Pea12] that

relied on external studies to compute causal effect in the presence of an unmeasured confounder,

[KP14] showed how the same could be effected without external studies. In missing data setting we

have access to partial information that allows us to compute conditional distributions. This allows

us to adapt the procedure in [Pea12] to compute consistent estimates given models in Figures 5.1

and 5.2.

5.2 Computing Informative Bounds

We now deal with the case where no ancillary variables are available and no parametric assump-

tions such as linearity hold. In situations where data are scarce, it is prudent to salvage the available
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data to compute an error bound rather than discarding the whole dataset for non-recoverability rea-

sons. Hence we compute bounds for queries of interest. In order to compute tight bounds we

partition a given query into factors that are recoverable and non-recoverable and then tighten the

bounds by estimating the recoverable factors.

Missingness graphs as a guide for future data collection: Interestingly, this bounding strategy

identifies specific variables such that recoverability is guaranteed once data is collected over these

variables again. For example, suppose the query of interest is P (X, Y ) and it is non-recoverable

given the m-graph G. Even if we have the means to re-conduct the survey, doing so and collecting

data over X and Y may not always be helpful; quite possibly in any future attempt at collecting

data over X and Y , the population would behave in an identical manner as it did before, yielding

a similar dataset and identical m-graph G. However by partitioning P (X, Y ) into a recoverable

part say, P (Y |X) and a non-recoverable factor say, P (X), we need to collect data only over X for

recovering P (X, Y ). In this way, we can harness information embedded in the bounds themselves

to identify the set of variables that would further tighten the bounds or even facilitate recovery.

Furthermore, in many cases we might be able to use external data sources such as census bureau

(for age) and public salary records (for income).

We will now illustrate the subtleties involved in the bounding process.

5.2.1 Bounding Self-masking Models

Example 17. Let the relation of interest be P (Y = y) and the missingness process be depicted in

the m-graph in Figure 5.1 (a). Since P (Y ) is non-recoverable, the best we can say is that either all

missing values correspond to Y = 0 or that they correspond to Y = y. Therefore, we can express

P (Y ) as the sum, P (Y, ry) + P (Y, r′y) and use 0 ≤ P (Y, ry) ≤ P (ry) to bound P (Y = y) as:

P (r′y, Y = y) ≤ P (Y = y) ≤ P (r′y, Y = y) + P (ry)

When P (ry) is negligible, we observe that the estimation error is also negligible.

Definition 9 (Trivial bounds). The trivial bounds of a distribution P (xm, xo|y), where Xm ⊆

Vm, (Xo, Y ) ⊆ Vo, Xm ∩ Y = ∅ are P (xo, xm, r′xm|y) ≤ P (xm, xo|y) ≤ P (xo, xm, r
′
xm|y) +

P (xo, rxm|y).
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The bounds are computed by considering the extreme cases. The lower bound is computed under

the assumption that no missing sample assumes the value Xm = xm and the upper bound is

computed under the assumption that all missing samples assume the value Xm = xm. Although a

trivial bound is a tight bound in the preceding example, the following example demonstrates that

given other m-graphs we can compute better bounds by decomposing a non-recoverable query Q

into recoverable and non-recoverable parts.

Example 18. Let the relation of interest be P (X = x, Y = y) and the missingness process be

depicted in the m-graph in Figure 6.1 (b). Since P (XY ) is non-recoverable, it is possible that

either no missing values correspond to X = x, Y = y or that all missing values correspond to

X = x, Y = y i.e. we can trivially bound P (X = x, Y = y) as:

P (r′y, r
′
x, x, y) ≤ P (x, y) ≤P (r′y, r′x, x, y) + P (ry, r

′
x, x)+

P (r′y, rx, y) + P (ry, rx)

However, in this case we know that P (X|Y ) may be recovered as P (X∗|Y ∗, Ry = 0, Rx = 0)

since X ⊥⊥(Rx, Ry)|Y ([MPT13]). Using P (X, Y ) = P (X|Y )P (Y ) and the the trivial bound for

P (Y ), we can compute the following tighter bound for P (X, Y ):

P (X|Y )P (r′y, Y ) ≤ P (X, Y ) ≤ P (X|Y )(P (r′y, Y )

+P (ry))

The bounds derived in example 18 are called non-trivial bounds. In contrast to the trivial bounds

described above they guarantee to provide consistent estimates even when missingness remains

non negligible on portion of the database. We can therefore characterize each non-trivial bound by

that portion of the database in which missingness must approach zero for inconsistency to vanish.

Moreover, non-trivial bounds help us quantify the rate of convergence and, hence, the relative

importance of minimizing missingness in different variables, or combinations of variables. For

instance, in the preceding example it would be a waste of resources to minimize missingness on

X, whereas minimizing missingness of Y is crucial.
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5.2.2 Bounding Collider-induced Models

In the preceding example we bounded a marginal distribution. In this case the procedure is similar

except that we will bound a conditional distribution.

Example 19. Let the relation of interest be P (X = x, Y = y) and the missingness process

be depicted in the m-graph in Figure 5.1 (c). We know that P (Y ) is recoverable since Y is fully

observed. Using P (X, Y ) = P (X|Y )P (Y ) and the the trivial bound for P (X|Y ), we can compute

the following tighter bound for P (X = x, Y = y):

P (X, r′x = 0|Y )P (Y ) ≤ P (X, Y ) ≤ P (Y )(P (r′x, X|Y )

+P (ry|Y ))

X Y

Ry Rx

X Y

Ry Rx

Z

(a) (b)

Figure 5.2: m-graphs depicting entangled models

5.2.3 Bounding Entangled Models

In this case, we capitalize on the recoverability of specific events to recover sub-queries in the

decomposition.

Example 20. Let the relation of interest be P (X = x, Y = y) and the missingness process be

depicted in the m-graph in Figure 5.2 (a). Although X 6⊥⊥(Ry, Rx)|Y , the conditional distribution
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P (X|Y ) may be recovered as shown below:

P (X, Y, r′x, Ry) = P (Y |X, r′x, Ry)P (X, r
′
x, Ry)

= P (Y |X, r′x, r′y)P (X, r′x, Ry)

(since Y ⊥⊥Ry|(X,Rx))

= P (Y ∗|X∗, r′x, r′y)P (X∗, r′x, Ry) (5.1)

P (X|Y ) = P (X|Y, r′x) =
P (X, Y, r′x)

P (Y, r′x)

=

∑
Ry
P (X, Y, r′x, Ry)∑

Ry ,X
P (X, Y, r′x, Ry)

(By eq 5.1, P (X, Y, r′x, Ry) is recoverable)

Since P (X|Y ) is recoverable, the bound here is the same as the bound in example 18. Given

m-graph in Figure 5.2 (b) P (X, Y, Z) may be bounded in a similar manner by decomposing it

as P (X|Y Z)P (Y Z). Here P (X|Y Z) is recoverable since the event P (X, Y, Z,Ry, r
′
x) may be

recovered as P (Y ∗|X∗, Z, r′y, r′x)P (X∗, Z,Ry, r
′
x). Finally we apply the trivial bound on P (Y, Z).

5.3 Summary

We presented two strategies of overcoming impediments to estimation. The first, based on matrix

inversion is applicable to variables with discrete, finite states, applicable to a broad set of prob-

lems and is independent of parametric assumptions. For problems that cannot be handled by the

preceding strategy, we exemplified methods to compute bounds for the target queries. We demon-

strated that by decomposing a query into sub-queries, some of which are recoverable, we can take

advantage of the recoverable part to produce tighter bounds on the target query.

58



CHAPTER 6

Linear Models for Missing Data

Linear Structural Equation Modeling has been widely used for estimating parameters of interest

under missing data conditions ([All03, Gra03, End06, SBC10, UB03]). Almost all existing SEM

techniques for missing data employ maximum likelihood or multiple imputation based approaches

for computing parameter estimates. Additionally, these techniques require that the missing data

mechanism be ignorable i.e. the data be generated by a MCAR or MAR process. Exceptions

include [Pea13] in which path-analytic techniques were used to recover covariance matrix from

MNAR data. In this chapter we demonstrate that aided by proxy variables, causal effects and

sometimes the entire covariance matrix can be recovered given models depicting hard-MNAR

problems i.e. models in which neither the joint distribution nor identifiable causal effects are

recoverable non-parametrically.

Chapter Outline: In section 6.1 we discuss SEMs, and present definitions of covariance, variance

and regression coefficients. Quasi-linear missingness model is defined and an example of recover-

ability in MAR under linear assumption is presented in section 6.2. Section 6.3 presents methods

for recovering variance and path coefficients in hard-MNAR problems.

6.1 Preliminaries: Structural Equation Models, Variance and Covariance

Before formally defining the linear missingness model, we shall briefly review Structural Equation

Models. For a detailed discussion see [Pea09] (chapter-5) and [Bri04].

6.1.1 Structural Equation Models

A structural equation model (SEM) is a system of equations defined over a set of variables, such

that each variable appears on the left hand side of at most one equation. Each equation describes
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the dependence of one variable in terms of the others and contains an error term to account for the

influence of unobserved factors. Example: X = εx and Y = αX + εy. As in [Pea13], we interpret

structural equations as an assignment process whose directionality is captured by a path diagram

(see Figure 6.1). All substantive variables ({Vm ∪ Vo ∪ U}), and error terms are assumed to be

drawn from a Gaussian distribution.

6.1.2 Covariance, Variance and Regression Coefficients

The following is a list of basic formulae used in this paper.

For two variables X and Y covariance and variance are defined as follows:

cov(X, Y ) = E(XY )− E(X)E(Y ) (6.1)

var(X) = E(X2)− E(X)2 (6.2)

The regression coefficient denoted by βyx, representing the rate of change of Y as a function of X

is given by,

βyx =
cov(X, Y )

var(X)
=

d

dx
E(Y |X = x) (6.3)

The partial regression coefficient denoted by βyx.z, representing the rate of change of Y as a func-

tion of X , computed from cases in which Z = z is given by,

βyx.z =
d

dx
E(Y |X = x, Z = z) (6.4)

6.2 Quasi-linear Missingness Model

The causal missingness mechanism is a binary variable and as such the function generating it

cannot be linear. Therefore, we define the quasi-linear model below to capture the missingness

process.

Definition 10. A Quasi-linear Missingness Model is a Structural Equation Model such that:

1. every substantive variable X is a linear function of its causes ,Y , and a random error term εx
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c1. X1 = εx1

c2. Y = αX1 + εy

c3. X2 = γY + δX1 + εx2

c4. Ry = f(Y, εry)

c5. Y ∗ = (1−Ry)Y +mRy

X1

Y

Rx1

(d)

X2

γ

α

Figure 6.1: (a), (b), (c) and (d) are quasi-linear missingness models and equations c1, c2, c3, c4

and c5 constitute the SEM corresponding to m-graph (c)

X = α1Y1 + α2Y2 + ...+ αnYn + εx

The coefficient α’s are called path coefficients or structural parameters.

2. For every Rx ∈ R, Rx = f(Z, εRx) where Z is the set of causes and f is a non-linear function.

No R variable is a parent of any substantive variable.

3. Every proxy variable X∗ is generated by the non-linear function: X∗ = (1−Rx)X +mRx

We will now exemplify recoverability of covariance matrix in MAR and MCAR cases.

Example 21. Consider the problem of estimating the covariance matrix given the MAR model of

Figure 6.2 (b). Since Y is fully observed, var(Y ) is trivially recoverable. In order to recover

cov(X, Y ), we will first recover βXY , the regression coefficient of Y on X .

βXY =
d

dy
E(X|y)

Since X ⊥⊥Rx|Y we have the license to compute βXY (using OLS) from samples in which X is

observed. cov(X, Y ) can now be recovered as:

cov(X, Y ) = var(Y )βXY
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Finally, to recover var(X) we require a procedure that consistently estimates E(X). However,

the recoverability of E(X) is far from obvious because the model does not encode the conditional

independence: X ⊥⊥Rx, thereby leading one to presume that E(X) cannot be recovered until one

conditions on Y . However, this turns out not to be the case as shown below:

E(X) = E(E(X|Y ))

Since X ⊥⊥RX |Y , E(X|Y ) = βXY Y + c can be computed by linear regression from samples in

which X is observed. Therefore,

E(X) = E(βXY Y + c)

= βXYE(Y ) + E(c)

Let µY denote the mean of Y computed from all samples. Then,

E(X) = βXY µY + c

To estimate var(X), we proceed in a similar manner using the formula: var(X) =

E(V ar(X|Y )) + V ar(E(X|Y )).

An upshot of the estimation procedure in example 21 is the estimability of the causal effect of X

on Y , βY X as shown below:

βY X =
cov(X, Y )

var(X)

We observe that although a consistent estimate of βY X cannot be computed directly from fully

observed data (i.e. P (X, Y,Rx = 0)) , it can be recovered by a procedure in which each factor in

the estimand is independently estimated from a subset of the available dataset.

Estimation methods applicable to MAR are applicable to MCAR as well because by the weak union

axiom of graphoids, Missing Completely at Random (MCAR: (Vm, Vo)⊥⊥R) implies Missing At

Random (MAR: Vm⊥⊥R|Vo). Therefore, it implicitly follows that queries (such as covariance

and variance ) that are recoverable given MAR datasets are recoverable given MCAR datasets as

well. In a manner similar to the estimation procedure in example 21, the covariance matrix can be

recovered given the MNAR problem in Figure 6.2(c) as well.
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Figure 6.2: Examples of (a) MCAR, (b) MAR and (c) MNAR missing data generation processes

6.2.1 Estimating Mean of Partially Observed Variables

Theorem 11. Let X ∈ Vm. E(X) is recoverable if there exists Z = {Z1, Z2, ...Zn} such that

X ⊥⊥RxRz|Z and E(Zi) is recoverable for all Zi ∈ Z.

Proof.

E(X) = E(E(X|Z)) =
∑
z

P (z)E(X|Z)

Performing linear regression of Z on X will return the intercept c and coefficients αi’s. More

importantly, regression is performed using only those samples in which all variables in Z ∪ {X}

are observed (i.e. not missing).

E(X) =
∑
z

P (z)(c+
n∑
i=1

(αiZi)) = c
∑
z

P (z) +
∑
z

P (z)
n∑
i=1

(αiZi)

= c+
n∑
i=1

αiE(Zi) (6.5)

6.3 Recovering Path Coefficients, Variance and Covariance in hard-MNAR

problems

Variance and covariance are recoverable in an uncomplicated manner in many instances such as

when the concerned variables are fully observed or missing completely at random. In this subsec-

tion we develop methods to recover variance and covariance for cases where traditional methods

fail.
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In the following lemmata we re-phrase and state known results for estimating covariance ([Pea09,

Bri04, Pea13, Wri21]):

Lemma 4. Single path: Let G be an m-graph and p be an unblocked path between X1 and Xn

with intermediate nodes: X2, X3...Xn−1. Let Xj be the ancestor of all nodes on p.

cov(X1, Xn) = var(Xj) ∗
n∏

i=1,i 6=j

αi

where
n∏

i=1,i 6=j
αi is the product of all causal parameters on path p.

Lemma 5. Multiple paths: Let G be an m-graph with k unblocked paths p1, ..pk between X1 and

Xn. Let Xm
j be the ancestor of all nodes on path pm.

cov(X1, Xn) =
k∑

m=1

var(Xm
j ) ∗

n∏
i=1,i 6=j

αmi

where
n∏

i=1,i 6=j
αmi is the product of all causal parameters on path pm.

For example, in figure 6.1 (c), there exist two paths, X1 → Y → X2 and X1 → X2, between X1

and X2. Therefore using lemma 5, cov(X1, X2) = αγ + δ

Lemma 6. Computing path coefficients: Let G be an m-graph with k unblocked paths p1, ..pk

between X1 and Xn. If cov(X1, Xn) is known and all path coefficients are known, except one, say

αba, then αba is recoverable as:

cov(X1, Xn)−
k∑

m=1,m6=b
var(Xm

j ) ∗
∏n

i=1,i 6=j α
m
i

var(Xb
j )

−
n∏

i=1,i 6=j,i6=a

αmi

where
n∏

i=1,i 6=j
αmi is the product of all causal parameters on path pm.

Proof follows from lemma 5

In figure 6.1 (a) the rectangular box is a shorthand for indicating that Y is part of an m-graph G

such that no other variable in G, except Y is a neighbor of X1 and X2.
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Theorem 12. Let Y ∈ Vm. V ar(Y ) is recoverable if there exists X1, X2 as shown in Figure 6.1

(a) such that

1. var(X1) and cov(X1, X2) are recoverable

2. γ 6= 0, α 6= 0

Proof. 1. Recovering δ

δ = βX2X1.Y (by single door criteria [BP02])

Since X2⊥⊥Ry|(Y,X1), βX2X1.Y can be recovered by linear regression from samples in

which Y is observed.

2. Recovering γ

γ = βX2Y.X1(using back door criteria ([Pea09]))

Since X2⊥⊥Ry|Y,X1, βX2Y.X1 can be recovered by linear regression from samples in which

Y is observed.

3. Recovering α

cov(X2, X1) = γcov(X1, Y ) + δvar(X1)

= γαvar(X1) + δvar(X1)

Therefore, α =
1

γ

(cov(X2, X1)

var(X1)
− δ
)

(6.6)

The above result follows immediately from lemma 6.

4. Recovering var(Y )

var(Y ) =
cov(X1, Y )

βX1Y

SinceX1⊥⊥Ry|Y , regression coefficient βX1Y is recoverable by linear regression using sam-

ples in which Y is observed.

=
cov(X1, Y )

βX1Y

=
α ∗ var(X1)

βX1Y

(6.7)
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5. Recovering E(Y )

Perform linear regression with Y as regressor and X1 as regressand, using samples in which

Y is observed. Let c be the intercept and βX1Y be the coefficient produced as output. It

follows from equation 6.5 that,

E(X1) = c+ βXYE(Y )

Therefore, E(Y ) =
E(X1)− c
βX1,Y

Scope of the Results: Theorem 12 does not impose constraints or restrictions on the structure of

the m-graph G which contains the node Y . So it can be used to compute the variance of Y in all

m-graphs so long as its conditions are met.

Using the results derived thus far, we exemplify below recoverability of path coefficients in

collider-induced and entangled models.

6.3.1 Recoverability in Collider-Induced Models

Example 22. Given the model in Figure 6.1 (d), covariance matrix is recoverable.

1. Recovering var(X1)

Since X1⊥⊥Rx1 , var(X1) is recoverable and may be estimated from samples in which X1 is

fully observed.

2. Recovering γ

UsingX2⊥⊥Rx1|X1, we can recover γ as βX2X1 by linear regression using samples in which

X1 is fully observed.

3. Recovering α

cov(X2, Y ) = αcov(X1, X2) = αγvar(X1)

Therefore, α =
cov(X2, Y )

γ var(X1)

The above result follows immediately from lemma 6.
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Since the path coefficients and variances are recoverable, the covariance matrix is recoverable by

lemma 5.

Figure 6.3: Quasi-linear models in which causal effect of (a) X on Y is recoverable (b) X on Z

and Y on Z are recoverable

6.3.2 Recoverability in Entangled Models

We will now exemplify that in the models in Figure 6.3 (a), direct effect of X on Y is recoverable

and in Figure 6.3 (b), direct effect of X on Z and Y on Z are recoverable.

Example 23. Given the entangled models in Figure 6.3 (a) and (b), causal effects are recoverable.

In both entangled models γ1, γ2 and δ1 can be recovered as shown below:

1. γ1 = βW1X

Since W1⊥⊥RX |X , regression coefficient βW1X can be recovered by linear regression from

samples in which X is observed.

2. γ2 = βW2Y

Since W2⊥⊥RY |Y , regression coefficient βW2Y can be recovered by linear regression from

samples in which Y is observed.

3. Since cov(W1, Z1), γ1 and var(Z1) are known, δ1 can be recovered using lemma 6 as

δ1 =
cov(W1,Z1)
γ1var(Z1)

Recovering α in Figure 6.3 (a): α may be recovered using lemma 6 as,
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α = cov(Z1,W2)
δ1γ2var(Z1)

Recovering α1 and α2 in Figure 6.3 (b): Using lemma 6, α2 may be recovered as:

α2 =
cov(Z2,W4)

var(W4)γ4

γ4 is recoverable using lemma 6 as: γ4 =
cov(W4,W2)
γ2var(W4)

. Therefore,

α2 =
cov(Z2,W4)

var(W4)

γ2var(W4)

cov(W4,W2)

Using lemma 6, α1 may be recovered as:

α1 =
cov(Z1,Z2)
δ1var(Z1)

Furthermore, var(X) and var(Y ) are recoverable in Figure 6.3 (b) by theorem 12. Since the path

coefficients and variances are recoverable, it follows from lemma 5 that the covariance matrix is

recoverable.

6.4 Summary

In this chapter we showed that linearity assumptions can aid recoverability in missingness problems

in which joint distribution is not recoverable and variables are continuous. We defined quasi-linear

models for missingness and derived conditions under which parameters can be recovered in hard-

MNAR problems. Specifically, we showed how the full covariance matrix can be recovered using

a sequential procedure dictated by the graph structure.
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CHAPTER 7

Testability under Missingness

Researchers are typically uncertain about the model that accounts for loss of data while at the

same time procedures for recovering information from missing data rely on such models. These

two facts motivate us to address the question of whether one can submit a given model to a test of

compatibility with the data available, which of course is corrupted by missingness. Specifically,

we ask whether it is possible to detect misspecifications of the missingness model, we demonstrate

this possibility, and identify conditions that permit such detection.

X Y

RY
RXRX RY

X Y

(a) (b)

Figure 7.1: m-graphs that yield different estimands for the query P (X|Y )

Motivating Example: The following example will demonstrate the sensitivity of recoverability to

the structure of the graph. LetG1 (Figure 7.1(a)) andG2 (Figure 7.1(b)) be the graphs hypothesized

by the researcher for a given manifest distribution P (X∗, Y ∗, Rx, Ry). Let P (X|Y ) be the query

to be recovered. G1 embeds, X ⊥⊥Rx, Ry|Y ). Hence, P (X|Y ) = P (X|Y,Rx = 0, Ry = 0). On

applying Equation-(1) we get,

P (X|Y ) = P (X∗|Y ∗, Rx = 0, Ry = 0).

On the other hand, G2 embeds the CI: X ⊥⊥Y . Therefore, P (X|Y ) = P (X). Furthermore, G2

also embeds the CI: X ⊥⊥Rx. Therefore, P (X) = P (X|Rx = 0). On applying Equation-(1) we

get,

P (X|Y ) = P (X∗|Rx = 0)
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We observe that G1 and G2 dictate different estimands which yield different results depending on

the missingness process that each portrays. Therefore it is imperative to test whether the manifest

distribution and hypothesized model are compatible.

In other words, some properties of P ( called “queries”) that are recoverable in one graph are not

recoverable in another. Moreover, this sensitivity persists even when the two graphs are statistically

indistinguishable and the natural question to ask is whether the structure of the m-graph lends itself

to statistical tests, given that we are not in possession of the underlying distribution but a distortion

thereof in the form of a dataset with missing values. We will show that such tests are indeed

available albeit weaker than misspecification tests under complete data.

Chapter outline: Section 7.1 defines testability of CIs portrayed by the m-graph and develops suf-

ficient conditions under which a specific CI is testable given missing data. In Section 7.2 we call

attention to an impediment which prevents testability of certain conditional independencies even

when the distribution that carries these CIs is fully recoverable. We then present sufficient condi-

tions for non-testability of CIs. Section 7.3 deals with testability of CIs comprising of substantive

variables and presents sufficient conditions for such dependence to exist. In Section 7.4 we apply

these theoretical results to classes of models which have been analysed in traditional missing data

literature and show that (extending the results of [PTP06]) a large class of models traditionally

thought of as non-testable are in fact testable. Finally, we use the results developed so far to show

that model sensitivity persists in many models typically categorized as MNAR.

7.1 Testability of CI (d-separations) in m-graphs

In this paper we will limit our discussion to testable implications in the form of conditional inde-

pendence claims entailed by the model. In Figure 7.2 for example, the model claims X ⊥⊥Y |Z,

Z ⊥⊥Rz|(X, Y ) and (X, Y, Z,Rz)⊥⊥Rx. Such claims constitute the totality of testable impli-

cations if the underlying model is Markovian i.e. recursive and with independent error terms

([Pea09]). For constraints induced by latent variables, see [TP02b] and [SP08].

Definition 11 (Testable d-separation). Let X ∪ Y ∪ Z ⊆ Vo ∪ Vm ∪ R and X ∩ Y ∩ Z = ∅.

X ⊥⊥Y |Z is testable if there exists a dataset D governed by a distribution P (Vo, V ∗, R) such that
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X ⊥⊥Y |Z is refuted in all underlying distributions P (Vo, Vm, R) compatible with the distribution

P (Vo, V
∗, R).

If X and Y are singletons, X ⊥⊥Y |Z is termed as singleton d-separation and if not, X ⊥⊥Y |Z

is termed as compound d-separation. Let us look at examples of singleton and compound d-

separations that are testable.

Example 24. Let X ∈ Vo and Y ∈ Vm. X ⊥⊥Ry is testable since X and Ry are fully observed

variables and we can always find a dataset that refutes P (X|Ry = 0) = P (X|Ry = 1). Similarly

when {X, Y } ⊆ Vm, Rx⊥⊥Ry and X ⊥⊥Y |(Rx = 0, Ry = 0) are testable. Rx⊥⊥Ry is testable

since Rx and Ry are fully observed variables. X ⊥⊥Y |(Rx = 0, Ry = 0) is testable since given

Rx = 0 and Ry = 0 we can apply Equation 2.1 and equivalently write the CI as X∗⊥⊥Y ∗|(Rx =

0, Ry = 0) i.e. CI can be expressed equivalently in terms of observed variables and hence it can

be refuted.

Example 25. Following are two examples of compound d-separations that are testable.

a. CI: (X,Rx)⊥⊥(Y,Ry)|(Z,Rz) implies P (X∗, R
′
x|Z∗, R

′
z) = P (X∗, R

′
x|Y ∗, R

′
y, Z

∗, R
′
z)

b. CI: (X,Rx)⊥⊥(Rw, Ry)|Y implies P (X∗, R
′
x|Y ∗, R

′
y, Rw) = P (X∗, R

′
x|Y ∗, R

′
y, R

′
w)

Since both CIs imply CIs that can be expressed in terms of observed variables, the CIs can be

refuted. Hence they are testable.

We would like to remark that there exist non-testable CI claims and they are discussed in Section

7.2, Example 27. From definition-11, we conclude that a d-separation is termed testable when it

has at least one implication that is testable. Example:26 demonstrates that, in some cases, it might

be necessary to examine all implications of a compound d-separation before labeling it as testable.

Example 26. Consider the d-separation S : (X,Ry, Rz1)⊥⊥(Y,Rx, Rz2)|(Z1, Z2). This d-

separation translates to P (X,R
′
y ,R
′
z1,Y=0,R

′
x,R
′
z2)

P (Y=0,R′x,R
′
z2,Z1,Z2)

=
P (X,R

′
y ,R
′
z1,Y=1,R

′
x,R
′
z2)

P (Y=1,R′x,R
′
z2,Z1,Z2)

. Observe that the denom-

inators cannot be directly expressed in terms of observed variables. To affirm testability of S, we

have to examine its implications until we find an implication that is testable.

For example, S ′ : X ⊥⊥Y |(Z1, Z2, Ry, Rz1, Rx, Rz2), obtained by applying weak union graphoid
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axiom to S is testable since it translates into P (P (X,R
′
y ,R
′
z1,Y=0,R

′
x,R
′
z2))

P (R′y ,R
′
z1,Y=0,R′x,R

′
z2)

=
P (P (X,R

′
y ,R
′
z1,Y=1,R

′
x,R
′
z2))

P (R′y ,R
′
z1,Y=1,R′x,R

′
z2)

.

Since S ′ is testable we can conclude that S is testable.

Clearly enumerating and testing the set of all implied d-separations is hard since the number of

implications is exponential in the sizes of sets X and Y . The next subsection provides a rule to

circumvent this enumeration for certain types of d-separations.

7.1.1 Directly testable d-separations

Testability of certain d-separations (such as the compound d-separations in Example:25 ) can be

affirmed in one shot i.e. without explicitly examining all their implications. In other words, testa-

bility can be certified by looking at the placement of a mechanism RX relative to its partially

observed variable X in the d-separation statement. We call such d-separations directly testable.

The following is a syntactic criterion for determining direct testability of d-separations.

Theorem 13. Let X, Y, Z ⊂ Vo ∪ Vm ∪ R and X ∩ Y ∩ Z = ∅. The conditional independence

statement S: X ⊥⊥Y |Z is directly testable if all the following conditions hold:

1. Y 6⊆ (RXm ∪RZm)

In words, Y should contain at least one element that is not in RXm ∪RZm .

2. RXm ⊆ X ∪ Y ∪ Z

In words, the missingness mechanisms of all partially observed variables inX are contained

in X ∪ Y ∪ Z.

3. RZm ∪RYm ⊆ Z ∪ Y

In words, the missingness mechanisms of all partially observed variables in Y and Z are

contained in Y ∪ Z.

Proof. Let Y1 ∈ R ∪ Vo ∪ Vm be an element in Y such that condition (1) is satisfied. X ⊥⊥Y |Z

implies:
P (X,Y1=0,Y−Y1,Z)
P (Y1=0,Y−Y1,Z) = P (X,Y1=1,Y−Y1,Z)

P (Y1=1,Y−Y1,Z) (a)

From conditions (2) and (3), we know that the terms in the numerator of both fractions contain

RXm , RYm and RZm . Similarly, from condition (3), we know that the terms in the denominator of
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both fractions containRYm andRZm . Consider the event where allR variables inRXm∪RYm∪RZm

are equal to zero. We can apply Equation 2.1 and express the numerators and denominators of

equation-(a) in terms of observed variables, thereby making the claim testable.

7.1.2 Graphical Criteria for Testability

The criterion for detecting testable implications reads as follows: A d-separation condition dis-

played in the graph is testable if the R variables associated with all the partially observed vari-

ables in it are either present in the separator set or can be added to the separator without spoiling

the separation. Formally, we can state this criterion using three syntactic rules. General criterion

for identifying untestable conditional independence in the graph are the following ([MP14]):

X ⊥⊥Y |Z,Rx, Ry, Rz (7.1)

X ⊥⊥Ry|Z,Rx, Rz (7.2)

Rx⊥⊥Ry|Z,Rz (7.3)

In words, any d-separation that can be expressed in the format stated above is testable. It is un-

derstood that, if X or Y or Z are fully observed, the corresponding R variables may be removed

from the conditioning set. Clearly, any conditional independence comprised exclusively of fully

observed variables is testable. To search for such refutable claims, one needs to only examine the

missing edges in the graph and check whether any of its associated set of separators satisfy the

syntactic format above.

7.1.2.1 Tests Corresponding to the Conditions 7.1, 7.2 and 7.3

When a test satisfies a criterion above, it imposes a condition on the observed data. For example,

a specific instance of the claim X ⊥⊥Y |Z,Rx, Ry, Rz, when Rx = 0, Ry = 0, Rz = 0 gives

X ⊥⊥Y |Z,Rx = 0, Ry = 0, Rz = 0. This translates to the equation,

P (X|Z,Rx = 0, Ry = 0, Rz = 0) = P (X|Y, Z,Rx = 0, Ry = 0, Rz = 0)

The above can be rewritten using equation 2.1 as:

P (X∗|Z∗, Rx = 0, Ry = 0, Rz = 0) = P (X∗|Y ∗, Z∗, Rx = 0, Ry = 0, Rz = 0)
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This equation exclusively comprises of observed quantities and can be directly tested given the

input distribution: P (X∗, Y ∗, Z∗, Rx, Ry, Rz). In a similar manner we can devise tests for the

second and third criteria (statements 7.2 and 7.3).

The tests corresponding to the three criteria are:

• P (X∗|Z∗, Rx = 0, Ry = 0, Rz = 0) = P (X∗|Y ∗, Z∗, Rx = 0, Ry = 0, Rz = 0),

• P (X∗|Z∗, Rx = 0, Rz = 0) = P (X∗|Ry, Z
∗, Rx = 0, Rz = 0)

• P (Rx|Z∗, Rz = 0) = P (Rx|Ry, Z
∗, Rz = 0)

So far we have discussed testable CI statements. In the following section we shall discuss an

impediment to testability when data are afflicted by missingness.

Y (Outcome)

Z (Treatment)

Rx

X*

Rz

Z*

(Cause for

X

(Discomfort)

(Observed proxy for Z)

missingness in Z)

Figure 7.2: m-graph with no conditional independence statement that is testable using the criteria

in section 7.1.2

7.2 Impediments to Testability in Missing Data

Unlike testability under complete data, testability in missing data has an impediment to overcome.

When data are complete we simply select a conditional independence statement in the model and

test it against the data. Under missing data however, some conditional independencies in the model

may not be testable even when the joint distribution is recoverable. An example demonstrating this

impediment is discussed below.
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Example 27. Consider the missingness process described by the graph G in Figure 7.5 (a) that

states the CI: X ⊥⊥Rx|Y . Let Q : P (X, Y,Rx) be the query to be recovered. We will show that

although Q is recoverable, the CI statement X ⊥⊥Rx|Y is not testable.

First we will prove that Q is recoverable.

P (X, Y,Rx = 1) = P (X|Y,Rx = 1)P (Y,Rx = 1)

Since G embeds X ⊥⊥Rx|Y we have,P (X|Y,Rx = 1) = P (X|Y,Rx = 0). Therefore,

P (X, Y,Rx = 1) = P (X|Y,Rx = 0)P (Y,Rx = 1)

Using Equation 2.1,P (X|Y,Rx = 0) = P (X∗|Y,Rx = 0). Therefore,

P (X, Y,Rx = 1) = P (X∗|Y,Rx = 0)P (Y,Rx = 1)

Hence P (X, Y,Rx = 1) is recoverable.

Using Equation 2.1,

P (X, Y,Rx = 0) = P (X∗, Y, Rx = 0). Thus, P (X, Y,Rx = 0) is also recoverable.

We will now show that X ⊥⊥Rx|Y is not testable. X ⊥⊥Rx|Y translates into,

P (X|Y,Rx = 1) = P (X|Y,Rx = 0)

Hence, P (X, Y,Rx = 1) = P (X,Y,Rx=0)
P (Y,Rx=0)

P (Y,Rx = 1)

In other words, for any manifest distribution P ∗(X∗, Y, RX) in which P ∗(Y,RX = 0) > 0, we

can always construct (as shown below) a compatible distribution P (X, Y,RX) in which the CI

statement X ⊥⊥Rx|Y holds.

∀x, y

P (X = x, Y = y,Rx = 0) = P ∗(X∗ = x, Y = y,Rx = 0)

P (X = x, Y = y,Rx = 1) =
P ∗(X∗ = x, Y = y,Rx = 0)

P ∗(Y = y,Rx = 0)

∗ P ∗(Y = y,Rx = 1)

Thus, X ⊥⊥Rx|Y is not refutable and hence we conclude that it is not testable.

This example showed that a probability distribution P (v) can be perfectly recoverable from miss-

ingness, (i.e., it can be estimated consistently, as if no missingness occurred) and yet, P (v) may
75



have testable implications (eg, conditional independence (CI) statements) that are not testable for

any data with the same manifest structure (i.e. the same sets of partially and fully observed vari-

ables).

The explanation of this impediment is as follows. When we say P (V ) has testable implications we

refer to refutation by some distribution taken from the space of all distributions on V . In contrast,

when we say ‘testable under missingness’ we demand refutation by a set of distributions with the

same manifest structure. The refutation power of the latter set is weaker than the former.

The next theorem characterizes a set of CI that are not testable from missing data.

Theorem 14. Given that Y ⊆ Vo ∪R, the singleton d-separation X ⊥⊥Rx|Y is not testable.

Proof. We can always compute P (X,Rx = 1, Y ) as P (X,Rx = 1, Y ) = P (Rx =

1, Y )P (X∗|Rx = 0, Y ) such that X ⊥⊥Rx|Y is always true. Hence X ⊥⊥Rx|Y is not refutable

given any manifest distribution that is strictly positive over complete cases. Hence X ⊥⊥Rx|Y is

not testable.

Corollary 3. Given that Y contains at least one partially observed variable and Rym ⊂ Y , sin-

gleton conditional independence X ⊥⊥Rx|Yr = 0, Y − Yr is not testable.

Corollary 4. Direct Testability of a conditional independence statement does not imply testability

of all its implications.

Proof. Consider the CI statement X ⊥⊥(Y,Ry, Rx). On applying decomposition graphoid axiom,

we get the non-testable CI: X ⊥⊥Rx.

However, there exist directly testable d-separations whose implications obtained by weak union

and decomposition graphoid axioms are always testable.

Example 28. Let X ⊥⊥Y |Z,Rz, Rx, Ry be a compound d-separation such that X ∪ Y ∪ Z ⊆

Vo∪Vm. In this case it can be easily seen that all implications obtained by applying decomposition

and weak union graphoid axioms comply with conditions for direct testability given in Theorem-13.

Hence they are all testable.
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7.3 Testability of CIs comprising of only substantive variables

Let us examine the testability of singleton CI: X ⊥⊥Y . Clearly, when X, Y ∈ Vo, X ⊥⊥Y is

testable. However, testability of X ⊥⊥Y when X ∈ Vo and Y ∈ Vm is not obvious. In the

following theorem we prove that X ⊥⊥Y is testable when X ∈ Vo and Y ∈ Vm and, X and Y

are binary. We further specify necessary conditions that the manifest distribution must satisfy for

X ⊥⊥Y to hold true in the underlying distribution.

Theorem 15. Given that X ∈ Vo and Y ∈ Vm, the conditional independence statement X ⊥⊥Y is

testable. Moreover, a graph depictingX ⊥⊥Y should be summarily rejected if none of the following

conditions hold:

0 ≤ −k
P (x)

≤ P (x′, ry) (7.4)

0 ≤ k

P (x′)
≤ P (x, ry) (7.5)

0 ≤ k + P (x)P (x′, ry)

P (x′)
≤ P (x, ry) (7.6)

0 ≤ P (x′)P (x, ry)− k
P (x)

≤ P (x′, ry) (7.7)

where k = P (x)(P (x′, y, r′y) + P (x, y, r′y))− P (x, y, r′y).

Proof. We first show that violation of all conditions from 7.4 to 7.7 is sufficient to rule outX ⊥⊥Y .

Then by constructing an example that violates conditions 7.4 to 7.7, we confirm the testability of

X ⊥⊥Y .

X ⊥⊥Y may be equivalently written as,

P (x, y) = P (x)P (y)

The equation above is equivalent to,

P (x, y, ry)− P (x)(P (x′, y, ry) + P (x, y, ry)) = P (x)(P (x′, y, r′y) + P (x, y, r′y))− P (x, y, r′y)

Let the constant terms in RHS evaluate to k. Then we can rewrite the equation as:

P (x′, y, ry) =
P (x′)

P (x)
P (x, y, ry) +

−k
P (x)

(7.8)

Equation 7.8 is linear, the variables are P (x′, y, ry) and P (x, y, ry) and it resembles the general

equation of a line:y=mx+c. Equation 7.8 should also satisfy:
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(a) 0 ≤ P (x, y, ry) ≤ P (x, ry)

(b) 0 ≤ P (x′, y, ry) ≤ P (x′, ry)

The constraints (a) and (b) above delineate a rectangular region < in the first quadrant of the

Cartesian plane. Equation 7.8 can be solved subject to constraints (a) and (b) only if the line

described in Equation 7.8 intersects the boundary lines enclosing < (i.e. at least one intersection

point should satisfy (a) and (b)).

Intersection of Eq 7.8 and left boundary of < yields:

0 ≤ −k
P (x)
≤ P (x′, ry)

Intersection of Eq 7.8 and bottom boundary of < yields:

0 ≤ k
P (x′)

≤ P (x, ry)

Intersection of Eq 7.8 and top boundary of < yields:

0 ≤ k+P (x)P (x′,ry)
P (x′)

≤ P (x, ry)

Intersection of Eq 7.8 and right boundary of < yields:

0 ≤ P (x′)P (x,ry)−k
P (x)

≤ P (x′, ry)

We prove testability of X ⊥⊥Y by presenting manifest distribution P3 in Table 7.1 that violates

conditions 7.4 to 7.7 and thus refutes the claim: X ⊥⊥Y .

Ry X Y ∗ P1 P2 P3

0 0 0 8
81

13
41

100
125

0 0 1 6
81

11
41

5
125

0 1 0 4
81

7
41

7
125

0 1 1 3
81

5
41

3
125

1 0 m 20
81

3
41

5
125

1 1 m 40
81

2
41

5
125

Table 7.1: X ⊥⊥Y can hold in manifest distributions P1 and P2 but cannot hold in manifest distri-

bution P3
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Example 29. Table 7.1 describes three distributions; P1 and P2 in which X ⊥⊥Y could possibly

hold and P3 in which X ⊥⊥Y cannot hold. X ⊥⊥Y can possibly hold in P1 and P2 because both

the distributions satisfy condition 7.5. P3 does not satisfy any of the conditions from 7.4 to 7.7;

hence X ⊥⊥Y cannot hold in P3.

R
Y

X Y

Figure 7.3: m-graph in which recoverability of P (X|Y ) depends only on X ⊥⊥Y .

The following example demonstrates an application of Theorem 15. It describes an instance where

recoverability of a given query hinges exclusively on the independence between X and Y .

Example 30. Let G1 in Figure 7.3 be the hypothesized graph and Q = P (X|Y ) be the query to be

recovered. P (X, Y ) is not recoverable from G1 since Y itself is the cause of its missingness(Ry).

G1 embeds the CI statement: X ⊥⊥Y and if we assume G1 is the true graph then P (X|Y ) can be

recovered as follows:

P (X|Y ) = P (X)

Recoverability however depends critically on the independenceX ⊥⊥Y embedded inG1. Our ques-

tion is whether or not the CI statement X ⊥⊥Y holds in any underlying distribution compatible

with the data available. Theorem 15 answers this question immediately by providing us with four

conditions, one of which ought to be satisfied by the manifest distribution for X ⊥⊥Y to hold.

For example, given P3 in Table 7.1 and G1, we can immediately conclude that G1 and P3 are not

compatible.

It is interesting to note that though recoverability is generally facilitated by (usually non-testable)

CI between a variable and its missingness mechanism such as Y ⊥⊥Ry or Y ⊥⊥Ry|X , in Example

30 recoverability of Q facilitated by the independence between substantive variables X and Y .
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(a)

RY

RX

M

X

Y

RY

RX

(b)

M

X

Y

Figure 7.4: (a) m-graph depicting MNAR (b) m-graph depicting MAR+

7.4 Testability of MCAR and MAR

Missingness mechanisms are traditionally classified into three categories ([Rub76]): Missing Com-

pletely At Random(MCAR), Missing At Random(MAR) and Missing Not At Random (MNAR).

A chi square based test for MCAR was proposed by [Lit88] in which a high value falsified

MCAR([Rub76]). MAR ([Rub76]) is not testable([All02], page 4).

MAR as defined in Chapter 2 was shown to be testable in ([PTP06]). Theorem 16, given be-

low presents stronger conditions under which a given MAR+ model is testable. Furthermore, it

provides diagnostic insight in case the test is violated.

Theorem 16. Given that |Vm| > 0, MAR+ (Vm⊥⊥R|Vo) is testable if and only if |Vm| > 1 i.e.

|Vm| is not a singleton set.

Proof. Let |Vm| = k > 1 and X ⊆ Vm such that |X| = k − 1. By applying decomposition

graphoid axiom to Vm⊥⊥R|Vo, we get (Vm −X)⊥⊥R|Vo that is directly testable by Theorem 13.

Therefore, Vm⊥⊥R|Vo is testable if Vm is not a singleton. On the other hand if |Vm| = 1 then by

Theorem-14, Vm⊥⊥R|Vo is not testable.

Example 31. In the graph in Figure 7.4(b), MAR+ holds because (Y,X)⊥⊥(Rx, Ry)|M . There-

fore, the tests are:

(i) X∗⊥⊥Ry|M,Rx = 0

(ii) Y ∗⊥⊥Rx|M,Ry = 0

(iii) X∗⊥⊥Ry = 0|M,Rx = 0, Y

(iv) Y ∗⊥⊥Rx = 0|M,Ry = 0, X

(i) and (ii) are tests obtained by applying weak union and decomposition graphoid axioms to

(Y,X)⊥⊥(Rx, Ry)|M and (iii) and (iv) are tests obtained by applying weak-union graphoid ax-
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iom to (Y,X)⊥⊥(Rx, Ry)|M . Note that the graph has more testable implications than those listed

above. For example, the graph advertises the CI statement Rx⊥⊥Ry. However, the latter test is

model specific, whereas (i)-(iv) are model-independent, applicable to any MAR+ model with the

same manifest structure.

The following corollary shows that MCAR is testable.

Corollary 5. Given that |Vm| > 0, MCAR ( (Vm∪Vo)⊥⊥R) is testable if and only if |Vo∪Vm| ≥ 2.

If the dataset contains only one variable(X) andX ∈ Vm, thenX ⊥⊥Rx is not testable (by Theorem

14), even though the corresponding missingness mechanism is MCAR. If the dataset additionally

contained at least another fully observed variable (Y ) then (X, Y )⊥⊥Rx is testable since its impli-

cation Y ⊥⊥Rx is testable. On the other hand, if the dataset additionally contained at least another

partially observed variable (Z) then (X,Z)⊥⊥(Rx, Rz) is testable since its implications such as

Z ⊥⊥Rx|Rz = 0 and X ⊥⊥Rz|Rx = 0 are testable.

7.4.1 Detecting MNAR missingness mechanism

Consider the graph in Figure 7.4(a). The model is clearly MNAR since there is an edge between Y

and Ry. However, Theorem 16 will not be able to falsify MAR+. The following subsection will

show that such falsification is nevertheless possible.

7.4.1.1 Graph based tests for detecting the edge between a variable an its missingness mech-

anism (eg: X → Rx)

Ordinarily an edge E between a variable and its missingness mechanism is not testable. However,

if the contentious edge is embedded in a structure that meets certain conditions we will show that

a test exists to ascertain the existence of E. The following lemma gives the condition under which

an edge X → Rx may be detected in a Markovian Model.

Lemma 7. Given a Markovian model in which (1) there exists Z which is a parent of X and not

a parent of Rx and (2) no R variable is a parent of another R variable, an edge X → Rx exists

whenever Z 6⊥⊥Rx|Rz = 0, (R ∪ V )− {X,Z,Rx, Rz}.

Proof. Condition (2) prevents Rx from being a parent of any node in R and by definition of m-
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graph Rx cannot be a parent of variables in Vo ∪ Vm. Hence no variable in Vo ∪ Vm ∪ R is a child

of any R variable. Moreover, the model is Markovian. Therefore the m-graph can only contain

uni-directed edges that enter Rx and thus no parent of Rx can be a collider on any path that enters

Rx. In the test, Z ⊥⊥Rx|Rz = 0, (R ∪ V ) − {X,Z,Rx, Rz} we condition on all variables except

X . Therefore, if the test does not hold true then it is because there is an unblocked path from Z to

Rx via X (by condition-1, Z → Rx does not exist). This is possible only if X is a parent of Rx i.e.

there exists an edge between X and Rx.

Example 32. Consider the m-graph G1 in Figure 7.2 that implies X ⊥⊥Rx. Let it be the case that

Z does not cause the missingness in X . Then, we can confirm dependence i.e. the existence of

X → Rx, if Z ⊥⊥Rx|Y,Rz = 0 does not hold.

7.5 Model Sensitivity of Estimation Procedures

An important consequence of identifying the testable implications of a given model is the ability to

demonstrate the limits of model-blind algorithms, i.e. algorithms that attempt to handle missing-

data problems on the basis of the data alone, without making any assumptions about the structure

of the missingness process. A fundamental limitation of model-blind algorithms is unveiled in

Example 33, which presents two statistically indistinguishable models such that a given query is

recoverable in one and non-recoverable in the other.

RX

(b)

RX

YX

(a) (c)

RX

YX YX

Figure 7.5: Statistically indistinguishable graphs. (a) P (X, Y ) is recoverable (b) P (X, Y ) is not

recoverable (c) P (X) is recoverable
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Example 33. The two graphs in Fig. 7.5 (a) and (b) cannot be distinguished by any statistical

means, since Fig. 7.5(a) has no testable implications and Fig. 7.5(b) is a complete graph. However

in Fig. 7.5 (a) P (X, Y ) is recoverable (refer Example 27 )while in Fig. 7.5 (b) P (X, Y ) is not

recoverable (by Theorem-2 in [MPT13]).

An even stronger limitation is demonstrated in Example 34; it shows that no model-blind algorithm

exists1 even in those cases where recoverability is feasible. We construct two statistically indistin-

guishable models, G1 and G2, dictating different estimation procedure S1 and S2 respectively; yet

Q is not recoverable in G1 by S2 or in G2 by S1.

Example 34. The graphs in Fig. 7.5 (a) and (c) are statistically indistinguishable; neither has

testable implications. Let the target relation of interest be Q = P (X). In Fig. 7.5 (a), Q may be

estimated as P (X) =
∑

y P (X|Y,Rx = 0)P (Y ) since X ⊥⊥Rx|Y and in Fig. 7.5 (b), Q can be

derived as P (X) = P (X|Rx = 0) since X ⊥⊥Rx.

7.6 Summary

In this chapter we illuminated the boundary between testable and non-testable models with empha-

sis on models which as considered MNAR in the literature. We have provided syntactic rules for

ensuring testability of given conditional independence claims (CI) based on the type of variables

that appear in the CI. We further presented conditions for non-testability of CI and discussed a

peculiar property of testability in missing data. We refined the results of [PTP06] and showed that

the class of models denominated as MAR+ are testable as long as Vm ≥ 2 and the class of models

denominated as MCAR are testable as long as Vo ∪ Vm ≥ 2. Additionally we presented graphical

conditions that would allow a test of confirmation of dependence between a variable and its miss-

ingness mechanism. Finally we demonstrated sensitivity of missing data recovery procedures to

hypothesized models and further proved that this sensitivity is inevitable in datasets classified as

MNAR.

1We leave open the unlikely possibility that there exists an estimation scheme, different from ours that could
recover Q = P (X) in both models. We propose this example as a litmus test for any such estimator.
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CHAPTER 8

Robust Algorithms for Closed-form Estimation

In this chapter we demonstrate how our recoverability results derived in chapter 3 using graphical

models can be applied to the problem of estimation. To this end, we develop a suite of algorithms

for learning the parameters of Bayesian Network. When learning the parameters of a Bayesian

network from data with missing values, the conventional wisdom among machine learning practi-

tioners is that there are two options: use expectation maximization (EM) or gradient methods (to

optimize the likelihood); see, e.g., [Dar09, KF09, Mur12, Bar12]. Both of these approaches, how-

ever, suffer from the following disadvantages, which prevent them from scaling to large networks

and datasets; see also [TMH01]. First, they are iterative, and hence may need many passes over a

potentially large dataset. Next, these algorithms may get stuck in local optima, which means that,

in practice, one must run these algorithms multiple times with different initial seeds, and hope

that one of them leads to a good optimum. Last, but not least, these methods require inference in

the network, which places a hard limit on the networks where EM and gradient methods can even

be applied, namely for networks where exact inference is tractable, i.e., they have small enough

treewidth, or sufficient local structure [CD06, CD07].

In this chapter, we propose a family of practical and efficient algorithms for estimating the param-

eters of a Bayesian network from incomplete data. For the cases of both MCAR and MAR data,

where the missingness graph need not be explicit, we start by deriving the closed-form parameter

estimates, as implied by [MPT13]. We next show how to obtain better estimates, by exploiting

a factorized representation that allows us to aggregate distinct, yet asymptotically equivalent esti-

mates, hence utilizing more of the data. We also show how to obtain improved estimates, when

the missingness graph is only partially explicated (based on domain or expert knowledge). As in

[MPT13], all of our estimation algorithms are asymptotically consistent, i.e., they converge to the

true parameters of a network, in the limit of infinite data.
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As we show empirically, our parameter estimation algorithms make learning from incomplete data

viable for larger Bayesian networks and larger datasets, that would otherwise be beyond the scope

of algorithms such as EM and gradient methods. In particular, our algorithms (1) are non-iterative,

requiring only a single pass over the data, (2) provide estimates in closed-form, and hence do not

suffer from local optima, and (3) require no inference, which is the primary limiting factor for

the scalability of algorithms such as EM. We note that these advantages are also available when

learning Bayesian networks from complete data.

Chapter Outline: We present closed form estimation algorithms for MCAR and MAR problems

in section 8.1. Empirical results are discussed in section 8.2. Section 8.4 summarizes the related

works.

Notations We use upper case letters (X) to denote variables and lower case letters (x) to denote

their values. Variable sets are denoted by bold-face upper case letters (X) and their instantiations

by bold-face lower case letters (x). Generally, we will use X to denote a variable in a Bayesian

network and U to denote its parents. A network parameter will therefore have the general form

θx|u, representing the probability Pr(X=x|U=u).

Given an incomplete dataset D, we want to learn the parameters of the Bayesian network N

that the dataset originated from. This network induces a distribution Pr(X), which is in general

unknown; instead, we only have access to the dataset D.

8.1 Closed-form Learning

We now present algorithms to learn the parameters of a Bayesian networkN from data D. We first

consider the classical missing data assumptions, with no further knowledge about the missingness

graph that generated the data.

To estimate the conditional probabilities θx|u that parameterize a Bayesian network, we estimate

the joint distributions Pr(X,U), which are subsequently normalized, as a conditional probability

table. Hence, it suffices, for our discussion, to estimate marginal distributions Pr(Y) for families

Y = {X}∪U. We let Yo = Y∩Xo denote the observed variables in Y, and Ym = Y∩Xm denote

the partially-observed variables. Further, we let RZ ⊆ R denote the missingness mechanisms for
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Table 8.1: Summary of Estimation Algorithms

Algorithm Description (Section Number)

D-MCAR Direct Deletion for MCAR data (8.1.1)

D-MAR Direct Deletion for MAR data (8.1.2)

F-MCAR Factored Deletion for MCAR data (8.1.3)

F-MAR Factored Deletion for MAR data (8.1.3)

I-MAR Informed Deletion for MAR data (8.3.1)

IF-MAR Informed Factored Deletion for MAR data (8.3.1)

the partially-observed variables Z. Through D, we have access to the data distribution PrD over

the variables in the missingness dataset. Appendix A.4.4 illustrates our learning algorithms on

a concrete dataset and Table 8.1 gives an overview of the different estimation algorithms in this

paper.

8.1.1 Direct Deletion for MCAR

The statistical technique of listwise deletion is perhaps the simplest technique for performing esti-

mation with MCAR data: we simply delete all instances in the dataset that contain missing values,

and estimate our parameters from the remaining dataset, which is now complete. Of course, with

this technique, we potentially ignore large parts of the dataset. The next simplest technique is

perhaps pairwise deletion, or available-case analysis: when estimating a quantity over a pair of

variables X and Y , we delete just those instances where variable X or variable Y is missing.

Consider now the following, more general, deletion technique, which is expressed in the terms of

causal missingness mechanisms. In particular, to estimate the marginals Pr(Y) of a set of (family)

variables Y, from the data distribution PrD, we can use the estimate:

Pr(Y) = Pr(Yo,Ym|RYm=0) by Xo ,Xm ⊥⊥R

= Pr(Yo,Y
?
m|RYm=0) by Xm=X?

m when R=0

≈ PrD(Yo,Y
?
m|RYm=0)

That is, we can estimate Pr(Y) by using the subset of the data where every variable in Y is
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observed (which follows from the assumptions implied by MCAR data). Since the data distribu-

tion PrD tends to the true distribution Pr, this implies a consistent estimate for the marginals

Pr(Y). In contrast, the technique of listwise deletion corresponds to the estimate Pr(Y) ≈

PrD(Yo,Y
?
m|RXm=0), and the technique of pairwise deletion corresponds to the above, when

Y contains two variables. To facilitate comparisons with more interesting estimation algorithms

that we shall subsequently consider, we refer to the more general estimation approach above as

direct deletion.

8.1.2 Direct Deletion for MAR

In the case of MAR data, we cannot use the simple deletion techniques that we just described for

MCAR data—the resulting estimates would not be consistent. However, we show next that it is

possible to obtain consistent estimates from MAR data, using a technique that is as simple and

efficient as direct deletion. Roughly, we can view this technique as deleting certain instances from

the dataset, but then re-weighting the remaining ones, so that a consistent estimate is obtained. We

shall subsequently show how to obtain even better estimates by factorization.

Again, to estimate network parameters θx|u, it suffices to show how to estimate family marginals

Pr(Y), now under the MAR assumption. Let X′o = Xo \Yo denote the fully-observed variables

outside of the family variables Y (i.e., Xo = Yo ∪X′o). We have

Pr(Y) =
∑
X′o

Pr(Yo,Ym,X
′
o)

=
∑
X′o

Pr(Ym|Yo,X
′
o) Pr(Yo,X

′
o)

Hence, we reduced the problem to estimating two sets of probabilities. Estimating the probabil-

ities Pr(Yo,X
′
o) is straightforward, as variables Yo and X′o are fully observed in the data. The

conditional probabilities Pr(Ym|Yo,X
′
o) contain partially observed variables Ym, but they are

conditioned on all fully observed variables Xo = Yo ∪X′o. The MAR definition implies that each

subset of the data that fixes a value for Xo is locally MCAR. Like the MCAR case, we can estimate

each conditional probability as

Pr(Ym|Yo,X
′
o) = Pr(Y?

m|Yo,X
′
o,RYm=0).
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Algorithm 3 F-MCAR(y,D)

Input:

y: A state of query variables Y

D: An incomplete dataset with data distribution PrD

Auxiliary:

CACHE: A global cache of estimated probabilities

Function:

1: if y = ∅ then return 1

2: if CACHE[y] 6= nil then return CACHE[y]

3: E ← ∅ // Initialize set of estimates for all y ∈ y do

4: u← y \ {y} // Factorize with parents u

5: add PrD(y|u,Ry=0) · F-MCAR(u,D) to E end for

6: CACHE[y]←Aggregate estimates in E // E.g., mean return CACHE[y]

This leads to the following estimation algorithm,

Pr(Y) ≈
∑
X′o

PrD(Y
?
m|Yo,X

′
o,RYm=0) PrD(Yo,X

′
o)

which uses only the fully-observed variables of the data distribution PrD. Note that the summation

requires only a single pass through the data, i.e., for only those instantiations of X′o that appear

in it. Again, PrD tends to the true distribution Pr, as the dataset size tends to infinity, implying a

consistent estimate of Pr(Y).

8.1.3 Factored Deletion

We now propose a class of deletion algorithms that exploit more data than direct deletion. In the

first step, we generate multiple but consistent estimates for the query so that each estimates utilizes

different parts of a dataset to estimate the query. In the second step, we aggregate these estimates

to compute the final estimate and thus put to use almost all tuples in the dataset. Since this method

exploits more data than direct deletion, it obtains a better estimate of the query.
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Figure 8.1: Factorization Lattice of Pr(X, Y, Z)

Factored Deletion for MCAR Algorithm 3 implements factored deletion for MCAR. Let the

query of interest be Pr(Y), and let Y 1, Y 2, . . . , Y n be any ordering of the n variables in Y. Each

ordering yields a unique factorization:

Pr(Y) =
n∏
i=1

Pr
(
Y i | Y i+1, . . . , Y n

)
We can estimate each of these factors independently, on the subset of the data in which all of its

variables are fully observed (as in direct deletion), i.e.,

Pr(Y i|Y i+1, . . . , Y n
m) = Pr(Y i|Y i+1, . . . , Y n

m,RZi=0)

where Zi is the set of partially-observed variables in the factor. When |Ym| > 1, we can utilize

much more data than direct deletion. See Appendix A.4.4, for an example.

So far, we have discussed how a consistent estimate of Pr(Y) may be computed given a factor-

ization. Now we shall detail how estimates from each factorization can be aggregated to compute

more accurate estimates of Pr(Y). Let k be the number of variables in a family Y. The number of

possible factorizations is k!. However, different factorizations share the same sub-factors, which
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Algorithm 4 F-MAR(y,D)

Input:

y: A state of query variables Y, consisting of yo and ym

D: An incomplete dataset with data distribution PrD

Function:

1: e← 0 // Estimated probability for all xo appearing in D that agrees with yo do

2: Dxo ← subset of D where xo holds

3: e← e+ PrD(xo) · F-MCAR(ym,Dxo) end for return e

we can estimate once, and reuse across factorizations. We can organize these computations using

a lattice, as in Figure 8.1, which has only 2k nodes and k2k−1 edges. Our algorithm will compute

as many estimates as there are edges in this lattice, which is only on the order of O(n log n), where

n is the number of parameters being estimated for a family Y (which is also exponential in the

number of variables k). To emphasize the distinction with direct deletion, which uses only those

instances in the data where all variables in Y are observed, factored deletion uses any instance in

the data where at least one variable in Y is observed.

More specifically, our factored deletion algorithm first estimates the conditional probabilities on

the edges of the lattice, each estimate using the subset of the data where its variables are observed.

Second, it propagate the estimates, bottom-up. For each node, there are several alternative esti-

mates available, on its incoming edges. There are various ways of aggregating these estimates,

such as mean, median, and propagating the lowest-variance estimate.1

Factored Deletion for MAR Algorithm 4 implements factored deletion for MAR. Let

Y 1
m, Y

2
m, . . . , Y

n
m be any ordering of the n partially observed variables Ym ⊆ Y and let X′o =

Xo \Yo denote the fully-observed variables outside of Y. Given an ordering, we have the factor-

ization:

Pr(Y) =
∑
X′o

Pr(Yo,X
′
o)

n∏
i=1

Pr
(
Y i
m | Zi+1

m ,Xo

)
1In initial experiments, all aggregations performed similarly. Reported results use an inverse-variance weighting

heuristic.
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where Zim = {Y j
m|i ≤ j ≤ n}. We then proceed in a manner similar to factored deletion for

MCAR to estimate individual factors and aggregate estimates to compute Pr(Y). For equations

and derivations, please see Appendix A.4.1.

8.2 Empirical Evaluation

To evaluate the learning algorithms we proposed, we simulate partially observed datasets from

Bayesian networks, and re-learn their parameters from the data.2

In our first sets of experiments, we compare our parameter estimation algorithms with EM, on

relatively small networks for MCAR and MAR data. These experiments are intended to observe

general trends in our algorithms, in terms of their computational efficiency, but also in terms of the

quality of the parameter estimates obtained. Our main empirical contributions are presented in Sec-

tion 8.2.3, where we demonstrate the scalability of our proposed estimation algorithms, to larger

networks and datasets, compared to EM (even when using approximate inference algorithms).

We consider the following algorithms:

D-MCAR & F-MCAR: direct deletion and factored deletion for MCAR data.

D-MAR & F-MAR: direct deletion and factored deletion for MAR data.

EM-k-JT: EM with k random restarts, jointree inference.

F-MAR + EM-JT: EM seeded with F-MAR estimates, jointree inference.

Remember that D-MCAR and F-MCAR are consistent for MCAR data only, while D-MAR and F-

MAR are consistent for general MAR data. EM is consistent for MAR data, but only if it converges

to maximum-likelihood estimates.

We evaluate the learned parameters in terms of their likelihood on independently generated, fully-

observed test data, and the Kullback–Leibler divergence (KLD) between the original and learned

Bayesian networks. We report per-instance log-likelihoods (which are divided by dataset size).

We evaluate the learned models on unseen data, so all learning algorithms assume a symmetric

2An implementation of our system is available at http://reasoning.cs.ucla.edu/deletion.
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Figure 8.2: Learning the alarm network from MCAR data.

Dirichlet prior on the network parameters with a concentration parameter of 2 (which corresponds

to Laplace smoothing).

8.2.1 MCAR Data

First, we consider learning from MCAR data, evaluating the quality of the parameters learned by

each algorithm. We simulate training sets of increasing size, from a given Bayesian network, se-

lecting 30% of the variables to be partially observed, and removing 70% of their values completely

at random. All reported numbers are averaged over 32 repetitions with different learning problems.

When no number is reported, a 5 minute time limit was exceeded.

To illustrate the trade-off between data and computational resources, Figure 8.2 plots the KLDs as

a function of dataset size and time; further results are provided in Table A.2 of Appendix A.4.2.

First, we note that in terms of the final estimates obtained, there is no advantage in running EM

with restarts: EM-1-JT and EM-10-JT learn almost identical models. This indicates that the like-

lihood landscape for MCAR data has few local optima, and is easy to optimize. Hence, EM may

be obtaining maximum-likelihood estimates in these cases. In general, maximum-likelihood es-
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timators are more statistically efficient (asymptotically) than other estimators, i.e., they require

fewer samples. However, other estimators (such as method-of-moments) can be more computa-

tionally efficient; see, e.g., [Was11]. We also observe this trend here. EM obtains better estimates

with smaller datasets, with smaller KLDs. However, direct and factored deletion (D-MCAR and

F-MCAR) are both orders-of-magnitude faster, and can scale to much larger datasets, than EM

(which requires inference). Further, F-MCAR needs only a modest amount of additional data to

obtain comparable estimates.

To compare our direct and factored methods, we see that F-MCAR is slower than D-MCAR, as

it estimates more quantities (one for each lattice edge). F-MCAR learns better models, however,

as it uses a larger part of the available data. Finally, D-MAR performs worse than F-MCAR and

D-MCAR, as it assumes the weaker MAR assumption. All learners are consistent, as all KLDs

converge to zero.

8.2.2 MAR Data

Next, we consider the more challenging problem of learning from MAR data, which we generate

as follows: (1) select an m-fraction of the variables to be partially observed, (2) add a missingness

mechanism variable RX for each partially-observed variable X , (3) assign p parents to each RX ,

randomly selected from the set of observed variables, giving preference to neighbors of X in the

network, (4) sample parameters for the missingness mechanism CPTs from a Beta distribution, (5)

sample a complete dataset with RX values, and (6) hide values of X accordingly.

For our first MAR experiment, we use a small network that is tractable enough for EM to scale

to large dataset sizes, so that we can observe trends in this regime. Figure 8.3a shows KLD for

the fire alarm network, which has only 6 variables (and hence, the complexity of inference

is negligible). The missing data mechanisms were generated with m = 0.3, p = 2, and a Beta

distribution with shape parameters 1.0 and 0.5. All numbers are averaged over 64 repetitions with

different random learning problems.3

3On our chosen parameters: (1) the number of repetitions was chosen to produce smooth learning curves; (2) a
Beta distribution with shape parameter 1 is uniform, and with parameter 0.5, it is slightly biased (so that it acts more
like an MAR, and less like an MCAR, mechanism); (3) m = 0.3 corresponds to a low amount of missing data, and
later m = 0.9 corresponds to high amount; and (4) p = 2 encourages sparsity and keeps the CPTs small, although
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Figure 8.3: Learning small, tractable Bayesian networks from MAR data. The legend is given in

sub-figure (b).

There is a significant difference between EM, with and without restarts, indicating that the likeli-

hood landscape is challenging to optimize (compared to MCAR, which we just evaluated). EM-10-

JT performs well for small dataset sizes, but stops converging after around 1,000 instances. This

could be due to all restarts getting stuck in local optima. The KLD of F-MAR starts off between

EM-1-JT and EM-10-JT for small sizes, but quickly outperforms EM. For the largest dataset sizes,

it learns networks whose KLD is two orders of magnitude smaller than EM-10-JT. The KLD im-

proves further when we use F-MAR estimates to seed EM. This approach is on par with EM-10

for small datasets, while still converging for large dataset sizes. However, note that using F-MAR

to seed EM will not be practical for larger networks, where inference becomes a bottleneck. D-

MCAR and F-MCAR are not consistent for MAR data, and indeed converge to a biased estimate

with a KLD around 0.1. Finally, we observe that the factorized algorithms generally outperform

their direct counterparts.

For our second MAR experiment, we work with the classical alarm network, which has 37 vari-

setting p to 1 or 3 does not change the results.
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ables. The missing data mechanisms were generated with m = 0.9, p = 2, and a Beta distribution

with shape parameters 0.5. All reported numbers are averaged over 32 repetitions, and when no

number is reported, a 10 minute time limit was exceeded.

Figures 8.3b and 8.3c show test set likelihood as a function of dataset size and learning time.

EM-10-JT performs well for very small dataset sizes, and again outperforms EM-1-JT. However,

inference time is non-negligible and EM-10-JT fails to scale beyond 1,000 instances, whereas EM-

1-JT scales to 10,000 (as one would expect). The closed-form learners dominate all versions of

EM as a function of time, and scale to dataset sizes that are two orders of magnitude larger. EM

seeded by F-MAR achieves similar quality to EM-10-JT, while being significantly faster than EM

learners with random seeds. D-MAR and F-MAR are more computationally efficient, and can

scale to much larger dataset sizes. Further, as seen in Figure 8.3c, they can obtain good likelihoods

even before the EM methods report their first likelihoods.

8.2.3 Scaling to Larger Networks

Table 8.2: Log-likelihoods of large networks, with higher treewidths, learned from MAR data (5

min. time limit).

Size EM-JT EM-BP D-MCAR F-MCAR D-MAR F-MAR EM-JT EM-BP D-MCAR F-MCAR D-MAR F-MAR

102

G
ri

d
90

-2
0-

1

- -57.14 -80.92 -57.01 -80.80 -56.53

W
at

er

-19.10 -18.76 -25.31 -21.76 -25.29 -21.81

103 - -65.41 -38.54 -30.07 -38.27 -29.86 - -14.73 -19.13 -16.45 -18.93 -16.36

104 - - -25.95 -23.30 -25.36 -22.88 - -20.70 -16.66 -14.90 -16.33 -14.67

105 - - -22.74 -22.01 -21.60 - - - -15.49 - -14.90 -

102

M
un

in
1

- -103.72 -115.50 -105.81 -115.41 -104.87

B
ar

le
y

- -89.22 -89.54 -89.26 -89.60 -89.14

103 - -69.03 -71.01 -65.91 -70.61 -65.51 - -74.26 -71.67 -70.46 -71.68 -70.18

104 - -157.23 -56.07 -54.24 -55.46 - - - -56.44 -55.12 -56.40 -

105 - - -52.00 - - - - - - - - -

In our last set of experiments of this section, we evaluate our algorithms on their ability to scale
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Table 8.3: Log-likelihoods of large networks, with higher treewidths, learned from MAR data (25

min. time limit).

Size EM-JT EM-BP D-MCAR F-MCAR D-MAR F-MAR EM-JT EM-BP D-MCAR F-MCAR D-MAR F-MAR

102

G
ri

d
90

-2
0-

1

- -49.15 -80.00 -56.45 -79.81 -55.94

W
at

er

-18.88 -18.73 -25.84 -22.11 -25.87 -22.25

103 - -53.64 -38.14 -29.32 -37.75 -29.09 -17.63 -14.41 -18.39 -15.95 -18.27 -15.79

104 - -85.65 -26.21 -23.05 -25.45 -22.62 - -14.52 -15.57 -14.07 -15.24 -13.92

105 - - -22.78 -21.54 -21.60 -20.79 - -24.99 -14.17 -13.46 -13.71 -13.19

106 - - - - - - - - -13.73 - - -

102

M
un

in
1

- -99.15 -114.76 -106.07 -114.66 -105.12

B
ar

le
y

-89.05 -89.15 -89.57 -89.17 -89.62 -89.03

103 - -67.85 -74.18 -67.81 -73.82 -67.39 - -70.38 -71.86 -70.54 -71.87 -70.27

104 - -66.62 -57.50 -54.94 -56.96 -54.64 - -76.48 -56.37 -55.13 -56.33 -

105 - - -53.07 -51.66 -52.27 - - - -51.31 - -51.19 -

to larger networks, with higher treewidths, where exact inference is more challenging.4 Again,

inference is the main factor that limits the scalability of algorithms such as EM, to larger net-

works and datasets (EM invokes inference as a sub-routine, once per data instance, per iteration).

Tables 8.2 & 8.3 report results on four networks, where we simulated MAR datasets, as in the

previous set of experiments. Each method is given a time limit of 5 or 25 minutes. Appendix A.4.3

provides results on additional settings. We consider the following methods:

EM-JT The EM-10-JT algorithm used in anytime fashion, which returns, given a time limit, the

best parameters found in any restart, even if EM did not converge.

EM-BP A variant of EM-JT that uses (loopy) belief propagation for (approximate) inference (in

the E-step).

We see that EM-JT, which performs exact inference, does not scale well to these networks. This

problem is mitigated by EM-BP, which performs approximate inference, yet we find that it also

has difficulties scaling (dashed entries indicate that EM-JT and EM-BP did not finish 1 iteration

4The grid network has 400 variables, munin1 has 189 variables, water has 32 variables, and barley has 48
variables.
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of EM). In contrast, F-MAR, and particularly D-MAR, can scale to much larger datasets. This

efficiency is due to the relative simplicity of the D-MAR and F-MAR estimation algorithms: they

are not iterative and require only a single pass over the data. In contrast, with EM-BP, the EM

algorithm is not only iterative, but the BP algorithm that EM-BP invokes as a sub-routine, is itself

an iterative algorithm. As for accuracy, F-MAR typically obtains the best likelihoods (in bold) for

larger datasets, while EM-BP can perform better on smaller datasets. We also evaluated D-MCAR

and F-MCAR, although they are not in general consistent for MAR data. We find that they scale

even further, and can also produce good estimates in terms of likelihood.

8.3 Exploiting Missingness Graphs

We have so far made very general assumptions about the structure of the missingness graph, cap-

turing the MCAR and MAR assumptions. In this section, we show how to exploit additional

knowledge about the missingness graph to further improve the quality of our estimates. Having

deeper knowledge of the nature of the missingness mechanisms will even enable us to obtain con-

sistent estimators for datasets that are not MAR (in some cases).

8.3.1 Informed Deletion for MAR

Consider any MAR dataset, and a missingness graph where each R ∈ R depends every observed

variable in Xo. This would be an MAR missingness graph that assumes the least, in terms of

conditional independencies, about the causal mechanisms R. If we know more about the nature

of the missingness (i.e., the variables that the R depend on), we can exploit this to obtain more

accurate estimates. Note that knowing the parents of an R is effectively equivalent to knowing the

Markov blanket of R [Pea87], which can be learned from data [TAS03, YM05]. With sufficient

domain knowledge, an expert may be able to specify the parents of the R. It suffices even to

identify a set of variables that just contains the Markov blanket.

Suppose that we have such knowledge of the missing data mechanisms of an MAR problem,

namely that we know the subset Wo of the observed variables Xo that suffice to separate the

missing values from their causal mechanisms, i.e., where Xm⊥⊥R | Wo. We can exploit this
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Table 8.4: alarm network with Informed MAR data

Size F-MCAR D-MAR F-MAR ID-MAR IF-MAR

Kullback-Leibler Divergence

102 1.921 2.365 2.364 2.021 2.011

103 0.380 0.454 0.452 0.399 0.375

104 0.073 0.071 0.072 0.059 0.053

105 0.041 0.021 0.022 0.011 0.010

106 0.040 0.006 0.008 0.001 0.001

Test Set Log-Likelihood (Fully Observed)

102 -11.67 -12.13 -12.13 -11.77 -11.76

103 -10.40 -10.47 -10.47 -10.42 -10.40

104 -10.04 -10.04 -10.04 -10.02 -10.02

105 -10.00 -9.98 -9.98 -9.97 -9.97

106 -10.00 -9.97 -9.97 -9.96 -9.96

knowledge in our direct deletion algorithm, to obtain improved parameter estimates. In particular,

we can reduce the scope of the summation in our direct deletion algorithm from the variables X′o

(the set of variables in Xo that lie outside the family Y), to the variables W′
o (the set of variables

in Wo that lie outside the family Y), yielding the algorithm:

Pr(Y)

≈
∑
W′

o

PrD(Y
?
m|Yo,W

′
o,RYm=0) PrD(Yo,W

′
o)

Again, we need only consider, in the summation, the instantiations of W′
o that appear in the dataset.

We refer to this algorithm as informed direct deletion. By reducing the scope of the summation,

we need to estimate fewer sub-terms PrD(Y?
m|Yo,W

′
o,RYm=0). This results in a more efficient

computation, but further, each individual sub-expression can be estimated on more data. Moreover,

our estimates remain consistent. We can similarly replace Xo by Wo in the factored deletion

algorithm, to obtain an informed factored deletion algorithm.
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Empirical Evaluation Here, we evaluate the benefits of informed deletion. In addition to the

MAR assumption, with this setting, we assume that we know the set of parents Wo of the miss-

ingness mechanism variables. To generate data for such a mechanism, we select a random set of

s variables to form Wo. We further employ the sampling algorithm previously used for MAR

data, but now insist that the parents of R variables come from Wo. Table 8.4 shows likelihoods

and KLDs on the alarm network, for s = 3, and other settings as in the MAR experiments.

Informed D-MAR (ID-MAR) and F-MAR (IF-MAR) consistently outperform their non-informed

counterparts.

8.3.2 Learning From MNAR Data

A missing data problem that is not MAR is classified as MNAR. Here, the parameters of a Bayesian

network may not even be identifiable. Further, maximum-likelihood estimation is in general not

consistent, so EM and gradient methods can yield biased estimates. However, if one knows the

mechanisms that dictate missingness (in the form of a missingness graph), it becomes possible

again to obtain consistent estimates, in some cases [MPT13].

For example, consider the missingness graph of Figure 3.2(a), which is an MNAR problem, where

both variables X and Y are partially observed, and the missingness of each variable depends on

the value of the other. Here, it is still possible to recover Pr(X, Y ) by applying theorem 5. Clearly,

procedures for recovering queries under MNAR are extremely sensitive to the structure of the

missingness graph.

8.4 Related Work

When estimating the parameters of a Bayesian network, maximum-likelihood (ML) estimation

is the typical approach, where for incomplete data, the common wisdom among machine learn-

ing practitioners is that one needs to use Expectation-Maximization (EM) or gradient meth-

ods [DLR77, Lau95]; see also, e.g., [Dar09, KF09, Mur12, Bar12]. Again, such methods do not

scale to large datasets or large networks as (1) they are iterative, (2) they suffer from local optima,

and most notably, (3) they require inference in a Bayesian network. Considerable effort has been
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expended in improving on EM across these dimensions, in order to, for example, (1) accelerate the

convergence of EM, and to intelligently sample subsets of a dataset, e.g., [TMH01], (2) escape lo-

cal optima, e.g., [ENF02], and (3) use approximate inference algorithms in lieu of exact ones when

inference is intractable, e.g., [GJ97, CJJ05]. Further, while EM is suitable for data that is MAR

(the typical assumption in practice), there are some exceptions, such as work on recommender

systems that explicitly incorporate missing data mechanisms [MZ09, MZR07, MZR11].

In the case of complete data, the parameter estimation task simplifies considerably, in the case of

Bayesian networks: maximum-likelihood estimates can be obtained inference-free and in closed-

form, using just a single pass over the data: θx|u = PrD(x|u). In fact, the estimation algorithms

that we proposed in this paper also obtain the same parameter estimates in the case of complete

data, although we are not concerned with maximum-likelihood estimation here—we simply want

to obtain estimates that are consistent (as in estimation by the method of moments).

Other inference-free estimators have been proposed for other classes of graphical models.

[AKN06] identified a method for closed-form, inference-free parameter estimation in factor graphs

of bounded degree from complete data. More recently, [HS13] proposed an efficient, inference-free

method for consistently estimating the parameters of noisy-or networks with latent variables, un-

der certain structural assumptions. From the perspective of maximum-likelihood learning, where

evaluating the likelihood (requiring inference) seems to be unavoidable, the ability to consistently

estimate parameters—without the need for inference—greatly extends the accessibility and utility

of such models. For example, it opens the door to practical structure learning algorithms, under

incomplete data, which is a notoriously difficult problem in practice [AKN06, JHS13].

8.5 Summary

In summary, we developed a family of efficient, and scalable algorithms for computing consistent

estimates of the parameters of Bayesian networks, from MCAR and MAR datasets. We further

introduced and discussed some improved approaches for parameter estimation, when given infor-

mation about the m-graph. Empirically, we demonstrated that our algorithms can scale to much

larger datasets, and much larger Bayesian networks, than EM.
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CHAPTER 9

Concluding Remarks

All methods of missing data analysis rely on assumptions regarding the causes of missingness.

Casting these assumptions in a graphical model permits researchers to benefit from the inherent

transparency of such models as well as their ability to explicate the statistical implication of the

underlying assumptions in terms of conditional independence relations among observed and par-

tially observed variables. We have shown that these features of graphical models can be harnessed

to study unchartered territories of missing data research. In particular, we charted the estimability

of statistical and causal parameters in broad classes of MNAR problems, and the testability of a

model’s assumptions under missingness conditions. The testability criteria derived in this paper

can be used not only to rule out misspecified models but also to locate specific mis-specifications

for the purpose of model updating and re-specification. Testability results are applicable to all

problems including MNAR and MAR.

Furthermore, we have identified graphical structures that forbid recovery of parameters given

MNAR data. Knowing which sub-structures in the graph prevent recoverability can guide future

data collection procedures by pinpointing auxiliary variables that need to be measured to ensure

recovery. To overcome non-recoverability, we developed procedures that can in many cases ex-

ploit properties of the data to facilitate recovery. Specifically, we have presented necessary and

sufficient conditions, based on the technique of matrix inversion, to estimate joint distributions

in non-recoverable models. We further developed procedures to recover queries of interest such

as causal effects and covariances, in such non-recoverable models under the linearity assumption.

Finally, we presented techniques for computing informative bounds on queries of interest.

On the practical side, we have developed suites of algorithms for closed form estimation of

Bayesian network parameters from MAR and MCAR data. The empirical results showed that

our model-guided procedures yield faster and better quality results compared to state of the art
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algorithms such as EM.

In the following subsection, we briefly outline future research directions.

9.0.1 Future Directions of Research

Learning m-graphs: In our research we assume that m-graphs are always available and it is true that

graphs can be hand-crafted for datasets with few variables. However, in order to facilitate recovery

in datasets with large number of variables, it is necessary to design algorithms for learning m-

graphs. This is likely to be a challenging problem because conditional independencies involving

partially observed variables are almost never verifiable and critical conditional independencies of

the form X ⊥⊥RX |Z are not refutable, even given infinitely many samples.

Recoverability given sparse manifest distributions In practice, we rarely find datasets that are

strictly positive. Therefore it is necessary to tailor existing algorithms to recover parameters given

manifest distributions that are not strictly positive. We demonstrated the possibility in example 16

in chapter 5 and also in appendix A.2.1.

Developing complete algorithms for Recoverability In chapter 3 we presented complete solutions

for a broad class of missing data problems. Developing algorithms that are complete for recover-

ing causal, probabilistic and counterfactual queries for all missing data problems is still an open

problem.

Extending testability results to Verma Constraints The testability results presented in chapter 7

dealt with conditional independence statements. However, causal models also embed functional

constraints called Verma Constraints [VP91, TP02b], which are critical for recoverability. Deter-

mining whether or not these constraints are testable and devising tests for them whenever they are

testable, are open problems in the field.

Developing software packages for handling finite samples Software packages for handling MNAR

data are not common. Given the ubiquity of MNAR data, it would be useful to develop theoretically

sound procedures for recoverability given finite samples. One such possibility is developing model

guided imputation procedures.
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APPENDIX A

Appendix

A.1 Chapter 2

A.1.1 Testing Compatibility between Underlying and Manifest Distributions

Example 35. Let the incomplete dataset contain two partially observed variables, Z and W .The

tests for compatibility between manifest distribution: Pm(Z
∗,W ∗, Rz, Rw) and the underlying

distribution: Pu(Z,W,Rz, Rw) are:

Case-1: Let X = {Z,W}, then Y = Vm \X = {}

Pm(Z
∗ = z,W ∗ = w,Rz = 0, Rw = 0) = Pu(Z = z,W = w,Rz = 0, Rw = 0)∀z, w

Case-2: Let X = {Z}, then Y = {W}

Pm(Z
∗ = z,W ∗ = m,Rz = 0, Rw = 1) =

∑
w Pu(Z = z, w,Rz = 0, Rw = 1)∀z

Case-3: Let X = {W}, then Y = {Z}

Pm(Z
∗ = m,W ∗ = w,Rz = 1, Rw = 0) =

∑
z Pu(z,W = w,Rz = 1, Rw = 0)∀w

Case-4: Let X = {}, then Y = {Z,W}

Pm(Z
∗ = m,W ∗ = m,Rz = 1, Rw = 1) =

∑
z,w Pu(z, w,Rz = 1, Rw = 1)

A.2 Chapter 3

A.2.1 Recoverability when Manifest Distribution is not Strictly Positive

In the following example we describe an instance where joint distribution is recoverable when

P (X∗, Y ∗, Rx = 0, Ry = 0) = 0 for all X∗ = x, Y ∗ = y. However,P (X∗, Rx = 0) > 0 and

P (Y ∗ = y,Ry = 0) > 0.

Example 36. Consider the m-graph G: X → Ry Y → Rx. Let the query of interest be the joint
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distribution P (X, Y ).

P (X, Y ) = P (X)P (Y ) (Using X ⊥⊥Y )

= P (X|Rx = 0)P (Y |Ry = 0) (Using X ⊥⊥Rx and Y ⊥⊥Ry)

= P (X∗|Rx = 0)P (Y ∗|Ry = 0) (Using equation 2.1)

Of note is that even though the manifest distribution is not strictly positive, joint distribution is still

estimable, as detailed above.

A.2.2 Heuristics for Finding Admissible Factorization

Consider the task of estimating Q = P (X), where X is a set, by searching for an admissible

factorization of P (X) (one that satisfies Theorem 2), possibly by resorting to additional variables,

Z, residing outside of X that serve as separating sets. Since there are exponentially large number

of ordered factorizations, it would be helpful to rule out classes of non-admissible ordering prior

to their enumeration whenever non-admissibility can be detected in the graph. In this section, we

provide lemmata that would aid in pruning process by harnessing information from the graph.

Lemma 8. An ordered set O will not yield an admissible decomposition if there exists a partially

observed variable Vi in the order O which is not marginally independent of RVi such that all

minimal separators (refer definition-1) of Vi that d-separate it from Rvi appear before Vi.

Proof. Let the order be O = V1, V2, V3, ...Vn. The factorization corresponding to O is :

P (V1, .., Vn) =
∏

j P (Vj|Vj+1, ..., Vn) = P (Vi|Vi+1, ...Vn)
∏

j 6=i P (Vj|Vj+1, ..., Vn)

If there is no (minimal) separator S such that S ⊆ {Vi+1, ...Vn} then we must have

Vi 6⊥⊥RVi|Vi+1, ...Vn. Thus we have shown that there exists a term P (Vi|Vi+1, . . . Vn) in the fac-

torization that does not satisfy the condition in Theorem-2, thereby making O non-admissible.

Applying lemma-8 requires a solution to a set of disjunctive constraints which can be represented

by directed constraint graphs ([DMP91]).

Example 37. Let Q = P (X) be the relation to be recovered from the graph in Fig. A.1 (a). Let

X = {A,B,C,D,E} and Z = F . The total number of ordered factorizations is 6! = 720.
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Figure A.1: (a) Depiction of pruning in Example-37 (b) m-graph in which P (X, Y ) is recoverable

The independencies implied by minimal separators (as required by Lemma-8) are: A⊥⊥RA|B,

B⊥⊥RB|φ, C ⊥⊥RC |{D,E}, ( D⊥⊥RD|A or D⊥⊥RD|C or D⊥⊥RD|B ) and (E⊥⊥RE|{B,F}

or E⊥⊥RE|{B,D} or E⊥⊥RE|C). To test whether (B,A,D,E,C,F) is potentially admissible

we need not explicate all 6 variables; this order can be ruled out as soon as we note that A

appears after B. Since B is the only minimal separator that d-separates A from RA and B

precedes A, Lemma-8 is violated. Orders such as (C,D,E,A,B, F ), (C,D,A,E,B, F ) and

(C,E,D,A, F,B) satisfy the condition stated in Lemma 8 and are potential candidates for admis-

sibility.

The following lemma presents a simple test to determine non-admissibility by specifying the con-

dition under which a given order can be summarily removed from the set of candidate orders that

are likely to yield admissible factorizations.

Lemma 9. An ordered set O will not yield an admissible decomposition if it contains a partially

observed variable Vi for which there exists no set S ⊆ V that d-separates Vi from RVi .

Proof: The factor P (Vi|Vi+1, . . . , Vn) corresponding to Vi can never satisfy the condition required

by Theorem 2.

An interesting consequence of Lemma 9 is the following corollary that gives a sufficient condition

under which no ordered factorization can be labeled admissible.

Corollary 6. For any disjoint setsX and Y , there exists no admissible factorization for recovering

the relation P (Y |X) by Theorem 2 if Y contains a partially observed variable Vi for which there

exists no set S ⊆ V that d-separates Vi from RVi .
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A.2.3 Proof of theorem 2

Proof. Follows from Theorem 1 noting that ordered factorization is one specific form of decom-

position.

A.2.4 Proof of Theorem 3

Proof. Since the model is Markovian, P (v) may be decomposed as

P (v) =
∏

i,Vi∈Vo

P (vi|paoi , pami )
∏

j,Vj∈Vm

P (vj|paoj , pamj ). (A.1)

RPami
must be non-descendants of Vi, otherwise they will be descendants of Pami . Therefore

Vi⊥⊥RPami
|(Paoi ∪ Pami ). Similarly, RVj and RPamj

must be non-descendants of Vj and we have

Vj ⊥⊥(RVj ∪RPamj
)|(Paoj∪Pamj ). Using these conditional independences we obtain Eq. (3.4) from

(A.1).

A.2.5 Proof of Theorem 4

Lemma 10. P (X) is not recoverable in a m-graph G over (V, U,R) containing a single edge

X → RX .

Proof. To prove non-recoverability of P (X) we present two models compatible with G:

PM1(v, u, r) = P1(x, rX)
∏

i,Vi 6=X

P (vi)
∏
j

P (uj)
∏

k,Rk 6=RX

P (rk), (A.2)

PM2(v, u, r) = P2(x, rX)
∏

i,Vi 6=X

P (vi)
∏
j

P (uj)
∏

k,Rk 6=RX

P (rk). (A.3)

We construct P1(x, rX) and P2(x, rX) as given in Table A.1 such that they agree on the observed

distributions: P1(X,RX = 0) = P2(X,RX = 0) > 0 and P1(RX = 1) = P2(RX = 1) > 0, but

disagree on the query P1(X) 6= P2(X).

Then we have that the two models agree on all the observed distributions:

PMi(RS = 0, RX = 0, RV ′m\S = 1, x, s, vo) = Pi(RX = 0, x)P (RS = 0, RV ′m\S = 1, s, vo), i = 1, 2,

(A.4)

106



X RX P1(X,RX) P2(X,RX)

0 0 1/3 1/3

1 0 1/3 1/3

0 1 0 1/3

1 1 1/3 0

Table A.1: Two distributions for X → RX .

and

PMi(RS = 0, RX = 1, RV ′m\S = 1, s, vo) = Pi(RX = 1)P (RS = 0, RV ′m\S = 1, s, vo), i = 1, 2,

(A.5)

where V ′m = Vm \ {X} and S ⊆ V ′m. But PM1(x) = P1(x) disagrees with PM2(x) = P2(x).

Lemma 11. If a target relation Q is not recoverable in m-graph G, then Q is not recoverable in

the graph G′ resulting from adding a single edge to G.

Proof. If Q is not recoverable in G, then there exist two models PM1(V, U,R) and PM2(V, U,R)

compatible with G decomposed as

PMk(v, u, r) =
∏
i

PMk(vi|pavi )
∏
j

PMk(uj|pauj )
∏
l

PMk(rl|parl ), k = 1, 2, (A.6)

such that, for all S ⊆ Vm

PM1(RS = 0, RVm\S = 1, S, Vo) = PM2(RS = 0, RVm\S = 1, S, Vo) > 0, (A.7)

and

QM1 6= QM2 . (A.8)

For the graph G′, we can specify model parameters in such a way that the extra edge added to G is

ineffective and hence construct the same distributions as M1 and M2. Without loss of generality,
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assuming G′ is obtained from G by adding edge X → Vq where X could be a V or U variable. We

construct two models M ′
1 and M ′

2 compatible with G′ with parameters given by

PM ′k(vq|pavq , x) = PMk(vq|pavq), k = 1, 2, (A.9)

PM ′k(vi|pavi ) = PMk(vi|pavi ), i 6= q, k = 1, 2, (A.10)

PM ′k(uj|pauj ) = PMk(uj|pauj ), ∀j, k = 1, 2, (A.11)

PM ′k(rl|parl ) = PMk(rl|parl ), ∀l, k = 1, 2. (A.12)

Clearly PM ′k(v, u, r) = PMk(v, u, r), k = 1, 2. Therefore the two models M ′
1 and M ′

2 also satisfy

Eqs. (A.7) and (A.8). And we conclude Q is not recoverable in G′. The same arguments apply if

G′ is obtained from G by adding a parent to U or R variable.

Non-recoverability of P (V ) when X is a parent of Rx has been proved. We will now prove non-

recoverability of P (X) and hence P (V ) when X and Rx have a latent parent.

Lemma 12. P (X) is non-recoverable when X and Rx have a latent parent.

Proof. M1 and M2 are two models in which variables U,X and Rx are binary and U is a fair

coin. In M1, X = 0 and Rx = u and in M2, X = u and Rx = u. Notice that although the

two models agree on the manifest distribution, they disagree on the query P (X). Hence P (X)

is non-recoverable in X < − − U − − > Rx. Using Lemma-11, we can conclude that P (V ) is

non-recoverable in any m-graph in which X and Rx are connected by a bi-directed edge.

Figure A.2: An m-graph in which P (X,Z) is not-recoverable where Z = {Z1, Z2, ..., Zk}. X is

partially observed, all Z variables are fully observed, parents of Zi are Ui−1 and Ui, parent of X is

Uo and parent of Rx is Uk.

Lemma 13. In the m-graph in Figure A.2, P (X,Z1, Z2...Zk) is non-recoverable.

Proof. Let M3 and M4 be two models such that all the variables are binary, all the U variables are

fair coins, X = U0, Rx = Uk and Zi = Ui−1 ⊕ Ui, 1 ≤ i < k. In M3, Zk = Uk−1 and in M4,
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Zk = Uk−1 ⊕ Uk. Both models yield the same manifest distribution. However, they disagree on

the query P (X,Z1, Z2...Zk). For instance, in M3, P (X = 0, Z = 0, Rx = 1) > 0 where as in M4,

P (X = 0, Z = 0, Rx = 1) = 0. Therefore inM4, P (X = 0, Z = 0) = P (X = 0, Z = 0, Rx = 0)

and in M3, P (X = 0, Z = 0) = P (X = 0, Z = 0, Rx = 0) + P (X = 0, Z = 0, Rx = 1). Hence

in the m-graph in figure A.2, the joint distribution P (X,Z) is non-recoverable. Using lemma 11,

we can conclude that joint distribution is non-recoverable in any m-graph which has a bi-directed

path from any partially observed variable X to its missingness mechanism Rx.

A.2.6 Proof of non-recoverability of models in Figure 3.3

Joint Distribution is non-recoverable in Figure 3.3 (a). Let all the substantive variables be bi-

nary. Manifest Distribution corresponding to Figure 5.1 (e): ∀x, y P (x∗, y∗, r′x, r′y) =

1
8
, P (x∗, y∗, rx, ry) =

1
8
, P (x∗, y∗, rx, r

′
y) = 0, P (x∗, y∗, r′x, ry) = 0.

Underlying Distributions: In model-1, ∀x, y P (x, y, rx, ry) = 1
8

and in model-2 ∀x, y P (x = 0, y =

0, rx, ry) = P (x = 0, y = 1, rx, ry) =
1
16
, P (x = 1, y = 0, rx, ry) = P (x = 1, y = 1, rx, ry) =

3
16

.

Therefore in model-1 P (x = 0, y = 0) = 1
4

and in model-2 P (x = 0, y = 0) = 3
16

Joint Distribution is non-recoverable in Figure 3.3 (b). Let all the substantive variables be bi-

nary. Manifest Distribution corresponding to Figure 5.1 (f): ∀y, x, z P (y∗, x∗, z, r′y, r′x) =

1
16
, P (y∗, x∗, z, ry, r

′
x) = 0, P (y∗, x∗, z, r′y, rx) = 0, P (x∗, y∗, z, ry, rx) =

1
4
.

Underlying Distributions: In model-1, ∀y, x, z P (y, x, z, ry, rx) = 1
16

and in model-2 ∀x, z P (y =

0, x, z, ry, rx) =
1
32
, P (y = 1, x, z, ry, rx) =

3
32

.

Therefore in model-1 P (x = 0, y = 0, z = 0) = 1
8

and in model-2 P (x = 0, y = 0, z = 0) =

3
32

.
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A.2.7 Proof of Theorem 5

Proof.

P (V ) =
P (R = 0, V )

P (R = 0|V )

=
P (R = 0, V )

P (R(1) = 0, R(2) = 0, ...RN = 0|V )

Mb(R(i)) d-separates R(i) from all variables that are not in R(i) ∪Mb(R(i)) i.e. R(i)⊥⊥({R, V } −

{R(i),Mb(R(i))})|Mb(R(i)) . Hence,

P (V ) =
P (R = 0, V )∏

i P (R
(i) = 0|Mb(R(i)))

Using R(i) ∩RMb(R(i)) = ∅ and R(i)⊥⊥({R, V } − {R(i),Mb(R(i))})|Mb(R(i)) we get,

P (V ) =
P (R = 0, V )∏

i P (R
(i) = 0|Mb(R(i)), RMb(R(i)) = 0)

Now we can directly apply equation 2.1 and express P (V ) in terms of quantities estimable from

the available dataset. Therefore, P (V ) is recoverable.

Proof of necessity follows from theorem 4.

A.2.8 Proof of Corollary 2

Proof. Let |Vm| = 1 and Y1 ∈ Y be the only partially observed variable. Let G′ be the subgraph

containing all variables inX∪Y ∪{Ry1 , Y
∗
1 }. We know that if (1) or (2) are true, then, (i) P (X, Y )

is not recoverable in G′ and (ii) P (X) is recoverable in G′. Therefore, P (Y |X) = P (Y,X)
P (X)

is not

recoverable in G′ and hence by lemma 11, not recoverable in G.

A.2.9 Proof of Theorem 6

Proof. P (Y |do(X)) =
∑

z,w′ P (Y |Z,W ′, do(X))P (Z,W ′|do(X))

If condition 1 holds, then by Rule-2 of do-calculus ([Pea09]) we have:

P (Y |Z,W ′, do(X)) = P (Y |Z, do(X), do(W ′))
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Since Y ⊥w Ry|Z,

P (Y |Z, do(X), do(W ′)) = P (Y |Z, do(X), do(W ′), R′y)

= P (Y ∗|Z, do(X), do(W ′), R′y)

Therefore, P (y|do(x)) is recoverable.

A.2.10 Proof of Theorem 7

Proof. (sufficiency) Whenever (1) and (2) are satisfied, Y ⊥⊥Ry|Vo holds. Hence, P (V ) which

may be written as P (Y |VO)P (VO) can be recovered as P (Y ∗|VO, Ry = 0)P (VO).

(necessity) follows from theorem 4.

A.2.11 Proof of Theorem 8

Proof. (sufficiency) Under simple attrition, all paths to Ry from Y containing X are blocked by

X . Therefore, when both conditions specified in the theorem are satisfied, it implies that Y and

Ry are separable. Given that Z is any separator between Y and Ry, P (Y |X) may be recovered as∑
z P (Y

∗|X,Z,R′y)P (Z|X).

(necessity) follows from theorem 4
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A.3 Chapter 5

A.3.1 Proof theorem 10

Proof: Let G : X → Rx and the augmented model with the ancillary variable W be: W → X →

Rx. Let W and X be binary variables. The manifest distribution P (X∗, Rx,W ) is given below.

W X∗ Rx P (W,X∗, Rx)

0 0 0 0.1

0 1 0 0.2

1 0 0 0.1

1 1 0 0.2

0 m 1 0.2

1 m 1 0.2

P (W ) is trivially recoverable since W is fully observed. We will now show that P (W |X) is

recoverable.

P (W |X) = P (W |X,Rx = 0), since W ⊥⊥Rx|X .

P (W |X,Rx = 0) = P (W ∗|X,Rx = 0), using equation 2.1. Therefore, P (W |X) =

P (W |X,Rx = 0) and

MWX =

 0.5 0.5

0.5 0.5


Obviously, MWX is not invertible.

We prove non-recoverability by presenting P1(W,X,Rx) and P2(W,X,Rx) that agree on the man-
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ifest distribution P (W,X∗, Rx) but disagree on P (X).

W X Rx P1(W,X,Rx) P2(W,X,Rx)

0 0 0 0.1 0.1

0 1 0 0.2 0.2

1 0 0 0.1 0.1

1 1 0 0.2 0.2

0 0 1 0.2 0

1 0 1 0.2 0

0 1 1 0 0.2

1 1 1 0 0.2

A.4 Chapter 8

A.4.1 Factored Deletion for MAR

We now give a more detailed derivation of the factored deletion algorithm for MAR data. Let the

query of interest be Pr(Y), and let X′o = Xm \ Ym and Zim = {Y j
m|i ≤ j ≤ n}. We can then

factorize the estimation of Pr(Y) as follows.

Pr(Y) =
∑
X′o

Pr(Ym,Yo,X
′
o)

=
∑
X′o

Pr(Yo,X
′
o) Pr(Ym|Yo,X

′
o)

=
∑
X′o

Pr(Xo) Pr(Ym|Xo)

=
∑
X′o

Pr(Xo)
n∏
i=1

Pr
(
Y i
m

∣∣Zi+1
m ,Xo

)
=
∑
X′o

Pr(Xo)
n∏
i=1

Pr
(
Y i
m

∣∣Zi+1
m ,Xo,RZi

m
=0
)
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Table A.2: alarm network with MCAR data

Size EM-1-JT EM-10-JT D-MCAR F-MCAR D-MAR F-MAR

Runtime [s]

102 2 6 0 0 0 0

103 6 50 0 0 0 0

104 69 - 0 1 0 1

105 - - 1 9 4 13

106 - - 11 92 29 124

Test Set Log-Likelihood

102 -12.18 -12.18 -12.85 -12.33 -12.82 -12.32

103 -10.41 -10.41 -10.73 -10.55 -10.69 -10.55

104 -10.00 - -10.07 -10.04 -10.07 -10.05

105 - - -9.98 -9.98 -9.99 -9.98

106 - - -9.96 -9.96 -9.97 -9.97

Kullback-Leibler Divergence

102 2.381 2.381 3.037 2.525 3.010 2.515

103 0.365 0.365 0.688 0.502 0.659 0.502

104 0.046 - 0.113 0.084 0.121 0.093

105 - - 0.016 0.013 0.024 0.021

106 - - 0.002 0.002 0.006 0.008

The last step makes use of the MAR assumption. This leads us to the following algorithm, based

on the data distribution PrD, and the fully-observed proxy variables Y i,?
m and Zi+1,?

m .

Pr(Y)

≈
∑
X′o

PrD(Xo)
n∏
i=1

PrD
(
Y i,?
m

∣∣Zi+1,?
m ,Xo,RZi

m
=0
)

A.4.2 Extended Empirical Evaluation: MCAR

Table A.2 shows additional results for the classical alarm Bayesian network, from Section 8.2.1.
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A.4.3 Extended Empirical Evaluation: MAR

In this Appendix, we expand on the empirical results of Section 8.2 w.r.t. learning from MAR data.

Here, we provide additional empirical results on standard real-world networks where inference is

challenging, as originally highlighted in Table 8.3.

Table A.3: Log-likelihoods of large networks learned from MAR data (1 min. time limit, 1st

setting).

Size EM-JT EM-BP D-MCAR F-MCAR D-MAR F-MAR EM-JT EM-BP D-MCAR F-MCAR D-MAR F-MAR

102

G
ri

d
90

-2
0-

1

- -62.38 -64.15 -50.78 -63.51 -50.24

W
at

er

- -19.50 -20.51 -19.37 -20.41 -19.35

103 - -79.75 -38.96 -32.77 -38.26 -32.44 - -16.11 -16.26 -15.27 -16.09 -15.23

104 - - -30.65 -28.61 -30.05 -28.34 - - -15.03 -14.22 -14.86 -14.14

105 - - - - - - - - -14.30 - - -

102

M
un

in
1 - -98.95 -103.59 -98.68 -103.54 -98.49

B
ar

le
y

- -85.33 -85.84 -85.68 -86.13 -85.75

103 - -79.83 -70.49 -67.27 -69.78 -66.97 - - -67.70 -67.18 -67.67 -67.13

104 - - -59.25 -57.11 - - - - -54.93 - - -

We consider two settings of generating MAR data, as in Section 8.2. In the first setting, the

missing data mechanisms were generated with m = 0.3, p = 2, and a Beta distribution with shape

parameters 1.0 and 0.5. In the second setting, we have m = 0.9, p = 2, and a Beta distribution

with shape parameters 0.5 (as in Section 8.2.3). We consider three time limits, of 1 minute, 5

minutes, and 25 minutes. For all combinations of these setting, test set log-likelihoods are shown

in Table 8.3, and in Tables A.3 to A.6.

We repeat the observations from the main paper (cf. Section 8.2). The EM-JT learner, which

performs exact inference, does not scale well to these networks. This problem is mitigated by

EM-BP, which performs approximate inference, yet we find that it also has difficulties scaling

(dashed entries indicate that EM-JT and EM-BP did not finish 1 iteration of EM). In contrast, F-

MAR, and particularly D-MAR, can scale to much larger datasets. As for accuracy, the F-MAR

method typically obtains the best likelihoods (in bold) for larger datasets, although EM-BP can

perform better on small datasets. We further evaluated D-MCAR and F-MCAR, although they are
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Table A.4: Log-likelihoods of large networks learned from MAR data (5 min. time limit, 1st

setting).

Size EM-JT EM-BP D-MCAR F-MCAR D-MAR F-MAR EM-JT EM-BP D-MCAR F-MCAR D-MAR F-MAR

102

G
ri

d
90

-2
0-

1

- -56.23 -63.34 -50.55 -62.38 -50.06

W
at

er

-18.84 -18.06 -21.23 -19.61 -21.07 -19.57

103 - -55.04 -39.89 -33.34 -39.09 -33.01 - -14.99 -16.47 -15.33 -16.24 -15.26

104 - -98.20 -30.46 -27.26 -29.73 -26.98 - -17.39 -15.59 -14.52 -15.26 -14.43

105 - - -28.63 -26.06 -27.89 - - - -15.22 - - -

106 - - - - - - - - -15.09 - - -

102

M
un

in
1

- -96.51 -102.51 -98.21 -102.40 -97.95

B
ar

le
y

- -85.59 -85.70 -85.60 -85.99 -85.66

103 - -68.04 -67.82 -65.49 -67.21 -65.22 - -67.07 -67.58 -66.97 -67.53 -66.91

104 - -95.01 -57.68 -56.00 -57.05 -55.79 - - -55.04 -54.33 -54.78 -

105 - - -54.30 - - - - - - - - -

Table A.5: Log-likelihoods of large networks learned from MAR data (25 min. time limit, 1st

setting).

Size EM-JT EM-BP D-MCAR F-MCAR D-MAR F-MAR EM-JT EM-BP D-MCAR F-MCAR D-MAR F-MAR

102

G
ri

d
90

-2
0-

1

- -47.66 -59.84 -48.34 -59.39 -47.88

W
at

er

-21.30 -18.66 -21.58 -19.87 -21.36 -19.83

103 - -46.53 -37.29 -31.60 -36.76 -31.28 -17.67 -17.10 -18.64 -15.95 -18.27 -15.86

104 - -62.98 -28.74 -26.71 -28.26 -26.45 - -14.83 -16.71 -14.58 -16.30 -14.44

105 - - -25.88 -24.97 -25.43 -24.75 - -18.78 -16.31 -14.38 -15.62 -14.08

106 - - -25.27 - -24.78 - - - -15.25 - - -

107 - - - - - - - - -15.13 - - -

102

M
un

in
1

- -90.79 -98.57 -94.50 -98.48 -94.28

B
ar

le
y

-85.11 -85.53 -86.00 -85.74 -86.24 -85.80

103 - -60.71 -66.06 -63.95 -65.45 -63.67 - -65.96 -67.88 -67.23 -67.79 -67.15

104 - -60.35 -56.57 -55.38 -55.95 -55.16 - -57.21 -55.34 -54.56 -55.05 -54.43

105 - - -54.29 -53.38 -53.67 - - - -51.09 - - -
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Table A.6: Log-likelihoods of large networks learned from MAR data (1 min. time limit, 2nd

setting).

Size EM-JT EM-BP D-MCAR F-MCAR D-MAR F-MAR EM-JT EM-BP D-MCAR F-MCAR D-MAR F-MAR

102

G
ri

d
90

-2
0-

1

- -62.25 -80.10 -56.59 -79.93 -56.07

W
at

er

- -20.15 -26.40 -22.85 -26.24 -22.88

103 - -129.38 -38.74 -29.88 -38.51 -29.70 - -17.76 -20.45 -17.80 -20.32 -17.64

104 - - -27.83 -24.30 -27.25 -23.97 - - -17.59 -15.40 -17.28 -15.29

105 - - - - - - - - -15.38 - - -

102

M
un

in
1 - -99.49 -111.95 -104.07 -111.72 -103.10

B
ar

le
y

- -89.16 -89.63 -89.13 -89.66 -88.99

103 - -99.56 -70.32 -66.08 -69.76 -65.57 - - -71.76 -70.50 -71.74 -

104 - - -56.25 -54.36 - - - - -56.59 - - -

not in general consistent for MAR data, and find that they scale even further, and can also produce

relatively good estimates (in terms of likelihood).

A.4.4 Example: Data Exploitation by Closed-form Estimators

This appendix demonstrates with an example how each learning algorithm exploits varied subsets

of data to estimate marginal probability distributions, given the manifest (or data) distribution in

Table A.7 which consists of four variables, {X, Y, Z,W} such that {X, Y } ∈ Xm and {Z,W} ∈

Xo.

We will begin by examining the data usage by deletion algorithms while estimating Pr(x,w) under

the MCAR assumption. All three deletion algorithms, namely listwise deletion, direct deletion and

factored deletion guarantee consistent estimates when data are MCAR. Among these algorithms,

listwise deletion utilizes the least amount of data (4 distinct tuples out of 36 available tuples, as

shown in table A.8) to compute Pr(xw) whereas factored deletion employs two thirds of the tuples

(24 distinct tuples out of 36 available tuples as shown in table A.8) for estimating Pr(xw).

Under MAR, no guarantees are available for listwise deletion. However the three algorithms,

namely direct deletion, factored deletion and informed deletion, guarantee consistent estimates.

While estimating Pr(x, y), all the three algorithms utilize every tuple in the manifest distribution
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Table A.7: Manifest (Data) Distribution with {X, Y } ∈ Xm and {Z,W} ∈ Xo.

# X Y W Z RX RY

1 0 0 0 0 0 0

2 0 0 0 1 0 0

3 0 0 1 0 0 0

4 0 0 1 1 0 0

5 0 1 0 0 0 0

6 0 1 0 1 0 0

7 0 1 1 0 0 0

8 0 1 1 1 0 0

9 1 0 0 0 0 0

10 1 0 0 1 0 0

11 1 0 1 0 0 0

12 1 0 1 1 0 0

13 1 1 0 0 0 0

14 1 1 0 1 0 0

15 1 1 1 0 0 0

16 1 1 1 1 0 0

17 0 ? 0 0 0 1

18 0 ? 0 1 0 1

# X Y W Z RX RY

19 0 ? 1 0 0 1

20 0 ? 1 1 0 1

21 1 ? 0 0 0 1

22 1 ? 0 1 0 1

23 1 ? 1 0 0 1

24 1 ? 1 1 0 1

25 ? 0 0 0 1 0

26 ? 0 0 1 1 0

27 ? 0 1 0 1 0

28 ? 0 1 1 1 0

29 ? 1 0 0 1 0

30 ? 1 0 1 1 0

31 ? 1 1 0 1 0

32 ? 1 1 1 1 0

33 ? ? 0 0 1 1

34 ? ? 0 1 1 1

35 ? ? 1 0 1 1

36 ? ? 1 1 1 1
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Table A.8: Enumeration of sample # used for computing Pr(x,w) by listwise deletion, direct

deletion and factored deletion algorithms under MCAR assumptions.

Algorithm Estimator and Sample #

Listwise Pr(xw) = Pr(xw|RX = 0, RY = 0)

11,12,15,16

Direct Pr(xw) = Pr(xw|RX = 0)

11,12,15,16,23,24

Factored Pr(xw) = Pr(x|w,RX = 0) Pr(w)

3,4,7,8,11,12,15,16,19,20,23,24,27,28,31,32,35,36

Pr(xw) = Pr(w|x,RX = 0) Pr(x|RX = 0)

9,10,11,12,13,14,15,16,21,22,23,24

at least once (see Table A.9). Compared to the direct deletion algorithm, the factored deletion

algorithm utilizes more data while computing Pr(x, y) since it has multiple factorizations with

more than two factors in each of them; this allows more data to be used while computing each factor

(see Table A.8). In contrast to both direct and factored deletion, the informed deletion algorithm

yields an estimator that involves factors with fewer elements in them (Pr(w) vs. Pr(zw)) and hence

can be computed using more data (Pr(w = 0) uses 18 tuples compared to Pr(z = 0, w = 0) that

uses 9 tuples).

Precise information regarding the missingness process is required for estimation when dataset falls

under the MNAR category. In particular, only algorithms that consult the missingness graph can

answer questions about the estimability of queries.
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Table A.9: Enumeration of sample # used for computing Pr(x, y) by direct deletion, factored

deletion and informed deletion algorithms under MAR assumption.

Algorithm Estimator and Sample #

Direct Pr(xy) =
∑

z,w Pr(xy|w, z,RX = 0, RY = 0) Pr(zw)

13, 14, 15, 16 for Pr(xy|w, z,RX = 0, RY = 0)

all tuples: [1,36] for Pr(z, w)

Factored Pr(xy) =
∑

z,w Pr(x|w, z, y, RX = 0, RY = 0)

Pr(y|z, w,RY = 0) Pr(zw)

13, 14, 15, 16 for Pr(x|y, w, z, RX = 0, RY = 0)

5, 6, 7, 8, 13, 14, 15, 16, 29, 30, 31, 32 for

Pr(y|w, z,RY = 0)

all tuples: [1,36] for Pr(z, w)

Pr(xy) =
∑

z,w Pr(y|x,w, z, RX = 0, RY = 0)

Pr(x|z, w,RX = 0) Pr(zw)

13, 14, 15, 16 for Pr(y|x,w, z, RX = 0, RY = 0)

9, 10, 11, 12, 13, 14, 15, 16, 21, 22, 23, 24 for

Pr(x|w, z,RX = 0)

all tuples: [1,36] for Pr(z, w)

Informed (direct) Pr(xy) =
∑

w Pr(xy|w,RX = 0, RY = 0) Pr(w)

13, 14, 15, 16 for Pr(xy|w,RX = 0, RY = 0)

all tuples: [1,36] for Pr(w)
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