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REVIEW

Downscaling approaches of climate change

projections for watershed modeling: Review

of theoretical and practical considerations
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1*, Kendra L. Garner1, Nalini Rao2, Eladio Knipping2, Jeffrey Thomas2

1 Bren School of Environmental Science & Management, University of California Santa Barbara, Santa

Barbara, California, United States of America, 2 Electric Power Research Institute, Palo Alto, California,

United States of America

* arturokeller@ucsb.edu

Abstract

Water resources managers must increasingly consider climate change implications of,

whether the concern is floods, droughts, reservoir management, or reliably supplying con-

sumers. Hydrologic and water quality modeling of future climate scenarios requires under-

standing global climate models (GCMs), emission scenarios and downscaling GCM output,

since GCMs generate climate predictions at a resolution too coarse for watershed modeling.

Here we present theoretical considerations needed to understand the various downscaling

methods. Since most watershed modelers will not be performing independent downscaling,

given the resource and time requirements needed, we also present a practical workflow for

selecting downscaled datasets. Even given the availability of a number of downscaled data-

sets, a number of decisions are needed regarding downscaling approach (statistical vs.

dynamic), GCMs to consider, options, climate statistics to consider for the selection of

model(s) that best predict the historical period, and the relative importance of different cli-

mate statistics. Available dynamically-downscaled datasets are more limited in GCMs and

time periods considered, but the watershed modeler should consider the approach that

best matches the historical observations. We critically assess the existing downscaling

approaches and then provide practical considerations (which scenarios and GCMs have

been downscaled? What are some of the limitations of these databases? What are the

steps to selecting a downscaling approach?) Many of these practical questions have not

been addressed in previous reviews. While there is no “best approach” that will work for

every watershed, having a systematic approach for selecting the multiple options can serve

to make an informed and supportable decision.

1. Introduction

Assessment of climate change impacts on water resources involves several methodological

decisions, including selection of global climate models (GCMs), emission scenarios, downscal-

ing techniques, and hydrologic modeling approaches [1]. A watershed modeler, interested in

the response of hydrology and biogeochemistry to future climate projections in a particular

region to inform decisions, is faced with a number of options for implementing the modeling
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framework, including selecting applicable GCMs, scenarios, downscaling approaches, and

watershed model(s). Most watershed modelers will not be running a GCM to obtain climate

predictions. While GCM output (e.g., predicted precipitation and temperature for future peri-

ods) is available for many GCM models and future scenarios, it is typically at a resolution that

is unsuitable for watershed modeling, even for very large watersheds. While the spatial resolu-

tion varies according to objective in watershed modeling, it is usually on the order of tens to

hundreds of km2, to more accurately represent local soils, land use and climate [2]. Thus, the

first decision the watershed modeler needs to make is how to downscale GCM output to the

finer resolution needed to model watersheds at the subwatershed scale. Downscaling trans-

forms from global climate models output (GCMs) at coarse spatial resolution (thousands of

km2) to the fine spatial resolution needed for watershed modeling or other applications.

Downscaling approaches assume that local climate is a combination of large-scale (global, con-

tinental, regional) climatic/atmospheric features and local attributes (topography, land use,

large water bodies). Downscaling is a key step in understanding future implications to local

regions, particularly for hydrology, because the underlying processes that determine impact

require an understanding of the local climate and its drivers, such as topography, which are

not captured at the coarser scale of GCMs. The watershed modeler may actually employ down-

scaled GCM products. However, it is important to understand the differences between various

downscaling methods and techniques, in order to make an informed decision prior to select-

ing a particular downscaled product for watershed modeling.

Objectives of this review

The objective of this review is to provide water resource managers and modelers: (1) an over-

view of the theory behind the main downscaling approaches, and the improvements that have

been made to correct for short-coming in different methods; and (2) a set of practical consid-

erations, including an applied case study, for selecting downscaled GCM products. We criti-

cally assess the existing downscaling approaches and then provide practical considerations

(which scenarios and GCMs have been downscaled? What are some of the limitations of these

databases? What are the steps to selecting a downscaling approach?) Many of these practical

questions have not been addressed in previous reviews.

2. Theoretical considerations

Global climate models

GCMs predict climate behavior by using mathematical representations of well-documented

physical processes to simulate the transfer of energy and matter throughout the global climate

system, at a relatively coarse resolution [3]. In addition the sequence of interactions, spatially

and temporally, that are used to model the climate system, GCMs depend on setting initial

conditions, and considering changes to climate forcing [3]. Grid cells size defines the resolu-

tion of the model–the smaller the grid, the more detail in the model. The more detailed the

GCM, the more data are required and the more computing power necessary to run the model.

The additional dimension in climate models is time; GCMs can be run at hourly, daily, or

monthly time-steps [3].

Once a model is set up, it is compared to historical climate observations to determine its

accuracy. It can then be used to project future climate based on a range of greenhouse gas

(GHG) and aerosol emissions scenarios [3]. The Intergovernmental Panel on Climate Change

(IPCC) is the most common source of future emissions scenarios. Distinct scenarios have been

developed for GCM testing based on radiative forcing, such as those from the Coupled Model

Intercomparison Project Phase 5 (CMIP5), or more recently on the complex relationship
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between socioeconomic forces that drive GHG and aerosol emissions across the globe and the

levels to which those emissions are expected to increase over time, from Phase 6 (CMIP6) [4,

5]. The IPCC scenarios are collectively referred to as Representative Concentration Pathways

(RCPs) [6].

Globally, there are several different groups of scientists developing and running climate

models. NOAA’s Geophysical Fluid Dynamics Laboratory (GFDL) was one of the first groups

to combine oceanic and atmospheric processes into a single model, which was recently

updated [7]. The US National Center for Atmospheric research has also spent decades refining

the Community Atmosphere Model, which includes models for soil and vegetation. The Had-

ley Center for Climate Prediction and Research (Hadley) is another major research group that

has developed the HadCM3 model [8]. There are several other models available, developed

by different groups and countries, and each has its pros and cons, and accuracy varies by

region, climate parameter, and time period. Some models may be better at predicting snowfall,

whereas other at predicting extreme temperatures. The IPCC considers many different models

in their evaluation of climate change, whereas for practical purposes most watershed modelers

will likely select a smaller subset of models that still provides a range of probable climatic pro-

jections. The challenge becomes: Which GCMs to consider? Which future scenarios? What

downscaling approach(es)? Table A in S1 Text provides additional questions and consider-

ations that should be taken into account before launching into a climate change assessment.

Ensembles are also an option. An ensemble is a group of climate model simulations. Rather

than running a single climate model, an ensemble reflects the output of several GCMs, where

each GCM is somewhat unique to produce a range of possible scenarios. Ensemble results

have come closest to replicating historical climate and can rely on both statistical and dynamic

downscaling methods [9].

Downscaling approaches

The diversity of downscaling approaches reflects the diversity of goals and resources available

for each assessment [10]. There is no single best downscaling approach, and methods will vary

based on the desired spatial and temporal resolution of outputs and the characteristics of the

greatest climate impact of interest [10]. There are two broad categories of downscaling meth-

ods: statistical downscaling (SD) and dynamical downscaling (DD, also referred to as regional

climate models, RCMs). Each method is capable of providing station-scale data for watershed

modeling. The trade-offs between methods include ease of use and ability to represent changes

in temporal patterns [11]. A method’s performance depend on the accuracy of: (1) representa-

tion of features (e.g., topography, land use) at higher resolution, (2) representation of processes

and interactions (e.g., weather systems), and (3) physical parameterizations at the desired spa-

tial scale and time step interval [12]. Because of this, downscaling accuracy varies by location,

season, parameter, and boundary conditions (e.g., one method may be better for the West

Coast and another for the Midwest) [13, 14].

GCMs, even at fine spatial scales, are subject to considerable bias when compared to

observed data [15]. Bias correction, is therefore a common step in SD, but also frequently in

DD, as a way to remove systematic biases in the mean of the climate forcing data [5]. Climate

model simulations are largely influenced by the way the model represents processes, energy

and moisture budgets, as well as the simulation of clouds [15]. Therefore, GCM output post-

processing is another common step to improve GCM output before using it in downscaling

studies [13, 15].

Selection of downscaling method depends on the spatial scale for watershed modeling, the

climate variables of interest, availability of historical observed data for the region and spatial
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scale of interest, and the resources available (Fig 1) [13]. Different sets of calibrated model

parameters can yield divergent simulation results which may lead to different conclusions

[16].

Statistical downscaling

Statistical downscaling relies on observed relationships between large scale atmospheric vari-

ables and local/regional climate variables, often referred to as predictors and predictands

respectively [11]. Variables of interest are downscaled using the empirical relationship between

historic observed and modeled data [14]. The underlying assumption is that the relationship

between the predictors and predictands can be transferred to model future predictors from

the GCMs because we assume that the processes that controlled climate in the past will con-

tinue to control local climate in the future using the same statistical patterns [17, 18]. Parame-

ter selection is an iterative process consisting of screening settings and predictors until the

relationship is optimized [17]. Sensitivity analyses have shown that choice of data, choice of

method, length of calibration period, selection of predictor variables and station data all have a

significant impact on results [18, 19]. A key limitation of SD is that it may not account for nat-

ural climate variability since earth’s system is highly nonlinear, meaning that the statistical

relationship that applied in the past may not apply in the future [19–21]. A key strength, how-

ever, of SD is its low computational demand and rapid ability to create scenarios [18].

There are four main categories of statistical downscaling techniques available: weather typ-

ing, constructed analog, weather generators, and regression methods. Regression techniques

encompass a broad range of methods from the simplicity of linear regressions to machine

learning. All have different pros and cons, though a review of the last couple decades of

research show that many have moved away from weather typing and weather generators for

future impact assessments.

Weather typing. Weather typing, also referred to as weather pattern-based, is a multivari-

ate statistical downscaling method that relies on conditional resampling. It involves grouping

local meteorological variables in relation to different classes of atmospheric circulation [22].

The main advantage of this method is that local variables are closely linked to global circula-

tion [23]. However, reliability depends on having a static relationship between large scale cir-

culation patterns and local climate [23]. For watershed modeling, where hourly or daily

precipitation is an important variable, this method may not always be useful because typically

the correlation between local precipitation and large-scale circulation patterns is not strong

[23]. Approaches that have been used to improve weather typing include Constructed Analogs

and variations such as Bias Corrected Constructed Analogs, Localized Constructed Analogs

and Multivariate Adaptive Constructed Analogs.

Constructed analogs. Constructed Analog (CA) relies on matching large-scale variables

from observations with GCM model output and using the analog relationship as a scaling fac-

tor for future climate [24–26]. CA assumes that if an exact analog (in the historical record) to

current weather can be found, future weather should follow the same analog [24]. The method

is similar to principal component analysis (PCA) where multiple dependent variables repre-

sent similar relations. CA uses linear regression to develop a best-fit analog of GCM output

from historical data [24]. A key limitation of the original CA is that it neglects model bias and

is unable to project climates if no analog could be identified [25].

Bias Corrected Constructed Analog (BCCA) use bias correction to improve the CA method

[25]. Biases between the models are removed, typically using a quantile mapping technique,

which adjusts simulated values by quantile to better match observations. Another modification

to the CA method, called Localized Constructed Analogs (LOCA), has the added benefit of
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Fig 1. Decision-tree for selection of downscaling approach and options.

https://doi.org/10.1371/journal.pwat.0000046.g001
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being less sensitive to spatial scale and is better able to estimate extreme values [27]. LOCA

produces downscaled estimates suitable for hydrologic modeling by using a multi-scale spatial

matching scheme to pick appropriate analogs from observed data. Multivariate Adaptive Con-

structed Analogs (MACA) is another statistical downscaling method that utilizes meteorologi-

cal training data (observations) to remove historical biases and match spatial patterns in

climate model output [28].

Flint and Flint (2012) used statistically downscaled future climate projects from CA, then fur-

ther downscaled them spatially using a gradient-inverse-distance-squared approach for hydro-

logic modeling at a 270-m spatial resolution [24]. They used continental-scale historical

(observed) patterns of daily precipitation and air temperature at coarse resolution and their

fine-resolution (approximately 12 km) equivalents with a statistical approach to climate and bias

correction [24, 29]. Results indicate successful downscaling as the 270-m resolution was closer

to the measured monthly station data for the 18-year record than the 4-km PRISM model [24].

Teutschbein et al. (2011) investigated the variability of seasonal streamflow and flood-peak

projections using three statistical methods to downscale precipitation (analog, SDSM, and a

multi-objective fuzzy-rule-based classification (MOFRBC) [17]. The analog method used his-

torical observed data to identify a set of previous analog events that most resembled the target

time period [17]. MOFRBC is a circulation-pattern classification method combined with a

conditional precipitation model (a stochastic weather generator) [17, 30]. MOFRBC employs

the circulation patterns in order to classify weather situations of different types [17, 30].

Weather generators

Temporal downscaling can be performed when the temporal scale of GCM output is modified

to the needs of the watershed modeling project. Weather generators are most often used in

temporal downscaling, as GCM outputs are sometimes on a monthly time step and watershed

models usually require a daily time step [10]. Weather generators are stochastic models that

simulate future climate by either perturbing the parameters or by fitting to perturbed statistics

[31–34]. Weather generators are parametric models that rely on mathematical formulae with

explicit random elements to emulate actual weather data, usually at a daily timescale and for

individual weather stations [34]. Downscaling using weather generators requires changing the

climate parameters based on the changes between current-observed and future-predicted

GCM climate [34]. The most commonly used stochastic precipitation generator is based on a

first-order Markov chain process in which daily binary (dry or wet) precipitation occurrences

are generated, and the amount of precipitation on wet days are generated independently from

a regional/local probability distribution [34].

As with most SD methods, a major benefit to weather generators is their ability to rapidly

develop long time series of climate scenarios to study the impact of rare climate events [32,

33]. They also provide a stochastic downscaling approach, which is beneficial since combina-

tions of small-scale (e.g., weather station) conditions can be consistent with the large-scale

(e.g., GCM grid) model [34].

Statistical down scaling model. The Statistical Down Scaling Model (SDSM) is a condi-

tional weather generator that uses atmospheric circulation indices and regional moisture vari-

ables to estimate time-varying parameters (e.g., precipitation and temperature) that describe

the daily weather at individual sites/stations [35]. SDSM is a useful method because multiple,

low-cost, single site scenarios for daily climate parameters can be generated easily and rapidly

for different climate forcing conditions [36].

A test of SDSM for streamflow modeling in Quebec showed that SDSM provides reasonable

downscaling data (local scale temperature and precipitation) when using predictors that
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represent observed current climate [37]. However, the performance was less reliable when

using GCM predictors [37]. The choice of downscaling methods has a significant impact on

streamflow simulations: while SDSM was found to suitable for downscaling precipitation for a

river basin in Sweden, Teutschbein et al. (2011) concluded that an ensemble approach was

preferable [17].

Regression methods

Regression methods rely on statistics to extrapolate data to higher resolutions based on the

identified relationship between predictors and predictands. Sometimes referred to as transfer

functions, a linear or nonlinear relationship between observed local climatic variables and

large scale GCM outputs is defined using a regression method [35, 37, 38]. As with all statistical

methods, the biggest limitation is the high probability of a lack of a stable relationship between

current and future climate (predictors and predictands) [38].

Canonical correlation analysis. Canonical Correlation Analysis (CCA) is used to identify

and measure the relationship among sets of variables. It is sometimes used in place of multiple

regression when there are multiple intercorrelated variables. CCA seeks an optimal linear

combination between predictors and predictands and selects pairs of patterns so that a maxi-

mum correlation is produced [39, 40]. Before CCA, predictors and predictands are projected

onto their empirical orthogonal functions (EOFs) to eliminate unwanted noise (small-scale

features) and to reduce data space dimensionsionality [40]. Given the approach used to

develop the correlations, CCA allows a physical interpretation of the mechanism controlling

regional climate variability [40].

Busuioc et al. (2007) used CCA to downscale precipitation in Italy [40]. Three indices were

used that focused on extreme rainfall events: the number of events exceeding the long-term

90th percentile of rainy days, simple daily intensity, and the maximum number of consecutive

dry days [40]. Busuioc et al. found that, generally, the combination of the first five to six EOFs

and first two EOFs for all regional indices provided the best results [40].

Bias correction and spatial disaggregation. Bias Correction and Spatial Disaggregation

(BCSD) relies on a historic dataset at the same grid scale as the spatially downscaled variables,

corrects biases using quantile mapping of modeled against observed climate, and then applies

anomalies in the observed variables to the spatially interpolated model [24, 25, 41]. Quantile

mapping has the advantage of not having a specific requirement for the length of time or the

number of observed stations and it has been found to have the best performance in reducing

biases. BCSD has been used in several hydrologic impact analyses and has demonstrated

downscaling capabilities comparable to other statistical and dynamic methods [13, 41]. A

major limitation, however, is that often monthly data is used and while the output can be con-

verted to daily, unrealistic meteorology may result which is problematic for watershed model-

ing [41].

Maurer and Hidalgo (2008) compared CA with BCSD across the western US [13]. Coarse

scale precipitation and temperature were employed in both downscaling approaches as predic-

tors [13]. CA downscaled daily large-scale data directly but at a coarse spatial resolution

whereas BCSD downscaled monthly data, with a random resampling technique to generate

daily values [13]. Both methods struggled to reproduce wet and dry extremes for precipitation

and were better at reproducing temperature, though the CA method exhibited slightly more

accuracy with the extremes [13].

Maurer et al. (2010) later compared CA, BCSD, and a hybrid BCCA (using quantile-map-

ping bias correction prior to the CA method) downscaling for use with the VIC hydrologic

model [42]. The bias correction considered in BCCA was essentially identical to that of BCSD,
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however, quantile mapping was used for all daily values (precipitation, maximum and mini-

mum temperature) within each month [42]. While the bias correction included with BCCA

forced the cumulative distribution function to match observations for the historical (observed)

period, some biases due to the downscaling methods remained [42]. The three downscaling

methods produced reasonable streamflow statistics at most locations, but the BCCA method

consistently performed better than the other methods in simulating streamflow [42]. All meth-

ods performed well for generating extreme peak flows, but the hybrid BCCA method gener-

ated a better match of annual flow volume, showing that BCCA is also better at longer

temporal scales [42].

Mizukami et al. (2015) examined the effects of four statistical downscaling methods

(BCCA, BCSD daily and BCSD monthly, and asynchronous regression (AR)) on retrospective

hydrologic simulations using three hydrologic models (CLM, VIC, and PRMS) [43]. Each SD

method produced a different meteorological dataset including differences in precipitation,

wet-day frequency, an energy input [43]. BCCA was found to consistently underestimate pre-

cipitation across the US leading to unrealistic hydrologic portrayals, whereas the other three

methods overestimated precipitation, though BCSD-daily overestimated the wet-day fre-

quency the most [43]. Despite this, the choice of downscaling method was found to impact

runoff estimates less (excluding BCCA) than the choice of hydrologic model (with default

parameters) [43].

Change factor. The Change Factor (CF) method, sometimes called the Delta Change

method, calculates differences between simulated current and future climate and adds these

differences to observed time series [18]. The CF method is based on the assumption that

GCMs are more reliable simulating relative rather than absolute values, thus the observed

time series is adjusted by either adding the difference or multiplying the ratio of parameters

between future and present climate as simulated by the GCM [18, 23]. An additive CF is the

arithmetic difference between future and baseline projections, whereas a multiplicative CF is

the ratio between future and baseline projections [44]. Additive and multiplicative CFs can be

combined depending on the empirical distribution functions and any data limitations [44].

The selection of time periods, temporal domains, temporal scales, number of change factors,

and type of change factors varies depending on the meteorological parameters and needs of

the study [44]. Applying the CF method to hydrologic modeling, especially for urban water-

sheds, can present challenges because precipitation data need to be at fine time increments

and change factors can produce negative precipitation values, can overestimate precipitation,

or can increase the number of precipitation events [44, 45].

A combined change factor method (CCFM) can be applied as a secondary bias-correction

technique to reduce a number of the issues associated with the traditional CF method [44].

This is typically done by computing empirical cumulative distribution functions (ECDF) for

both baseline and future time periods, sorting them to create ratio and difference plots, which

facilitating the selection of additive or multiplicative CFs, with differences and ratios calculated

for each percentile of the cumulative distribution function (CDF) [44]. Adjustments are typi-

cally then made to address negative values, overestimations, and to eliminate artificially high

numbers of precipitation events [38]. The combined method eliminated or reduced these

issues, and the predicted precipitation time series closely matched observed precipitation pat-

terns [44].

Hay et al. (2007) tested the delta change method for precipitation, temperature, and runoff

across three mountainous regions in the US. For the basins tested, realistic runoff scenarios

were simulated successfully using statistically downscaled NCEP (National Center for Envi-

ronmental Prediction) output, but not using statistically downscaled HadCM2 (Hadley Centre

for Climate Prediction and Research) GCM [18].
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Camici et al. (2014) compared the downscaling ability of delta change and bias correction

through quantile mapping for two GCMs for hourly rainfall, discharge and flood modeling

[46]. The delta change method projected a decrease in the flood frequency curve, but with

quantile mapping, one GCM predicted a decrease in the frequency of annual maximum dis-

charge and the other predicted an increase [46]. As with other similar studies, a key conclusion

was that an ensemble GCM with multiple downscaling methods is preferable for flood map-

ping [46].

Machine learning and artificial neural networks. Artificial neural networks, sometimes

called adaptable random forests, are still a relatively new and uncommon methods for SD that

rely on machine learning. Though there are still only a few examples of random forest (RF)

methods, they typically rely on the nonlinear relationship between predictors and predictands,

making them particularly useful for downscaling precipitation, since this relationship is often

nonlinear [47]. RF is an adaptable method that can be applied to downscale data from models,

remote sensing retrievals, or gridded observations at a range of different resolutions [47].

An early example of machine learning for downscaling compared SDSM with Smooth Sup-

port Vector Machine (SSVM) for hydrologic modeling [48]. SSVM is a supervised machine

learning method that uses limited sample information on an unconstrained convex quadratic

optimization problem using smoothing [48]. Rainfall varied greatly between the two downscal-

ing methods, though SDSM was found to have better performance than SSVM [48].

Later, He et al. (2016) developed Prec-DWARF (Precipitation Downscaling with Adaptable

Random Forests), a machine-learning based method for statistical downscaling of precipita-

tion across the continental US [47]. Different RF methods were tested and shown to reason-

ably reproduce the spatial and temporal patterns of precipitation [47]. A single RF tended to

underestimate precipitation extremes, but predictions were improved by adding a second RF

that was specifically designed to capture the relationship between covariates and target rainfall

field for heavy and extreme precipitation. He et al. (2016) were able to successfully reproduce

the geometrical and statistical characteristics of precipitation using RF [47]. It is still a some-

what limited method in that it consistently underestimates spatial variability, temporal depen-

dence, and frequency of very high rainfall rates, and overestimates the amount and spatial

extent of low intensity rainfall [47].

Dynamic downscaling

Dynamic downscaling (DD) relies on regional climate models (RCMs) to simulate local cli-

mate based on large-scale weather predicted by a GCM [14, 24]. In DD, GCM predictions are

used to provide the initial conditions and lateral boundary conditions (LBCs) (i.e., the grid

edges) that define downscaling to a finer-resolution RCM [24, 49]. This typically involves nest-

ing finer-scale grids into the coarser GCM grid to produce a spatially complete set of climate

variables that preserve both the spatial correlation as well as relationships between variables

[23, 50, 51]. DD is computationally expensive, so historically, it hasn’t been used as often for

climate change impact studies that required long temporal periods or multiple scenarios [24],

but as computing power has increased, this is less the case. Resolution capabilities and new

predictive components have been added as capacity grows, increasing the functionality of DD

for impact assessments [52].

The underlying assumption is that a GCM describes the response of global circulation to

large-scale forcing (e.g., due to GHG emissions or solar radiation variations), while an RCM

refines the climate projections, spatially and temporally, by considering smaller-scale features

(e.g., topography, coastlines, bodies of water, land cover) [50]. DD explicitly solves for process-

based physical dynamics to extract local-scale data from large-scale GCMs by developing
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either limited-area models (LAMs) or RCMs [53]. LAMs are essentially a portion of a GCM,

run on a limited scale, that provide useful information for downscaling and can account for

the processes impacted by local forcing (e.g., orography, coastline, vegetation, etc.) [54]. Simi-

larly, a dynamically downscaled RCM considers more accurately areas with complex topogra-

phy for estimating precipitation intensity and snow processes [55].

RCM simulations are particularly sensitive to initial conditions, thus the simulated

sequence of weather events will often not match the driving model [56, 57]. RCMs tend to sim-

ulate systematic errors because of their incomplete representation of the climate system and

their dynamic and physical configurations. Some of these errors can be reduced through post-

processing using bias correction techniques (from SD) [57, 58]. In addition, it has been found

that downscaling too much using DD can actually be detrimental to prediction accuracy. Chan

et al. (2013) compared the accuracy of dynamically downscaling to 50-, 12-, and 1.5-km and

found that downscaling from 50- to 12-km improved precipitation simulations, but that sea-

sonal biases increased with further downscaling to 1.5-km, resulting in too much precipitation

[59].

There are multiple methods used for dynamic downscaling including one-, two-, and

multi-way nesting, nudging, variable resolution grid models, and reinitialization.

Nested models. Nested RCMs are built using two or more RCM over a selected spatial

domain at different grid scales, constrained by initial and time-dependent meteorological

lateral boundary conditions from a GCM [50, 52]. Nested RCMs are intended to add more

realistic sub-GCM grid-scale detail [52]. One way nesting is subject to mismatches between

simulated parameters and those of the GCM, whereas two-way nesting partially addresses this

by having the RCM feed information back into the GCM model [60, 61]. Multiple nesting,

where consecutive nested models are used at increasing resolutions, can be used to reach

highly localized areas [61, 62]. However, adding nesting becomes increasingly computationally

expensive.

For example, Prein et al. (2013) used the Weather Research and Forecasting (WRF) model

on three single-domain simulations with horizontal grid spacing of 4 km, 12 km, and 36 km

over the Colorado headwaters [63]. Only the 4-km simulation correctly simulated precipita-

tion totals, though in winter the 4- and 12-km simulations had similar performance [63]. The

main advantage of the 4-km simulation was the improved mesoscale patterns of heavy precipi-

tation and the larger-scale patterns of heavy precipitation [63].

Nudging. Nudging is a method that adds a correction to the predictive equations of vari-

ables to prevent the RCM drift from GCM results [64, 65]. Spectral Nudging can be used to

constrain RCM biases and improve results by forcing the RCM to follow the large-scale

(GCM) driving boundary conditions [49]. What this does is relax the simulation by adding a

nudging term to selected parameters that is proportional to the difference between the simu-

lated and prescribed states (similar to the delta change method) [49]. This results in greater

consistency between RCM and GCM. Nudging can, however, force the RCM to retain and

potentially exacerbate biases from the GCM [49].

For example, Xu and Yang (2015) compared three sets of RCMs with identical model con-

figurations [except for the initial and lateral boundary conditions] with and without spectral

nudging, and with bias corrections and nudging where the nudging strength was progressively

reduced [49]. Bias correction was done by interpolating the NNRP (National Centers for Envi-

ronmental Prediction/National Center for Atmospheric Research Reanalysis Project) data to

Community Atmosphere Model (CAM) grids, then computing the CAM biases in mean and

variance and removing the biases by subtracting the mean bias and scaling variance from the

original CAM simulation. Spectral nudging was applied to air temperature, horizontal winds,

and geopotential height [49]. Both bias correction and spectral nudging improved results,
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though not consistently across all parameters [49]. Precipitation responded inconsistently to

spectral nudging, with some regions and some seasons overestimating and some underesti-

mating [49].

Grid nudging. Grid nudging, sometimes referred to as analysis nudging, is a variant of

spectral nudging where nudging is performed for every grid cell and for all spatial scales [49].

It is used to ensure that the simulated large-scale fields are consistent with the driving fields

[64, 65]. Grid nudging is sometimes superior to spectral nudging if appropriate nudging coeffi-

cients are chosen to adjust the strength of the nudging force [64, 65]. This method, is however,

extremely computationally expensive.

Liu et al. (2012) compared grid and spectral nudging in the downscaling of National Cen-

ters for Environmental Prediction (NCEP) and National Center for Atmospheric Research

(NCAR) data with the Weather Research and Forecasting (WRF) model [66]. Compared with

grid nudging, spectral nudging provides a better balance between the need to keep RCM

results consistent with the large scale driving forces that would be provided by GCMs, and at

the same time, allowed more variance to be added at smaller scales [66]. Additionally, the

improvement at the small scale allowed by spectral nudging is not only reflected in spatial vari-

ability, but temporal variability as well [66].

Bowden et al. (2012) evaluated interior nudging techniques using the WRF model in a two-

way nested configuration for downscaling with both the spectral and gridded approach [67].

Temperature behaved similarly regardless of which method was used, though for precipitation,

gridded nudging generates monthly precipitation totals, intensity, and frequency more accu-

rately than spectral nudging [67]. Gridded nudging appears to suppress the variability in pre-

dictions more strongly than spectral nudging [67].

Wooten et al. (2016) used the grid nudging approach using the WRF model to simulate pre-

cipitation over Puerto Rico [68]. Grid nudging generally resulted in lower precipitation than

are observed but use of convective-permitting simulations improved the annual cycle, inten-

sity, and location of rainfall [68].

Variable resolution grid models. Variable resolution grid models (also known as

stretched grid models) rely on a higher resolution over the region of interest. These are not as

widely used but the advantage of a variable resolution stretched-grid is that it does not require

any lateral boundary conditions for forcing, which reduces the computational challenges [69].

The result is that it provides self-consistent interactions between global and regional scales

while maintaining global circulation with a uniform grid [69]. It is also portable, so the area of

interest can be located anywhere [69].

McGregor (2015) provided a summary of five variable resolution downscaled climate mod-

els. Some of the benefits include the absence of any lateral boundaries and the related problems

with spurious reflections [70]. Useful interactions may also occur between the fine-resolution

and coarser regions [70]. Two variable grid models employ the Schmidt transformation

(ARPEGE and CCAM), the other three employ spherical coordinates that independently

stretch the longitudes and latitudes (GEOS-SG, GEM, and LMDZ) [70]. However, lower-

boundary forcing is still needed for sea-ice and sea surface temperatures [70]. Variable grid

GCMs can downscale to a finer resolution, correcting some GCM biases [70]. Variable grid

GCMs are increasingly being used to downscale ensemble GCMs [70].

Corney et al. (2013) implemented a variable resolution method for dynamically downscal-

ing six GCMs for two emissions scenarios [71]. They found that application of bias adjustment

and multi-staged increased resolution, the simulation can better reproduce observations,

explaining more than 95% of the temperature spatial variance for ~ 90% for precipitation [71].

Variable grid downscaling significantly improve the temporal distribution of variables and

improved the seasonal variability predictions compared to the GCM [71].

PLOS WATER Downscaling approaches of climate change projections for watershed modeling

PLOS Water | https://doi.org/10.1371/journal.pwat.0000046 September 14, 2022 11 / 20

https://doi.org/10.1371/journal.pwat.0000046


Reinitialization. Reinitialization is a method consisting of running short simulations that

are frequently reinitialized. This allows the RCM to take advantage of the assimilated observa-

tions, both at the lateral boundaries and over the entire 3D atmosphere, while preserving the

time sequence of the weather events from the driving field [51]. The benefit of reinitialization

is that it is likely to prevent drift in climate from the GCM that wouldn’t be predicted at a local-

ized scale.

For example, Lucas-Picher et al. (2013) tested RCMs with the inclusion of reinitialization to

evaluate the downscaling performance of HIRHAM5 [57]. Surface conditions were kept con-

tinuous while the atmosphere was reinitialized every 24-hours from ERA-I using a 6-hr spin

up. The individual 24-hour simulations were concatenated into a single massive time series.

The reinitialization successfully prevented seasonal drift towards wetter climate conditions

and improved predictions near the boundary [57]. The annual mean and the deviation were

also improved by reinitialization [57]. However, the approach is time-consuming and adds

substantial computational requirements [57].

Bias correction. All GCMs have from some bias in their output, which when applied as

boundary condition for an RCM may impact the results, sometimes substantially [72]. GCM

biases can be passed through to the RCM via lateral and lower boundary conditions. There are

two general approaches for bias correction: determining the differences (deltas) between pre-

dicted and observed/historic values for reference period that are then applied to observed his-

torical data to construct future time series, or calculating scaling parameters to apply to future

predictions to more closely fit observed climate [73]. One common technique is quantile-

quantile mapping (QM) [74, 75]. For a given meteorological variable, the simulated cumulative

density function (CDF) is compared to the observed CDF to calculate a correction function

for each quantile [74, 75]. Then the corrected function is used to remove bias from the vari-

ables in each quantile [74, 75].

For example, Chen et al. (2019) used bias-correction with QM to downscale CMIP5 in

Nevada at a station scale [76]. This involved: (1) validating PRISM data as the historic observed

data, (2) bias correcting the CMIP5 dataset, and (3) validating the QM bias-correction process

[76]. Hydrology was then simulated using Precipitation Runoff Modeling System (PRMS).

Results fit well with observations of both temperature and precipitation as well as density dis-

tribution [76]. Piani et al. (2010) also used statistical bias correction to correct GCM output to

produce internally consistent values that had a similar statistical distribution to the observa-

tions [77]. The approach performed unexpectedly well; in addition to improving the mean and

other moments of the precipitation intensity CDF, drought predictions and heavy precipita-

tion indeces also improved [77].

Themeßl et al. (2012) investigated the effect of quantile mapping on RCMs for its success in

reducing systematic RCM errors and the ability to predict “new extremes” (values outside the

calibration range) [78]. QM reduced the bias of daily mean, minimum, and maximum temper-

ature, precipitation amount, derived indices of extremes by about one order of magnitude, and

improved the frequency distributions [78]. In this case, QM was based on the CDF rather than

on paired data and using empirical CDFs rather than theoretical CDFs [78]. QM was applied

on a daily basis for each grid cell separately. In a 40-years RCM validation, QM was applicable

to longer climate simulations and multiple parameters, irrespective of spatial and temporal

error characteristics, which suggests transferability of QM to other RCMs [78].

Muerth et al. (2012) studied the importance of bias correction on daily runoff simulated

with four different hydrologic models driven by different ensemble RCMs (CRCM4,

RACMO2, and RCA3) [73]. Precipitation was bias corrected using the Local Intensity (LOCI)

scaling method while air temperature was modified using a monthly additive correction [73].

Both methods were chosen for their simplicity, though they both have inherent flaws [73]. The
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monthly correction may create jumps in the corrected dataset between months and the LOCI

performance has been shown to be slightly inferior to QM, especially at higher precipitation

intensities [73]. As expected, bias correction of the RCMs systematically provides a more accu-

rate representation of the actual hydrology, including mean and low flows [73]. High flow

indicators are less affected, likely because the simulation of high flows is more dependent on

the hydrological model’s structure [73].

Pierce et al. (2015) tested three bias correction techniques (QM, CDF-transform (CDF-t),

and equidistant quantile matching (EDCDFm)) on temperature and precipitation for 21

GCMs [79]. CDF-t bias correction determines a transformation to map the predicted CDF of a

variable in the historical period to the observed CDF, then uses the map to adjust the future

CDF [79]. EDCDFm corrects a future predicted value within a quantile in the future CDF by

adding the historical value of the future CDF to the predicted change in value [79]. QM and

CDF-t significantly altered the GCM downscaling by up to 30% for precipitation. EDCDFm

better preserved the temperature values but not precipitation [79].

Teutschbein and Seibert (2012) compared the effectiveness of a range of bias correction

methods on an ensemble of 11 RCMs across five watersheds in Sweden [80]. The comparison

consisted of no correction, linear scaling, LOCI, power transformation, variance scaling, distri-

bution transfer, and delta-change with observed data from 1961–1990 [74]. Biases were found

to vary substantially. All temperature-bias corrections improved the raw RCM simulations,

though the linear scaling method was least effective [80]. All precipitation bias corrections also

improved the RCM simulation, though linear scaling and LOCI still had larger variability

ranges and similar biases in terms of magnitude to uncorrected precipitation [80]. The largest

differences between approaches were observed for the probability of dry days and intensity of

wet days; LOCI and distribution mapping performed better for these two statistics of daily pre-

cipitation [80]. The other approaches partly decreased variability, but were unable to generate

RCM predictions closer to observed values [80].

Combined approaches

There are some things that dynamic downscaling does not address well including uncertainties

arising from sparse data, the representation of extreme summer precipitation, sub-daily pre-

cipitation, and capturing changes in small-scale processes and their feedback on large scales

[81]. Thus, recent work has aimed to combine statistical and dynamic downscaling by using

gridded RCM simulations and statistically downscaling them to point scales [81].

A number of studies combine elements of both statistical and dynamic downscaling. The

lapse rate method is one such example that is based on empirical relationships between a pre-

dictor variable (e.g., elevation) and a predictand (e.g., temperature). The lapse rate method is

similar to DD since it increases grid resolution of GCM output by considering higher resolu-

tion topography [25]. By empirically estimating local topographic lapse rates (LTLR, the statis-

tical relationships between predictor and predictands) using higher resolution topographic

and climate data, lapse rates can adjust GCM output based on elevation [25]. This is quite use-

ful in mountainous terrains where elevation is one of the primary determinants of temperature

and precipitation.

Praskievicz (2017) used LTLR downscaling by re-gridding the GCM to the scale of the

PRISM-derived lapse rates using bilinear interpolation and applying the interpolated lapse rate

correction to the elevation difference between the GCM and PRISM grid points [25]. LTLR

downscaling was compared to LOCA downscaling and LTLR did marginally better, though it

was situationally dependent [25]. LTLR is stronger on temperature predictions than LOCA

but comparable to LOCA on precipitation [25].
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Li and Jin (2017) developed climate change scenarios for various sites through spatial

downscaling of Earth System Models (ESMs) using a transfer function approach. ESM output

was temporally downscaled using a weather generator and reconstructing spatiotemporal cor-

relations using a distribution-free shuffle procedure [82]. Parametric QM and a Richardson-

type weather generator were both used [82]. Linear and nonlinear transfer functions were fit-

ted to the rank-ordered monthly observations and ESM output to calculate monthly mean and

variance [82]. The nonlinear function transformed predicted monthly precipitation values that

were within the range in which the nonlinear function was fitted. The linear function was

employed for values outside the nonlinear function range [82]. Temporal downscaling was

done by adjusting precipitation and temperature from the single-site weather generator based

on the baseline period [82]. Finally, to create the expected rank correlations for various sites

and climate parameters, the independent variables were paired [82]. The method performed

well for inter-site and intervariable correlation and hydrological modeling, generating accept-

able calibrations of monthly streamflow using the SWAT watershed model [82].

Shrestha et al. (2012) used SWAT to model hydrology of watersheds near the Great Lakes

under climate change using nested RCMs (CRCM, RCM3, HRM3 and the ensemble mean of

the three RCMs) and two transfer methods (delta change and bias correction) [83]. For the

delta-change method, changes in mean monthly values between baseline and future periods

were generated for each RCM [83]. For the bias-correction method, monthly systematic biases

were calculated by comparing RCM predictions with observations for the historical period.

Monthly mean biases were calculated for each RCM in terms of fractional change for precipita-

tion, wind speed, relative humidity and solar radiation, or difference for minimum and maxi-

mum air temperature [83]. The delta-change method considers the changes in monthly mean

values between historical and future periods and applies them to observed values without con-

sidering changes in variability, while the bias-correction method only removes the calculated

monthly biases from the historical and future periods, preserving the changes in projected cli-

mate data variability [83]. The hydrologic simulations with either method (delta-change and

bias-correction) resulted in similar streamflow [83].

Comparison between dynamic and statistical methods

A number of studies have compared SD to DD methods, using historical data for the compari-

son. There are a number of methods for evaluating performance of a downscaling approach

(Table B in S1 Text). In general, the RCMs with bias correction seem to be the most effective at

representing local historical climate accurately. For example, Chen et al. (2012) compared six

different downscaling methods on the effects of climate change on hydrology in a Canadian

basin [23]. Methods included using Canadian RCM (CanRCM) with and without bias correc-

tion, change factor and weather generator methods at both Canadian GCM and CanRCM

scales and two statistical downscaling methods: SDSM with variance inflation and bias correc-

tion and discriminant analysis for precipitation coupled with step-wise regression for precipi-

tation and temperature method at the Canadian GCM scale [23]. The bias correction was

applied to CanRCM output for both monthly mean frequency and quantity for temperature

and precipitation data [23]. The change factor method was applied by adjusting the observed

daily temperature by adding the difference in monthly temperature predicted by the climate

model to obtain future daily temperature. The weather generator method used CLIGEN, a first

order two-state Markov chain that generates the occurrence of wet and dry days and the prob-

ability of precipitation given those and a normal distribution to simulate temperature minimas

and maximas [23]. SDSM was implemented by linking daily probabilities of non-zero precipi-

tation with large-scale predictors [84]. The final method was an extension of SDSM, with
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probability of precipitation downscaled using discriminant analysis and daily precipitation

intensity of wet days downscaled using a stepwise linear regression [23]. All methods worked

relatively well, though CanRCM with bias correction and SDSM were best.

Jang and Kavvas (2015) compared BCSD with dynamical downscaling using the MM5

model on precipitation variability over California [19]. Bias correction was done using a QM

method that uses probability density functions (PDFs) for the aggregated monthly GCM simu-

lated precipitation and bias correcting them based on the corresponding aggregated observa-

tions using QM. Spatial downscaling was then done using the synographic mapping system

(SYMAP) algorithm [19]. BCSD-based normalized standard deviation and local precipitation

change values did not show realistic spatial variation [19]. The spatial characteristics of the

interpolated precipitation field were very different compared to observed values [19]. In con-

trast, MM5-based normalized standard deviation and local precipitation change values exhib-

ited more realistic spatial patterns of monthly and annual precipitation variability [19]. Their

conclusion was that BCSD was not suitable for assessment of future climate change at the

watershed scale [19].

Pierce et al. (2013) used sixteen GCMs to generate temperature and precipitation projec-

tions for California [85]. The GCMs were downscaled with two statistical techniques (BCCA

and BCSD) and three nested RCMs (RegCM3, WRF, and RSM) [85]. The authors compared

climate projections using DD and SD approaches and evaluated systematic differences [85]. Of

all methods, only BCCA maintained the daily sequence of the original GCM variability [85].

Schmidli et al. (2007) compared six SD models and three DD RCMs to evaluate downscaled

daily precipitation in considering complex topography (European Alps). The SDs included

regression methods, weather typing methods, a conditional weather generator, and a bias cor-

rection and spatial disaggregation method [14]. There was good agreement between the down-

scaled precipitation for most statistics [14]. All downscaling methods produced adequate

mesoscale climate patterns [14]. Spatial congruence was better for SDs than for RCMs; pre-

dicted RCM patterns were typically shifted by a few grid points [14]. When considering simu-

lated current precipitation, SDs and RCMs tended to have similar biases but differed in terms

of interannual variations [14]. All SDs tend to strongly underestimate interannual variation

magnitude, especially in summer and for precipitation intensity [14]. The downscaling

approaches also diverged with regards to year-to-year anomaly correlation: in winter, over

complex terrain, the better RCMs were more accurate than the SD approaches but over flat ter-

rain and in summer, the differences were small [14].

Shrestha et al. (2013) compared BCSD with dynamically downscaled CRCM for simulat-

ing hydrologic changes using the Variable Infiltration Capacity (VIC) model [86]. The BCSD

simulation was better able to predict precipitation, temperature, and runoff than the DD

CRCM [86]. The biggest differences came from snow water equivalent and runoff [86].

While BCSD is identified as the preferred method for basin scale hydrologic impact model-

ing, projections were still found to differ considerably depending on which ensemble of

GCMs was used [86].

3. Practical considerations

Most watershed modelers will employ pre-downscaled climate data for their models. In the

Supporting Information we provide a summary of nine databases that host downscaled GCM

simulations for various scenarios. A comparison of the key characteristics of each of these

databases is provided in Table C in S1 Text. While this simplifies the process for a watershed

modeler, it is important to understand the approaches (SD vs. DD) and specific methods

employed. Not all GCMs and IPCC scenarios are available, which means the user must search
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for database(s) that can provide the necessary information. In addition, the user needs to

determine which GCMs and downscaling approaches are more likely to accurately represent

the climate in their watershed. This is best done by downloading downscaled GCM output for

a historical period and comparing it to observed data. In the following sections we provide a

workflow, with an applied example, which can be useful for watershed modelers considering

creating projections of future hydrology and/or water quality.

Since the databases of downscaled output offer several GCMs, regional models, and down-

scaling methods to choose from, a methodology is needed for selecting which GCMs to use. A

direct comparison between observed meteorological station data and GCM “predictions” of

the past can be used to select the combinations of GCMs, regional models, and downscaling

method(s) best suited to a given region. The rationale is that a model that can most adequately

predict the past climate is likely to be more suitable for future projections. For example, the

MACAv.2 database (https://climate.northwestknowledge.net/MACA/data_csv.php) provides

downscaled data from the 21 GCMs (Table C in S1 Text). While the watershed modeler may

choose to consider all 21 GCMs, resource and time considerations may require selecting the

GCMs that perform better with regards to matching historical observations. A systematic

approach for comparing output from each GCM to historical observations should be

employed.

4. Conclusions

A water resources manager and/or watershed modeler interested in assessing the potential

implications of climate change in their region has many options in terms of how best to con-

sider GCM climate projections. However, selecting among the various options is complex. The

selection of an appropriate downscaling method will depend on the desired spatial and tempo-

ral resolution for the watershed analysis, as well as resource and time constraints. It is difficult

to recommend the “best” downscaling method, since the goals and resources of each study are

unique, however, the general consensus across studies is that, particularly when trying to

model hydrologic impact and take into consideration the uncertainties in climate projections,

multiple GCMs and an ensemble of downscaling methods that include bias correction should

be used to ensure the full range of possible outcomes is explored and accounted for.

In this review, we provide a pathway for selecting the major options, i.e., statistical vs.

dynamic downscaling, as well as the menu of options available for each approach, such as

weather typing, constructed analog, weather generators, and regression methods for SD, and

RCMs for DD. Most watershed modelers will not implement a downscaling approach, given

the considerable effort required to do so, but will rather be consumers of datasets available

from several databases, which generally cover every region of the world. There are more

options for obtaining SD datasets, with a wider range of GCMs and IPCC scenarios, than for

DD datasets. Even with the availability of these datasets, a watershed modeler needs to make a

number of important decisions regarding the GCMs and methods available, to select a subset

of models that performs better in predicting the historical climate for a particular region.
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