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COMPUTER IMAGE MODELING OF PENTAMER PACKING IN POLYOMA VIRUS 
" H E X A M E R "  TUBES 

T.S. B A K E R  * and D.L.D.  CASPAR 

Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, Massachusetts 02254, USA 

Received 1 November 1983; presented at EMSA Symposium August 1983 

Polymorphic assemblies of polyoma virus capsomeres that have been called "hexamer" tubes (because the morphological 
units are six-coordinated) are, in fact, built of pentamers, as is the icosahedrally symmetric T = 7d virus capsid. We have 
established the pentameric form of the capsomeres in the "hexamer" tubes by analysis of low-irradiation micrographs. 
Methods for generating computer image models with adjustable parameters have been developed to fit micrographs of 
negatively stained, flattened tubes. The image model has been refined to define the packing arrangement and substructure of 
the pentametric capsomeres in the superimposed top and bottom layers of the tube and to represent the differential flattening, 
lateral distortion and staining of the two sides. Information about the structure that is not directly accessible by conventional 
image filtering methods can be obtained by image modeling methods. 

1. Introduction 

Model building has been used to resolve critical 
aspects of papova virus particle structure. Klug 
and Finch [1,2] used shadowgraphs from Geode- 
stix models to simulate images of negatively stained 
human wart and rabbit papilloma viruses and 
settle the controversy concerning the distribution 
and number of morphological units in the virus 
shell [3-5]. This study helped explain how one- 
sided images arise when stain is unevenly distrib- 
uted on the top and bottom surfaces of the speci- 
men attached to the support film: virus particles 
often stain equally on the two surfaces, resulting in 
images which can be difficult to interpret due to 
superposition effects. Images corresponding to 
variable staining on the two sides were simulated 
with an analogue model [6]. 

Images of uniformly stained particles were ac- 
curately represented by generating models with 
adjustable parameters in a computer [7]. The excel- 
lent correspondence between stereo micrographs 
and models rotated through equivalent viewing 

* Present address: Department of Biological Sciences, Purdue 
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orientations showed that negative stains can pre- 
serve icosahedral symmetry and faithfully outline 
structural features to at least 2nm resolution. This 
pioneering work by Klug and Finch [7] presented 
a convincing demonstration of the power of com- 
puter modeling. 

Kiselev and Klug [8] modeled two-sided un- 
filtered and one-sided optically filtered images of 
one of the major classes of human wart and rabbit 
papilloma tube aggregates. This model simulation 
produced compelling evidence for the existence of 
a polymorphic aggregate built of pentameric 
capsomeres arranged in a novel type of pentagonal 
tessellation. 

The recent discovery that all 72 capsomeres in 
polyoma virus capsids are pentameric [9] was based 
on refinement of models representing the coarse 
surface features revealed by electron microscopy 
[10] against X-ray diffraction data. This result 
contradicted the presumption that the T - - 7  
icosahedral papova virus capsids should be built of 
12 pentameric and 60 hexameric capsomeres 
arranged to preserve quasi-equivalent bonding [11]. 
To further explore this problem we reexamined the 
"hexamer" class of tubes [12], studied by Kiselev 
and Klug [8,13], which were presumed to contain 
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Fig. 1. (A) Unfiltered, digitized image of a typical negatively stained polyoma "hexamer" tube. There are six axial repeats of the 
helical structure included in the boxed area. The prominent near-axial helical lines on the near (away front grid) and far sides of the 
tube, corresponding to the packing of capsomeres in rows close to the axial direction, are easier to see when the image is viewed at a 

glancing angle close to the axial direction. 
(B) "Locally" averaged tube image produced by Fourier-inverting the weighted diffraction pattern of (A), as described in the text. The 
procedure produces a result equivalent to that obtained by direct photographic translational superposition of (At, where shorter 

exposures are given for successive superpositions. 
(C) Long-range average image, produced as described in (B), but where all axial repeats in (A) are averaged with nearly identical 

weight. 
(D) Computed Fourier transform of (A). The positions of 13 layer lines in the top half are marked at the right. The strong peaks on 
the first non-equatorial layer line arise from the prominent near-axial helical lattice lines observed in the images (A)-(C). 
(El Filtered diffraction pattern, produced by truncating Fourier transform data away from the calculated layer line positions with a 
Gaussian weighting function (with scale length ~ = 0.5: see text), corresponding to the averaged image in (C). ~ can be adjusted to 

control the extent of averaging (~o = 2.0 for (B) and 0.5 for (C)). 
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hexameric capsomeres packed hexagonally in the 
cylindrical lattice of the tube. A new indexing of 
the reciprocal helical lattice was proposed which 
led to a computer-filtered image demonstrating 
that the repeating unit of the "hexamer" tubes 
consists of a pair of capsomeres. The capsomere 
packing arrangement in the "hexamer" tube 
surface lattice is closely related to the pentagonal 
tessellation previously described for the "penta- 
mer" tubes [8,13]. 

Detailed modeling studies provide sensitive 
measures of the capsomere morphology and orien- 
tation, and have helped characterize the effects of 
differential staining and flattening of specimens 
prepared for microscopy. This report describes 
how model-fitting procedures have been used to 
analyze a typical "hexamer" tube of polyoma virus. 
Our aim is to investigate and compare the packing 
of pentameric morphological units in hexavalent 
environments in both mature virions and in tubes. 
The modeling studies also suggest a new way to 
filter two-sided images when diffraction from the 
opposite halves interfere with each other and can- 
not be separated with conventional masking proce- 
dures [14,15]. 

tional, Inc., Chelmsford, MA) using a 25/~m step 
raster (equivalent to 0.61 nm sampling at the 
specimen) and displayed on a TV graphics moni- 
tor (either a black and white Grinnell GMR-27, 
Grinnell Systems Corp., Santa Clara, CA; or a 
color AED512, Advanced Electronics Design, Inc., 
Sunnyvale, CA). Intensities in the image that are 
well outside the normal range, due to obvious 
flaws such as dust specks or scratches on the 
micrograph, were rescaled by replacing the 
abnormal intensity values with the mean of the 
remaining image intensities. This procedure re- 
duces the noise contributed by such flaws in aver- 
aged images. An appropriate area was boxed, 
floated and its Fourier transform computed on a 
VAX 780 minicomputer (Digital Equipment Corp., 
Maynard, MA). Grey level (256 or fewer steps) 
displays of observed and calculated images, dif- 
fraction patterns and line plots were photographed 
on Panatomic-X or LPD-4 film (Eastman Kodak 
Co. Rochester, NY) using a Matrix Model 3000 
Color Graphic Recorder (Matrix Instruments Inc., 
Northvale, N J). 

3. Image alignment and scaling 

2. Experimental 

Specimen: Fractions enriched in tube aggre- 
gates were prepared by W.T. Murakami (Brandeis 
University). 

Electron microscopy: 0.1 mg/ml  samples were 
adsorbed to carbon or carbon-Formvar support 
films, stained with 1% aqueous, unbuffered uranyl 
acetate and images recorded at 41,000 magnifica- 
tion in a Philips EM301 electron microscope using 
minimal irradiation condit ions (1000-2000 
e - / n m  2 see ref. [16]). The image analyzed in detail 
(fig. 1A) is the same one described previously [12] 
and is typical of the major class of "hexamer" 
tube. It was selected from other similar images on 
the basis of the quality of its optical diffraction 
pattern and because there are several aligned axial 
repeats within the same particle. 

Image processing: The micrograph was digitized 
on an Optronics P1000 Photoscan rotating drum 
scanning microdensitometer (Optronics Interna- 

The image was rotated and reinterpolated so 
that layer lines would be exactly sampled in the 
discrete Fourier transform [17]. The orientation 
and spacing of layer lines was determined by 
projecting the amplitudes in the diffraction pattern 
onto meridian lines within a small angular range 
of the vertical transform sampling direction (fig. 
2). The line which gives maximum reinforcement 
of the projected layer line data defines the angle 
by which the image must be rotated to adjust the 
horizontal sampling direction in the transform to 
be parallel with the layer lines. Fourier transforms 
of the projected amplitude data (corresponding to 
central lines through the autocorrelation function 
of the image) provide an additional measure of the 
alignment and also provide an accurate measure of 
the layer line spacing (fig. 2). The Fourier trans- 
form of the line of projected amplitude data from 
the best orientation will have a prominent peak at 
a distance from the origin reciprocally related to 
the layer line spacing. The amplitude of the peak is 
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Fig. 2. Determination of image orientation and layer line spacing. Left column: Projections of the diffraction pattern amplitudes (fig. 
1 D) onto lines within 3 ° of the vertical sampling direction in the computed Fourier transform. Right column: Fourier transforms of 
each line of projected amplitude data at the left. Maximum reinforcement of the layer lines occurs on the projected line between 0 ° 
and - 1  ° from the vertical (negative sign corresponds to a counterclockwise rotation of the line away from the vertical sampling 
direction of the digitized image). The line at - 1  ° rotation angle shows maximum reinforcement of the 12th layer line (marked by 
arrow). The Fourier transform of this projected data shows a single, prominent peak 64 units from the origin, arising from exact 
sampling of the layer lines every eighth ( = 512/64) point of the projected data. 

E~ro 
Fig. 3. Surface lattice of the polyoma virus hexamer tube 
(shown in fig. 1A). This diagram corresponds to two axial 
repeats of the helix net cut along a line parallel to the axis (the 

vertical direction) opened out flat and viewed from the outside. 
The lattice with unit vectors a, b and included angle y has 
plane group symmetry p2 and the origin is at one of the 2-fold 
axes. (The unit cell shown is the most nearly orthogonal but 
other, more oblique, cells could also be chosen to represent the 
lattice symmetry.) The equatorial vector E 0, connecting nearest 
equivalent points in the equatorial plane, corresponds to a 
rotation of 180 ° about the helix axis since the tube has a 
parallel 2-fold symmetry axis. The particular relation observed 
between the axial repeat vector C O and the equatorial vector E 0 
requires that Ib l= l .5  lal and tany /2=Co/E o. The basic 
helical symmetry, corresponding to the smallest axial transla- 
tion plus rotation relating equivalent points, is represented by 
the dotted arrow at the lower right that is directed in the 1,1 
direction of the plane lattice. The unit axial translation h = 
C0/12 and the screw symmetry o = - 1 2 / 5 = - 2 . 4  corre- 
sponding to a left-handed rotation of ~r/o = 75 °. The line 
group symmetry for this helical lattice is designated D2S24. 
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directly related to the extent of layer line rein- 
forcement in the projected data. Since the layer 
line spacing need not be an integral number, the 
image size was rescaled by interpolation so that 
the layer lines were equally sampled in the Fourier 
transform. 

4. Helical surface lattice 

Determination of the helical lattice symmetry 
did not follow directly from examination of the 
images or their diffraction patterns [12]. Model 
simulations of the two-sided images unequivocally 
established the correct helical symmetry since 
models built with incorrect symmetry did not 
simulate the observed superposition patterns. The 
problems with determining the helical symmetry 
from inspection of the image data can best be 
assesed following the description of the surface 
lattice. 

The surface lattice of the "hexamer" tube 
selected for detailed analysis is diagrammed in fig. 
3. A number of tubes with the same symmetry 
were identified: other tubes have larger or smaller 
diameters but similar orientation of the surface 
lattice unit cell relative to the tube axis. The 
surface lattice has p2 plane group symmetry, and 
one of the four classes of 2-fold axis of this plane 
group is chosen as origin. The other 2-fold axes are 
at the midpoints of the a and b axes and at the 
middle of the cell. The tube surface lattice is 
uniquely specified by the length of the vectors a 
and b of the p2 unit cell, the angle "~ between 
them, and the indices of the circumferential vector, 
corresponding to the base of the lattice in fig. 3. 
This circumferential vector is V = 6a + 4b. Since 
the indices have the common factor 2, this tube 
has a parallel 2-fold axis, and the vector between 
nearest equivalent points in the equatorial direc- 
tion, E 0 = 3a + 2b, corresponds to a 180 ° rotation 
about the tube axis. 

The axial repeat vector is C O = 3 a -  2b. Since 
C O × E 0 = 0, Ib[ = 1.5la I. This simple relation be- 
tween a and b, which is a consequence of the 
relation between the axial and equatorial vectors, 
is not a general property of all "hexamer" tube 
surface lattices. In this particular case I¢01= 
4blsin 3'/2 ( =  6a sin y /2 )  and IE01 = 4b cos y /2 ,  

since the equatorial vector bisects the angle y. 
The length of the axial repeat is C O = 40.7 nm. 

This distance is measured with a precision of 
about 1% by averaging over six repeats. When the 
tube is dried on the grid, it flattens and the near 
side (away from the grid) shrinks relative to the far 
side. The surface lattice unit cell parameters can- 
not be measured with the same precision as the 
axial repeat, but the ratio of b to a does not 
change since the differential shrinkage only occurs 
in the lateral direction. Thus, the length and direc- 
tion of the axial vector are the same for the near 
and far sides. The best measurement of unit cell 
parameters (by fitting a reciprocal lattice net to 
the diffraction pattern of fig. 1D) is for the far side 
a = 9.89 nm, b = 14.84 nm, 3' = 86.6°; and for the 
near side a = 9.15 nm, b = 13.73 nm, y = 95.7 °. 
The decrease for the near side corresponds to a 
lateral shrinkage of about 14%. 

The tube surface lattice can also be uniquely 
specified by its line group symmetry and screw 
axis translation. Line group symmetries are desig- 
nated C, S O or D, So, where Cn and D, represent the 
cyclic or dihedral n-fold rotational point group 
symmetry and S o represents the o-fold screw sym- 
metry. The screw operation consists of a transla- 
tion by a distance h parallel to the axis coupled 
with a rotation q~, to the right or left, about this 
axis. The order of the screw symmetry is defined 
as o = 27r/nq, where n is the order of the rota- 
tional symmetry. The polyoma tubes have dihedral 
symmetry since the p2 surface lattice generates 
dyads perpendicular to the tube axis. The tube in 
fig. 1A has a parallel 2-fold axis, thus the point 
group symmetry is D 2. Along the basic helical 
path, the unit axial translation is h = C0/12 = 3.39 
nm and the rotation is ~ = -5~r /12  = - 7 5  ° (with 
a negative sign for the left-handed twist). Thus, 
o = - 1 2 / 5  = - 2 . 4  and the line group symmetry 

is D2SzA. 
The screw symmetry can be any real number, 

thus there is some finite experimental uncertainty 
in its measurement. For the tube in fig. 1A the 
vector 3 a -  2b is within +0.5 ° of the tube axis. 
This corresponds to an uncertainty of about 0.2% 
in the value of o = -2.40.  The linear distance in 
the tube surface covered by the - 7 5  ° rotation is 
determined by the radius of the tube. The dimen- 
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sions of the far surface of the flattened tube corre- 
spond to a radius r 0 = 13.75 nm, which would be 
the radius of strongest lateral contact between 
capsomeres if there is no distortion on flattening. 
The uncertainty in the estimate of the radius of the 
unflattened tube is large, but its helical symmetry 
is determined with high precision from the image 
modeling. 

The problems involved in estimating the radius 
of the helical lattice from the image of the flat- 
tened tube are related to the difficulties in de- 
termining the helical symmetry from measure- 
ments on the image or its diffraction pattern. In 
the surface lattice shown in fig. 3, there are 10 
parallel helical paths connecting lattice points in 
the 1,1 direction corresponding to the near axial 
rows of capsomeres seen in fig. 1. If the tube were 
completely flattened, 5 such rows should be 
counted on each side. Since the degree of flatten- 
ing cannot be directly assessed (cf. models in fig. 
8), the number of near axial rows of capsomeres 
seen could correspond to from 9 to 12 helical 
paths. 

The number of helical paths in any direction is 
determined by the index of the circumferential 
vector (cf. fig. 3). Measurements of the image or its 
diffraction pattern for helices such as the polyoma 
tubes, in which the circumference is large com- 
pared to the unit cell dimensions, may not uniquely 
define the indices of the circumferential vector. 
Small errors in measurement of the unit cell di- 
mensions and orientation could lead to an incor- 
rect estimate of which lattice vector is exactly 
perpendicular to the tube axis. For example, for 
the surface lattice in fig. 3, the angle between the 
circumferential vector (6a + 4b) and the vector 
with indices 7 a + 5 b  is less than 2 ° . If the 7,5 
vector were, in fact, the circumferential vector, 
then it would be perpendicular to the axial 3,,2 
vector, and the ratio of the b to a unit cell axes 
would be decreased by about 1.5% and the cir- 
cumference would increase by 21% compared to 
the lattice in fig. 3. The change in circumference is 
large, but it is within the range of variation in tube 
diameter due to the plausible differences in flatten- 
ing illustrated in fig. 8; the small differences in 
unit cell axial ratio and orientation for these alter- 
native surface lattices would be very difficult to 
distinguish experimentally. 

The helical surface lattices with a 3,?. axial 
vector and either 6,4 or 7,5 circumferential vector 
would have similar surface appearances and dif- 
fraction patterns, but the descriptions of their 
helical symmetry are different. In the line group 
designation D,,S°, for the 6,4 circumferential vec- 
tor, ; l = 2 ,  o =  - 1 2 / 5  and h = C J 1 2 :  while for 
the 7,5 circumferential vector, n = 1, o = + 2 9 / 1 2  
and h = Co/29. These helices with 10 or 12 near 
axial rows of capsomeres can, however, be dis- 
tinguished by the appearance of the superposition 
of near and far sides of the negatively stained 
tubes, Distinctive features in these superposition 
patterns are determined by the capsomere packing 
arrangement, independent of details in their sub- 
structure. Since the capsomere packing is evident 
from the filtered image [12], calculation of super- 
position patterns from low-resolution models of 
the approximately hexagonally packed capsomeres 
has provided a critical test to uniquely determine 
the helical symmetry of the tube. The superposi- 
tion patterns are very sensitive to the azimuthal 
direction of view (cf. fig. 5) as well as to the index 
of the circumferential vector. A small gallery of 
different views of different helical models based 
on the same basic surface lattice is sufficient to 
identify both the symmetry and azimuthal orienta- 
tion of any tube stained on both sides. 

5. Image averaging and noise filtering 

The image was averaged to improve the signal- 
to-noise ratio and facilitate comparisons with com- 
puted models. Since the axial repeat of the tube 
image is well determined, the image may be trans- 
lationally averaged along the axial direction to 
give a clearer image of the superimposed near and 
far sides of the tube. The tube image was averaged 
using two similar procedures which multiply the 
observed Fourier transform with functions that 
suppress data away from the layer lines. The first 
method weights each point in the Fourier trans- 
form by 

e x p [ - ( d / o o ) : / 2 ] ,  

where d is the distance of the transform point to 
the nearest layer line (in units of scan lines, with 
an 8-scan line separation between layer lines) and 
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o~ is an adjustable scale length controlling the 
extent of averaging and noise reduction. The aver- 
aged image is computed from the inverse Fourier 
transform of the modified diffraction pattern. Each 
axial repeat in the locally averaged image arises 
from a weighted sum of neighboring repeats from 
the original image; repeats in the original image 
are averaged with ~Lheir neighbors in a way that 
emphasizes the contribution of closer neighbors 
relative to those further away. This explains why 
the repeating units are less prominent at the top of 
the averaged image (fig. 1B; ~ = 2.0). 

Averages where the axial repeats are all identi- 
cal were produced either by reducing 0~ (fig. 1C; 

= 0.5) or by zeroing the Fourier transform ev- 
erywhere but directly on the sampled layer lines 
(fig. l lA) .  For the tube analyzed here, the layer 
lines occur on every eighth line of the discrete 
Fourier transform. When ~ = 0.5 the range of 
averaging extends over an axial distance of about 
eight repeats (fig. 1C), which is nearly equivalent 
to giving each repeat in real space equal weight 
since there are only six repeats in the portion of 
the image being averaged. In fig. l lA ,  all six 
repeats in the image have been averaged with 
equal weight corresponding to ~ = 0 which makes 
the reciprocal space weighting function a delta 
function. Since six repeats have been averaged, 
noise is reduced by 5/6;  additional noise was 
removed by imposing a 2.5 nm resolution cutoff 
before the diffraction data were inverse-Fourier- 
transformed to obtain the averaged image. 

6. Computer modeling 

Our analysis of the "hexamer" tubes indicated 
that they are composed of paired pentamers 
arranged so that the pentameric capsomeres are 
packed approximately hexagonally. The motif (pair 
of capsomeres) was modeled using four adjustable 
parameters as illustrated in fig. 4. Each capsomere 
consists of five Gaussian spheres of radii r 3 at a 
distance r 2 from a strict five-fold rotational sym- 
metry axis. The pair of pentamers were oriented 
with a pair of edges apposed corresponding to the 
edge-to-edge contact seen in the capsid [9] and in 
the pentamer tubes [8]. The center-to-center sep- 

aration of capsomeres in each pair is r I and the 
angular orientation of the pair relative to the di- 
rection of the tube axis is given by ~p. The pen- 
tamer pairs were arranged on a p2 plane surface 
lattice whose dimensions were measured from the 
indexed lattice of the experimental diffraction pat- 
tern corresponding to the far side of the tube 
facing the support film of the microscope grid. The 
surface lattice was rolled into a cylinder forming a 

Fig. 4. Adjustable parameters of the paired pentamer model 
that were refined to fit the electron microscope image. The 

dimer of pentamers is constrained to have the line connecting 
their centers bisect the parallel pair of pentagon edges adjoin- 

ing the 2-fold axis chosen as origin. The other classes of 2-fold 

axes, at the mid-point of the edges and at the center of the cell, 

are marked for one unit cell. The adjustable parameters are r 3, 
the radius of a subunit; r 2, the distance of the subunit center 

from the center of the pentagon; r 1, the distance of the penta- 
gon center from the 2-fold axis; and ~b, the angle between the 

vector rl and the line parallel to the axis through the 2-fold 
axis. The unit vectors a and b are drawn with the dimensions of 

the tube surface lattice in contact with the grid (the far side), 
which appears to be the least distorted laterally. The radius of 

the tube corresponding to this surface is r 0 = 13.75 nm. The 
parameters which best fit the experimental image are ~ = 80 °, 
r 1 = 4.25 nm, r 2 = 2.72 nm and r 3 = 1.75 nm. With these param- 
eters, the edge-to-edge contacts in the nearly horizontal and 
vertical directions are quasi-equivalently related by the local 
5-fold axes of the capsomeres. This quasi-symmetry relation 
was not imposed on the model, but is implied by the image 
data. 
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helical  la t t ice with the a p p r o p r i a t e  d iamete r  (2r0) 
and  axial repeat  C0. The  th ree-d imens iona l  model  
dens i ty  d i s t r ibu t ion  was pro jec ted  a long a chosen 
az imutha l  o r ien ta t ion  (~)  to give the two-dimen-  
s ional  superpos i t ion  image which was subse- 
quent ly  Fou r i e r - t r ans fo rmed  and  c o m p a r e d  with 
the exper imenta l  data .  The  super imposed  image of 
the near  and  far sides of  the tube changes signifi- 
can t ly  for very small  changes  in the az imuthal  
o r ien ta t ion  angle ~ (fig. 5). 

The  pa rame te r s  r~, r 2, r~, ~ and ~/were ini t ial ly 
es t imated  by  direct  inspect ion  of the averaged 
image  (fig. 1C) which shows a dis t inct ive  pentago-  

nal "eye"  feature near  the axis arising from a lmost  
exact  superpos i t ion  of capsomeres  on the two sides 
of the s ta ined specimen.  The effect of var ia t ion  in 
o r ien ta t ion  of the pa i r  of pen tamers  in the unit  
cell, def ined by the angle +, is i l lus t ra ted in fig. 6; 
and  coupled  var ia t ion  in the size and separa t ion  of 
the pentamers ,  def ined  by rl ,  r 2 and  r~, is il- 
lus t ra ted  in fig. 7. 

Differential flattening and staining. Both the ex- 
per imenta l  image (fig. 1A) and its d i f f rac t ion  pat-  
tern (fig. 1D) show clear  depar tures  f rom the 
mi r ro r  symmet ry  that  would be expected if the 
helical  s t ructure  with a paral le l  2-fold axis were 

Fig. 5. Views of a helically symmetric model computed with equal contrast on the near and far sides and without flattening. The 
model is rotated by 1.25 ° about its axis between successive images, starting with the orientation in (A) which best represents the 
orientation of the tube in fig. 1. The range within which views are unique is 3.75 ° (2~/96) for a helical structure with the surface 
lattice symmetry shown in fig. 3. (Other model parameters are the same as in fig. 4.) 
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Fig. 6. Helically symmetric models with variation in the angular orientation of the motif. (~b = 70 °, 75 °, 80 °, 85 ° and 90 ° for (A)-(E); 
other parameters are the same as in fig. 4.) 

undistorted.  Loss of mirror  symmetry (across the 
tube axis of the image or the vertical line of the 
diffract ion pat tern)  is mainly  at t r ibuted to the 
effects of differential  f lat tening and staining of the 

two halves of the specimen prepared for electron 
microscopy. Several schemes for model ing the 

specimen f lat tening were tested. The effects of 
symmetric and asymmetric  f lat tening are il- 
lustrated in figs. 8 and 9, respectively. An  asym- 
metrically f lat tened model gives good agreement 
with the observed images. Elliptically distorted 
models could not  be adjusted to approximate  the 

Fig. 7. Helically symmetric models with variation in the motif size. (r 1 , r 2 and r 3 are all scaled by 1.11, 1.06, 1.00, 0.94 and 0.89 relative 
to the values given in fig. 4 for models A-3.) 
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experimental  data. Difference in stain contrast  on 
the two sides was modeled (fig. 10) by varying the 
mass density of the capsomere subuni ts  on the 
near and far sides. 

Comparison and refinement of models with ex- 
perimental data. Parameters such as the axial re- 
peat distance and the helical surface lattice sym- 
metry are fixed for the part icular  tube image 
analyzed. Other parameters  in the model were 
adjusted by an iterative t r ial-and-error  procedure 
unt i l  a reasonable fit with the experimental  data 

was obtained.  Judgement  of fit was based on 
compar ing  both the experimental  and model 

images and their diffraction patterns.  Fig. 11 com- 
pares the axially averaged image (A) with a refined 
model (B) and fig. 12 compares the corresponding 
computed  diffraction patterns.  Fig. 13 compares 

the experimental  and  model diffraction data along 
12 non-equator ia l  layer lines. 

The ref inement  procedure was aided by the fact 
that certain layer lines are more sensitive than 
others to adjus tments  of part icular  parameters.  
For  example, on layer line 2 (fig. 13) the outer 

peaks are sensitive to differences in contrast  be- 
tween the near and far sides whereas the two peaks 

near  the meridian are more affected by the orien- 

Fig. 8. Symmetrically flattened models with variation in the extent of flattening on the two sides. The upper third of each view shows 
only the near half. End-on views along the axis are shown below each corresponding view normal to the flattened surface. The fraction 
of each model which is flattened is 0.00, 0.50, 0.67, 0.83 and 1.00 for (A)-(E). The widths of the models (relative to an unflattened 
model) are 1.00, 1.08, 1.18, 1.34 and 1.57 ( = rr/2) for (A)-(E). (Other model parameters are the same as for fig. 4.) 



Fig. 9. Asymmetrically flattened models with variable flattening and lateral distortion of the surface lattice on the near side. In all 
models the far half is flattened to the same extent (0.72), thus fixing the width at 1.23 times that of an unflattened model. Motifs in the 
near half are expanded (A, B) or compressed (C, D, E) in a direction normal to the tube axis in the plane of flattening, to maintain the 
particle width and accommodate flattening which differs from that on the far side. The flattened portion of the near side is laterally 
distorted relative to the flattened portion of the far side by 1.14, 1.04, 0.96, 0.87 and 0.78 for (A)-(E). The upper third of each side 
view shows the near side only. The far side (same for all models) is shown in the lower third of the model A. Cross-sectional views of 
the five models appear below each corresponding projected view normal to the surface. (Other parameters are the same as for fig. 4.) 

Fig. 10. Models computed with differential contrast on the near and far halves. The relative contrasts between near and far sides for 
(A)-(E) are 4.0, 2.0, 1.0, 0.5 and 0.25. (Other model parameters are the same as for fig. 9D.) 
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tation of the motif; the position and shape of the 
main peaks on layer line 3 are sensitive to the 
degree of differential flattening in the two sides. 

Although individual parameters may be refined 
independently from all others, some such as r 1, r 2 
and r 3 are strongly coupled. It is reasonable, for 
instance, to expect r 1 and r 2 to increase if the 
subunits are made larger (r3). Variations of r 1, r 2 ,  

r 3 (fig. 7) and ~b (fig. 6) effect the superposition 
pattern close to the tube axis, whereas departures 
from mirror symmetry caused by differential flat- 
tening (fig. 9) and staining (fig. 10) are most 
prominent near the tube edges. It was helpful, 
therefore, to initiate refinement of the differential 
staining and flattening parameters by comparing 
features at the edges showing departures from 
mirror symmetry with the corresponding areas in 
the experimental image. Parameters were refined 
by trial and error until further changes failed to 
significantly improve the fit of model and experi- 
mental data. To a resolution of 3.3 nm the model 
built with symmetric pentamers of spherical sub- 

Fig. 11. Comparison of the averaged experimental image (A) 
with a model simulation (B). Parameters in the model are the 
same as those in fig. 9D except that the relative contrast 
between near and far halves is 1.25. 

units provides a close approximation to the 
hexamer tube structure revealed by negative stain. 

7. Conclusion 

The fit obtained with the observed polyoma 
"hexamer"  tube image shows that a pentamer 
model built of circular subunits provides a good 
approximation to the projected image of the 
capsomere viewed along its axis. On the diffrac- 
tion pattern of the image, however, there are some 
clear spots at spacings beyond 1 /3  nm spacing 
that are not present in the diffraction pattern of 
the model. This implies that there is substructure 
in the capsomere that cannot be represented by 
the circular subunit model. Attempts to construct 
more elaborate models to fit the data may not be 
rewarding. The diffraction data from the model 
can, however, be used as a constraint to refine the 
image data by procedures analogous to those used 
in low-resolution refinement of crystallographic 
data [18]. Such an approach should extract the 
clearest representation of the capsomere substruc- 
ture available from the electron microscope image. 

Model-based refinement methods in electron 
image analysis may provide a way to separate high 
resolution images of overlapped lattices in which 
interference effects would confuse the details that 
could be resolved in the individual layers using 
filtering or correlation methods (fig. 14). The re- 
sults reported here demonstrate distinctive ad- 
vantages of image modeling methods in defining 
the large-scale, helical symmetry of flattened tube 
structures as well as identifying non-crystallo- 
graphic symmetry within the small-scale repeating 
unit of the helical surface lattice. Furthermore, 
image modeling provides a critical way to account 
for differences in the images of overlapped layers 
that are due to differential distortion and staining. 

Significant details of the pentameric capsomere 
substructure and bonding relations have been re- 
solved by image modeling applied to the selected 
polyoma "hexamer"  tube described here. These 
features correlate well with the morphology and 
packing arran.gement of the capsomeres revealed 
by the 22.5 A resolution electron density map 
derived from the X-ray diffraction data [9]. Sys- 



T.S. Baker, D.L.D. Caspar / Computer image modeling of pentamer packing 149 

t e m a t i c  a p p l i c a t i o n  of  t he  i m a g e  m o d e l i n g  m e t h -  

o d s  to  m i c r o g r a p h s  of  a v a r i e t y  of  p o l y o m a  v i rus  

t u b e  s t r u c t u r e s  wil l  p r o v i d e  a n  o b j e c t i v e  w ay  to 

d e f i n e  the  c o n s e r v e d  a n d  v a r i a b l e  b o n d i n g  i n t e r a c -  

t i o n s  of  t he  p e n t a m e r i c  c a p s o m e r e s  t h a t  l ead  to 

t he  f o r m a t i o n  of  a r a n g e  of  p o l y m o r p h i c  a s s e m -  

b l i e s  in w h i c h  i d e n t i c a l  s u b u n i t s  a re  n o n - e q u i v a -  

l e n t l y  re la ted .  

Fig. 12. Comparison of the computed diffraction patterns from the filtered experimental image (A, B; same as fig. 1E) and from the 
model shown in fig. 11B (C, D). (A) and (C) show the indexed reciprocal lattices from the near sides of the experimental and model 
images, and (B) and (D) show the far-side indexing. The near and far lattices are not mirror-symmetric due to the unequal distortions 
in the two halves of the tube specimen; this differential shrinkage is actually simulated in the diffraction patterns of the model. In the 
example shown, the flattening on the two halves fortuitously leads to overlaps of some reciprocal lattice points from the two sides on 
the 6th and 7th layer lines (the two lattices necessarily overlap at the meridional position on the 12th layer line for a helical structure 
with o = 12/5 screw symmetry). 
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Fig. 13. Comparison of the amplitudes along non-equatorial 
layer lines for the experimental (solid) and model (dotted) data. 
The scale factor between data sets is constant  for all layer lines 
shown. The two sets of data differ most on the equator (not 
shown) and layer line 5 due to the large contrast difference 
between the edges of the model and its background compared 
with the stained specimen supported on a carbon substrate. 
Large differences near the ends of the layer lines (i.e. at higher 
resolution) reflect the higher noise in the experimental data. 
The  close correspondence of the strong peaks comparing the 

LL1 .., 

Fig. 14. Examples of interference in the diffraction from the 
two sides of the model. The solid curves plot the diffraction 
from the two-sided model for layer lines 1, 2 and 5. (These 
curves are identical to the corresponding dotted curves in fig. 
13.) In each pair of layer line plots, the contribution of the near 
and far sides alone is shown by the upper and lower dotted 
curve respectively. The measured amplitude is not simply the 
sum of the near and far sides calculated separately. The inter- 
ference effects, for example, lead to cancellation of subsidiary 
fringes at the center of layer line 1 and to enhancement  of the 
outer fringes on layer line 5. Furthermore, peaks corresponding 
to lattice points overlap on layer line 1 and are shifted and 
modulated by overlapping subsidiary fringes on layer lines 2 
and 5. These examples illustrate that interference effects make 
it difficult to separate the diffraction from the two sides by 
straightforward filtering procedures. More elaborate decon- 
volution procedures could be used to recover the undistorted 
diffraction from each side. 

experimental and model transforms provides an objective mea- 
sure of how well the model built with dimers of pentamers  
represents the structure of this "hexamer"  tube. 
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