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ABSTRACT OF THE DISSERTATION

Adaptive Resource Management for Mobile Multiprocessors through Computational
Self-Awareness

By

Bryan Donyanavard

Doctor of Philosophy in Computer Science
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Nikil Dutt, Chair

Runtime resource management for many-core systems is increasingly complex. The complexity

can be due to diverse workload characteristics with conflicting demands or limited shared resources

such as memory bandwidth and power. Resource management strategies for many-core systems

must distribute shared resource(s) appropriately across workloads, while coordinating the high-

level system goals at runtime in a scalable and robust manner.

To address the complexity of dynamic resource management in many-core systems, state-of-the-art

techniques that use heuristics have been proposed. These methods lack the formalism in providing

robustness against unexpected runtime behavior. One of the common solutions for this problem

is to deploy classical control approaches with bounds and formal guarantees. Traditional control

theoretic methods lack the ability to adapt to (1) changing goals at runtime (i.e., self-adaptivity),

and (2) changing dynamics of the modeled system (i.e., self-optimization).

In this thesis, I explore adaptive resource management techniques that provide self-optimization

and self-adaptivity by employing principles of computational self-awareness, specifically reflec-

tion. By supporting these self-awareness properties, the system will reason about the actions it

takes by considering the significance of competing objectives, user requirements, and operating

conditions while executing unpredictable workloads.
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Chapter 1

Introduction

Battery powered-devices are the most ubiquitous computers in the world. Users expect the devices

to support high performance applications running on same device, sometimes at the same time.

The devices support a wide range of applications, from interactive maps and navigation, to web

browsers and email clients. In order to meet the performance demands of the complex workloads,

increasingly powerful hardware platforms are being deployed in battery-powered devices. These

platforms include a number of configurable knobs that allow for a tradeoff between power and

performance, e.g., dynamic voltage and frequency scaling (DVFS), core gating, idle cycle injec-

tion, etc. These knobs can be set and modified at runtime based on workload demands and system

constraints. Heterogeneous manycore processors (HMPs) have extended this principle of dynamic

power-performance tradeoffs by incorporating single-ISA, architecturally differentiated cores on a

single processor, with each of the cores containing a number of independent tradeoff knobs. All

of these configurable knobs allow for a large range of potential tradeoffs. However, with such a

large number of possible configurations, HMPs require intelligent runtime management in order

to achieve application goals for complex workloads while considering system constraints. Ad-

ditionally, the knobs may be interdependent, so configuration decisions must be coordinated. In
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this thesis, we explore the use of computational self-awareness to address challenges of adaptive

resource management in mobile multiprocessors.

1.1 Background and Related Work

Self-aware computing is a new paradigm that does not strictly introduce new research concepts,

but unifies overlapping research efforts in disparate disciplines [49]. The concept of self-awareness

from psychology has inspired research in autonomous systems and neuroscience, and existing

research in fields such as adaptive control theory support properties of self-awareness. This thesis

employs principles of self-awareness in order to make the design, maintenance and operation of

complex, heterogeneous systems adaptive, autonomous, and highly efficient.

1.1.1 Computational Self-Awareness

Computational self-awareness is the ability of a computing system to recognize its own state, pos-

sible actions and the result of these actions on itself, its operational goals, and its environment,

thereby empowering the system to become autonomous [40]. An infrastructure for system intro-

spection and reflective behavior forms the foundation of self-aware systems.

Reflection

Reflection can be defined as the capability of a system to reason about itself and act upon this in-

formation [83]. A reflective system can achieve this by maintaining a representation of itself (i.e.,

a self-model) within the underlying system, which is used for reasoning. Reflection is a key prop-

erty of self-awareness. Reflection enables decisions to be made based on both past observations,

as well as predictions made from past observations. Reflection and prediction involve two types of

2



Controller
Decide

Predict

System—
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Figure 1.1: Feedback loop overview. The bottom part of the figure represents a simple observe-
decide-act loop. The top part (in blue) adds the reflection mechanism to this loop, enabling predic-
tions for smart decision making.

models: (1) a self-model of the subsystem(s) under control, and (2) models of other policies that

may impact the decision-making process. Predictions consider future actions, or events that may

occur before the next decision, enabling ”what-if” exploration of alternatives. Such actions may

be triggered by other resource managers running with a shorter period than the decision loop. The

top half of Figure 1.1 (in blue) shows prediction enabled through reflection that can be utilized

in the decision making process of a feedback loop. The main goal of the prediction model is to

estimate system behavior based on potential actuation decisions. This type of prediction is most

often performed using linear regression-based models [61, 70, 1, 81] due to their simplicity, while

others employ a binning-based approach in which metrics sensed at runtime are used to classify

workloads into categories [50, 19].

1.1.2 Closed-loop Resource Management in Mobile Systems

Runtime resource management for many-core systems is increasingly challenging due to the com-

plex interaction of: i) integrating hundreds of (heterogeneous) cores and uncore components on a

single chip, ii) limited amount of system resources (e.g., power, cores, interconnects), iii) diverse

workload characteristics with conflicting constraints and demands, and iv) increasing pressure on

shared system resources from data-intensive workloads. As system size and capability scale, de-

signers face a large space of configuration parameters controlled by actuation knobs, which in

turn generate a very large number of cross-layer actuation combinations [105]. Making runtime

3



decisions to configure knobs in order to achieve a simple goal (e.g., maximize performance) can

be challenging. That challenge is exacerbated when considering a goal that may change through-

out runtime, and consist of conflicting objectives (e.g., maximize performance while minimizing

power consumption). Additionally, ubiquitous mobile devices are expected to be general-purpose,

supporting any combination of applications (i.e., workloads) desired by users, often without any

prior knowledge of the workload.

Designers face a large space of configuration parameters that often are controlled by a multiple

actuation knobs, which in turn generate a very large number of cross-layer actuation configu-

rations. For instance, Zhang and Hoffman [105] show that for an 8-core Intel Xeon processor,

combining only a handful of actuation knobs (such as clock frequency and Hyperthreading levels)

generates over 1000 different actuation configurations; they use binary search to efficiently explore

the configuration space for achieving a single goal: cap the Thermal Design Power (TDP) while

maximizing performance.

Closed-loop systems have been used extensively to improve the state of a system by configuring

knobs in order to achieve a goal. Closed-loop systems traditionally deploy an Observe, Decide and

Act (ODA) feedback loop (lower half (in black) of Figure 1.1) to determine the system configura-

tion. In an ODA loop, the observed behavior of the system is compared to the target behavior, and

the discrepancy is fed to the controller for decision making. The controller invokes actions based

on the result of the Decide stage.

Resource management approaches in the literature can be classified into three main classes: (1)

hueristic-based-approaches [67, 31, 56, 28, 90, 88, 29, 39, 18, 27, 7, 22, 23, 17, 42, 105, 3, 94,

96, 103, 53, 85, 95, 62, 19, 24, 16, 25, 14, 13, 8, 86, 87, 65, 64, 66], (2) control-theory-based

approaches [55, 38, 73, 74, 58, 102, 100, 26, 54, 63, 43, 36, 80, 44, 30, 68], and (3) stochastic-

/machine-learning-based approaches [10, 9, 59, 12, 46, 4]. There exist some proposed solutions

that incorporate aspects of multiple categories, e.g., there are a number of works that use learning

to build predictive models, and use heuristics to make runtime decisions based on the predictive

4



models [7, 22, 23, 19]. Recent work has combined aspects of machine learning and feedback

control [59]. In addition, there have been efforts to enable coordinated management in computer

systems in various ways [7, 71, 10, 92, 41, 99, 89, 93, 11, 23, 25, 24, 16, 14, 84, 47, 15, 69]. These

works coordinate and control multiple goals and actuators in a non-conflicting manner by adding

an ad-hoc component or hierarchy to a controller.

In this thesis, I demonstrate the effectiveness of computational self-awareness in adaptive resource

management for mobile processors. The self-aware resource managers discussed are implemented

using classical and hierarchical control.

1.2 Challenges and Contributions

In this thesis, I focus on the following challenges in the context of mobile resource management:

1. Efficiency: How can we design lightweight, yet responsive controllers?

2. Coordination: How do we control and coordinate (possibly conflicting) actuations while

tracking multiple objectives simultaneously (e.g., frame rate and chip power)?

3. Scalability: How can we properly design control hierarchies to manage large and complex

systems?

4. Autonomy: How can controllers automatically respond to abrupt runtime changes in objec-

tives (e.g., changing the priority of objectives)?

(1) Efficiency is a base requirement of any runtime resource management policy: runtime decisions

must be made with justifiable overhead. (2) Coordination and (3) scalability apply to both the

number of control knobs and system configurations, as well as the amount of system resources.

(4) Autonomy is crucial: system goals need to be adaptively managed and objectives holistically

5
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Figure 1.2: Hierarchical resource manager.

coordinated in the face of varying conditions over time. Present solutions [69, 59] suggest that

hierarchy is essential when considering the challenges in runtime resource management of modern

mobile systems.

Figure 1.2 shows the hierarchical approach to resource management I propose. Deploying mul-

tiple low-level controllers allows for system decomposition for scalability. A high-level super-

visor provides coordination and self-awareness by guiding the low-level controllers. Using this

resource management hierarchy, I will provide self-awareness properties to address the identified

challenges.
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Chapter 2

Self-Adaptive Supervision

2.1 Self-Adaptivity

Self-adaptivity is the ability of a system to adjust to changes in goals due to external stimuli, i.e., an

effect that is not within the scope of control. For example, if a system experiences a thermal event

due to increased ambient temperature during a computational sprint and enters an unsafe state, a

self-adaptive manager will have the ability to modify the goal from maximizing performance to

minimizing temperature.

2.2 Motivation

Controllers may behave non-optimally, or even detrimentally, in meeting a shared goal without

knowledge of the presence or behavior of seemingly orthogonal controllers [75, 7, 93, 26, 24, 14].

Consider the MIMO controller in Figure 2.1 that controls a single-core system with two control

inputs (u(t)) and interdependent measured outputs (y(t)) [68]. The controller tracks two objec-

tives (frames per second, or FPS, and power consumption) by controlling two actuators (operating

7
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Figure 2.1: Basic 2×2 MIMO for single-core system. Clock frequency and cache size are used as
control inputs. FPS and power are measured outputs that are compared with reference (i.e., target)
values.

frequency and cache size). We implement the MIMO using a Linear Quadratic Gaussian (LQG)

controller [82] similarly to [68]:

x(t +1) = A× x(t)+B×u(t) (2.1)

y(t) = C× x(t)+D×u(t) (2.2)

where x is the system state, y is the measured output vector, and u is the control input vector.1

LQG control allows us to specify 1) the relative sensitivity of a system to control inputs, and 2) the

relative priority of measured outputs. This is done using 1) a weighted Tracking Error Cost matrix

(Q) and 2) a Control Effort Cost matrix (R). The weights are specified during the design of the

controller. While this is convenient for achieving a fixed goal, it can be problematic for goals that

change over time (e.g., minimizing power consumption before a predicted thermal emergency).

The controller must choose an appropriate trade-off when we cannot achieve both desirable per-

formance and power concurrently. Unfortunately, classical MIMOs fix control weights at design

time, and thus cannot perform runtime tradeoffs that require changing output priorities. Even with

1We interchangeably use the terms (measured output and sensor), as well as the terms (control input and actuator),
as shown in Figure 2.1.
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constant reference values, i.e., desired output values, unpredictable disturbances (e.g., changing

workload and operating conditions) may cause the reference values to become unachievable. It is

also plausible for the reference values themselves to change dynamically at runtime with system

state and operating conditions (e.g., a thermal event).

Let us now consider a more complex scenario: a multi-threaded application running on Linux,

executing on a mobile processor, where the system needs to track both the performance (FPS)

and power simultaneously. Figure 2.1 shows the 2×2 MIMO model for this system with operat-

ing frequency and the number of active cores as control inputs, and FPS and power as measured

outputs.

Both the FPS and power reference values are trackable individually, but not jointly. We implement

and compare two different MIMO controllers in Linux to show the effect of competing objectives.

One controller prioritizes FPS, and the other prioritizes power. Figure 2.2 shows the power and

performance (in FPS) achieved by each MIMO controller using typical reference values for a mo-

bile device: 60 FPS and 5 Watts. The application is x264, and the mobile processor consists of an

ARM Cortex-A15 quad-core cluster. Each MIMO controller is designed with a different Q matrix

to prioritize either FPS or power: Figure 2.2a’s controller favors FPS over power by a ratio of

30:1 (i.e., only 1% deviation from the FPS reference is acceptable for a 30% deviation from the

power reference), while Figure 2.2b uses a ratio of 1:30. We observe that neither controller is able

to manage changing system goals. Thus, there is a need for a supervisor to autonomously orches-

trate the system while considering the significance of competing objectives, user requirements, and

operating conditions.

The use of supervisory control presents at least three additional advantages over conventional con-

trollers. First, fully-distributed MIMO or SISO controllers cannot address system-wide goals such

as power capping. Second, conventional controllers cannot model actuation effects that require

system-wide perspective, such as task migration. Third, classical control theory cannot address

problems requiring optimization (e.g., minimizing an objective function) alone [45, 68].
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(a) FPS-oriented controller. (b) Power-oriented controller.

Figure 2.2: x264 running on a quad-core cluster controlled by 2×2 MIMOs with different output
priorities.

2.3 Supervisory Control Theory

Supervisory control utilizes modular decomposition to mitigate the complexity of control prob-

lems, enabling automatic control of many individual controllers or control loops. Supervisory con-

trol theory (SCT) [76] benefits from formal synthesis methods to define principal control properties

for controllability and observability. The emphasis on formal methods in addition to modularity

leads to hierarchical consistency and non-conflicting properties.

SCT solves complex synthesis problems by breaking them into small-scale sub-problems, known

as modular synthesis. The results of modular synthesis characterize the conditions under which

decomposition is effective. In particular, results identify whether a valid decomposition exists. A

decomposition is valid if the solutions to sub-problems combine to solve the original problem, and

the resulting composite supervisors are non-blocking and minimally restrictive. Decomposition

also adds robustness to the design because nonlinearities in the supervisor do not directly affect the

system dynamics. This horizontal decomposition in sub-problems allows us to divide the overall

system into several smaller subsystems which are controlled by individual controllers.

Figure 1.2 illustrates how a supervisory control structure can hierarchically manage feedback con-

trol loops. As shown in the figure, supervision is vertically decomposed into tasks performed at
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different levels of abstraction [91]. The supervisory controller is designed to control the high-

level system model, which represents an abstraction of the system. The subsystems compose the

pre-existing system that does not meet the given specifications without the aid of a controller or

a supervisor. The information channel provides information about the updates in the high-level

model to the supervisory controller. Due to the fact that the system model is an abstract model,

the controlling channel is an indirect virtual control channel. In other words, the control deci-

sions of the supervisory controller will be implemented by controlling the low-level controller(s)

through control parameters. Consequently, the low-level controller(s) can control one or multiple

subsystems using the control channel and gather information via feedback. The changes in the

subsystems can trigger model updates in the state of the high-level system model. These updates

reflect the results of low-level controllers’ controlling actions.

The scheme of Figure 1.2 describes the division of supervision into high-level management and

low-level operational supervision. Virtual control exercised via the high-level control channel

can be implemented by modifying control parameters to adaptively coordinate the low-level con-

trollers, e.g., by adjusting their operating modes according to the system goal. The combination of

horizontal and vertical decomposition enables us to not only physical divide the system into sub-

systems, but also to logically divide the sub-problems in any appropriate way, e.g., due to varying

epochs (control invocation period) or scope. The important requirement of this hierarchical control

scheme is control consistency and hierarchical consistency between the high-level model and the

low-level system, as defined in the standard Ramadge-Wonham control mechanism [91]. For a

detailed description of SCT, we refer the reader to [76, 77, 5, 91].

2.3.1 Self-Adaptivity via Supervision

Supervisory controllers are preferable to adaptive (self-tuning) controllers for complex system

control due to their ability to integrate logic with continuous dynamics. Specifically, supervisory
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Figure 2.3: Self-Adaptivity via Supervisory Control Theory.

control has two key properties: i) rapid adaptation in response to abrupt changes in management

policy [35], and ii) low computational complexity by computing control parameters for different

policies offline.

Figure 2.3 depicts the two mechanisms that enable SCT-based management via low-level con-

trollers: gain scheduling and dynamic references. Gain scheduling is a nonlinear control tech-

nique that uses a set of linear controllers predesigned for different operating regions. Gain schedul-

ing enables the appropriate linear controller based on runtime observations [48]. Scheduling is

implemented by switching between sets of control parameters, i.e., A1→A2, B1→B2, C1→C2, and

D1→D2 in Equations 2.1 and 2.2. In this case, the controller gains are the values of the con-

trol parameters A, B, C, and D. Gains are useful to change objectives at runtime in response to

abrupt and sudden changes in management policy. In LQG controllers, this is done by changing

priorities of outputs using the Q and R matrices (Section 2.2). This is what we call the Hier-

archical Control structure, in which local controllers solve specified tasks while the higher-level

supervisory controller coordinates the global objective function. In this structure, the supervisory

controller receives information from the plant (e.g., the presence of a thermal emergency) or the

user/application (e.g., new QoS reference value), and steers the system towards the desired policy
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using its design logic and high-level model. Thanks to its top-level perspective, the supervisor can

update reference values for each low-level controller to either optimize for a certain goal (e.g., get-

ting to the optimum energy-efficient point) or manage resource allocation (e.g., allocating power

budget to different cores).

2.4 Case Study: On-chip Resource Management

In this section, supervisors are designed and evaluated for two different hierarchical resource man-

agement use-cases. The first use-case requires management of QoS under a power budget on a

HMP. The resource manager (SPECTR) consists of a supervisor that guides low-level classical

controllers to configure core operating frequency and number of active cores for each core cluster.

The second use-case requires management of QoS under a power budget for a CMP. The resource

manager (SOSA) consists of a supervisor that guides low-level reinforcement learners to configure

per-core operating frequency, as well as make requests for task migration.

2.4.1 Hierarchical System Architecture

Figure 2.4 depicts a high-level view of SPECTR for many-core system resource management.

Either the user or the system software may specify Variable Goals and Policies. The Supervisory

Controller aims to meet system goals by managing the low-level controllers. High-level decisions

are made based on the feedback given by the High-level Plant Model, which provides an abstraction

of the entire system. Various types of Classic Controllers, such as PID or state-space controllers,

can be used to implement each low-level controller based on the target of each subsystem. The

flexibility to incorporate any pre-verified off-the-shelf controllers without the need for system-wide

verification is essential for the modularity of this approach. The supervisor provides parameters

such as output references or gain values to each low-level controller during runtime according to
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Figure 2.4: SPECTR overview.

the system policy. Low-level controller subsystems update the high-level model to maintain global

system state, and potentially trigger the supervisory controller to take action. The high-level model

can be designed in various fashions (e.g., rule-based or estimator-based [77][35][60]) to track the

system state and provide the supervisor with guidelines. We illustrate the steps for designing a

supervisory controller using the following experimental case study in which SCT is deployed on

a real HMP platform, and we then outline the entire design flow from modeling of the high-level

plant to generating the supervisory controller.

2.4.2 SPECTR Resource Manager

Figure 2.5 shows an overview of our experimental setup. We target the Exynos platform [32],

which contains an HMP with two quad-core clusters: the Big core cluster provides high-performance

out-of-order cores, while the Little core cluster provides low-power in-order cores. Memory is

shared across all cores, so application threads can transparently execute on any core in any cluster.

We consider a typical mobile scenario in which a single foreground application (the QoS appli-
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Figure 2.5: SPECTR implementation on the Exynos HMP with two heterogeneous quad-core clus-
ters. Representing a typical mobile scenario with a single foreground application running concur-
rently with many background applications.

cation) is running concurrently with many background applications (the Non-QoS applications).

This mimics a typical mobile use-case in which gaming or media processing is performed in the

foreground in conjunction with background email or social media syncs.

The system goals are twofold: i) meet the QoS requirement of the foreground application while

minimizing its energy consumption; and ii) ensure the total system power always remains below

the Thermal Design Power (TDP).

The subsystems are the two heterogeneous quad-core (Big and Little) clusters. Each cluster has

two actuators: one actuator to set the operating frequency (Fnext) and associated voltage of the

cluster; and one to set the number of active cores (ACnext) on the cluster. We measure the power

consumption (Pcurr) of each cluster, and simultaneously monitor the QoS performance (QoScurr)

of the designated application to compare it to the required QoS (QoSref).2

2 The Exynos platform provides only per-cluster power sensors and DVFS; hence our use of cluster-level sensors
and actuators.
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Supervisory control commands guide the low-level MIMO controllers in Figure 2.5 to determine

the number of active cores and the core operating frequency within each cluster.

Supervisory control minimizes the system-wide power consumption while maintaining QoS. In

our scenario, the QoS application runs only on the Big cluster, and the supervisor determines

whether and how to adjust the cluster’s power budget based on QoS measurements.

Gain scheduling is used to switch the priority objective of the low-level controllers. We define two

sets of gains for this case-study: 1) QoS-based gains are tuned to ensure that the QoS application

can meet the performance reference value, and 2) Power-based gains are tuned to limit the power

consumption while possibly sacrificing some performance if the system is exceeding the power

budget threshold.

2.4.3 SPECTR Experimental Evaluation

We compare SPECTR with three alternative resource managers. The first two managers use two

uncoordinated 2×2 MIMOs, one for each cluster: MM-Pow uses power-oriented gains, and MM-

Perf uses performance-oriented gains. These fixed MIMO controllers act as representatives of

a state-of-the-art solution, as presented in [68], one prioritizing power and the other prioritizing

performance. The third manager consists of a single full-system controller (FS): a system-wide

4×2 MIMO with individual control inputs for each cluster. FS uses power-oriented gains and its

measured outputs are chip power and QoS. This single system-wide MIMO acts as a representative

for [105], maximizing performance under a power cap.

We analyze an execution scenario that consists of three different phases of execution:

1. Safe Phase: In this phase, only the QoS application executes (with an achievable QoS refer-

ence within the TDP). The goal is to meet QoS and minimize power consumption.
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2. Emergency Phase: In this phase, the QoS reference remains the same as that in the Safe

Phase while the power envelope is reduced (emulating a thermal emergency). The goal is to

adapt to the change in reference power while maintaining QoS (if possible).

3. Workload Disturbance Phase: In this phase, the power envelope returns to TDP and back-

ground tasks are added (to induce interference from other tasks). The goal is to meet the

QoS reference value without exceeding the power envelope.

This execution scenario with three different phases allows us to evaluate how SPECTR compares

with state-of-the-art resource managers when facing workload variation and system-wide changes

in state (e.g., thermal emergency) and goals.

Evaluated resource manager configurations

We generate stable low-level controllers for each resource manager using the Matlab System Iden-

tification Toolbox [57].3 We use the Control Effort Cost matrix (R) to prioritize changing clock

frequency over number of cores at a ratio of 2:1, as frequency is a finer-grained and lower-overhead

actuator than core count. We generate training data by executing an in-house microbenchmark and

varying control inputs in the format of a staircase test (i.e., a sine wave), both with single-input

variation and all-input variation. The micro-benchmark consists of a sequence of independent

multiply-accumulate operations performed over both sequentially and randomly accessed mem-

ory locations, thus yielding various levels of instruction-level and memory-level parallelism. The

range of exercised behavior resembles or exceeds the variation we expect to see in typical mobile

workloads, which is the target application domain of our case studies.

3 We generate the models with a stability focus. All systems are stable according to Robust Stability Analysis. We
use Uncertainty Guardbands of 50% for QoS and 30% for power, as in [68].
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Experimental setup

We perform our evaluations on the ARM big.LITTLE [2] based Exynos SoC (ODROID-XU3

board [32]) as described in our case study (Figure 2.5). We implement a Linux userspace daemon

process that invokes the low-level controllers every 50ms. When evaluating SPECTR, the dae-

mon invokes the supervisor every 100ms. We use ARM’s Performance Monitor Unit (PMU) and

per-cluster power sensors for the performance and power measurements required by the resource

managers. The userspace daemon also implements the Heartbeats API [37] monitor to measure

QoS. By periodically issuing heartbeats, the application informs the system about its current per-

formance. The user provides a performance reference value using the Heartbeats API.

To evaluate the resource managers, we use the following benchmarks from the PARSEC bench-

mark suite [6] as QoS applications (i.e., the applications that issue heartbeats to the controller):

x264, bodytrack, canneal, and streamcluster. The selected applications consist of the most

CPU-bound along with the most cache-bound PARSEC benchmarks, providing varied responses

to change in resource allocation. Speedups from 3.2X (streamcluster) to 4.5X (x264) are ob-

served with the maximum resource allocation values compared to the minimum. We also use one

of four machine-learning workloads as our QoS application: k-means, KNN, least squares, and

linear regression. These four workloads provide a wide range of data-intensive use cases. For

all experiments, each QoS application uses four threads. The background (non-QoS) tasks used in

the third execution phase are single-threaded microbenchmarks, and have no runtime restrictions,

i.e., the Linux scheduler can freely migrate them between and within clusters.

2.4.4 Effectiveness of Self-Adaptivity through Supervision

We focus our discussion on the x264 benchmark results. Other results are summarized at the end

of this section. We use heartbeats to measure the frames per second (FPS) as our QoS metric.
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Figure 2.6 shows the measured FPS and power for x264 with respect to their reference values over

the course of execution for all of the resource management controllers.

x264 Benchmark

To show the energy efficiency of SPECTR, we study the Safe Phase. The Safe Phase consists of

the first 5 s of execution during which only the QoS application executes on the Big cluster. In

this phase, all controllers are able to achieve the FPS reference value within the power envelope.

Figures 2.7a and 2.7b show the average steady-state error (%) of QoS and power respectively for

each resource manager in Phase 1. Steady-state error is used to define accuracy in feedback control

systems [33]. Steady-state error values are calculated as re f erence−measured out put. Negative

values indicate that the power/QoS exceeds the reference value, positive values indicate power

savings or failure to meet QoS. We make two key observations. First, both MM-Perf and SPECTR

reduce power consumption by 25 % (Fig. 2.7b) while maintaining FPS within 10 % (Fig. 2.7a) of

the reference value. The MM-Perf controller operates efficiently because the reference FPS value

is achievable within the TDP threshold. The SPECTR controller similarly operates efficiently: it is

able to recognize that the FPS is achievable within TDP and, as a result, lower the reference power.

Second, the FS and MM-Pow controllers unnecessarily exceed the reference FPS value and, as a

result, consume excessive power. This is because these controllers prioritize meeting the power

reference value, consuming the entire available power budget to maximize performance.

To show SPECTR’s ability to adapt to a sudden change in operating constraints, we study the Emer-

gency Phase. The Emergency Phase of execution emulates a thermal emergency, during which, the

TDP is lowered to ensure that the system operates in a safe state. This occurs during the second

5 s period of execution in Figure 2.6. We observe that all controllers are able to react to the change

in power reference value and maintain QoS. However, compared to the other controllers, FS has a

sluggish reaction (Figure 2.6f) to the change in power reference, despite the fact that it is designed

to prioritize tracking the power output. Settling time is a property used to quantify responsiveness
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Figure 2.6: Measured FPS and Power of all four resource managers for three Phases of 5 s each,
for the x264 benchmark.
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(b) Power steady-state error in Phase 1.
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(c) QoS steady-state error in Phase 2.
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(d) Power steady-state error in Phase 2.
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(e) QoS steady-state error in Phase 3.
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(f) Power steady-state error in Phase 3.

Figure 2.7: Steady-state error for all benchmarks, grouped by phase. A negative value indicates the
amount of power/QoS exceeding the reference value (bad), a positive value indicates the amount
of power saved (good) or QoS degradation (bad).

21



of feedback control systems [33]. Settling time is the time it takes to reach sufficiently close to

the steady-state value after the reference values are set. The average settling time for the power

output of FS is 2.07 s, while SPECTR has an average settling time of 1.28 s. The larger size of

the state-space (x(t) matrix in Equation 2.1 and 2.2) and the higher number of control inputs in the

4×2 FS compared to those of 2×2 controllers in SPECTR is the reason for the slow settling time

of FS. This is also the reason why SISO controllers are generally faster that MIMOs [33].

To show SPECTR’s ability to adapt to workload disturbance and changing system goals, we study

the Workload Disturbance Phase. The Workload Disturbance Phase occurs in seconds 10-15 of

execution in Figure 2.6. In this phase, 1) the QoS reference value and the power envelope return

to the same values as in Phase 1, and 2) we introduce disturbance in the form of background

tasks. As a result of the workload disturbance, the QoS reference is not achievable within the

TDP. We make two observations regarding the steady-state error in Figures 2.7e and 2.7f. First,

SPECTR behaves similarly to MM-Pow, even though in Phase 1 it behaved similarly to MM-Perf.

The SPECTR supervisor is able to recognize the change in execution scenario and constraints,

and adapt its priorities appropriately. In this case, SPECTR achieves much higher FPS than all

controllers except MM-Perf (Fig. 2.7e), while obeying the TDP limit (Fig. 2.7f). Second, both FS

and MM-Pow operate at the TDP limit, but achieve a significantly lower FPS than the reference

value. MM-Perf comes within ˜5 % of the reference FPS (Fig. 2.7e) while exceeding the TDP by

more than 30 % (Fig. 2.7f), which is undesirable.

Other Benchmarks

We perform the same experiments for PARSEC benchmarks bodytrack, canneal, streamcluster,

as well as machine-learning benchmarks k-means, KNN, least squares, and linear regression.

For these workloads, we use the generic heartbeat rate (HB) directly as the QoS metric, as FPS is

not an appropriate metric. Figures 2.7a, 2.7c, and 2.7e show the average steady-state error (%) of

QoS for Phases 1, 2, and 3 respectively. Figures 2.7b, 2.7d, and 2.7f show the average steady-state
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error (%) of power for Phases 1, 2, and 3 respectively. We summarize the observations for the

additional experiments with respect to x264 for the three phases. In the Safe Phase, the behavior

of bodytrack, streamcluster, k-means, KNN, least squares, and linear regression is

similar to that of x264 (Figures 2.7a and 2.7b). canneal follows the same pattern with respect to

power as all other benchmarks (Fig. 2.7b). canneal’s QoS steady-state error is the only difference

in behavior we observe in Phase 1. None of the managers are able to meet the QoS reference value

for canneal in Phase 1 (Fig. 2.7a). This is due to the fact that the phase of canneal captured

in the experiment primarily consists of serialized input processing, so the number of idle cores

has reduced affect on QoS. In the Emergency Phase, our observations from x264 hold for nearly

all benchmarks regarding response to change in power reference value, achieving less than 10 %

power steady-state error (Fig. 2.7d). The only exceptions are canneal and k-means: the MM-Perf

manager is unable to react to change in TDP for canneal and k-means. The MM-Perf manager

lacks a supervisory coordinator and prioritizes performance, and was unable to find a configura-

tion for canneal and k-means that satisfied the QoS reference value within TDP. In the Workload

Disturbance Phase, SPECTR, FS, and MM-Pow all achieve near-reference power (Fig. 2.7f). As

expected, MM-Perf violates the TDP in all cases, but always achieves the highest QoS (Fig. 2.7e).

We conclude that SPECTR is effective at (1) efficiently meeting multiple system objectives when

it is possible to do so, (2) appropriately balancing multiple conflicting objectives, and (3) quickly

responding to sudden and unpredictable changes in constraints due to workload or system state.

2.4.5 Overhead Evaluation

To show the overhead of the low-level MIMO controllers, we study their execution time. We

measure the MIMO controller execution time to be 2.5 ms, on average, over 30 s. The MIMO

controller is invoked every 50 ms resulting in a 5 % overhead, which is experienced by all evaluated

controllers. We measure the runtime of the supervisor to be 30 µs, which is negligible even with
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respect to the MIMO controller execution time. The supervisor is invoked less frequently than the

MIMO controllers (2× the period in our case), executes in parallel to the workload and MIMO

controllers, and simply evaluates the system state in order to determine if the MIMO controller

gains need changing. State changes that result in interventions on the low-level controllers occur

only due to system-wide changes in the state (e.g., thermal emergency) or goals (e.g., change

in performance reference value or execution mode), which are infrequent. When the supervisor

needs to change the MIMO gains, it simply points the coefficient matrices to a different set of

stored values. In our case study, we have two sets of gains (QoS and power oriented) that are

generated when the controllers are designed and stored during system initialization. Changing the

coefficient arrays at runtime takes effect immediately, and has no additional overhead.

To show the overhead of SPECTR’s supervisory controller, we compare the total execution time

of identical workloads with and without SPECTR. With respect to the preemption overhead due

to globally managing resources, Linux’s HMP scheduler typically maps SCT threads to a core on

the low-power Little cluster. Therefore, the SCT threads are executed without preempting the QoS

application, which always executes on the Big cluster. We verify the overall impact of the control

system overhead by running the benchmarks on two different systems: i) a vanilla Linux setup4 and

ii) vanilla Linux with SPECTR running in the background. For (ii), SPECTR controllers perform

all the required computations but do not change the system knobs (thus only the SPECTR overhead

affects the system). When comparing the QoS of the applications across multiple runs, we verify

a negligible average difference of 0.1% between the two systems.

We conclude that the benefits of SPECTR come at a negligible performance overhead.

4 Ubuntu 16.04.2 LTS and Linux kernel 3.10.105 (https://dn.odroid.com/5422/ODROID-XU3/Ubuntu/).
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2.4.6 SOSA Resource Manager

The SPECTR resource manager specified previously is responsible for configuring knobs with

uniform subsystem scope. The SPECTR supervisor includes an optimizer to find the ideal set-

point for the low-level classical controllers. However, one benefit of the supervisory method we

propose is the flexibility to incorporate any off-the-shelf low-level controllers.

One way we can take advantage of this property to improve the SPECTR hierarchy is to deploy

reinforcement learners as low-level controllers. Reinforcement learners are self-optimizing, which

removes the need for optimization in the supervisor. Our improved resource manager (SOSA [21])

is now both self-optimizing via low-level controllers and self-adaptive via supervisor. We further

explore self-optimizing low-level controllers in Chapter 3. Here, we design an improved SOSA re-

source manager that no longer requires an optimizer, and includes configuration knobs at different

scopes: per-core operating frequency, and global task migration. The per-core frequency only af-

fects each subsystem, while task migration between cores affects multiple subsystems. The SOSA

supervisor includes a task migration policy to coordinate requests from the distributed low-level

controllers.

2.4.7 SOSA Experimental Evaluation

We further validate the self-adaptivity provided by our supervisory approach in the SOSA use-case.

To show SOSA’s ability to adapt to changing operating conditions, we study its ability to track a

changing goal for a fixed workload. Our execution scenario consists of two different phases of

execution:

1. Normal Phase: In this phase, only the focus application executes. The goal is to meet target

instructions-per-second (IPS) and minimize power consumption.
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(c) SPECTR power. Error measured as % of the
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Figure 2.8: Instructions-per-second (IPS) and power for k-means with a power budget change
after 4 s. IPS values are smoothed using averaging.
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2. Low-power Phase: In this phase, the IPS target remains the same as that in the Normal Phase

while the power budget is reduced. The goal is to prioritize honoring the power budget while

maintaining target IPS (if possible).

We compare to an implementation of SPECTR that uses per-core SISOs (Frequency→IPS), with

a self-adaptive software supervisor to provide target coordination and a simple task migration

heuristic. SPECTR consists of a self-adaptive supervisor and classical low-level controllers [72].

Our goal is to demonstrate that SOSA’s self-adaptivity is on-par with SPECTR.

Figure 2.8 shows SOSA’s and SPECTR’s ability to track the IPS target while honoring the power

budget in the Normal Phase and Low-power Phase. The first 4 s of execution are in the Normal

Phase. Observe the IPS of both managers (Figure 2.8a and 2.8b). SPECTR reaches its peak value

after one second of execution, maxing out at 9% below the IPS target. SOSA’s learning takes longer

– it spends the first 2.5 s exploring the configuration space, and reaches peak value at 4 s. However,

SOSA is able to match SPECTR’s peak IPS value after only 1.5 s, and reaches a peak value above

the IPS target and more than 1.5× that of SPECTR, all within the power budget. We make two

specific observations in SOSA’s Normal Phase regarding the power (Figure 2.8d). First, the power

spends the first 2.5 s with substantial noise, indicating exploration for learning. Second, the settling

of the power around the 2.5 s mark indicates that SOSA has learned a meaningful model. This is

reinforced by our observations about the IPS. SPECTR’s lower IPS peak and continuous power

noise is due to excessive task migration. The task migrations negatively affect the utilization of

each core by the focus tasks, limiting the maximum achieved IPS and causing dips in the power

(i.e., the low ends of the spikes).

After 4 s, the execution enters the Low-power Phase, and the power budget is reduced by half.

SPECTR continues attempting configurations to increase IPS, as it is still not reaching the target.

After 0.5 s, the controller responds to the change in priority, and it finds a configuration that honors

the new budget without IPS degradation. In Figure 2.8c we see that the SPECTR controller peri-
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odically experiences large power spikes that violate the budget. In the Low-power phase, SOSA’s

configuration violates the power budget, causing the learners to switch to low-power models, which

have yet to be populated. This explains the degradation in IPS (Figure 2.8b), as well as the noise

in the power (Figure 2.8d). Observe that at 7 s, both the IPS and power begin to stabilize around

their targets, with ˜10 % error. Looking closely, just before 8 s, the power for SOSA dips signifi-

cantly, indicating that the learners are continuously updating and acting in an attempt to honor the

power constraint. Based on the learning observed in the Normal Phase, we believe that SOSA will

have a populated model that will lead to efficient decisions. We also believe that this presents an

opportunity for applying transfer learning, as there are clearly some rules and configurations that

are desirable for both Normal and Low-power Phases.

In conclusion, both resource managers are able to consider dynamic goals, balancing IPS targets

while accounting for a power budget. The SOSA LCTs take time to learn new objectives compared

to pre-populated models, but they are able to learn from undesirable configurations, and as a result

SOSA considerably outperforms SPECTR, which struggles to coordinate migration and DVFS.

2.5 Summary

Modern mobile systems require intelligent management to balance user demands and system con-

straints. At any given time, the relative priority of demands and constraints may change based

on uncontrollable context, such as dynamic workload or operating condition. A resource man-

ager must be able to autonomously detect such context changes and adapt appropriately. This

property is known as self-adaptivity. We demonstrate one way to design a self-adaptive resource

manager: using supervisory control theory. Supervisory control theory lends itself well to this

challenge due to its high level of abstraction and lightweight implementation. The proposed super-

visor successfully adapts to changes when managing quality of service under a power budget for

chip multiprocessors.
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The hierarchy using supervisory control theory represents early exploration of self-adaptivity in

the resource management domain, and a slight degree of self-awareness. This approach can be

enhanced in one way through the definition and generation of goals. Initial work based on goal-

driven autonomy has been done toward this end [79].
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Chapter 3

Self-Optimizing Controllers

3.1 Self-optimization

Self-optimization is the ability of a system to adapt and act efficiently by itself in the face of

internal stimuli. We consider internal stimuli as changes related to dynamics in the system’s self-

model, i.e., model inaccuracy. Internal stimuli do not necessarily include workload itself, but if

the self-model is application-dependent, workload changes may be the source of internal stimuli.

For example, if the system’s self-model is application-dependent, and the executing application

changes, a self-optimizing manager will have the ability to reason and act towards achieving the

system goal(s) efficiently for the new application. However, if the system’s self-model is rigid and

the system dynamics used to reason and act are oversimplified, model inaccuracies may lead to

undesirable or inefficient decisions when the application changes.
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3.2 Motivation

Dynamic voltage/frequency scaling (DVFS) has been established as an effective technique to im-

prove the power-efficiency of chip-multiprocessors (CMPs) [34]. In this context, numerous closed-

loop control-theoretic solutions for chip power management [73, 38, 58, 63, 54, 94] have been

proposed. These solutions employ linear control techniques to limit the power consumption by

controlling the CMP operating frequency. However, the relationship between operating frequency

and power is often nonlinear. Figure 3.1 illustrates this by showing total power consumed by a

4-core ARM A15 cluster executing a CPU-intensive workload through its entire frequency range

(200MHz–2GHz), along with the total power consumed by a 4-core ARM A7 cluster through its

frequency range (200MHz–1400MHz). While the A7 cluster frequency-power relationship is al-

most linear, the A15 cluster’s larger frequency range (and more voltage levels) results in a nonlinear

relationship. Using a linear model to estimate the behavior of such a system leads to inaccuracies.

Inaccurate models result in inefficient controllers, which defeats the very purpose of using control

theoretic techniques for power management.

Ideally, control-theoretic solutions should provide formal guarantees, be simple enough for run-

time implementation, and handle nonlinear system behavior. Static linear feedback controllers

can provide robustness and stability guarantees with simple implementations, while adaptive con-

trollers modify the controller at runtime to adapt to the discrepancies between the expected and

the actual system behavior. However, modifying the controller at runtime is a costly operation that

also invalidates the formal guarantees provided at design time.

Instead, consider integrating multiple linear models within a single controller implementation in

order to estimate nonlinear behavior of DVFS for CMPs. This is a well-established and lightweight

adaptive control theoretic technique called gain scheduling.
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Figure 3.1: Cluster power vs. operating frequency.

Background on Classical Control

Discrete-time control techniques are the most appropriate to implement control of computer sys-

tems. The proportional-integral-derivative (PID) controller is a simple and flexible classical feed-

back controller that computes control input u(t) based on the error e(t) between the measured

output and reference output:

u(k) = Kpe(k)+Ki

k

∑
0

e(k)∆t +Kd
∆e(k)

∆t
(3.1)

Kp, Ki, and Kd are control parameters for the proportional, integral, and derivative gains respec-

tively.

PI controllers1 have been successfully used to manage DVFS of CMPs [58, 101, 63, 54, 94].

Mishra et al. [58] propose the use of PID controllers for VF islands. The authors model power

consumption based on the assumption that the difference relationship between power consumption

in successive intervals can be approximated linearly as a function of frequency, which only holds

for limited range. Similarly, Hoffman et al. [38] propose a feedback control technique for power

management that includes DVFS, and their transfer function assumes a linear relationship between

power and frequency. However, Figure 3.1 shows that f → P becomes nonlinear at higher frequen-

cies. Inaccuracies in linear estimation of nonlinear systems can negatively impact the steady-state

error and transient response of the controller. Take for example a system operating under a power

1 Due to the significant stochastic component of computer systems, PI controllers are preferred over PID controllers
[33].
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(b) Sub-range SISO controller (Controller 2).

Figure 3.2: Time plots of two DVFS controllers tracking a dynamic power reference.

budget, or experiencing a thermal emergency – a DVFS controller designed from an inaccurate

model could lead to wasted power or even unnecessary operation at an unsafe frequency.

Consider a DVFS controller for a 4-core CMP with a single frequency domain. The first steps in de-

signing a controller are defining the system and identifying the model. The power consumption of

our CMP is not linear across the entire range of supported operating frequencies (200MHz–2GHz),

which makes it challenging to model the entire range with a single linear estimation. However, we

can divide the measured output (power) for the entire range of frequencies into multiple operating

regions that exhibit linear behavior. In this example, we identify a model for two different systems:

(1) the CMP’s behavior through all operating frequencies; (2) the CMP’s behavior through a sub-

range of the operating frequencies. This specific operating region spans the frequency sub-range

of 200MHz–1200MHz. Using these models, we can generate two different f → P Single-Input-

Single-Output (SISO) PI controllers, and compare them using measured SASO analysis [33], fo-

cusing on Accuracy and Settling time. We refer to the full-range controller as Controller 1, and the

sub-range controller as Controller 2. Figure 3.2 displays Controller 1 (Fig. 3.2a) and Controller 2’s

(Fig. 3.2b) ability to track a dynamic power reference over time for our CMP.

Accuracy is defined by the steady-state error between the measured output and reference input,

e.g., the yellow highlighted region in Figure 3.2b from 0-10 seconds. We calculate the steady-state

error as the mean squared error (MSE) between the measured power and reference power. Both
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Figure 3.3: Modeled and observed behavior of nonlinear full-range system (a) vs. linear operating
region (b).

controllers are able to track within 1% of the target power. However, the MSE of Controller 2

is 0.003, while that of Controller 1 is 0.013 – an order of magnitude larger. This byproduct of

model inaccuracy translates into wasted power and undesirable operating frequency, as well as

unnecessary changes in the frequency control input (i.e., increased control effort cost).

Settling time is the time it takes to reach sufficiently close to the steady-state value after the ref-

erence values are specified, e.g., when the reference changes in Figure 3.2b at 10 seconds. The

settling time of Controller 2 is 40 ms on average, while Controller 1 is more than double on aver-

age at 100 ms. Because our actuation periods are 50 ms, this means that our sub-range controller

often reaches steady state on its first actuation while the full range controller requires multiple

actuation periods to respond to a change in reference.

Identifying operating regions at design time allows us to switch system models at runtime, improv-

ing the effectiveness of static controllers.
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3.3 Case Study: Gain Scheduled Controller (GSC) for Power

Management

In this section, we outline our process for designing gain scheduled nonlinear controllers for a

CMP.2 As a demonstrative case study, we target the ODROID-XU3 platform [32] which contains

an ARM big.LITTLE based Exynos 5422 Octa-core SoC that has heterogeneous multi-processing

(HMP) cores. The Exynos platform contains an HMP with two 4-core clusters: the big cluster

provides high-performance out-of-order cores, while the little cluster provides low-power in-order

cores. For the purpose of our study, we disable the little cluster (due to its linear behavior) and use

only the big cores to emulate a uniform nonlinear CMP3.

3.3.1 Defining and Modeling Linear Subsystems

Selecting the control input and measured output of a DVFS controller is straightforward. Fre-

quency is the knob available to the user in software, and power is the metric of interest. On our

Exynos CMP, the operating frequency of cores is set at the cluster level, and power sensors measure

power at the cluster level. A SISO controller is a natural solution, with the entire CMP composing

the system under control.

For system identification we generate test waveforms from applications and use statistical black-

box methods based on System Identification Theory [51, 52] for isolating the deterministic and

stochastic components of the system to build the model.

Figure 3.3a shows a comparison of a simulated model output vs. the measured output over the

entire frequency range of our CMP. It is evident that there are ranges for which the estimated

behavior differs from that of the actual system behavior. We know that voltage has a nonlinear

2 Details to confirm and formalize popular notions regarding gain scheduled design can be found in [78, 48].
3 We refer to this as the Exynos CMP or CMP throughout.
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Region Frequency Voltage
Range (MHz) (V)

1 1600 – 2000 1.25
2 1300 – 1500 1.10
3 900 – 1200 1.00
4 200 – 800 0.90

Table 3.1: VF Pairs for ARM A15 in Exynos 5422.
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Figure 3.4: Block diagram of GSC.

effect on dynamic power (P =CV 2 f ). The nonlinear relationship between frequency and voltage

pairs through the range of operating frequencies amplifies this effect (Table 3.1). Table 3.1 lists

all valid VF pairs for the CMP, in which there are only four different voltage levels. Figure 3.3b

shows the measured vs. modeled output when the system is defined by a single operating region

grouped by frequencies that operate at the same voltage level.

3.3.2 Generating Linear Controllers

We generate a PI controller separately for each operating region using the system models and

MATLAB’s Control System toolbox. This is a straightforward process for a simple off-the-shelf

PI controller.
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In the next step, the designed controller is evaluated against disturbance and uncertainties in or-

der to ensure it remains stable at a defined confidence level. Unaccounted elements, modeling

limitations, and environmental effects are estimated as model uncertainty in order to check the

disturbance rejection of the controller. In our case, we can confirm our controller is robust enough

to reject the disturbance from workload variation.

Each controller we design for an operating region is defined by its control parameters KP and

KI which are stored (in memory) in the gain scheduler (Figure 3.4). In the gain scheduler, we

incorporate logic to determine which gains to provide the controller when invoked.

3.3.3 Implementing Gain Scheduling

The gain scheduler enables us to adapt to nonlinear behavior (Figure 3.4) by combining multiple

linear controllers. It stores predefined controller gains and is responsible for providing the most

appropriate gains based on the operating region in which the system currently resides each time

the controller is invoked.

The scheduling variable is the variable used to define operating regions. For our controller, the

scheduling variable is frequency as it is simpler to implement in software and has a direct VF

mapping (Table 3.1). Our gain scheduler implements lightweight logic that determines the set

of gains based on the system’s operating frequency (scheduling variable). Algorithm 1 shows

the logic implemented in our gain scheduler with N operating regions where f is the scheduling

variable and KP and KI are the controller parameters. In addition to the KP and KI controller

parameters, there is also an o f f set. The o f f set is the mean actuation value for the operating

region, and is necessary for providing the control input for the next control period. Algorithm 1

accounts for the transitions between operating regions (lines 1-6) by applying a full-range linear

controller. This method is utilized as the sets of gains for a particular operating region perform

poorly outside of that region.
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Algorithm 1 Gain Scheduler Implementation
Input: f : frequency, scheduling variable
Outputs: KPn , KIn , o f f setn: updated controller parameters;
Variables: re fprev, re fnext : power reference values for previous and next control periods;
Constants: Region[N]: operating regions, defined by mutually exclusive range of frequencies; KP[N], KI [N],
o f f set[N]: stored controller parameters for each operating region; KPG , KIG , o f f setG: controller parameters for full-
range linear controller;

1: if re fnext ! = re fprev then
2: KPn = KPG

3: KIn = KIG
4: o f f setn = o f f setG
5: return
6: else
7: for i = 1 to N do
8: if Region[i].contains( f ) then
9: KPn = KP[i]

10: KIn = KI [i]
11: o f f setn = o f f set[i]
12: return
13: end if
14: end for
15: end if

3.3.4 Experiments

Our goal is to evaluate our nonlinear GSC with respect to the state-of-the-art linear controller in

terms of both theoretical and observed ability to track power goals on a CMP. Our evaluation is

done using the Exynos CMP running Ubuntu Linux.4 We consider a typical mobile scenario in

which one or more multi-threaded applications execute concurrently across the CMP.

Controllers

We designed two DVFS controllers for power management of the CMP: 1) a linear controller

that estimates the transfer function similarly to [38, 58]; and our proposed 2) GSC. The GSC

contains three operating regions (Table 3.2). We combine the two smallest adjacent Regions, 1 and

2 (Table 3.1), to create Controller 2.1. Controllers are provided a single power reference for the

4 Ubuntu 16.04.2 LTS and Linux kernel 3.10.105
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whole system. The control input is frequency, and the measured output is power, applied to the

entire CMP.

The controller is implemented as a Linux userspace process that executes in parallel with the

applications. Power is calculated using the on-board current and voltage sensors present on the

ODROID board. Power measurements and controller invocation are performed periodically every

50 ms.

Workloads

We developed a custom micro-benchmark used for system identification. The micro-benchmark

consists of a sequence of independent multiply-accumulate operations yielding varied instruction-

level parallelism. This allows us to model a wide range of behavior in system outputs given changes

in the controllable inputs. We test our controllers using three PARSEC benchmarks: bodytrack,

streamcluster, and x264. For each case, we execute one multithreaded application instance

of the benchmark with four threads, resulting in a fully-loaded CMP. We empirically select three

references that we alternate between during execution. re f1 is 3.5 W, the highest reference and

a reasonable power envelope for a mobile SoC. This represents a high-performance mode that

maximizes performance under a power budget. re f2 is 0.5 W, the lowest reference and represents

a reduced budget in response to a thermal event. re f3 is 1.5 W, a middling reference that could

represent the result of an optimizer that maximizes energy efficiency. These references are not

necessarily trackable for all workloads, but should span at least three different operating regions

for each workload. For each case, the applications run for a total of 65 s. After the first 5s (warm-

up period) the controllers are set to re f1 for 20 s, then changed to re f2 for 20 s, and to re f3 for the

remaining 20 s.
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Ctrl 1 Ctrl 2.1 Ctrl 2.2 Ctrl 2.3
Freq. Range 200 – 1800 1300 – 1800 900 – 1200 200 – 800
Stable X X X X
Accuracy
(MSE) 0.1748 0.03089 0.0005382 0.0003701

Table 3.2: Accuracy of the full- (Ctrl 1) and sub-range (Ctrl 2.x) controllers.

3.3.5 Controller Design Evaluation

We used a first-order system, with a target crossover frequency of 0.32. This resulted in a sim-

ple controller providing the fastest settling time with no overshoot. Models are generated with a

stability focus and uncertainty guardbands of 30 %.

All systems are stable according to Robust Stability Analysis. By design all overshoot values are 0.

The settling times of Controllers 2.2 and 2.3 are comparably low at 5 control periods. Controller 2.1

(the most nonlinear operating region) and Controller 1 are slightly higher at 8-9 control periods.

The ideal controllers are all very similar in terms of stability, settling time, and overshoot. The

primary difference between them is in terms of accuracy. Controllers 2.1-2.3 achieve an order of

magnitude better accuracy than Controller 1 (Table 3.2). This means that the region controllers are

equally as responsive as the full-range model in achieving a target value while achieving the value

more accurately.

3.3.6 Controller Implementation Evaluation

We now evaluate the effectiveness of our nonlinear control approach implemented in software on

the Exynos CMP for multithreaded mobile workloads. Traditional SASO control analysis gives

us a way to compare the controllers in theory, but the system-level effects of those metrics are not

directly relatable. Therefore, we will compare the runtime behavior of the software controllers us-

ing a slightly modified set of metrics: power over target, power under target, number of actuations,

and response time. These metrics are shown in Figure 3.5.
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Figure 3.5: Comparison of GSC with Controller 1.
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The power over target is the total amount of measured power exceeding the reference power

throughout execution (Fig. 3.5a). This is the area under the output and above the reference. It

represents the amount of power wasted due to inaccuracy, and can also represent unsafe execution

above a power cap. Our GSC is able to achieve 12 % less power over target than the linear con-

troller for x264 and streamcluster. bodytrack is the most dynamic workload and results in the

noisiest power output. In this case the GSC only improves the power over target by 1 % compared

to the linear controller.

The power under target is the total amount of measured power falling short of the reference power

throughout execution (Fig. 3.5b). This is the area under the reference and above the output. A

lower value translates to improved performance (i.e. lower is better). Similarly to the power over

target, our GSC is able to reduce power under target by 12% for x264 and streamcluster, and

1 % for bodytrack.

The number of actuations is simply a count of how many times the frequency changes throughout

execution, and is a measure of overhead (Fig. 3.5c). The GSC’s actuation overhead is lower than

the linear controller for bodytrack, streamcluster, and x264 by 8 %, 1 %, and 4 % respectively.

This is expected, as the controller’s resistance to actuation is related to the crossover frequency

specified at design time. For the same crossover frequency, the GSC benefits are primarily in

the accuracy (power over/under target) and response (settling) time. To illustrate this tradeoff, we

performed the same experiments for a full-range linear controller with a target crossover frequency

of 0.8 (Controller 1b). We arrived at this value empirically: Controller 1b achieves comparable

accuracy to the GSC. However, GSC reduces the actuation overhead by 29 % for all workloads

compared to Controller 1b.

The response time is the average settling time when the target power changes, indicating the con-

troller’s ability to respond quickly to changes (Fig. 3.5d). Figure 3.5d shows the average response

time for each workload for both controllers. The GSC is able to improve the response time over
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Controller 1 by more than 50% in each case. The GSC’s overall average response time is 182ms,

which is less than 4 control periods.

The implementation overhead of the GSC w.r.t. the linear controller is negligible: it requires a

single execution of Algorithm 1 upon each invocation, and storage for a KP, KI , and o f f set value

for each operating region. Although workload disturbance plays a significant role in determining

the magnitude in imporovement of a nonlinear GSC over a state-of-the-art linear controller, a clear

trend exists, and these advantages would increase with the modeled system’s degree of nonlinearity.

3.4 Challenges of Model-dependence

The GSC controller specified previously provides optimization by adaptively swapping out three

static SISO controllers at runtime. The GSC controller yields benefits for a simple case: achieving

a target power for a single-core processor by controlling the voltage-frequency pair. However,

contemporary resource managers are required to manage complex systems with multiple knobs,

and potentially multiple cores, the dynamics of which may not be fixed, and are not practical to

extract ahead of execution with fixed models.

Consider the DVFS feedback controller shown in Figure 3.6. The controller sets the operating

frequency (and voltage) of a single-core system to achieve a desired heartbeat rate. The heartbeat

rate is a quality-of-service (QoS) metric the application designer specifies through source code

annotation [37].

In the case of control theory, the controller is designed based on a static model that identifies

the achievable heartbeat based on the operating frequency. This assumes that a physical system

is available for observation of system dynamics, which is required to generate the model used

to design the controller ahead of deployment. Furthermore, the frequency→HB relationship is

application-specific. In other words, (a) workloads must be known ahead of design time, (b) sys-
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Figure 3.6: Feedback controller with frequency as control input and heartbeat [37] rate as measured
output.

tems must be available for observation of known workloads, and (c) each resulting controller only

applies to the specific workload it was designed for. These are impractical assumptions when de-

signing controllers for general-purpose systems with dynamic and unpredictable workloads. More

challenges arise due to changes in system dynamics over time or between devices. Consider the ef-

fects of process variability on the behavior of different devices with respect to operating frequency

and voltage. It is impractical to expect an optimized model to be derived at design time for each

device that utilizes the controller. As a result, a system may display non-ideal behavior according

to the model used to design the controller. The controller would make potentially poor decisions

due to an inaccurate ideal model [20].

The challenges outlined so far assume that the systems dynamics being modeled can be estimated

with a simple linear equation, which is the case for the frequency→HB controller. However, some

knobs have more complex system dynamics and are not practical to model with control, e.g.,

task migration. Complex models with large configuration spaces such as task migration are good

candidates to apply learning. It is important to manage the scale of a complex model if it is to be

learned at runtime. A model-based learner that uses a static model would face the same challenges

as described thus far. To solve these issues we can employ online reinforcement learning. Online

reinforcement learning addresses the static-model challenges by continuously updating the system

model based on runtime observations. If we take care to implement a lightweight solution, we can

perform the learning on-device, and capture complex dynamics such as task migration.
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3.4.1 Benefits of Reinforcement Learning

Consider again the DVFS feedback controller shown in Figure 3.6. We implement the feedback

controller in two different ways: (1) using single-input-single-output (SISO) control theory, and (2)

using a learning classifier table (LCT) – an implementation of rule-based reinforcement learning.

Figure 3.7 shows the accuracy achieved by SISO (blue) and LCT (orange) controllers tracking a

specified HB for the k-means clustering algorithm executing on a simulated ARM core (detailed

in Section 3.6.1). The SISO begins with an error of 20 %, and is able to eventually reduce the error

to less than 5 % after 2 s of execution. The LCT begins with near 100 % error, and is able to to

reduce the error to SI15% after 2 s of execution, and eventually down to 7 % after 5 s. Although the

SISO is robust, its design requires a model at design time. The LCT is a blank-slate that learns the

model during execution, which is why it begins with nearly 100% error. In this instance we did not

tweak LCT parameters or optimize rules – with some design iterations, we could reduce the error

further. The LCT’s ability to learn to manage HB on the fly indicates that there is opportunity to

exploit this approach to coordinate knobs for subsystems in the context of a resource management

hierarchy.

In the example, we define both the LCT and SISO objective in terms of IPS, and use a HB→IPS

converter to set HB references. Although the converter is a requirement for the classical con-

troller due to its inability to adapt to each application’s unique frequency→HB model, it is not a

restriction on the LCT. Our design decision is made for fairness in the comparison, but the online

learning done by the LCT allows it to define its objective in terms of HB directly, with the abil-

ity to adapt to different applications. A controller using a fixed model (e.g., classical controller)

simply cannot model the relationship between application-level metrics to hardware-level knobs

at runtime for a dynamic workload. The ability to specify an objective for a low-level controller

in terms of an application-specific user-defined metric is a significant advantage when providing

self-optimization.
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Figure 3.7: Accuracy of classical (SISO) and learning (LCT) controllers tracking application heart-
beat rate using core operating frequency.

3.5 Self-Optimization through Learning Classifier Tables

In general, a controller’s task is to find the optimal actuation knob configuration for a given system

state. The optimum is defined by some (measurable) metric, the objective function. The objective

function (δ ) can take one or more objectives (δ1,δ2, . . . ,δn) into account

δ (δ1,δ2, . . . ,δn, . . .) (3.2)

to compare the desirability of different system states. In our hierarchical setup, the low level

controllers’ task is to execute actions that result in a more desirable subsystem state over time

according to the given objective function.

Zeppenfeld and Herkersdorf use learning classifier tables (LCTs) as low-level controllers in ASoC

[104], which is an approach exploiting autonomic principles for runtime task distribution and fre-

quency scaling. In ASoC, low-level controllers are unsupervised. The overall system goal emerges

from the controllers’ objective function definition and coordination.
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Population [P]
idx cond action fitness . . .
#1 101X 101 0.23
#2 X001 001 0.58
#3 1X0X 011 0.02
· · · · · · · · · · · ·
#n XXX1 111 0.89

Match Set [M]
idx cond action fitness . . .
#8 1X1X 011 0.12

#53 X111 001 0.56
#116 1111 011 0.52

Action Set [A]
idx cond action fitness . . .
#8 1X1X 011 0.12

#116 1111 011 0.52

Credit
Assignement

[A]t−1

Action
Selection
Algorithm

Sensors

Actuators

System

Feedback1

2Roulette Wheel

Reward Update
5

3
Action performed

Control

Objectives
4

Genetic
Alg.

Figure 3.8: Overview of the LCT logic (dashed lines correspond to the fitness update path; dotted
entities are part of LCSs, but not LCTs).

LCTs are a subset of Wilson’s XCS [98], which is a type of learning classifier system (LCS).

LCSs describe the system they control by ’if condition then action’ rules, i.e., classifiers. The

condition corresponds to a specific set(s) of possible sensor values (i.e., system state). The

action modifies the actual knob configuration to change system settings. Each rule contains a

fitness value which describes its capability to improve the system state according to the objective

function. A rule’s fitness is updated each time the rule’s condition matches the system state and

its action is applied. The fitness is updated based on the rule’s effectiveness toward achieving the

objective. This is how the LCT builds and updates the system model, without any initial training

required.
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A set of rules, population [P], is needed to model system dynamics. Different rules may have

overlapping conditions or actions. Figure 3.8 represents the general operating mode of LCS im-

plemented as an LCT. This operating mode consists of five periodically occurring steps:

1. By comparing the sensor values to the conditions of all rules in the population [P], a match

set [M] is generated. Conditions can contain wildcards to match several sensor values.

2. Next, the roulette-wheel selection algorithm decides on an action based on the fitnesses of

the rules in [M]. All rules in [M] with the same action selected by the roulette wheel are

saved as the action set [A].

3. The selected action is forwarded to the actuators to apply it to the (sub)system. Further, the

action set is saved [A]t−1.

4. After applying the action, the effect of the action is measured by sensors, and based on the

effectiveness toward achieving the objective, some reward is given by the credit assignment

component. The fitnesses of the rules in the saved action set [A]t−1 get updated based on

the reward according to a modified Q-learning which was proposed by Wilson [97] (see

Equation 3.6).

5. Finally, the updated rules are forwarded to the population [P] for the next evaluation.

To calculate the reward a rule receives, the credit assignment component observes changes of the

objective function (δ ). The objective function is calculated as normalized error. The error is the

difference between the measured sensor value and its target value. For example, we define our

objective function in terms of a performance metric (PERF):

δ =
|PERF− re fPERF |

maxPERF

δ ∈ {x | 0≤ x≤ 1}
(3.3)
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This equation describes a performance optimization objective with a target performance target

(re fPERF ). We can further constrain this function, e.g., to maximize PERF within a power budget

(constrPower), by setting re fPERF to a large value and subjecting the equation to

Power ≤ constrPower (3.4)

The observed change in the objective function results in different rewards (reward) according to

the following reward function:

reward = 1−δ reward ∈ {x | 0≤ x≤ 1} (3.5)

In the case that the constraint is violated, the reward is set to 0. This reward function with a discrete

range supports the ability to distinguish between two different actions for the same condition which

both improve or degrade the system state to varying degrees.

Based on the reward, the fitness ( f it) of [A]t−1 is updated by reinforcement learning using a modi-

fied Q-learning algorithm

f it← f it +β

[(
reward + γ ·max

(
f it[A]t−1

))
− f it

]
(3.6)

with the learning rate parameter β and the discount factor γ . The discounting
(

γ ·max
(

f it[A]t−1

))
is omitted in single-step problems like DVFS [98], and therefore also in SOSA.

Our reward and fitness function prevents fitness values of constantly improving/degrading rules

from ending up at the minimum or maximum value on the long term. The selected fitness update

procedure does not necessary result in stable fitnesses over time for all kind of rules (e.g., general

rules which include a lot of don’t-cares for a single or multiple sensor inputs). Accuracy-based

genetic algorithms are able to recognize unstable rules [98]. Genetic algorithms have also been

used in LCS’s to discover new rules. Identifying and removing unstable rules, and generating and
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testing new rules are not currently parts of the LCT, and therefore out of the scope of this work.

We are addressing this in ongoing work in order to enable LCTs to add potentially beneficial rules

to the ruleset and remove unstable rules during execution.

3.6 Case Study: Replacing Classical Controllers with LCTs

Figure 3.9 shows an overview of our evaluation platform. We target a 4-core homogeneous CMP

consisting of high-performance ARM cores. We consider a typical embedded scenario in which

a performance-sensitive application (focus application) is running concurrently with various other

(background) applications starting and stopping unpredictably. This mimics a typical use-case in

which the main purpose of the device is performed in the foreground in conjunction with back-

ground debugging, reporting and logging.

We deploy the SOSA resource management hierarchy. The system goals are twofold: i) meet the

performance requirement of the foreground application while minimizing its energy consumption;

and ii) ensure the total system power always remains below the Thermal Design Power (TDP). In

other words, the performance is a target, while the power is an upper bound. There is no advantage

to exceeding the performance requirement.

We consider two actuation decisions: one to set the operating frequency and associated voltage

of each core; and one to migrate tasks between cores. We measure the power consumption of

each core, and simultaneously monitor the performance (in IPS) of the designated application to

compare it to the required performance (IPSref).

Supervisory control attempts to meet the performance requirement while honoring the power bud-

get. The supervisor prioritizes IPS and power in each LCT appropriately based on total system-

wide power measurements. Supervisory control commands guide the LCTs to determine the op-

erating frequency of each core and migrate tasks to the core. The LCTs set local core operating
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Figure 3.9: Resource management hierarchy (SOSA) implementation on an MPSoC. Each core
has an associated LCT, with local sensors (IPS, power, . . . ) and actuators (core frequency). The
software supervisor communicates directly with LCTs to: (a) send global sensor data (per-core uti-
lization); (b) update rules, or objective functions (targets, constraint); (c) receive hardware sensor
data (migration request). In this example, the supervisor also communicates with Linux to receive
software sensor data (utilization) and send software actuation commands (task migration).
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frequency directly via hardware actuator. The task migration actuator is implemented in software

as part of the supervisor. The supervisor coordinates the migration flags sent by each LCT to

perform global task migration.

An objective function (δ ) is used to set the optimization objective of the LCTs. The objective

functions are defined in terms of IPS or power, each with a constraint (see Equations 3.3 and 3.4).

We define two objective functions for this case-study: 1) IPS-oriented function ensures that the

focus application can meet the performance target value, and 2) Power-oriented function limits the

power consumption while possibly sacrificing some performance if the system is exceeding the

power budget threshold.

We use the reward function to enforce the constraints (constrIPS, constrPower). For the IPS-

oriented objective function (δIPS), we set the reward to 0 when IPS < constrIPS; for the Power-

oriented objective function (δPower), we set the reward to 0 when Power > constrPower. This has

the effect of ”forbidding” the violation of the desired system state in each respective objective

function. Subsequently, we embed our optimization within the learning mechanism: for δIPS, we

set re fPower = 0, so that while the objective function achieves re fIPS, it also minimizes Power. The

result is the following objective functions:

δIPS =
Power

maxPower
, subject to IPS≥ constrIPS (3.7)

δPower =
|IPS− re fIPS|

maxIPS
, subject to Power ≤ constrPower (3.8)
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3.6.1 Learning Classifier Table Evaluation

We demonstrate SOSA’s ability to self-adapt and self-optimize by building a model at runtime. We

compare to control-theoretic-based resource managers.

Simulation Setup

We perform our evaluations for the platform described in our case study (Figure 3.9) using the

gem5 architectural simulator in full-system mode. We implement all resource management soft-

ware using the MARS middleware framework5 for Linux, and LCTs are implemented as gem5

simulated hardware modules, mimicking the hardware design as closely as possible. The MARS

Linux userspace daemon process invokes the supervisor every 100 ms. The supervisor commu-

nicates directly with LCTs using memory-mapped I/O to: (a) send software sensor data; (b) up-

date rules or objective functions; (c) receive hardware sensor data; (d) receive software actuation

commands (task migration). LCTs are invoked every 10 ms. We use a combination of ARM’s

Performance Monitor Unit (PMU) and simulator hardware sensors for the performance and power

measurements required by the resource managers. The IPS performance target is provided by the

focus application. The learning is done in the gem5 simulated hardware modules, whereas their ac-

tions are carried out by the OS (Linux) for the task migration and by the gem5 simulated hardware

for the frequency changes. This accounts for the timing and performance overhead of actuations.

The frequency of task migration is inherently limited: we allow a maximum of one task migration

each time the migration policy is invoked.

The resource managers for comparison use control-theoretic low-level controllers designed with

the Matlab System Identification Toolbox [57].6 We generate training data by executing a mi-

crobenchmark (from MARS) and varying control inputs in the format of a staircase test (i.e., a

5https://github.com/duttresearchgroup/MARS
6We generate the models with a stability focus. All systems are stable according to Robust Stability Analysis. We

use Uncertainty Guardbands of 50 % for IPS and 30 % for power, as in [68].
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sine wave). The microbenchmark consists of a sequence of independent multiply-accumulate op-

erations performed over both sequentially and randomly accessed memory locations, thus yielding

various levels of instruction-level and memory-level parallelism. The range of exercised behavior

resembles or exceeds the variation we expect to see in typical embedded workloads, which is the

focus application domain of our case studies.

We use the machine-learning k-means clustering algorithm as our focus application to evaluate

the resource managers. We launch four instances of the algorithm to emulate data-parallel multi-

threading.

Model-independence Evaluation

To show SOSA’s ability to identify system dynamics from scratch, we study its ability to track a

fixed goal for a fixed workload. Our execution scenario consists of a single focus application with

an achievable IPS target within the power budget. The goal is to meet target IPS. We compare to

a baseline resource manager (BASE) which uses SISO controllers, one for each core. The SISOs

have a frequency control-input and IPS measured-output (Frequency→IPS), and are invoked every

10 ms. BASE includes a software supervisor to provide target coordination to the SISOs as well as

a simple task migration heuristic. Task migration is performed at the same frequency as low-level

controllers are invoked. In all of our evaluation scenarios, we seek to distribute the total system

utilization equally among cores. Therefore, our focus applications consist of four threads, and our

target for each LCT are one quarter of the total system target. All threads are initially mapped to

the same core, so the resource manager is completely responsible for migration. Distribution of

system-wide budgets and targets is the subject of orthogonal research, e.g., [9].

Figure 3.10 shows SOSA’s and BASE’s ability to track a fixed IPS target for a fixed workload. The

first 4 s of execution consist of only the focus application k-means. Figure 3.10a demonstrates the

classical controller’s ability to achieve the target performance in an ideal execution scenario, based
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Figure 3.10: IPS tracking for k-means. First 4 s consist only of k-means. After 4 s, microbench-
marks are added for disturbance. Measured values are smoothed using averaging.

on the system model identified at design time. Figure 3.10b demonstrates the LCT controller’s abil-

ity to achieve the target performance by learning the system dynamics during execution, without

prior workload observation.

Self-Optimization Evaluation

To show SOSA’s ability to identify system dynamics at runtime for unpredictable workloads, we

study its ability to track a fixed goal for a dynamic workload. Our execution scenario consists

of a single focus application with background tasks entering in the middle of execution (to induce

interference from other tasks). The goal is to meet target IPS, which is achievable within the power

budget. We compare again to BASE.

Figure 3.10 shows SOSA and BASE ability to track a fixed IPS target for a dynamic workload

with tasks coming and going unpredictably. After 4 s of execution, backgrounds tasks are started,

consisting of single-threaded microbenchmarks. Figure 3.10a shows that once disturbance is intro-

duced, the controller experiences up to 14 % performance degradation. Figure 3.10b demonstrates

the LCT controller’s ability to self-optimize to find a configuration that achieves IPS with <5 %
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Figure 3.11: Migration and utilization of SOSA for k-means.

error once disturbance is introduced in the form of workload variability, eventually settling with

error <1 %. We confirm SOSA’s ability to learn the model from scratch at runtime and optimize

in the face of disturbance are in line with our hardware evaluation.

Global Coordination Figure 3.11a shows the migration of focus tasks between cores by SOSA

over the first 4 s of execution of the k-means benchmark. Each task is represented by a different

color line, and the y-axis represents the four different cores. Though it is difficult to see, all tasks

are to be initially mapped to core 0. Observe that over time, the migration policy spreads the tasks
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among all four cores. There are some exploration periods (e.g., in the first second), and some tasks

experience oscillating migration more than others (e.g., task 3 from 2-4 seconds), but the policy

accomplishes its goal of spreading the utilization out among the cores. Figure 3.11b shows the

focus task utilization of each of the four cores through the first 2 s of execution. Observe that each

core is utilized completely for almost the entire execution. After all focus tasks are initialized on

the same core, they are migrated within the first 250ms. This confirms that the migration policy

achieves its goal.
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Figure 3.12: Single-core optimization of SOSA for k-means over the first 5 s of execution for Core
3. The top plot shows the core IPS achieved, and the bottom plot shows the core frequency.

Local Optimization In Figure 3.12 we take a closer look at the behavior of a single core through

the first 5 s of k-means controlled by SOSA. Observe the variation in core frequency displayed

in the lower plot. The LCT explores the configuration space through the first 3.5 s of execution.

After 3.5 s, the LCT settles on the maximum frequency in order to achieve the target IPS for the

remainder of execution. This is in line with our system-wide observations made in Figure 3.10b.
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Other Benchmarks Figure 3.13 shows the self-optimization evaluation execution scenario for

three additional focus applications: linear regression (linreg) and k-nearest-neighbors (knn) ma-

chine learning kernels, and blackscholes from the PARSEC [6] benchmark suite.

SOSA’s result for linreg (Figure 3.13b) mirrors that of kmeans: learning occurs for the first ˜3 s,

after which the target IPS is achievable even through disturbance. The BASE manager struggles

significantly with managing through the disturbance (Figure 3.13a). The performance degradation

from 4-6 seconds is due to poor migration decisions – the BASE manager eventually recovers at

6 s.

SOSA and BASE perform similarly for knn (Figure 3.13d,3.13c): both managers achieve target

IPS at a comparable rate in the first 4 s. After disturbance is introduced, both managers are unable

to achieve target IPS. Eventually SOSA settle’s at 14 % error, and BASE at 9 %.

The results for blackscholes (Figure 3.13f,3.13e) are opposite of linreg: in this case, SOSA

struggles to achieve target IPS once background tasks are introduced. Although BASE also ex-

periences degradation of performance after 4 s, SOSA’s error is 2× higher. SOSA’s performance

degradation from 4-6 seconds is due to poor migration decisions.

3.7 Summary

Self-models are the core components of self-awareness. In computer systems, system dynamics

can be complex. When utilizing a self-model at runtime for reflection, models must be simple and

sufficiently accurate. The more accurate the self-model, the more effective the decisions made by

a resource manager can be toward achieving a given goal. We propose a simple way to improve

the accuracy of self-models for resource managers employing classical controllers: gain schedul-

ing. Gain scheduled control generates multiple controllers based on optimized fixed models for

different operating regions of the system, and can deploy the most accurate control at runtime
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Figure 3.13: Additional benchmarks.
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based on the system state. This is an improvement over using a single controller based on a single

fixed model with minimal overhead. In our first case study, the gain scheduled controller more

effectively provides dynamic power management of a single-core processor.

However, using a static model for resource management is not sufficient in complex mobile sys-

tems. System dynamics may change between applications or devices, and fixed models may not

remain accurate over time. For effective reflection, self-optimization is necessary: the ability to

continuously update the self-model based on observation. We improve on classical control meth-

ods by building controllers using reinforcement learning, called learning classifier tables (LCTs).

The self-models are populated at runtime, and continuously updated. This provides the ability to

derive all types of system dynamics, as well as application-specific dynamics. In our second case

study, our LCTs show improvement over classical controllers when managing quality-of-service

for dynamic workloads.
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Chapter 4

Conclusions

In this thesis, we addressed key challenges of adaptive resource management of mobile multi-

processors by applying principles of computational self-awareness. We provided self-adaptivity

through supervisory control theory, and self-optimization through gain scheduling and reinforce-

ment learning. Our case studies deployed resource managers to manage QoS and power, and

demonstrated the promise of incorporating self-awareness. The degree of self-awareness and how

it manifests is in a resource management hierarchy is case-specific, and should be carefully con-

sidered by the designer: more self-awareness and complexity is not always better. As a result of

our initial efforts, we identify opportunities to expand upon:

Coordinating Models at Scale In our SOSA case study, one of the configuration knobs is task

migration. The supervisor serves as a central coordination point for sharing global sensor infor-

mation with the distributed low-level controllers (LCTs), as well as the global decision-making

mechanism for migration actions. As mobile systems scale in number of resources, subsystem

decomposition in the resource management hierarchy will be crucial for runtime management.

However, coordinating all subsystem controllers globally in a single centralized entity becomes

impractical: the communication overhead in number of messages and message latency will dom-
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inate resource utilization. We must find a way to make decisions in subsystems that have global

impact in a manageable way. Costero et al. [12] propose a method for coordinating multiple de-

pendent decision-making reinforcement learning agents in the context of a cloud application. A

solution applicable to embedded systems is an open problem.

Updating High-Level Models In LCTs, we demonstrate the utility of continuously updated self-

models when deploying low-level controllers. However, in both SPECTR and SOSA, the super-

visors are designed with fixed high-level models. Supporting continuously updating self-models

at the supervisor level would enable another level of reflection. In fact, such updates would be

required for handling dynamic sets of goals. Additionally, high-level model updates could enable

self-optimization of tradeoffs between global goals and constrains.

Controlling Application-Specific Metrics We identify the potential of extracting system dy-

namics between application-level metrics and hardware-level knobs in Section 3.4. However, we

did not have the opportunity to explore it further in our use-cases, and it remains an unexplored

problem in embedded systems.
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