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Abstract

Constant interaction with a dynamic environment —
from riding a bicycle to segmenting speech — makes
sensitivity to the sequential structure of the world a
crucial dimension of the cognitive system. Accounts of
sequence learning vary widely, with some authors
arguing that parsing and segmentation processes are
central, and others defending the notion that sequence
learning involves mere memorization. In this paper, we
argue that sequence knowledge is essentially statistical
in nature and that sequence learning involves simple
associative prediction mechanisms. We focus on a choice
reaction situation introduced by Lee (1997), in which
participants were exposed to material that follows an
extremely simple rule, namely that stimuli are selected
randomly but never appear more than once in a legal
sequence. Perhaps surprisingly, people can learn this rule
very well. Or do they? We offer a conceptual replication
of the original finding, but a very different interpretation
of the results, as well as simulation work that makes it
clear how highly abstract dimensions of the stimulus
material can in fact be learned based on elementary
associative mechanisms.

Introduction

Sequence learning is a fundamental process involved in the
many different cognitive skills required for successful
interaction with an intensely dynamic environment.
Among those skills, language is probably the most
complex, and the role that elementary associative sequence
learning processes may play in its development have
recently begun to be explored anew. For instance, Saffran
et al, (Saffran, J.R., Newport, E.L., Aslin, R.N,, Tunick,
R.A., & Barrueco, S., 1997) recently showed how
incidental exposure to artificial language-like auditory
material (e.g., bupadapatubitutibu...) was sufficient to
enable participants to segment the continuous sequence of
sounds they had heard into the artificial words (e.g.,
bupada, patubi, etc.) that it consisted of, as evidenced by
their performance in a subsequent recognition test. Based
on these data, Saffran et al. (1997) suggested that word
segmentation abilities develop based on mechanisms that
exploit the statistical regularities present in sequences of
events, such as for instance the fact that the transitional
probabilities of successive syllables are higher within
words than between words. Interestingly, Saffran et al.
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(1997) rooted their interpretation of their findings in the
apparently remote literature dedicated to implicit learning.
The connection is obvious as soon as one recognizes that
language acquisition, like implicit learning (see Bery &
Dienes, 1993; Cleeremans, 1993 for reviews), is likely to
involve, at least in part, incidental learning of complex
information organized at different levels. In particular,
research on sequence learning has, over the past decade or
so provided a steady stream of relevant evidence suggesting
that participants exhibit detailed sensitivity to the
sequential structure through differences in their reaction
time to stimuli that are or are not predictable based on the
temporal context. In typical sequence leaming situations,
participants are asked to react to each element of
sequentially structured and typically visual sequences of
events (e.g., Nissen & Bullemer, 1987). Several versions
of this basic paradigm can be distinguished. In rule-based
paradigms, sequences either conform or fail to conform to
an abstract rule that describes permissible transitions
between successive stimuli. Rule-based paradigms can in
turn involve either deterministic (e.g., Lewicki, Hill, &
Bizot, 1988) or probabilistic rules, as when the stimulus
material is generated based on the output of finite-state
grammars (e.g., Cleeremans, 1993). By contrast, in the
more common simple repeating sequence paradigm, a
single sequence containing fixed regularities is repeated
many times to produce the training set (e.g., Nissen &
Bullemer, 1987).

A perennial question in this context is to determine
exactly what people learn about when exposed to
sequentially structured stimulus material. Perhaps
unsurprisingly, it is often the case that several different
accounts are partially or completely consistent with the
data. Consider for instance a sequence learning situation in
which the stimulus material consists of a simple repeating
sequence such as “ABCDBA”. When exposed to this
material in the context of a choice reaction situation,
participants could either (1) learn something about the
generation rules, (2) memorize the entire sequence, (3)
become sensitive to the frequency of specific repeating
fragments of the sequence, (4) learn something about the
conditional probability of occurrence of each element in
the context of the previous elements, (5) learn about other
aspects of the material such as specific movement patterns
(e.g., alternations, trills, or more abstract patterns).


http://ac.be

Cleeremans and Jimeénez (1998) suggested that these
different accounts may in fact often turn out to be
descriptively equivalent, and concluded that the core
processes involved in sequence learning are best thought of
as involving elementary associative learning processes that
result in a progressively developing sensitivity to the
statistical constraints contained in the material (see also
Stadler, 1992). Such processes are well instantiated by the
Simple Recurrent Network (henceforth, SRN; see Elman,
1990; Cleeremans & McClelland, 1991), which we
describe later in this paper.

In this context, Lee (1997) described an interesting
sequence learning situation which, at first sight, seems to
challenge traditional accounts of sequence learning. Indeed,
the stimulus set used by Lee consisted of a random
selection of the 720 (6!) sequences of six elements that are
consistent with the following simple constraint: Each of
six different elements can only appear once in each six-
elements sequence. For instance, the sequences “123456”
or “236145” are both legal because each stimulus appears
only once. The sequence “235451”, however, does not
follow the rule because element ‘5’ appears twice and
element ‘6’ is missing. This rule thus results in a
probability gradient across the six positions within each
sequence, such that the first element of any legal sequence
is always completely unpredictable, and such that the
subsequent elements become increasingly predictable based
on the context set by the previous elements. The final
element of each legal sequence is thus always completely
predictable based on the first five elements. Lee’s material
thus contains almost no structure but for the single highly
abstract structural property described by the generation
rule. Nevertheless, Lee showed that participants trained on
this material tend to respond faster to stimuli that occur in
serial position 6 than to stimuli that appear in serial
position 1, thereby indicating that they had learned
something about the structure of the material. Lee also
suggested that learning involved a combination of implicit
and explicit learning, to the extent that people were unable
to project their knowledge in various direct tests (e.g.,
recognition or prediction), but nevertheless exhibited better
learning when informed of the nature of the rule.

As Lee (1997) indicated, traditional theories of sequence
learning may have a hard time accounting for the data.
Indeed, theories that rely on the notion that people
memorize entire instances would have difficulty in this
case because the stimulus material simply does not consist
of a few repeating sequences. Fragment-based accounts
also appear implausible because even three-elements
fragments fail to convey much information about the
relevant regularities. For instance, the fragment ‘123’ may
end in any of the 6 serial positions and be followed by any
of the 6 possible elements but ‘3’ (stimulus repetitions
were forbidden). Lee concluded that “both parsing and
short-term memory mechanisms must be involved” (p.
428), and that models based on simple associative learning
mechanisms, such as the SRN model, were probably
incapable of learning this stimulus material.

In the following, we first report on the results of a
conceptual replication of Lee (1997)’s experiment. Next,
and in contrast to Lee’s conclusions, we show that
participants’ sensitivity to the rule used to generate the
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stimulus material can actually be understood based on the
operation of elementary associative mechanisms that do
not involve any parsing of the material. More
importantly, we also challenge the idea that any learning
is involved in this situation. Finally, we explore how well
the SRN model can account for our data.

Experimental Design

Participants

Twelve participants took part in the experiment. They
were paid a flat fee of about $14 and could eam an
additional bonus of up to $9 based on performance at the
task (see below).

Apparatus and Display

The experiment was run on PowerPC Macintosh
computers. The display consisted of six dots arranged in a
horizontal line on the computer’s screen and separated by
intervals of 3 cm. Each screen position corresponded to a
key on the computer’s keyboard. The spatial configuration
of the keys was fully compatible with the screen
positions. The stimulus was a small black circle 0.35 cm
in diameter that appeared on a white screen background,
centered 1 cm below one of the six dots. The RSI was 120
msec.

Procedure

The experiment consisted of 24 training blocks during
which subjects were exposed to a serial six-choice RT
task. Each block consisted of 180 trials, for a total of
4320 trials. On each trial, a stimulus appeared at one of
the possible six positions. Participants were instructed to
respond as fast and as accurately as possible by pressing
on the corresponding key. The target was removed as soon
as a key had been pressed, and the next stimulus appeared
after a 120 msec interval. Erroneous responses were
signaled to participants by means of a tone.

All participants were exposed to two practice blocks of
18 trials each before the onset of the experiment. Short
rest breaks occurred between any two experimental blocks.
During these breaks, participants were given feedback
about their performance during the previous block, and
informed about how much bonus money they had eamed
so far. This amount was computed for each block based on
both accuracy and speed. A longer rest break of about 7
minutes occurred after 12 experimental blocks.

All participants were subsequently asked to perform a
continuous generation task during which they were
required to predict the location at which the next stimulus
would appear. This generation task consisted of 540 trials
presented over 3 blocks of 180 trials each. For each
participant, the stimulus matenal presented during
generation was identical with the material they had been
exposed to during blocks 13 to 15 of the RT task, thereby
ensuring that the RT and generation tasks were as
comparable as possible. No explicit feedback was provided
during the generation task. However, participants could
obtain feedback merely by comparing their prediction
responses with the actual location at which the next
stimulus appeared.



Stimulus material

The material used in this experiment was the same as
described by Lee (1997). The stimulus set consisted of the
720 (6!) sequences of six elements that were consistent
with the following simple constraint: Each element could
only appear once in each sequence, as described in the
introduction. Each of the 24 training blocks was produced
by randomly selecting (without replacement) 30 legal
sequences and by concatenating them in random order with
the only constraint that the last element of any sequence
could not be identical with the first element of the next
sequence. This procedure ensured that the material was
altogether free of repetitions, which are known to elicit
fast reaction times regardless of their probability. Each
participant was exposed to a different random order of the
24 training blocks. In contrast to Lee (1997) then,
participants in this study were exposed to the entire
training set rather than to a subset of all legal sequences.

Results
We first report on overall performance in the RT task.

Choice Reaction Time Performance

To assess whether participants were sensitive to the
sequential structure of the material, we first examined
whether their reaction times reflected the serial position
effect described by Lee (1997). Recall that the stimulus
material was such that stimuli appearing as the first
element of a sequence were completely random according
to the generation rules, and that stimuli appearing at
subsequent serial positions were increasingly predictable,
up to serial position 6 where the stimulus was completely
determined. Figure 1 shows the average reaction times
obtained over the entire experiment, plotted separately for
each of the 6 serial positions. The figure makes it clear
that participants’ responses are strongly influenced by the
serial position within each sequence: The reaction times
indeed decrease linearly from the first to the sixth serial
position, with a difference of about 30 msec between the
first and last serial positions. These impressions were
confirmed by a two-way ANOVA with block [24 levels]
and serial position [six levels] as repeated measures
factors. This analysis revealed a significant main effect of
block, F(23, 253) = 48.14, p<.0001, Mse = 2997.7 and of
serial position, F(5, 55) = 22.26, p<.0001, Mse = 1554.3.
The interaction also reached significance, F(115, 1265) =
1.26, p<.05, Mse = 754.4, albeit more detailed analyses
(see below) do not confirm that is should be taken as an
indication of learning. Further, a trend analysis applied to
the average reaction times collapsed over serial positions 1
to 6 confirmed their linearity, F(5, 55) = 22.26, p<.0001,
Mse = 1554.3 (R?*= 0.96).

Learning

Figure 2 (left panel) shows how the serial position effect
described above changes over training. The figure indicates
that the effect is already present early in training, and that
the slope of the curves corresponding to different moments
during training does not appear to change much. These
impressions were confirmed by an ANOVA with block [4
levels] and serial position [6 levels] applied on this
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Figure 1: Left panel: Mean reaction times as a function
of serial position over the entire experiment. Right
panel: Mean percentage of correct prediction responses
produced in the continuous generation task, plotted
separately for stimuli associated with serial positions |
to 6.

aggregate data, and which again produced a significant
interaction between blocks and positions, F(15, 165) =
1.77, p<.05, Mse = 185.3. However, this significant
interaction doesn’t seem to reflect learning. Indeed, planned
comparisons showed that the difference between reaction
times to position 1 and position 6 stimuli (30 msec) is
already significant over the first two blocks [F(1,11) =
16.87, p<.001, Mse = 309.5], and that it stays relatively
constant up until the last two blocks, for which it
averages 41 msec [F(1,11) = 23.56, p<.001, Mse =
443.74]. In short, there is in fact very little evidence that
there is any learning in this situation, short of unspecific
practice effects: The serial position effect emerges very
early in training and remains quite constant over the entire
experiment.

Generation task performance

After the main RT task, participants were asked to perform
a continuous generation task during which they were to
predict where the stimulus would appear next.

Figure 1 (right panel) shows the average percentages of
correct predictions plotted separately for each of the 6
serial positions and averaged over the 3 blocks. Planned
comparisons showed that the percentages of correct
responses for each position failed to differ from chance
(18%) (p>.10), thus suggesting that participants were
unable to project their knowledge in this direct test.
However, further analysis showed that participants were
nevertheless more successful in predicting the location at
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Figure 2: Left panel: Mean reaction times as a
function of serial position, plotted separately for blocs 1—
6, 7-12, 13-18, and 19-24. Right panel: Mean SRN
responses plotted separately for epochs 1, 3, 5, and 7.
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which serial position 6 stimuli could appear than for
position 1 stimuli, ( t(12) = 3.8, p< .005).

Finally, participants were also asked questions about
whether they had noticed anything about the structure of
the stimulus material in either task. All participants
indicated that they thought that the stimulus material was
completely random.

Discussion

Taken at face value, the data we obtained replicate the
results reported by Lee (1997): Participants seem to be
able to somehow segment the stimulus material in chunks
of 6 elements. This is what prompted Lee to conclude that
parsing mechanisms were necessary to understand
performance. In addition, and somewhat surprisingly, our
data also indicate that no or little sequential learning took
place in this situation. A reexamination of Lee (1997)’s
results likewise seems to suggest that the serial position
effect is already present very early during training. In the
following, we will (1) show that parsing mechanisms of
any kind turn out to be unnecessary to account for
performance, and (2) suggest an account of how
participant’s sensitivity to the sequential structure may
develop before they are first exposed to the task.

The position effect is emergent. Lee (1997)'s
analysis rests on the assumption that it is necessary for
participants to encode the serial position for them to
exhibit faster reaction times to serial position 6 stimuli
than to other positions, and therefore to somehow parse
the material in successive chunks of 6 elements with the
correct boundaries. This, however, needs not be the case:
Participants in fact merely need to be sensitive to the lag
that separates two occurrences of the same stimulus, and
to produce faster responses to stimuli associated with a
long lag. To see this, consider the fact that any stimulus
that occurs on serial position 6, that is, as the final
element of an experimenter-generated sequence, is
necessarily associated with a lag of at least length 5, in
that, by construction, the same stimulus could not have
occurred within the same experimenter-generated sequence.
In contrast, stimuli that occur on serial position 1 could
have previously occurred as recently as two trials ago (in
the previous sequence), and thus be associated with a lag
of length 1. This state of affairs is depicted in Figure 3A,
which clearly shows that the different serial positions are
associated with ranges of lags of increasing length. For
instance, position 1 is associated with lags of length 1-5,
and position 6 with lags of length 5-10. From this
perspective, then, the position effect described by Lee
(1997) and replicated in this experiment, merely emerges
out of more elementary features of the material, namely
(1) that on each trial, the probability of any stimulus
increases linearly with the lag that separates the current
trial from the stimulus’s previous occurrence, and (2) that
different serial positions in the experimenter-generated
sequences are, by construction, associated with
distributions of increasing lags.

If our account is correct, then one should observe a lag
effect in the data. Figure 3B shows that such a lag effect is
indeed present: Reaction times decrease linearly with the
lag, as confirmed by an ANOVA with lag [10 levels],
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Figure 3: The lag effect. A: Distribution of lags for
each serial position. B: Mean reaction times (filled
symbols) and mean SRN responses (open symbols) for
each of 10 lag levels. C: Mean reaction times, and D:
Mean SRN responses plotted separately for the 10 lag
levels and for each serial position. See text for additional
details.

F(9,99) = 25,45, p<.0001. Figure 3C further shows that
position, by itself, seems to have little impact on
performance: Each curve (corresponding to stimuli with a
given lag length as in Figure 3A) is relatively flat across
serial positions. An ANOVA with position [six levels]
applied to these data and restricted to stimuli with a lag of
length 5 (the only case where position and lag are
completely crossed) confirmed this impression and showed
no significant effect of position (p=.09). Hence it should
be clear that participants do not need to, and in fact do not,
parse the material in order to exhibit the observed serial
position effect. Combined with the further fact that we
failed to observe learning in this situation, it would appear
that sensitivity to the serial position, far from indicating
learning of the sequential regularities, may in fact reflect
knowledge that participants already possess before being
exposed to the task. This knowledge may consist of a
tendency to prepare responses that have not been used
recently, in a way similar to the well-known fact that
spontaneously generated random sequences are in fact
much more uniform than true random distributions. How
might this knowledge be established? This is the issue we
focus on in the rest of this paper.

Simulations

To find out whether simple associative leamning
mechanisms are in fact sufficient to account for the data,
we explored how well the SRN model (Figure 4) could
learn Lee (1997)’s material. The network uses back-
propagation to learn to predict the next element of a
sequence based only on the current element and on a
representation of the temporal context that the network has
elaborated itself. To do so, it uses information provided by
so-called context units which, on every step, contain a
copy of the network’s hidden unit activation vector at the
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Figure 4: The simple recurrent network (SRN). See
text for details.

previous time step. Over training, the relative activation
of the output units representing each possible successor
come to approximate the optimal conditional probabilities
associated with their appearance in the current context, and
can thus be interpreted as representing implicit preparation
for the next element when the network is used as a model
of human sequence learning performance. Previous work
(see Cleeremans & McClelland, 1991; Cleeremans, 1993)
has shown that the SRN is able to account for about 80%
of the variance in sequential choice reaction time data.

Simulation parameters and procedure

To assess how well the SRN could capture RT
performance in this experiment, we trained the model on
the same material as human subjects. The network
consisted of 80 hidden units and local representations on
both the input and output pools (i.e., each unit
corresponded to one of the 6 stimuli). The network was
trained to predict each element of a continuous sequence of
stimuli generated in exactly the same conditions as for
human subjects. On each step, a stimulus was generated
according to the generation rules and presented to the
network by setting the activation of the corresponding
input unit to 1.0. Activation was then allowed to spread to
the other units of the network, and the error between its
response and the actual successor of the current stimulus
was used to modify the connection weights. During
training, the activation of each output unit was recorded on
every trial and transformed into Luce ratios to normalize
the responses. For the purpose of comparing simulated and
observed responses, we assumed (1) that the normalized
activations of the output units represent response
tendencies, and (2) that there is a linear reduction in RT
proportional to the relative strength of the unit
corresponding to the correct response. The network’s
responses were finally subtracted from 1.0 to make
increases in response strength compatible with reduction
in RT.

We conducted extensive exploration of the parameter
space using this and other closely related architectures.
Because it appears that human participants do not learn
much beyond unspecific practice effects in this
experiment, we did not attempt to match the number of
experimental and simulated trials. The results presented
below provided the best fit we could obtain with the
human data, and they involved 7 epochs of training on the
entire ftraining set, a learning rate of 0.04 and a
momentum of 0.9. Ten networks initialized with different
random weights selected in the -0.5, 0.5 range were trained

on a total of 30240 (720 sequences x 6 elements x 7
epochs) trials, and their responses, assessed as described
above, were averaged together.

Simulation results

Over 7 epochs, the network is able to master the training
set almost perfectly, as illustrated in Figure 5. The
network, like human participants, exhibits a linear serial
position effect (Figure 5, left panel). Further, Figure 3B
shows that the network also exhibits a linear lag effect
that is not only very similar to the human data, but also
remarkably similar to — and indeed almost identical with
— the actual distribution of lags over the 6 serial
positions within the stimulus material (compare Figures
3A and 3D). A regression analysis using the simulated
data depicted in Figure 3D and the corresponding human
data shown in Figure 3C indicated that the model explains
about 70% of the variance (see Figure 5, right panel) of
human reaction times. Thus in all respects, the network
provides an excellent descriptive account of the human
data. In the next section, we examine how the network
learns the stimulus material.

Learning. As shown in Figure 2 (right panel), over the
course of training, the network progressively starts
exhibiting (after 3 epochs) the serial position effect that
human participants already produce at the onset of the
experiment. Note that the network does not capture
unspecific practice effects — a known limitation of the
SRN as a model of choice reaction time performance.
Figure 6 provides a more detailed view of the network’s
performance as it changes over training, and shows that
the network becomes progressively able to predict
perfectly which elements are possible at each serial
position (bottom row). For instance, the network perfectly
predicts that ‘6’ is the only possible successor of “12345”
As described in Servan-Schreiber, Cleeremans &
McClelland, (1991), the development of sequence
knowledge in the SRN involves a gradually increasing
sensitivity to the sequential constraints contained in an
increasingly large and self-developed representation of the
temporal context defined by previous elements of the
sequence. Initially, the network learns to associate each
element with the distribution of its possible successors,
and essentially ignores the context information. In this
material, each element is associated with a unique
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Figure 5: Comparison between simulated and human
performance. Left panel: Both human participants and the
model exhibit a linear serial position effect. Right Panel:
The model accounts for about 70% of the variance in the
distribution of human reaction times.
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Figure 6: Model prediction responses on the sequence
123456 at different points in training. Each bar
represents the strength of the output unit corresponding
to each of the 6 possible elements.

distribution of successors because, by construction, an
element cannot be followed by itself. Hence after one
epoch of training (see Figure 6, top row), the network
tends to predict that all the elements but the input element
are possible successors, and the patterns of activation over
its hidden units now represent these associations. When
fed back onto the context units, these patterns can now be
used by the network as a representation of the previous
element, and it can then start basing its predictions on two
elements. It is when the network has become sensitive to
three eclements that the material’s structure starts
conveying information about the lag that separates
occurrences of the same stimulus. Consider for instance
the fragment ‘123’. It can never be followed by 3 by
construction, but it is also more often associated with ‘1’

as a successor than it is with ‘2°, regardless of the serial
position at which it ends. This is simply because there are

more ways for ‘1231 to occur in the stimulus set than
there are ways for ‘1232’ to occur. Indeed, whereas neither
‘1231 and “1232° can occur within any legal sequence,
‘1231’ can span two legal sequences in three different ways
(°1-231°, “12-31°, and “123-1"), whereas ‘1232’ can only
do so in two different ways (‘12-32’, and “123-2"). Hence,
the lag effect emerges out of the metwork’s prediction-
based sensitivity to the statistical structure of the material,
and the lag effect is itself the basis for the emerging serial
position effect characteristic of human performance.
Finally, further simulation work that we cannot present
due to lack of space indicated that the network’s
representations of the material are sufficiently abstract to
enable it to generalize flawlessly after training on only a
subset of the 720 legal sequences.

General Discussion

In this paper, we suggested that the core mechanism
involved in sequence learning is statistical in nature, and
rooted in the development of distributed representations of
the temporal context acquired through -elementary
associative learning processes that operate on exemplars.
We showed how such mechanisms are in fact sufficient to
understand how sensitivity to very abstract features of the
material, such the serial position effect described by Lee
(1997) can emerge out of a sensitivity to more elementary
features of the material, such as the lag that separates

successive occurrences of the same stimulus. Parsing
mechanisms of any kind are thus clearly unnecessary.
More surprisingly, perhaps, our results suggest that Lee
(1997)’s findings do not involve learning of the sequential
regularities, but merely reflect knowledge that participants
already possess before being exposed to the task. This
knowledge, perhaps gained through experience in the real
world, may consist of a tendency to preferentially prepare
responses that have not been produced recently. The
structure of Lee (1997)’s material would then simply be
congruent with this bias and reinforce it. This bias does
appear to be implicit, although further research is
necessary to clarify this issue. In conclusion, it appears
that performance in this task might be more of matter of
knowing without learning than a matter of learning
without knowing.
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