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The underlying mechanisms of alpha band (8–12 Hz) neural oscillations are of importance to the functioning of
attention control systems as well as to neuropsychiatric conditions that are characterized by deficits of that sys-
tem, such as attention deficit hyperactivity disorder (ADHD). The objectives of the present study were to test if
visual encoding-related alpha event-related desynchronization (ERD) correlates with fronto-parieto-occipital
connectivity, and whether this is disrupted in ADHD during spatial working memory (SWM) performance. We
acquired EEG concurrently with fMRI in thirty boys (12–16 yrs. old, 15 with ADHD), during SWM encoding.
Psychophysiological connectivity analyses indicated that alpha ERD during SWM encoding was associated with
both occipital activation and fronto-parieto-occipital functional connectivity, a finding that expands on prior as-
sociations between alpha ERD and occipital activation. This finding provides novel support for the interpretation
of alpha ERD (and the associated changes in occipital activation) as a phenomenon that involves, and perhaps
arises as a result of, top-down network interactions. Alpha ERD was associated less strongly with occipital activ-
ity, but associated more strongly with fronto-parieto-occipital connectivity in ADHD, consistent with a compen-
satory attentional response. Additionally, we illustrate that degradation of EEG data quality by MRI-amplified
motion artifacts is robust to existing cleaning algorithms and is significantly correlatedwith hyperactivity symp-
toms and the ADHD Combined Type diagnosis. We conclude that persistent motion-related MR artifacts in EEG
data can increase variance and introduce bias in interpretation of group differences in populations characterized
by hypermobility — a clear limitation of current-state EEG-fMRI methodology.

© 2016 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Working memory (WM), the ability to store and manipulate infor-
mation transiently in memory (Baddeley, 1986, 2002), is one of core
functions affected in attention deficit hyperactivity disorder (ADHD)
(Castellanos and Tannock, 2002; Nigg, 2005); it is also one of the most
perplexing. In support of WM system dysfunction in ADHD, group
differences in behavioral performance on WM tasks consistently show
medium to large effect sizes (Alderson et al., 2013; Boonstra et al.,
2005; Kofler et al., 2013; Loo et al., 2007; Martinussen et al., 2005;
Westerberg et al., 2004; Willcutt et al., 2005), and neuroimaging evi-
dence indicates that patients with ADHD differ in fronto-parietal, or so
called “top-down”, circuitry associated with WM (Arnsten and Rubia,

2012; Bush, 2010; Castellanos and Tannock, 2002; Rubia et al., 2014).
Yet stimulant medications, which target such circuitry and offer relief
from related symptoms such as sustained attention or response inhibition,
are inconsistent in alleviating WM symptoms (Rubia et al., 2013; Rubia
et al., 2014). Moreover, spatial orienting and effects of load in WM, both
of which also rely on fronto-parietal network integrity, have demonstrated
a lack of group differences (Bedard et al., 2014; Huang-Pollock and Nigg,
2003; Huang-Pollock et al., 2005; Wolf et al., 2009). Such findings prompt
further study of themechanismbywhich dysfunction of fronto-parietal cir-
cuitry contributes to SWM deficits in ADHD.

We have demonstrated recently (Lenartowicz et al., 2014) that
within a spatial working memory (SWM) delayed match-to-sample
task distinct group differences may be observed during different stages
of the task: preparing for WM storage, encoding content into WM, and
maintaining that content in WM. The most pronounced group differ-
ences in neural responses were present during the encoding phase of
the task, beforeWMwas engaged by themaintenance delay and before
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items were to be retrieved from WM. We found that in children with
ADHD event-related desynchronization (ERD) of alpha-frequency
(8–12 Hz) neural oscillations during encoding was attenuated and pre-
dictive of ADHD symptoms and WM task performance. The involve-
ment of alpha during encoding is notable, as it points to atypical
fronto-parietal interactions with occipital cortex during the encoding
process.

Alpha modulation during visual perception and attention has been
hypothesized to be a functional mechanism by which information is
selected or gated in visual cortex (Foxe and Snyder, 2011; Klimesch,
2012; Klimesch et al., 2011;Mathewson et al., 2011). Alpha ERDmagni-
tude varies with task variables such as degree of semantic content
(Klimesch, 1997; Klimesch et al., 2011), memory load and retrieval ac-
curacy (Jensen et al., 2002; Klimesch, 1999; Klimesch et al., 1997), and
visuospatial attention (Foxe and Snyder, 2011; Thut et al., 2006). Unlike
other spectral phenomena (e.g., theta), ERD can reverse in sign (becom-
ing an event-related synchronization, ERS) for stimulus inputs that are
to be ignored (Foxe and Snyder, 2011; Rihs et al., 2007). Moreover,
alpha ERD is thought to arise independent of perceptual processing
(Klimesch et al., 2011), as it can occur before (Ergenoglu et al., 2004;
Hanslmayr et al., 2007; Romei et al., 2010) or after (Freunberger et al.,
2008) the stimulus, and can be absent during a stimulus when no
post-perceptual processing is required (Hanslmayr et al., 2005).

Thusweakened alpha ERD in ADHD is a likely indicator of weakened
top-down control during SWM encoding and, given prior association of
fronto-parietal circuitry with both SWM (Awh and Jonides, 2001;
Constantinidis et al., 2001; Smith and Jonides, 1997) and with alpha
power (de Munck et al., 2007; Laufs et al., 2003; Liu et al., 2014;
Scheeringa et al., 2009), it predicts weakened interactions between
the fronto-parietal network and occipital cortex during encoding. In
the context of ADHD, a confirmation of this hypothesis would imply
that SWM deficits may hinge on relatively early attention control pro-
cesses, and the success of these processes may directly influence the
success ofWM and, consequently, the presence or absence of group dif-
ferences on WM tasks.

The objective of our study was therefore to test if encoding-related
alpha ERD reflects fronto-parieto-occipital connectivity, whether this
is disrupted in ADHD, and whether it predicts ADHD symptoms or
SWMperformance.While numerous studies have documented the rela-
tionship between alpha and activation in occipital, frontal and parietal
cortices (de Munck et al., 2007; Goldman et al., 2002; Laufs et al.,
2003; Liu et al., 2014; Moosmann et al., 2003; Scheeringa et al., 2009),
the relationship between alpha and connectivity among these regions
has not been established firmly. Multiple studies have reported
fronto-parietal synchronization in the alpha range during WM tasks
based on neurophysiological signals (Doesburg et al., 2009; Hummel
and Gerloff, 2005; Palva and Palva, 2011; Sauseng et al., 2005; von
Stein et al., 2000). However the experiment of combining EEG and
fMRI in concurrent recordings to test directly if alpha modulation pre-
dicts inter-regional connectivity has been reported only by Scheeringa
et al. (2012), who described decreased within-occipital connectivity
during alpha ERS, but this manuscript did not include findings on
alpha ERD. Moreover, a handful of studies have examined alpha related
activation during SWM focusing on the maintenance interval and theta,
using either concurrent EEG-fMRI (Michels et al., 2010; Michels et al.,
2012; Scheeringa et al., 2009) or cross-subject EEG-fMRI correlations
(Meltzer et al., 2007). Scheeringa et al. (2009) additionally examined
alpha ERS during maintenance and reported an increase in frontal cor-
tex, and a decrease in occipital cortex activity, whichwould be expected
subsequent to encoding.

Finally, within ADHD, we are aware of four studies that have exam-
ined BOLD correlates of EEG signals, namely of event-related potential
markers of reward (Boecker et al., 2014; Hauser et al., 2014), and
of voluntary response selection (Karch et al., 2010; Karch et al., 2014),
but not of encoding processes. It is notable that even within studies
that employed EEG without fMRI we are aware of only two, other

than our own, that have examined alpha ERD during encoding in WM
(Gomarus et al., 2009; Missonnier et al., 2013). Thus whether alpha
ERD reflects fronto-parieto-occipital functional connectivity, and if this
relationship accounts for ADHD deficits in SWM, are both questions
that warrant further study.

In the present experiment we used concurrent EEG-fMRI methodology
to record both alpha ERD during encoding and associated changes in BOLD
activity, and connectivity signals during SWM tasks in children with and
without ADHD. The results confirm prior associations between alpha and
occipital activation, expand this association to include fronto-parietal-
connectivity, anddemonstratedifferencesbetweenchildrenwithandwith-
out ADHD in both relationships. Additionally, our findings suggest caution
in EEG-fMRI assessment of populations characterized by hypermobility,
such as children with ADHD Combined Type diagnosis, due to severe deg-
radation of EEG data by MRI-amplified motion related artifacts.

2. Methods

2.1. Participants and diagnoses

A total of 30 boys (15 with ADHD, 12–16 years old) were recruited
from the Los Angeles community through flyers, community organiza-
tions (CHADD; www.chadd.org), and the UCLA ADHD clinic. Exclusion
criteria included: IQ b 80, history of learning disabilities, co-morbid
Axis I diagnoses other than oppositional defiant disorder, and current
use of psychotropic medications other than psychostimulants.
Parents/participants received verbal and written explanations of study
requirements and, prior to any study procedures, provided written in-
formed permission/assent as approved by the UCLA Institutional Re-
view Board. No participants, including those diagnosed with ADHD,
were on medication during clinical assessment or testing, withholding
use 24–48 h prior to session, consistent with medication half-life.

We evaluated children for ADHD and other psychiatric disorders
through a semi-structured diagnostic interview with the primary care-
taker (usually the mother) and a direct interview with the child using
the Schedule for Affective Disorders and Schizophrenia for School-Age
Children (KSADS-PL) (Kaufman et al., 1997). Psychiatric disorders
were considered present if the participant currently met full DSM-IV di-
agnostic criteria for any ADHD subtype. Two clinical psychologist
trainees conducted all interviews. Senior clinicians (SKL, PDW) con-
firmed psychiatric diagnoses after individual review of symptoms, de-
velopmental course, and impairment level. We assessed full scale
intelligence (FSIQ) using theWechsler Abbreviated Scale of Intelligence
(WASI), learning disability using the reading comprehension and word
reading scales of the Wide Range Achievement Test 4 (WRAT), and se-
verity of ADHD symptoms using the Strengths and Weaknesses of
ADHD symptoms and Normal (SWAN) Behavior Scale (Swanson et al.,
2006). Positive scores on the SWAN scale indicate more symptoms,
whereas negative scores indicate fewer symptoms.

2.2. Task

We used a computerized version of the spatial working memory
(SWM) task (Glahn et al., 2002; Sternberg, 1966) to assess alpha ERD
during WM encoding (Fig. 1), the timing of which was adapted for
fMRI. Each trial consisted of a fixation cross for 500-msec, followed by
an encoding display containing 3 or 5 yellow dots (load), presented
on a black background. After 2 s, the screen turned blank and remained
blank for a maintenance interval of 7, 8 or 9 s, selected randomly on
each trial. Next a single dot (probe) was presented for 3 s in either a lo-
cation previously shown (match) or not (non-match). Participantswere
instructed to indicate using a left/right button press if the probe was a
match or non-match to the encoding stimulus. Trials were separated
by an inter-stimulus-interval (7, 8, or 9 s duration, randomized) during
which the screenwas blank. Of primary interest in this studywere alpha
ERD and neural activity/connectivity during the encoding period. We
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also recorded accuracy, reaction time (RT) and standard deviation of re-
action time (RTsd) as an index of response variability.

During the scanning session participants performed a total of 32 tri-
als in each experimental block, and 2 blocks in total (12–13min/block).
In each block there were equal numbers of trials for each load and
match/no-match response type. Encoding stimuli were also balanced
in the spatial distribution of dots across upper/lower, and left/right
visual field to ensure balanced but variable (across trials) visuospatial
neural responses. Stimulus types were randomized across trials. Partic-
ipants also performed a 2 min stimulus localizer task during which the
same stimuli as used for the task were presented at brief succession
(1 s duration, 250ms inter-stimulus interval) inmini-blocks of 4 stimuli
(~5 s/mini-block). The inter-block duration was 10 s, and a total of 8
blocks were presented. Participants were instructed to ignore the stim-
uli, to look at a central fixation cross, and to count howmany times the
fixation cross changed color to red (a total of 4 color changes were pre-
sented randomly). This condition was designed as a localizer to identify
regions that respond to the visual stimuli without engaging visuo-spatio
encoding mechanisms. It thus provided an unbiased prior on selecting
seed regions that respond to the visual stimuli, and thus whose connec-
tivity during SWM encoding may be related to alpha ERD, our central
hypothesis.

Prior to scanning, children performed a 30 min practice session of
the SWM task. They received an overview of the task, then performed
5 practice trials in which the response period was unlimited, allowing
them to ask questions. This was repeated if desired. Children then per-
formed one full block of the task (32 trials), in which the inter-trial in-
terval was shortened to 3 s (Lenartowicz et al., 2014) to minimize
fatigue. Following practice, we collected a 3 min recording during
which participants alternated between 30 s intervals of sitting quietly
with either eyes closes (EC) and eyes open (EO). This recording was
used to establish a prior on the spatial distribution across electrodes of
alpha modulation, which is expressed strongly with opening and clos-
ing of eyes (Berger, 1930; Kirschfeld, 2005).

All stimuliwere generated using anAppleMacBook Pro Laptop Com-
puter (Cupertino, CA). We controlled stimulus presentation and re-
sponse collection using PsychToolbox Software (Brainard, 1997;
Kleiner et al., 2007), running in Matlab (7.10 R2010a, Mathworks, Na-
tick, MA). During scanning, stimuli were presented to participants by
a projector and two-waymirrormounted on theMRI head coil, and par-
ticipants responded using an MR-compatible button box, using their
index and middle finger for left/right responses. During practice the
stimuli were presented on a Dell Monitor, in a private testing room,
and responses were collected using the left/right arrow keys of a
QWERTY keyboard.

2.3. EEG-fMRI data collection

2.3.1. fMRI
The MRI data were acquired with a 3 T Siemens Trio MRI scanner

(Erlangen, Germany). We collected T2*-weighted echoplanar images
(EPI) [slice thickness, 3 mm; 36 slices; repetition time (TR), 2.16 s;
echo time (TE), 30 ms; flip angle, 90°; matrix, 64 × 64; field of view

(FOV), 192 mm] during each SWM task block and stimulus localizer.
To facilitate registration of EPI images toMontreal Neurological Institute
(MNI) space, we collected a T2-SPACE structural image [TR, 3.2 s; TE
213ms; FOV, 256mm;matrix, 256 × 256; sagittal plane; slice thickness,
1 mm; 224 slices], and T2-weighted matched bandwidth high-
resolution structural scan with the same slice prescription as the EPIs.

2.3.2. EEG
The EEG data during each SWM block were acquired concurrently

with the MR data using Electrical Geodesics (Eugene, OR) GES300 MR
system, NetStation v4.54 recording software, sampling at 1000 Hz and
clock synchronized to the MR EPI acquisition. We used 256-channel
high-impedance HydroCel Geodesic Sensor Nets, with reference at ver-
tex. Nets were positioned on each participant by aligning the vertex
electrode with the vertex of the head, identified at the midpoint of the
anion-to-inion and left/right preauricular landmarks. Electrode imped-
ances were b50 kΩ, as recommended by the manufacturer. Two addi-
tional external electrocardiogram (ECG) electrodes were applied to
the chest (positions: left midclavicular line in 5th intercostal space
and 4th left intercostal space at sternal border) for later use in suppres-
sion of artifacts as described below.

2.4. Analysis

2.4.1. Demographics, symptoms & performance
We used independent sample t-tests to assess group differences in

age, FSIQ, verbal proficiency (WRAT), and symptoms (SWAN).We ana-
lyzed task accuracy, reaction time (RT) and its standard deviation (RTsd)
(an index of response variability) using repeated-measures ANOVA.
Each analysis included the between-subject factor of GROUP (ADHD
vs. TD controls) to test for overall differences in performance by the
two diagnostic groups, and the within-subject factor of LOAD (1 dot at
low load vs. 5 dots at high load) to test if performance differs with in-
creasing load on WM, as well as their interaction. Analyses were per-
formed using SPSS (IBM Corporation, Somers, NY).

2.4.2. fMRI preprocessing
Data processing was carried out using FSL software (www.fmrib.ox.

ac.uk/fsl, S. M. Smith et al., 2004). First, the brain was isolated from the
surrounding tissue using BET. Then, to correct for subject motion, func-
tional images in each blockwere realigned to themiddle volume by ap-
plying a rigid body (6 degrees of freedom) transformation using a
normalized correlation similarity function with trilinear interpolation.
The motion parameters from each transformation were retained for
subsequent analysis. Data were smoothed spatially using a 5 mm full-
width-half-maximum Gaussian kernel, filtered temporally using a
non-linear high-pass filter with a 100 s cut-off, and grand-mean inten-
sity normalized. Additionally, the datawere denoised bymeans of prob-
abilistic independent components analysis (Beckmann and Smith,
2004). Artifact components were labeled using a hierarchical super-
vised classification framework (Salimi-Khorshidi et al., 2014) and then
were subtracted from the data. To establish the efficacy of this two-
stepmotion removal approachwe re-ran themotion correction realign-
ment algorithm on the ICA denoised data and compared themotion pa-
rameters across groups. Following cleaning none of the six motion
parameters showed significant differences between ADHD and TD
groups, t(28) b 1, p N .33. This is in contrast to pre-cleaning motion pa-
rameters that indicated greater translational motion in ADHD than in
TDparticipants, t(28) N 1.9, p b .05, suggesting that our strategywas suf-
ficient to remove gross motion-related differences between groups.
Last, the functional images were registered to the matched-bandwidth
high-resolution scan, then to the T2-SPACE structural image, and finally
into standard (Montreal Neurological Institute [MNI]) space, using af-
fine transformations.

Fig. 1. Spatialworkingmemory task. The appearanceof analertingfixation-cross cued trial
onset. The encoding stimulus was either 1 or 5 dots. Following a 7, 8 or 9 s maintenance
period, the probe stimulus appeared. Participants indicated, by button press, whether or
not the location of the probe matched the location of any of the encoding stimulus dots.
ITI: inter-trial interval.
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2.4.3. fMRI localizer analysis
The stimulus localizer scan was used to identify regions of interest

(ROIs) for subsequent analyses of connectivity and relationship with
alpha ERD. Analysiswas conducted using FSL byfitting a generalized lin-
ear model to the time-series for each voxel. The model contained five
event and two nuisance regressors. Event regressors were constructed
for each stimulus mini-block type (dot stimuli presented in each of
four visual quadrants) as well as for the 4 target events. For each regres-
sor, trials were dummy coded as 1 s, with duration determined by
event/mini-block duration, and were then convolved with a double-
gamma hemodynamic response function (Glover, 1999). Temporal de-
rivatives of each event predictor also were included as regressors to in-
crease model sensitivity. Inter-block intervals were not modeled, and
constitute an implicit baseline. Nuisance regressors included timeseries
for two ROIs constructed in ventricles andwhite matter to model global
signal changes unrelated to gray matter activation. Motion-parameter
regressors were omitted, based on a validation analysis in which we
performed all analyses with and without motion-parameter regressors
and determined that event-related contrast results were largely
unchanged. This additionally confirmed that our combined motion-
correction and ICA denoising procedure was effective in eliminating
motion-related variance in the data, and inclusion of motion-
parameter regressors would unnecessarily account for additional de-
grees of freedom in the model. Finally, the data were pre-whitened to
correct for temporal autocorrelation (Woolrich et al., 2001) before the
final model fit was estimated using FILM.

We identified activation maps corresponding to dot stimuli by com-
paring parameter magnitudes across event regressors within a multi-
level linear modeling framework (Beckmann et al., 2003), including ro-
bust group analysis using outlier inference (Woolrich, 2008). Whole-
brain analyses were performed at the group-level, using mixed-effects
analysis, and by including contrasts for assessment of mean stimulus
response across all participants, as well as for an effect of GROUP
(ADHD vs. TD). Group level parameter maps were thresholded using
cluster detection statistics, with a height threshold of z N 2.3 and cluster
probability of p b 0.05, and corrected for whole-brain multiple compar-
isons using Gaussian random field theory (Worsley and Friston, 1995).
Finally we selected ROIs, used subsequently in the EEG-fMRI analyses,
by identifying the location of peak activations during stimulus presenta-
tion. These ROIswere right lateral occipital cortex (rOccLat, x= 20mm,
y = −94 mm, z = 2 mm), right superior occipital cortex (rOccS, x =
26 mm, y = −62 mm, z = 52 mm) and right frontal eye fields (rFEF,
x = 32 mm, y = −4 mm, z = 46 mm). The mean stimulus activation
also included a peak in left superior occipital cortex, homologous to
rOccS, however, since the examined effects did not differ from those
of rOccS, they are not reported.

2.4.4. EEG preprocessing
Offline EEG processing and analyses were performed using custom

MATLAB (V.7.14, R2012A, The Mathworks, Inc.) scripts using functions
from the EEGLAB environment (v.13.x (dev), Delorme and Makeig,
2004). The EEG data were high-pass filtered (N .1 Hz). For EEG data
collected concurrently during fMRI, gradient-related artifacts gen-
erated during each TR of scanning were removed using a template
subtraction approach whereby the mean artifact, time locked to
the MRI scanner's internal clock (MS Cohen, “Method and apparatus
for reducing contamination of an electrical signal.” USPTO. Assigned
to The Regents of the University of California (Oakland, CA, US),
10/344,776, 7,286,871. 10/23/2007) is subtracted from each TR.
The timeseries were then downsampled to 250 Hz and trimmed
to remove residual gradient artifact at the beginning and end of
the timeseries. Next, we inspected all data for noisy electrodes,
which were interpolated.

For EEG data collected concurrently with fMRI, we additionally
removed ballistocardiogram effects (Debener et al., 2008; Mullinger
et al., 2013). This was done in two steps. First we used a template-

based approach (Allen et al., 1998) to identify and then subtract the
mean BCG artifact from each BCG event. Our approach was adapted to
identify the heartbeat events in the EEG data (i.e., BCG events) rather
than in the EKG data (i.e., EKG events) as typically reported (Allen
et al., 1998). This approach was adopted because: (a) we found EKG re-
cordings in children to be variable and not always reliable, (b) we found
the timing between EKG and BCG peak events to be variable across chil-
dren and not consistent with published recommendations (Debener
et al., 2008) and, thus, (c) the EEG-based approach allowed us to
model the BCG directly from the data. We have found that the timing
of the BCG relative to the ECG events within an individual is highly reli-
able and thus provides at least as good if not better estimate of the BCG
artifact (Rodriguez et al., 2013). In the second step the BCG-template
cleaned data were decomposed into maximally independent compo-
nent (IC) processes by temporal ICA decomposition using extended
infomax (Lee et al., 1999) (stopping weight = 1e−7, maximum learn-
ing steps = 1000).We identified ICs that captured residual BCG artifact
by creating an event-related average for each IC, time-locked to BCG
peaks, and then correlating the BCG event-related timeseries with the
BCG template. Significantly correlated ICs were subtracted from the
Data. ICA was performed also in EEG data collected outside of the
scanner (during practice session), and in all data we inspected spectral,
spatial and temporal properties of each IC to identify artifacts due to eye
movement and high-frequency noise. These ICs were also subtracted
from the data.

The cleaned data were re-referenced to average reference. Next we
extracted epochs time-locked to the onset of the encoding stimulus,
beginning 1.4 s before and ending 15.4 s after the 2 s stimulus presenta-
tion. This 16-s time interval encompassed the entire duration of the trial
including encoding, maintenance and probe, for visualization and refer-
ence to our previously published results (Lenartowicz et al., 2014).
Using these relatively long epochs also served to circumvent edge ef-
fects in the time/frequency decomposition. Epochs containing any re-
maining artifacts, or followed by incorrect responses, were removed.
To calculate event-related spectral perturbations (ERSPs), we applied
Morlet wavelet decomposition, as implemented in EEGLAB newtimef(),
to the epoch component time series. To identify alpha ERD effects we
calculated power for 100 log-spaced frequencies ranging from 3 Hz to
125 Hz, and along 450 linearly spaced time bins (advanced in 38-ms
steps) across the epoch. To adjust for the trade-off between frequency
and temporal resolution, the wavelets were modified such that 3 cycles
wereused at the lowest frequency (3Hz), increasing linearly to 25 cycles
at the highest frequency (125 Hz). For group analyses, these trial spec-
trograms were averaged, converted to dB units, and baseline corrected
by subtracting the log-power of the baseline period (also in dB) preced-
ing onset of thefixation cross (−1400ms to−100ms) at each frequen-
cy from the log spectrogram values at each latency.

Alpha ERD then was extracted by averaging the ERSP magnitude
across all latencies of the encoding stimulus (0–2 s) and within
8–12 Hz frequency band, as well as across occipital electrodes. These
electrodes were selected based on the distribution of the difference in
alpha modulation during EO and EC blocks. More specifically, we used
a protocol analogous to that for extracting alpha ERD to estimate
alpha power during EO and EC conditions. We found the mean within
each condition at the group spectral peak of alpha power, and calculated
the difference between EO and EC across electrodes. Themeanmodula-
tion values from all 256 electrodes were plotted on a scree plot and the
maximal response electrodes were identified by finding the elbow in
the scree plot, identifying a total of 29 electrodes (E96, E97, E106,
E107, E108, E109, E114, E115, E116, E117, E118, E124, E125, E126,
E136, E137, E138, E139, E148, E149, E150, E151, E152, E159, E160,
E161, E168, E169, E170) that corresponded with an occipital topogra-
phy (see Fig. 3c). The mean alpha ERD amplitudes were analyzed
using repeated-measures ANOVA and/or t-tests for effects of GROUP,
LOAD and their interaction. Additionally, for EEG-fMRI analyses, single-
trial values for alpha ERD were extracted, as discussed below.
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Finally, we performed additional analyses to identify outliers based
on EEG data, which are susceptible to both effects of motion and resid-
ual BCG artifacts.We therefore identified participants whohad b10 cor-
rect trials following all cleaning steps, and those who were outliers in
mean ERSP spectral power below alpha (b7 Hz), in which BCG effects
(outside of the alpha ERD) tend to be expressed maximally. This analy-
sis identified 9 participants whose data was unsuitable for further anal-
yses (Inline Supplementary Fig. S1), as discussed in more detail below.
Remaining participants had on average 40 epochs remaining, following
all cleaning steps, for use in the EEG-fMRI analyses (ADHD: M = 38,
SE= 3.2; TD:M = 42, SE= 2.1).

Inline Supplementary Fig. S1 can be found online at http://dx.doi.
org/10.1016/j.nicl.2016.01.023.

2.4.5. EEG-fMRI analyses
We used a psychophysiological interaction (PPI) analysis (Friston

et al., 1997; McLaren et al., 2012) to identify the activity and connectiv-
ity associated with alpha ERD across groups. This analysis was conduct-
ed using FSL software, and an approach analogous to the fMRI localizer
analysis. However, the general linear model included not only event
and nuisance regressors, but also PPI-related regressors. Namely, we in-
cluded nine event regressors to model: accurate-trial encoding,
maintenance and to probe events at each LOAD, as well as inaccurate-
trial encoding, maintenance and probe events. The encoding regressors
were used to quantify activation during encoding, as well as effects of
GROUP, LOAD and their interaction. We also included two nuisance re-
gressors: the timeseries of ventricle andwhitematter amplitude chang-
es across block. Finally, the three additional PPI regressors included a
regressor of event-related alpha ERD (c.f. EEG Preprocessing) for all accu-
rate trials, the time series of an ROI (either rOccLat, rOccS, or rFEF), and
an interaction term between alpha ERD and the time series of an ROI
(c.f. fMRI localizer analyses). As we identified three ROIs in the fMRI
localizer analysis, the analysis was performed for each ROI separately.
The PPI term in each of these analyses was constructed by multiplying
the alpha ERD regressor by the deconvolved timeseries of the ROI
(Gitelman et al., 2003), and reconvolving the productwith the hemody-
namic response function. Thus, the alpha ERD regressor was used to
identify regions that covaried in activation with changes in alpha ERD,
whereas the PPI term was used to identify regions whose functional
connectivity with the ROI in question varied with magnitude of alpha
ERD. Both effects in thismodel represent alpha ERD activity and connec-
tivity changes independent of the main effects of encoding, mainte-
nance and response to probe during the task.

As for fMRI localizer analysis, we assessed significance at the group-
level, for each regressor, using amixed-effects model.We included con-
trasts for assessment of mean regressor significance across all partici-
pants, thresholded using cluster detection statistic, with a height
threshold of z N 2.3 and cluster probability of p b 0.05, and corrected
forwhole-brainmultiple comparisons using Gaussian random field the-
ory. We then used ANOVAs to assess effects of GROUP within each

regressor, alpha ERD activity and functional connectivity, result. Note
that because we modeled alpha ERD as a continuous variable across
all trials, we do not test for LOAD effects in the alpha ERD related effects.
However the inclusion of alpha ERD as a regressor in themodel, in addi-
tion to the interaction term (alpha ERD x ROI timeseries), ensures that
the load effect is modeled. We additionally calculated partial correla-
tions between regression coefficients for alpha ERD and alpha ERD PPI
effects and performance (RT, RTsd, accuracy), and symptoms. All report-
ed partial correlation analyses were assessed statistically at p b .05,
two-tailed unless stated otherwise, and were performed on residuals
following removal of age from each variable in order to account for de-
velopmental effects within the sample.

3. Results

3.1. Sample demographics and performance

The sample demographics are presented in Table 1. The outlier anal-
ysis identified 9 participants whose EEG data was insufficient for analy-
sis. The demographic and performance statistics highlight important
differences between the full sample (n = 30) and the reduced sample
(n = 21). The excluded subjects were significantly younger, t(28) =
2.5, p b .02, (13.2 yrs. vs. 14.2 yrs), and had significantly higher inatten-
tion, t(28) = 2.6, p b .02, (9 vs. −5.3) and hyperactivity, t(28) = 3.7,
p b .001, (6.3 vs.−12.5) symptom SWAN scores than the included sub-
jects, consistent with the fact that 7 out of 9 excluded subjects had
ADHD. We suspected that this occurred because of excessive motion
in these participants. Analysis of fMRI motion parameters confirmed
that the excluded subjects had significantly greater motion of the
head, both in rotation, t(28) = 1.8, p b .08, (.24 vs. .04), and translation,
t(28) = 3.1, p b .004, (10.1 vs. 1.7). Furthermore, a focused analysis of
ADHD participants indicated that the 7 excluded subjects had greater
hyperactivity symptoms, t(28) = 2.9, p b .01, (11.1 vs. −.3), and were
more likely to be diagnosed with combined type ADHD, χ2(1, N =
15) = 3.2, p b 0.07, than the 8 included subjects. These results clearly
demonstrate that head motion contributed to corruption of our EEG
data, and also that our reduced, final sample comprised primarily
inattentive-type ADHD participants (6/8).

Within the reduced sample, the ADHD and TD groups did not differ
in mean age, t(19) b 1, (ADHD: 14.1 yrs., TD: 14.3 yrs) or FSIQ, t(19) =
1.2, p b .23, (ADHD: 105, TD: 112), orWRAT scores, t(19) = 1.2, p b .26,
(ADHD: 124, TD: 115), indicating no differences in IQ or verbal learning
ability. Participants with ADHD did show significantly higher ratings of
SWAN symptoms (suggesting worse functioning), both inattentive,
t(19) = 4.6, p b .001, (ADHD: 7.3, TD: −13.1), and hyperactivity,
t(19) = 5, p b .001, (ADHD:−.3, TD:−20.1), consistent with the diag-
noses. As expected based onour outlier analysis theADHDhyperactivity
scorewas near zero (M=.3, SE=2.8). Notably the groups did not differ
in performance on the SWM task, in accuracy, RT or RTsd, during either
practice or scanning, F(1,19) b 1.2. During the scanning session, we

Table 1
Sample demographics, symptoms, and performance.

N Age (y) FSIQ SWANinatt SWANhyper WRAT Scan performance Prep performance

Acc RT (s) RTsd Acc RT (s) RTsd

N = 30
ADHD 15 13.7 104 10.7⁎ 5.1⁎ 113 .75 1.2 .49 .77⁎ 1.3 .43
TD 15 14.1 111 −12.7⁎ −18.8⁎ 123 .80 1.1 .43 .88⁎ 1.2 .37

N = 21
ADHD 8 14.1 105 7.3⁎ −0.3⁎ 115 .80 1.1 .43 .82 1.2 .38
TD 13 14.3 112 −13.1⁎ −20.1⁎ 124 .82 1.1 .45 .89 1.2 .38

FSIQ, full-scale IQ; SWAN, Strengths and Weaknesses of ADHD symptoms and Normal Behavior Scale with (inatt) inattentive and (hyper) subscales (higher SWAN scores indicate worse
functioning);WRAT, wide range achievement test (verbal); Acc accuracy; RT/sd reaction time and its standard deviation; SCAN fMRI-session; PREP pre-fMRI session.
⁎ p b .01 significant group difference.
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found a significant effect of LOAD indicating that performance was
worse when encoding 5 dots than when encoding 1 dot for accuracy,
F(1,19) = 47.7, p b .001 (1-dot: 87%, 5-dot: 73%), RT, F(1,19) = 73.9,
p b .001 (1-dot: 1.0 s, 5-dot: 1.3 s) and also RTsd, F(1,19) = 3.1,
p b .09 (1-dot: .36 s, 5-dot: .42 s). Effects of LOAD did not interact with
GROUP, F(1,19) b 1. These findings are consistent with previous reports
of load effects on SWMperformance but also indicate that our sample of
children with ADHD performed comparably to TD children.

3.2. fMRI activation analyses

The activation responses to encoding stimuli and to dot stimuli dur-
ing the stimulus localizer (Fig. 2) were similar, supporting the use of the
localizer scan for priors on ROIs for the connectivity analyses. Both anal-
yses revealed activation of right inferior lateral occipital cortex, bilateral
superior occipital cortex and right frontal eye fields, consistent with
expected involvement of fronto-parietal regions in visuospatial process-
ing. For the encoding events during SWM there was no significant effect
of GROUP, nor an interaction of GROUPwith LOAD. The LOAD effectwas
evident only in left inferior lateral occipital cortex (x = −24 mm,
y =−94mm, y = 8 mm; 437 voxels, z = 3.01), likely reflecting an el-
evated visual response with more visual stimuli (5 dots vs. 1 dot) on
screen. A contrast comparing the encoding and stimulus localizer condi-
tions revealed stronger activation (i.e., significantly greater z-scores) in
the localizer relative to the encoding events, consistent with the more
powerful block design used, but no differences in activation pattern.
There were no significantly greater activations during encoding events
relative to the localizer, suggesting that the same regions show BOLD
signal increases when viewing and encoding the visual dot stimuli. No
GROUP effects were present in the localizer response, nor in the differ-
ence between localizer and encoding activations. Based on this analysis
we therefore selected the cluster peaks for rOccLat, rOccS and rFEF
(Fig. 2 and Table 2) as ROIs for the subsequent PPI connectivity analyses.

Left OccS showed results analogous to its right homologue and is thus
not further reported.

3.3. Alpha ERD analyses

We observed reliable alpha ERD during encoding in both groups
(Fig. 3, Inline Supplementary Fig. S2), maximally distributed over occip-
ital electrodes as expected, and consistent with locations of electrodes
identified a priori using the EO/EC localizer condition (Fig. 3c). Alpha
ERD was significantly greater, F(1,19) = 6.2, p b .02, at higher load
(5-dot, −2.61 dB) than at low load (1-dot: −2.23 dB), and showed a
trend effect of GROUP, F(1,19) = 2.8, p b .1. Consistent with our prior
report, alpha ERD was greater in the TD group (−2.89 dB) than in
the ADHD group (−1.95 dB). The interaction was not significant,
F(1,19) = 1.1, p b .3.

Inline Supplementary Fig. S2 can be found online at http://dx.doi.
org/10.1016/j.nicl.2016.01.023.

To validate that the alpha ERD collected during fMRI captured the
between group variability in our participants outside of fMRI, we corre-
lated alpha ERD across practice and scanning sessions. The correlation
was significant, r(19) = .6, p b .01 (see Fig. 3e). We thus also repeated
the group analysis in the practice data set, taking advantage of the full
sample size (n = 30, i.e., there were no exclusions in the EEG-only
data). In the larger sample the two-sided group difference approached
significance, t(28) = 1.87, p b .07 (ADHD: −1.73 dB, TD: −3.49 dB).
The alpha ERD group difference was thus replicated, and stronger with
increasing sample size. The effect size for this group difference
was large in both practice (Cohen's d = .7) and scanning (Cohen's
d = .79) sessions.

3.4. EEG-fMRI analyses: neural correlates of alpha ERD

We conducted three PPI analyses, to assess alpha ERD activity and
connectivity for each of rOccLat, rOccS, and rFEF. These analyses

Fig. 2. fMRI activation results. The stimulus localizer (a) elicited activation responses in lateral occipital (OccLat) and superior occipital (OccS) cortices, as well as right frontal eye fields
(FEF). Red (FEF), black (OccS), and green (OccLat) dots indicate locations of regions of interest used in PPI analyses. Similar activation was elicited by the encoding stimulus (b) during
the SWM task. The stimulus localizer activation patterns showed a larger effect size, higher z-scores, but no other differences were significant between localizer and encoding
conditions. Parametric maps thresholded at cluster height of z N 2.3, p b .05, whole-brain corrected for multiple comparisons.
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revealed a consistent effect for alpha ERD on neural activity (Fig. 4), as
well as significant connectivity changes (Fig. 5), within a fronto-
parieto-occipital network. Both of these effects differentiated between
TD and ADHD participants.

3.4.1. Alpha ERD & neural activity
Since the alpha ERD regressor was common to all three ROI analyses

(rOccLat, rOccS, rFEF), we present here the union across the three anal-
yses. As shown in Fig. 4 (and in Table 2), greater alpha ERD (i.e., more
negative power change) during encoding was accompanied by in-
creases of activity in lateral occipital cortex and occipital pole bilaterally,
consistent with prior reports. Notably, this negative relationship was
stronger in the TD (βz = −11.3) group than in ADHD (βz = −3.5),
F(1,19) = 3.8, p b .06 (Cohen's d = .88). Furthermore, decreases in
BOLD signalwith enhanced alpha ERDwere observed across sensorimo-
tor regions including planum temporale, pre- and post-central gyri, lin-
gual gyrus and medial frontal cortex, but this effect did not differ across
groups, F(1,19) b 1, (ADHD: βz= 6.7, TD: βz= 6.1, Cohen's d= .11). Fi-
nally we tested if alpha ERD effects on neural activity predicted either
performance or symptoms. We found no significant relationship be-
tween alpha effects on activation and RT, RTsd, accuracy or SWAN
scores, p N .17, r(19) b .31. In sum, the ADHD group showed weaker oc-
cipital activationwith alpha ERD than the TDgroup. It is notable howev-
er that alpha ERD was non-zero in the ADHD group (M = −1.95 dB,
SE = .45 dB), and was both non-zero and did not differ among groups
in positive correlations with neural activity (Fig. 4b). Thus alpha ERD
was likely associated with a different process, rather than being absent
in ADHD participants. One alternative explanation is discussed below.

3.4.2. Alpha ERD & network functional connectivity
The network correlates of alpha ERD are shown in Fig. 5 (and in

Table 2). All three ROIs exhibited a significant negative interaction
term, reflecting more positive connectivity with greater alpha ERD
(i.e., more negative alpha power). The connectivity of the rFEF ROI
with fronto-parietal regions (right frontal pole, bilateral inferior frontal
gyrus and medial superior parietal lobule) increased with greater alpha
ERD. This effect was significantly F(1,19) = 8.8, p b .01 (Cohen's d =

1.4), stronger in ADHD (βz = −2.9) than in TD (βz = −1.1) partici-
pants. Similarly, with greater alpha ERD, the rOccLat ROI was more
strongly connected with a set of more posteriorly distributed fronto-
parietal regions (right superior parietal lobule and right superior occip-
ital cortex, right pre-central gyrus) as well as right superior temporal
cortex. Again, this effect was greater F(1,18) = 25.9, p b .001 (Cohen's
d = 2.5), in ADHD (βz = −3.1) than in TD (βz = −.9) participants
(we removed one TD participant from this analysis due to an outlier
value in the fMRI result). Thus alpha ERD connectivity, seeded by rFEF
and rOccLat, with a network of fronto-parieto-occipital regions was
stronger in ADHD than in TD participants, in contrast to the group effect
for alpha ERD associated occipital activity.

The rOccS ROI, however, revealed a rather limited connectivity pro-
file, stronger connectivity with nearby right lateral occipital cortex re-
gions, with stronger alpha ERD, and this effect did not differ by group,
F(1,19) = 1, p b .33 (Cohen's d = .5), (ADHD: βz = −2.4, TD:
βz = −1.6). Given the proximity of this area to the ROI itself, and the
spatial extent of the smoothing kernel (5 mm) that we used in prepro-
cessing of thedata, it is possible that this effectwaspartly artifactual. Yet
the connectivity result for the rOccS overlapped with connectivity of
rOccLat (Fig. 5), suggesting that this region may be a node of that net-
work. To explore this further we examined the connectivity patterns
at a lower, whole-brain corrected, threshold (z N 2) (Inline Supplemen-
tary Fig. S3, Inline Supplementary Table S1), and confirmed that the spa-
tial extents of the three networks associated with rFEF, rOccS, and
rOccLat overlap considerably. Thus it is prudent, until further data sug-
gests otherwise, to interpret the three ROI networks as themost reliable
subsets of a greater fronto-parieto-occipital network, rather than as
three separate networks. It is possible, consistent with the medium ef-
fect size of the rOccS group effect, that the connectivity of this region
will show a reliable group difference in a larger sample as part of this
larger network.

Inline Supplementary Fig. S3 and Table S1 can be found online at
http://dx.doi.org/10.1016/j.nicl.2016.01.023.

We tested also if the effect of alpha ERD on connectivity of rFEF,
rOccS and rOccLat predicts performance on the SWM task or total
ADHD symptoms. The relationship between alpha ERD connectivity

Table 2
Cluster statistics.

x (mm) y (mm) z (mm) #Voxels Max Z

Stimulus localizer: activity increases
Right (& left) occipital cortex, superior RL OccS 26 −62 52 1385 11.7
Right lateral occipital cortex, inferior R OccLat 20 −94 2 438 13.5
Right frontal eye fields (pre-central gyrus) R FEF 32 −4 46 10 7.63

Alpha ERD: activity increases
Right lateral occipital cortex, inferior R OccLat 32 −98 −4 1105 2.84
Left lateral occipital cortex, inferior L OccLat −32 −86 −4 1584 3.07

Alpha ERD: activity decreases
Right (& left) planum temporale/parietal operculum RL PT/PO 56 −34 22 6261 3.21
Left post-central gyrus R postCG −52 −22 52 4504 3.16
Right (& left) lingual gyrus RL Lingual 2 −76 6 1605 2.82
Right (& left) superior frontal gyrus extending into paracingulate gyrus RL rSFG/paraCG 4 36 44 1404 2.81

Alpha ERD ∗ rOccS: connectivity increases
Right lateral occipital cortex, superior R OccS 18 −68 64 343 3.26

Alpha ERD ∗ rFEF: connectivity increases
Right frontal pole R FP 28 50 28 388 3.06
Right frontal operculum; inferior frontal gyrus R iFG 46 14 −2 311 2.98
Left frontal operculum; inferior frontal gyrus L iFG −48 14 −2 312 3.38
Superior parietal lobule; precuneuous cortex sPL −2 −46 66 421 2.92

Alpha ERD ∗ rOccLat: connectivity increases
Right superior parietal lobule; post-central gyrus R SPL/postCG 40 −36 50 426 2.80
Right lateral occipital cortex superior R OccS 8 −76 52 361 3.04
Right pre-central gyrus R preCG 40 −4 54 345 2.92
Left superior temporal gyrus L sTG −56 −22 −4 270 2.99

Note. Cluster centroids are reported at maximum statistic. Statistic for bilateral effects reported for hemisphere with maximal statistic; medial clusters span across hemispheres.
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and performance was not significant for any of the ROIs, r(19) b | .26|,
p N .25. However, alpha ERD connectivity for rOccLat was correlated sig-
nificantly with SWAN symptoms (Fig. 6, middle plot), r(18) = −.6,
p b .005, indicating that those individuals with the strongest increase
in rOccLat connectivity with alpha ERD also had the most severe
ADHD symptoms, consistent with the direction of the group effect.
The same correlations were not reliable for rOccS, r(19) = −.2, p b .4,
or rFEF, r(19) = −.35, p b .12.

3.4.3. Network connectivity and performance
The absence of a relationship between either alpha ERD related acti-

vation, or connectivity, and performance prompted us to investigate ad-
ditionally if the connectivity with identified networks, independent of
their relationship to alpha ERD, predicted performance. That is wewon-
dered if the correlates of alpha ERD versus network strength are mea-
sures of different dimensions of the experiment (ADHD symptoms
and task performance, respectively). We thus estimated connectivity
for each network in the full sample (n = 30) and tested the one-sided
hypothesis that stronger fronto-parietal connectivity during encoding
would be associated with better performance. The results (Fig. 7)
show that for all three ROIs, stronger network connectivity was associ-
ated with faster and less variable response times: rFEF: rRT(28)=−.38,
pRT = b.02 and rRTsd(28) = −.38, pRTsd = b.02; rOccS: rRT(28) = −.32,
pRT = b.04 and rRTsd(28) = −.29, pRTsd = b.05; rOccLat: rRT(28) =
−.31, pRT = b.05 and rRTsd(28) =−.33, pRTsd = b.04. The stronger con-
nectivity of rOccS alsowas associatedwith higher accuracy, r(28)= .39,

p b .02. No ROIs showed a relationship between connectivity and ADHD
symptoms, r(28) b .27, p N .14, in contrast to the alpha ERD related ef-
fects. Thus connectivity and performance were related, but overall net-
work connectivity did not predict group differences or symptoms.
Finally, we evaluated if network connectivity differed by group, and
found no significant effects. The combined results indicate that the por-
tion of variance of functional connectivity within the fronto-parieto-
occipital network associated with alpha ERD, was predictive of group
differences and symptoms, whereas the overall connectivity was pre-
dictive of RT and RTsd, and less so of accuracy.

4. Discussion

Our study objectives were to test if encoding-related alpha ERD cor-
relates with fronto-parieto-occipital connectivity, whether this is fur-
ther disrupted in ADHD, and whether it predicts symptoms or
performance in SWM. The results indicate that alpha ERD during
SWM encoding was associated with both occipital activation and
fronto-parieto-occipital functional connectivity, thus expanding on
prior associations between alpha ERD and occipital activation. This find-
ing provides novel support for the interpretation of alpha ERD as amod-
ulatory effect that involves, and perhaps arises as a result of, top-down
network interactions. The group analyses revealed attenuated occipital
activation and enhanced fronto-parieto-occipital connectivity corre-
lates of alpha ERD in children with ADHD relative to their TD peers.
Alpha ERD and its relationship to fronto-parieto-occipital connectivity

Fig. 3. Alpha ERD EEG Results. Alpha ERD during SWM encoding (a,b) performed during fMRI was observed in both ADHD and TD participants, was distributed spatially over occipital
electrodes (a) and temporally throughout the 2 s encoding interval (b). Alpha ERD was greater for higher load and in TD participants. A comparison of peak alpha power during pre-
scan eyes-open (EO) and eyes-closed (EC) conditions (c) was used to identify electrodes of interest for alpha ERD analyses. Alpha ERD was also weaker in ADHD than in TD
participants during preparatory practice (d), pre-scanning, and was significantly correlated with alpha ERD during scanning (e), indicating that between-subject variability was
preserved in the concurrent EEG-fMRI recordings. TD, typically developing; ADHD, attention deficit hyperactivity disorder; ERD, event-related desynchronization.
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correlated with inattention symptoms. The interpretation of the group
differences must be considered in light of the small sample size of the
study, strongly affected by participant motion, enhanced in those with
hyperactive symptoms. Our results provide a first, concurrent EEG-
fMRI characterization of alpha ERD and its network correlates in chil-
dren, and outline both limitations and possible solutionswhen applying
the methodology to hyperkinetic populations, such as combined type
ADHD.

4.1. Neural correlates of alpha ERD

The functional mechanisms of alpha ERD, and of ERS, in visual per-
ception and attention have been discussed extensively, with prominent
theoretical accounts suggesting that event-related modulation of alpha
power reflects processes that regulate information flow in the cortex via
selective suppression and selection of sensory signals (Foxe and Snyder,
2011; Klimesch, 2012; Klimesch et al., 2007; Palva and Palva, 2007). For

Fig. 4. EEG-fMRI results: alpha ERD & neural activity. Greater alpha ERD during SWM encoding predicted (a) increases of activity in bilateral lateral occipital cortex (OccLat) and occipital
pole (OccPole), and with decreases of activity in post-central gyrus (post-CG), planum temporale (PT), posterior operculum (PO), and superior frontal gyrus (sFG) extending into
paracingulate cortex (paraCG). The mean activation effect across occipital cortices was significantly stronger in the TD group than in the ADHD group (b, top), whereas the group
difference was not significant for the activation decreases associated with alpha ERD (b, bottom). TD, typically developing; ADHD, attention deficit hyperactivity disorder. Parametric
maps thresholded at cluster height of z N 2.3, p b .05, whole-brain corrected for multiple comparisons.

Fig. 5.EEG-fMRI results: alpha ERD&network connectivity. Greater alpha ERDduring SWMencoding predicted (a) increased functional connectivity between right frontal eyefields (rFEF,
red) and bilateral inferior frontal gyri (iFG), and frontal pole (FP); increased functional connectivity between right lateral occipital cortex (rOccLat, green) and post- and pre-central gyri
(post/pre-CG), superior parietal lobe (sPL) and superior temporal gyrus (sTG); increased functional connectivity between superior occipital cortex (sOcc, gray) and surrounding regions,
which overlapped (yellow)with the connectivity of rOccLat. The connectivity increase associatedwith alpha ERDwas greater in ADHD(b) for both rFEF and rOccLat regions of interest, but
not for rOccS. TD, typically developing; ADHD, attention deficit hyperactivity disorder. Parametric maps thresholded at cluster height of z N 2.3, p b .05, whole-brain corrected for multiple
comparisons.
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instance, attention to a visual dimension such as left or right visual
space, results in a decrease of alpha power in contralateral visual cortex
and an increase in alpha power in cortical regions corresponding to the

unattended dimension. Furthermore these modulations reflect in-
creases and decreases, respectively, of cortical excitability (Chaumon
andBusch, 2014; Lange et al., 2013; Romei et al., 2008), providing strong
evidence that within sensory cortex, alpha ERD captures the effects of
associative networks.

The present study expands on these findings by showing that alpha
ERDmay also capture the connectivity of such associative networks, and
this connectivity predicts task performance. This idea, though a natural
extension of existing literature, has not been tested previously using
EEG-fMRI (see Scheeringa et al., 2012 for a related analysis of connectiv-
itywithin visual cortex and alpha fluctuations during rest), but has been
elaborated on by Palva and Palva (2007, 2011), on the basis of neuro-
physiological analyses of long-range synchrony among sensori-fronto-
parietal regionswithin the alpha frequency bandduring complex cogni-
tive operations such as WM. Of note, alpha ERD need not be associated
exclusivelywith sensori-parieto-frontal network activity, whichmay be
specific to the top-down influences in the SWM paradigms used by us
and by Palva and Palva (2007, 2011). Klimesch (2012), based on data
from an array of spatial and non-spatial experiments, made a strong ar-
gument that modulation of alpha power can reflect a variety of higher
order operations thatmight contribute tomodulation of sensory signals,
including categorization, semantic analysis, andmemory retrieval. Thus
the identity of the alpha-correlated network may vary with the func-
tional demands of the task.

The relationship between alpha power decrease and increased occip-
ital activity has been documented thoroughly in spontaneous recordings
of alpha in humans (Busch et al., 2009; deMunck et al., 2007; Goldman
et al., 2001; Laufs et al., 2003;Moosmann et al., 2003; Romei et al., 2008;
Wyart and Tallon-Baudry, 2009), aswell as in intracortical recordings in
animalmodels (Bollimunta et al., 2008; Bollimunta et al., 2011; Lopes da
Silva, 1991; Mo et al., 2011), cementing the link between alpha power
and cortical responsiveness to visual stimuli. Our findings of such a rela-
tionship during encoding therefore are consistent with prior accounts,
as well as with dipole localization results that we reported previously
in this task (Lenartowicz et al., 2014). However, reports of positive cor-
relations between alpha power and cortical activity are more variable.
Most commonly, positive correlations with alpha power have been re-
ported in thalamus (de Munck et al., 2007; Goldman et al., 2001;
Goncalves et al., 2006; Luchinger et al., 2011; Luchinger et al., 2012;
Moosmann et al., 2003). One exception is Liu et al. (2014)who reported
positive correlations with alpha power in core regions of default mode
network (middle temporal gyrus andmedial prefrontal cortex) and sen-
sorimotor cortices. Our present findings are consistent with those of Liu
et al. (2014) aswe observed positive correlation of alpha ERD in primary
sensorimotor cortices (pre- and post-central gyri and auditory cortex)
aswell asmedial frontal cortex, with no effect in thalamus. A prominent
difference between the two sets of findings, the thalamic activations
were reported in studies of spontaneous alpha power fluctuations,

Fig. 6. Alpha ERD connectivity & symptoms. The association of the right occipital lateral (rOccLat) network with alpha ERD, predicted greater ADHD symptoms (middle), r(18) = −.6,
p b .01, indicating a dissociation between groups in the same direction as the group effect in the PPI. The same effect was not reliable for right frontal eye field (rFEF) and right
superior occipital (rOccS) regions of interest. TD, typically developing; ADHD, attention deficit hyperactivity disorder; SWAN, strength and weaknesses of ADHD symptoms and normal
behavior rating scale. Plotted are residuals of each variable regressed on participant age, thus removing effects of development from the analyses.

Fig. 7. ROI connectivity & performance. Independent of the association with alpha ERD,
greater connectivity of right superior occipital (rOccS) (a), right lateral occipital
(rOccLat) (b), and right frontal eye fields (rFEF) (c), predicted faster (left column) and
less variable (right column) response time (RT) on the task, indicating a role for these
networks in task performance. Note that unlike the effects of alpha ERD the connectivity
and performance metrics do not differ across groups. TD, typically developing; ADHD,
attention deficit hyperactivity disorder. Plotted are residuals of each variable regressed
on participant age, thus removing effects of development from the analyses. RT, reaction
time; RTsd, reaction time standard deviation.
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whereas the study of Liu et al. (2014) aswell as the current study, exam-
ined alpha in response to an attention-orienting cue and encoding stim-
ulus, respectively. The difference between spontaneous and attention
generated modulations in alpha power may be related directly to un-
derlyingmechanisms. As alpha power can bemodulated through either
thalamo-cortical interactions or through cortico-cortical interactions
(Lopes da Silva, 1991; Lopes da Silva et al., 1980), it is conceivable that
the former mechanism is dominant in spontaneous recordings whereas
both mechanisms may contribute to modulations in task-based studies
of alpha power, such as ours and that of Liu et al. (2014). In light of the
known attentional effects on alpha, the positive correlations we report
may represent attentional suppression of regions that are not involved
in encoding.

4.2. Alpha ERD neural correlates in ADHD

We identified two key differences in children with ADHD relative to
TD peers: weaker alpha ERD relationship to occipital activity, but
stronger relationship with fronto-parieto-occipital connectivity. A
parsimonious account of the former effect, in light of the discussed
mechanisms of alpha ERD is that in children with ADHD occipital mod-
ulation during encodingwasweaker due to aweaker attention effect. In
complement, the enhanced connectivity within a fronto-parieto-
occipital network during alpha ERD in the ADHD sample may be a com-
pensatory response. However, this account must be tempered by data
suggesting that attentional processes that rely on fronto-parietal
connectivity, including visual orienting (Huang-Pollock and Nigg,
2003; Huang-Pollock et al., 2006; Nigg et al., 1997; Oberlin et al.,
2005), load effects (Friedman-Hill et al., 2010; Huang-Pollock et al.,
2002; Lenartowicz et al., 2014), and visual search (Mason et al., 2005;
Mason et al., 2003) do not showgroupdifferences, which speaks against
a uniform deficit in the fronto-parietal network. If such a deficit exists,
and fMRI studies do support frontal–parietal deficits in ADHD (e.g., see
Cortese et al., 2012 for a review), it may be dependent on yet-to-be de-
termined contextual factors. An interesting possibility arises from a re-
cent finding by Stevens et al. (2012) who demonstrated a perceptual
interference deficit in adults with ADHD in the absence of a spatial at-
tention deficit. By using a luminance-threshold outcome measure they
showed that adults with ADHD were more susceptible to the presence
of visual distractors, but had preserved attentional responses to cuing.
This finding shifts the source of the attentional modulation deficit
from top-down fronto-parietal networks, to bottom-up visual cortex
processing, or perhaps the ability of visual cortex to “respond to” top-
down signals. This could, for instance, correspond to neuromodulatory
mechanismswithin occipital cortex, in particular those that are respon-
sible for lateral inhibition, or visual cortex connectivity (e.g., Scheeringa
et al., 2012). Thus the stronger relationship between alpha ERD and
fronto-parieto-occipital connectivity in ADHD may indeed reflect a
compensatory response but due to poor implementation of modulation
within occipital cortex. This hypothesis remains to be tested. Notably,
we are not aware of priorfindings of alpha-related functional connectiv-
ity in ADHD, with the exception of Mazaheri et al. (2010, 2013) who re-
port on spectral power correlations between occipital and frontal
electrodes in ADHD, a finding that, because of the lack of direct corre-
spondence between electrodes and underlying cortical sources, does
not directly assess functional connectivity of the neural generators of
alpha ERD.

More broadly, our data do not support a deficit localized toWMpro-
cesses of maintenance, which likely includes frontal activities mediated
by dopaminergic signals. Because encoding-related deficits necessarily
precede maintenance, participants who show such a deficit must be
subject to attentional problems that are independent of WM mainte-
nance. This also may explain why stimulants that target dopaminergic
and noradrenergic function within these systems, thought to underlie
maintenance, are inconsistent in their therapeutic effects (Rubia et al.,
2013, 2014). Interestingly, the pattern of results that we report here

also is consistent with a vigilance deficit in ADHD (Huang-Pollock
et al., 2012; Huang-Pollock et al., 2006; Sergeant, 2005), yet another ex-
ternal system necessary for effective performance of a WM task, since
poor vigilance could also result in weak occipital modulation and com-
pensatory fronto-parieto-occipital engagement. Accordingly, we have
demonstrated previously that in the same SWM task participants with
ADHD, in addition to weaker alpha ERD, had a weaker response to the
alerting cue that preceded the encoding stimulus (Lenartowicz et al.,
2014). Finally, our ADHD participants did not differ from TD peers in
positive correlations between alpha ERD and neural activity. Positive
correlationswith alpha ERD correspond to regions that decrease in acti-
vation during occipital activation and thusmay, as discussed in the prior
section (also Liu et al., 2014), reflect inhibitory attentional modulation.
If so, attentional suppression, a top-down function,was not impaired re-
liably in our ADHD sample, in contrast to the attentional enhancement
associated with alpha ERD. This observation is broadly consistent with
both the perceptual interference and vigilance accounts of ADHD defi-
cits in attention.

An important caveat to the interpretation of our results is the un-
foreseen bias in the ADHD sample to primarily inattentive type subjects.
This bias occurred because 5/7 of ADHD subjects, excluded primarily
due to motion, had combined or hyperactive type ADHD diagnosis
(versus 2/8 of included ADHD subjects). The outlier sample was more
likely to show hyperactive diagnosis, χ2(1,n = 15) = 3.2, p b .07, and
symptoms, t(13) = 2.9, p b .01. Thus we cannot claim that the present
findings extend to combined/hyperactive type ADHD, and may be rep-
resentative only of inattentive type ADHD. This possibility is consistent
with prior data. In a larger sample, we have found (Lenartowicz et al.,
2014) that alpha ERD was correlated significantly with inattentive
symptoms but not with hyperactive symptoms. Similarly Mazaheri
et al. (2013) showed less alpha ERD in inattentive type ADHD patients
than in TD controls, but not in combined type ADHD. Gomarus et al.
(2009), using a verbal WM task, reported no differences in alpha ERD
in a combined-type sample. Diamond (2005) has argued that WM def-
icits are characteristic of inattentive type ADHD, thus explaining the in-
consistent effects of stimulants in this sample. In complementary work,
Kuntsi et al. (2001) found that hyperactive children did not differ inWM
performance, when controlling for IQ. It is therefore possible that the
encoding alpha-ERD related mechanisms are impaired in only a sub-
population of ADHD, defined by inattentive symptoms. Our sample
was also unique relative to prior findings in that no differences were
present in performance on the SWM task, a further qualification of the
sample characteristics.

We also emphasize that the group findings that we report beg repli-
cation given themodest sample size of our study.We remain cautiously
optimistic as effect sizes weremoderate to large for group differences in
alpha ERD (EEG, Cohen's d = .7; EEG-fMRI, Cohen's d= .79) as well as
for its neural correlates in occipital activity (Cohen's d = .88) and
fronto-parieto-occipital connectivity (Cohen's d=1.39/2.51).While ef-
fect sizes can be inflated in small-sample studies (Bradley et al., 2002;
Button et al., 2013; Yarkoni, 2009), those presented here are consistent
with the group effect size that we reported previously for alpha ERD
during encoding in a sample of 71 participants (Cohen's d = .81). Fur-
thermore, the strength of the interaction between occipital cortex and
fronto-parietal cortex with alpha ERD also predicted inattention symp-
toms (r(18)=−.6, p b .005). Thus, while a replication is warranted, the
combined results suggest that further study of alpha ERD and both oc-
cipital activity and network connectivity may inform the mechanisms
of ADHD inattention symptoms.

4.3. Concurrent EEG-fMRI recordings in ADHD

Our findings add to a growing literature that demonstrates both the
value and difficulty of performing concurrent EEG-fMRI experiments in
children (Moeller et al., 2013). However they also caution that excessive
motion will contaminate the EEG data, and if not eliminated may
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contribute noise, and may bias group contrasts. Elimination of poor
quality EEG data can result in high attrition rate (here 9/30; also see
Baumeister et al., 2014 for an adult study with 6/23 excluded due to in-
sufficient EEG data quality and technical difficulties). The problemwith
motion is well appreciated in the literature, most notably in pediatric
epilepsy research (Moeller et al., 2013), with some experimenters sug-
gesting sedation to minimize motion (Jacobs et al., 2007; Moeller et al.,
2008; Siniatchkin et al., 2007, 2010). This is of course undesirable in
task-based experiments. Moosmann et al. (2009) proposed an algo-
rithm that used fMRI-based motion regressors to identify and exclude
motion-polluted time intervals from the window-based gradient-
artifact cleaning algorithm. In our experience, we found that this ap-
proach is appropriate in cases where motion is sporadic and infrequent,
but becomes biased and inconsistent if the motion occurs more fre-
quently or in clustered bursts. Another approach (Masterton et al.,
2007) places wire coils on the EEG net to measure motion forces on
the cap, for subsequent removal. This method also is of limited benefit
when motion exceeds 1–2 mm, as can be typical for child participants.
An optimal solution for post-hoc motion removal does not yet exist.
The emergence of multi-band radiofrequency pulse sequences in fMRI
(Feinberg et al., 2010; Moeller et al., 2010) may offer some benefit to
concurrent experiments, as these afford faster sampling and thus
allow for greater temporal precision in isolating and removing motion
artifacts from the data. It may be prudent to eliminate corrupted data
until a more rigorous solution is available. We additionally make an ef-
fort here to explicitly characterize motion in both excluded and includ-
ed participants with aim to make the assessment of motion effects on
signals of interest transparent and to facilitate comparisons in future
studies.

The correlation of motion with between-subject variability, such as
ADHD subtype, has implications similar to those already reported with
respect to connectivity analyses (Power et al., 2012), for instance, with
potential to artificially increase local connectivity and decrease long-
range connectivity producing spurious group differences when groups
differ in motion (e.g., particularly relevant to comparisons of combined
type versus inattentive ADHD participants). Here we implemented a
two-step motion correction approach (including motion realignment
and ICA denoising), robust regression statistics, and validation group
analyses of the motion parameters to minimize motion effects. None-
theless, a group-related degradation of EEG data remained, indicating
robustness of the artifact. It is of note that inclusion of this subgroup
in the analyses could inflate the variance in the ADHD sample and
lead to bias in detection of group differences, driven by noise not signal.
Such dangers necessitate careful attention to removal of motion arti-
facts or motion-contaminated time points from both fMRI and EEG
data, co-varying ofmotion estimates across subjects in statistical assess-
ments, and/or elimination of subjects from final analysis. Alternatively,
the correlation between participant characteristics (e.g., higher hyper-
activity symptoms) and motion-induced artifacts argues that EEG-
BOLD associations in such patients may be better evaluated using a
technique more robust to motion than EEG-fMRI — such as functional
near infrared spectroscopy.

5. Conclusion

Using a concurrent EEG-fMRI protocol, we demonstrate that alpha
ERD predicts increases in fronto-parieto-occipital connectivity, thus
adding to prior reports of association between alpha ERD and occipital
activation—which we also observe. We show for the first time that oc-
cipital activations were weaker in participants with primarily inatten-
tive type ADHD, whereas fronto-parieto-occipital connectivity was
stronger, a finding consistent with a compensatory response of the
attentional system in modulating activity within occipital cortex. The
results point to a unique, encoding-related, ADHD deficit in fronto-
parieto-occipital connectivity that may underlie SWM deficits in at
least some individuals with ADHD. Finally, the characteristics of

participants excluded fromanalysis in our study (elevated hyperactivity
symptoms andmotion parameters), argue that degradation of EEG data
by motion-related fMRI artifacts will bias the sample characteristics, a
findingwith significant implications for experimental design in the clin-
ical setting where such populations are common.
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