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ABSTRACT OF THE DISSERTATION

Data-efficient Deep Learning of Dynamical Systems

by

Tianyi Wang

Doctor of Philosophy in Electrical and Computer Engineering

University of California, Los Angeles, 2023

Professor Vwani P. Roychowdhury, Chair

The synergy between dynamical systems and deep learning (DL) has become an increasingly

popular research topic because of the limitation of classic methods and the great potential of

DL in addressing these challenges through the data-fitting and feature-extraction power of

deep neural networks (DNNs). DNNs have demonstrated their ability to approximate highly

complicated functions while enjoying good trainability, which can help dynamical system

modeling with both the search of solution and the expressiveness of models. Furthermore, the

feature extraction ability of DNNs have proven useful in identifying system states identification

when the state cannot be defined from first-principles.

Conversely, the study of dynamical systems has benefited DL. Viewing DNNs as dis-

cretization of ordinary differential equations (ODEs) inspires a novel family of models named

neural differential equations which offer unique advantages in time series learning, especially

the modeling of dynamical systems. From another perspective, viewing the optimization of

deep learning models as a dynamical system on the loss landscape enables better analysis

and enhancement of the optimization processes.

This work focuses on this interplay. We develop novel deep learning methods to efficiently

model dynamical systems, incorporating physical prior knowledge and meta-learning tech-

niques. By analyzing the dynamics of the optimization process, we also design a novel variant
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of stochastic gradient descent to enhance the resilience of DNNs against weight perturbations,

enabling their deployment on analog in-memory computing platforms where analog noise

is inevitable. Through these investigations, we contribute to the growing body of research

on the intersection of dynamical systems and deep learning, paving the way for innovative

solutions to complex real-world problems.

iii



The dissertation of Tianyi Wang is approved.

Lieven Vandenberghe

Jonathan Chau-Yan Kao

Louis-Serge Bouchard

Vwani P. Roychowdhury, Committee Chair

University of California, Los Angeles

2023

iv



To my family . . .

v



CONTENTS

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

Vita . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Contributions and Dissertation Overview . . . . . . . . . . . . . . . . . . . . 3

2 Modified Stochastic Gradient Descent Dynamics for Noise-resilient Analog

In-memory Computing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2 Analog Compute-in-memory Deep Learning Accelerator . . . . . . . . . . . . 5

2.2.1 Parameter Programming Noise in Analog CIM Devices . . . . . . . . 6

2.2.2 Hardware Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3 Performance Degradation of Deep Neural Networks Under Analog Parameter

Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3.1 Error modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3.2 Modeling the Analog Implementation of DNN Components . . . . . . 11

2.3.3 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.4 Hessian-aware Stochastic Gradient Descent (HA-SGD) . . . . . . . . . . . . 17

2.4.1 ADNN Performance and Minima Flatness . . . . . . . . . . . . . . . 17

2.4.2 Our Algorithm: HA-SGD . . . . . . . . . . . . . . . . . . . . . . . . 19

2.4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

vi



2.4.4 Smoothed landscape . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.4.5 Comparison with Entropy-SGD . . . . . . . . . . . . . . . . . . . . . 24

3 Physics-informed Reduced-order Modeling of Mechanical Systems — Slinky™

as a test case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2 Reduced-order Modeling of a Slinky with 2D Representation . . . . . . . . . 28

3.2.1 3D Slinky reconstruction from 2D representation . . . . . . . . . . . . 29

3.2.2 Data Schema . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.3 Physical Priors to Consider for Modeling a Slinky’s Dynamics . . . . . . . . 31

3.3.1 Newton’s Second Law of Motion — Neural Ordinary Differential Equation 32

3.3.2 The Locality of Elastic Energy and the Homogeneity of Slinkies . . . 34

3.3.3 Euclidean Symmetry . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.3.4 Conservative Force and Energy Conservation . . . . . . . . . . . . . . 38

3.4 Modeling Framework: Euclidean Symmetric Neural ODE . . . . . . . . . . . 39

3.4.1 Neural Network Architecture . . . . . . . . . . . . . . . . . . . . . . . 39

3.4.2 The DenseNet-like Backbone . . . . . . . . . . . . . . . . . . . . . . . 39

3.4.3 Bounrday Condition Treatment . . . . . . . . . . . . . . . . . . . . . 40

3.4.4 Training Workflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.5 Generalizable Dynamics Learned from Single Trajectory . . . . . . . . . . . 43

3.5.1 Trajectory Prediction Beyond Training Time Span . . . . . . . . . . . 43

3.5.2 Generalizable Prediction in Various Unseen Cases . . . . . . . . . . . 43

3.6 Ablation Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.6.1 The Importance of Physical Knowledge . . . . . . . . . . . . . . . . . 46

vii



3.6.2 Data generation for “direct force predictor” and “direct energy predic-

tor” methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.6.3 The Importance of Euclidean Symmetry . . . . . . . . . . . . . . . . 47

3.6.4 The importance of the NODE training framework . . . . . . . . . . . 47

3.7 Comparison with classic 2D Slinky models . . . . . . . . . . . . . . . . . . . 48

3.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.9 Additional Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4 Interpretable Deep Meta-learning of Families of Dynamical Systems . . 51

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.2 Problem Statement and Data Schema . . . . . . . . . . . . . . . . . . . . . . 52

4.3 Parameter Partitioning for Dynamics Modeling and System Adaptation . . . 54

4.4 Bi-level Optimization for Joint Learning of a Family of Systems . . . . . . . 54

4.5 Dynamics Modeling for Dynamical System Families . . . . . . . . . . . . . . 56

4.5.1 Dynamics Modeling Accuracy . . . . . . . . . . . . . . . . . . . . . . 57

4.5.2 Dynamics Modeling Efficiency for New System Instances . . . . . . . 61

4.6 Adaptation Parameter Interpretability . . . . . . . . . . . . . . . . . . . . . 65

4.6.1 Correlation with Physical Parameters of System Instances . . . . . . 66

4.6.2 Inferring Intrinsic Dimension with PCA . . . . . . . . . . . . . . . . . 66

4.7 Application: Neural Gauge . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.8 Complex Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.8.1 iMODE Applied to 2D Reduced-order Slinkies . . . . . . . . . . . . . 68

4.8.2 iMODE Applied to KPP systems . . . . . . . . . . . . . . . . . . . . 69

4.9 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.10 Additional Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

viii



5 Conclusions and Future Research Opportunities . . . . . . . . . . . . . . . 76

5.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.2.1 Physics-informed Deep Learning for Dynamics Modeling . . . . . . . 78

5.2.2 Deep Learning for Automated Knowledge Discovery . . . . . . . . . . 79

5.2.3 Beyond First-order Optimization for DNNs Derived From Dynamics

Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

ix



LIST OF FIGURES

2.1 Analog CIM architecture performance compared to other architectures . . . . . 6

2.2 Typical ANVM device programming error characteristics . . . . . . . . . . . . . 7

2.3 ANVM CIM vector-matrix multiplication schematic and error analysis . . . . . 8

2.4 Uncertainties of CTT ANVM devices . . . . . . . . . . . . . . . . . . . . . . . . 10

2.5 Range-matching - an example . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.6 1D example of “unfolding” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.7 Residual Block Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.8 Simulation results of DNN inference with analog error . . . . . . . . . . . . . . . 16

2.9 Under-noise performance comparison of networks trained with different noise . . 22

2.10 Under-noise performance comparison of networks trained with different L . . . . 22

2.11 Illustration of the smoothed-loss interpretation of HA-SGD with univariate loss

function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.12 Entropy-SGD’s smoothed loss function landscape illustration . . . . . . . . . . . 26

2.13 Comparison among HA-SGD, Entropy-SGD and vanilla SGD . . . . . . . . . . 26

3.1 3D illustration of a Slinky . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.2 Illustration of the reduced-order 2D representation of a 3D Slinky. . . . . . . . . 30

3.3 Reconstruction of Slinky structure from 2D to 3D . . . . . . . . . . . . . . . . . 31

3.4 Slinky experimental apparatus . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.5 Demonstration of Euclidean equivariance . . . . . . . . . . . . . . . . . . . . . . 35

3.6 The input and output of the neural network modeling Slinky dynamics . . . . . 36

3.7 Transformation of global coordinates of a triplet into relative coordinates . . . . 37

3.8 The workflow of Euclidean symmetric neural network (ESNN) . . . . . . . . . . 39

x



3.9 DenseNet-like backbone architecture of ESNN . . . . . . . . . . . . . . . . . . . 40

3.10 The boundary treatment for free end boundary conditions . . . . . . . . . . . . 41

3.11 The training schematic of ESNN . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.12 Computation time comparison between 3D DER simulation and ESNN reduced-

order model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.13 Comparison across real-world experiments, 3D DER simulations and ESNN 2D

simulations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.14 Ablation study for ESNN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.1 Parameter partitioning of neural networks in iMODE . . . . . . . . . . . . . . . 54

4.2 The bi-level optimization in the iMODE method . . . . . . . . . . . . . . . . . . 55

4.3 Example of force field and trajectory prediction for Van der Pol systems . . . . 57

4.4 Illustration of the single pendulum system . . . . . . . . . . . . . . . . . . . . . 58

4.5 The meta-learning results for the simple pendulum systems . . . . . . . . . . . . 59

4.6 Quartic potential function of bistable oscillators . . . . . . . . . . . . . . . . . . 60

4.7 The meta-learning results for the bistable oscillators . . . . . . . . . . . . . . . . 62

4.8 The meta-learning results for Van der Pol systems . . . . . . . . . . . . . . . . . 63

4.9 Efficiency of adaptation in terms of loss curve . . . . . . . . . . . . . . . . . . . 64

4.10 iMODE successfully learns the double-well potential energy of bistable oscillators. 72

4.11 The correspondence between η and φ in various system families. . . . . . . . . . 72

4.12 Inferring intrinsic dimension with PCA . . . . . . . . . . . . . . . . . . . . . . . 73

4.13 The diffeomorphism constructed for the bistable system . . . . . . . . . . . . . . 73

4.14 Neural Gauge performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.15 iMODE applied to Slinky . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.16 iMODE applied to KPP systems . . . . . . . . . . . . . . . . . . . . . . . . . . 75

xi



ACKNOWLEDGMENTS

I would like to express my sincerest gratitude to my advisor, Professor Vwani Roychowdhury.

Always intellectually vigorous, inspiring, yet patient and supportive, he has provided me

invaluable help and guidance. I will always remember the “aha moments” we shared in his

office, some in the day, some in late nights.

I also would like to acknowledge the members of my doctoral committee, Professor Lieven

Vandenberghe, Professor Jonathan Kao and Professor Louis Bouchard for taking the time to

serve on my doctoral committee, read my thesis, and provide advice on my work.

It has been a fortunate journey, through which I received friendships that can last for life.

I am glad to have met many good friends in our lab. We shared sparks of thoughts, supports

in our lives and careers, and many late night tacos. I also want to extend my heartfelt thanks

to all of my friends, who care for me and deeply understand me.

I thank all my collaborators, in particular, Dr. Qiaofeng Li and Dr. Zhe Wan. This thesis

would not be possible without them working with me. Innovative and professional, they set

great models for me during our collaboration.

Most importantly, I thank my parents and my family. It is their love for me and my love

for them that makes me who I am.

xii



VITA

2012–2016 B.S. (Physics), Fudan University, Shanghai, China.

2016–2018 M.S. (Electrical Engineering), UCLA, Los Angeles, California.

2018–2023 Ph.D. Candidate (Electrical and Computer Engineering), UCLA, Los An-

geles, California.

xiii



CHAPTER 1

Introduction

1.1 Background

To understand, predict for, and further to control a system, the dynamics of its evolution

needs to be modeled. Concretely, given the observed behaviors of a system, the goal is

to derive succint models that can replicate the systems behaviors under arbitrary initial /

boundary conditions and system parameter settings.

Traditionally, dynamical systems have been modeled by formulating analytical partial

differential equations (PDEs) or ordinary differential equations (ODEs) that govern carefully

chosen state variables, based on comprehensive knowledge of the systems being studied. In

this approach, observed data are used solely to estimate the coefficients of the equation terms.

However, this approach is faced with challenges such as high computational cost and limited

model capacity. Even when the first principles are well established, dynamics modeling

is hard to scale to complex, large-scale, non-linear or noisy systems due to intractable

computational demands. For novel or complex systems, there are hardly universal and

succinct first principles, rendering their modeling even more complicated.

Advances in deep learning (DL) during the past decade have given rise to the new

paradigm of data-driven modeling of dynamical systems. Deep neural networks (DNNs) have

been used in various aspects of the modeling, ranging from state estimation [LNB18, NG20],

system identification and learning of dynamics [RBP17, LRP18, CRB18, CLK19, GDY19,

LKA20, HHM22, PBJ22], efficient solving of the dynamical system [RPK19, LZK21], to even

the extraction of states from data [LKB18, ZWT18, XLS19, CLK19, CHR22]. These works

adopt the data-driven approach by replacing one or more components of the traditional
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modeling framework with deep neural networks.

On one hand, data-driven modeling offers the possibility for superior computation efficiency

compared to classic methods [HLM17, FWY20, HMC21]. On the other hand, it enables

advances towards automated rule discovery and learning of the dynamics of a system from

observations [CGV19, RCD19, CLK19, LKA20, IMW20, LT21].

In general, the goal is to maximize the generality of the data-driven models while

minimizing the required system-specific expert knowledge. These works have demonstrated

their usage on datasets generated by various systems, and the design of data-driven approaches

for different practical scenarios is a topic of great continuing interest.

However, deep learning is data-hungry. DNNs require a large amount of data to reach

reasonable performance, and would not guarantee to extrapolate well for unseen scenarios

outside of the training data distribution. Unconstrained neural networks, trained to directly

fit time-series data generated by dynamical systems, often cannot replicate dynamics under

unseen initial or boundary conditions, whereas the amount of data required to improve such

poor generalizability is usually prohibitively expensive.

Recent studies have shown that incorporating physics constraints into deep learning

is vital for models’ generalization ability, learning efficiency, and interpretability [ZSZ18,

AGS21]. For example, Hamiltonian Neural Network [GDY19] and Lagrangian Neural Net-

work [LRP18, CGH20] introduced the physical prior of energy conservation to neural networks

for learning dynamics. Geometric deep learning [AGS21, BBC21] and equivariant neural

networks [WGW18, TSK18, FWW21, SHW21] leverage geometric symmetry properties of

the network input to improve the quality of inherent knowledge learned by neural networks.

Successful applications include drug discovery [GHS16, JGW21], quantum chemistry [GSR17],

and particle physics [KMT19, QG20].
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1.2 Contributions and Dissertation Overview

In this dissertation, we address the interplay between deep learning and dynamical systems

and make our three main contributions in the following chapters:

Chapter 2 By analyzing the optimization dynamics of deep neural networks, we propose

Hessian-aware (HA-SGD), a novel gradient descent algorithm tailored to seek flat minima

within the network’s loss landscape. This optimization algorithm, which simultaneously

minimizes both the loss value and landscape sharpness, can crucially bolster the noise

resiliency of neural network models deployed on analog compute-in-memory (CIM)

platforms.

Chapter 3 To enable data-efficient modeling of dynamical systems that can generalize

well to unseen initial conditions and boundary conditions, we use the reduced-order

modeling of Slinkies as a case study and incorporate physics prior knowledge into the

neural model to achieve accurate dynamics modeling with high data efficiency and

great generalization ability.

Chapter 4 The data-efficiency of dynamical system modeling can be further boosted with

the knowledge of the functional form of the dynamics, which is usually not available

in the data-driven modeling scenarios. We propose interpretable Meta Neural ODE

(iMODE) that uses meta-learning to learn the common dynamics form shared by

multiple dynamical system instances without requiring labels of their varied physical

parameters. We demonstrate the superior modeling quality and efficiency of iMODE

with various dynamical systems. In addition, the adaptation parameters in iMODE are

interpretable and can be used to facilitate knowledge discovery for unknown dynamical

systems.
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CHAPTER 2

Modified Stochastic Gradient Descent Dynamics for

Noise-resilient Analog In-memory Computing

2.1 Introduction

Analog in-memory computing emerges as a promising novel technique for deploying deep

neural networks (DNNs) in mobile devices and the Internet of Things (IoT) on a large scale,

because of its potential of increasing the energy-efficiency of DNNs’ inference by orders of

magnitude [HM13, GBB17].

However, analog noise is inevitable in analog devices, whose impact to deep neural

network inference requires further study. Based on the charge-trap-transistors (CTTs)

analog neural network implementation proposed by UCLA CHIPS (Center for Heterogeneous

Integration and Performance Scaling), we develop a simulation framework that simulates

analog implementations of common DNN architectures including various Convolutional Neural

Networks (CNNs) and Multilayer Perceptrons (MLPs).

The simulations show that analog noise will lead to catastrophic performance degradation

of DNNs, rendering it impractical to deploy large DNNs to analog platforms. To improve the

analog resiliency of the DNNs at the software level, where no changes to the hardware and

device are needed, we introduce a Hessian-Aware Stochastic Gradient Descent (HA-SGD)

algorithm, which intentionally search for flat minima in the loss landscape of DNNs, resulting

in parameter sets that are resilient to analog noise. HA-SGD has proved to be very effective.

At 10% device noise, network trained with injected noise of 10% achieves a top5 accuracy of

61.67%, which is more than 4 times the top5 accuracy of the networks trained by standard

4



SGD (14.37%).

The following sections in this chapter are organized as follows. Section 2.2 introduces

the analog in-memory computing architecture. The simulation framework for the inference

of DNNs deployed to analog computing platforms based on the hardware characteristics,

and the quantitative analysis of the impact of analog noise is presented in Section 2.3. The

HA-SGD algorithm is described in Section 2.4, with the empirical evidence of its effectiveness

and the theoretical explanation.

2.2 Analog Compute-in-memory Deep Learning Accelerator

Deep learning based on deep neural networks (DNNs) are now only computed by digital

machines [CKE17, JYP17, LKK18], where information and computation are both digitized

(e.g. with 32-bit floating point precision) and usually operated within a von Neumann

architecture. Although the von Neumann architecture has been prevalent and successful

under the rapid development of the Moore’s Law, it has encountered the von Neumann

bottle neck [Wil17], a limitation of the bandwidth between the processors and the memory,

especially for data-intensive computations such as deep learning.

To address this bottleneck, compute-in-memory (CIM) architectures using analog non-

volatile memory (ANVM) as the synaptic weight have emerged as the hope to improve

energy-efficiency and throughput for DNN operations by several orders of magnitude [HGP19].

Preliminary results have been demonstrated on various analog devices [BBS16, GBB17,

LBL18, SLY18, ZZP18, SPH16, GWI19].

In particular, to enable ultra-large-scale analog computing for useful DNNs, our collabo-

rator at the UCLA Center for Heterogeneous Integration and Performance Scaling (UCLA

CHIPS) propose to leverage the charge-trap transistor (CTT) along with the mature and

scalable commercial CMOS technologies to fabricate neuromorphic engines for neural network

inference [GWI19, Wan20]. Featuring the compatibility with existing CMOS technologies, a

fully-analog hardware architecture that is scalable to a multi-chip system-on-wafer (SoW) is

5



designed to allow the system to perform all inference operations required by DNNs through

analog signal processing locally in the memory, avoiding the cost (in both energy and delay)

of analog-to-digital and digital-to-analog conversions in mixed-signal architectures.

Figure 2.1: (Taken from [Wan20]) The throughput on image recognition application and
the efficiency (defined as throughput per Watt) of some typical and novel architectures. The
analog in-memory computing has the potential to significantly improve the throughput and
efficiency compared to digital architectures.

2.2.1 Parameter Programming Noise in Analog CIM Devices

In digital systems, the precision is guarded by sohisticated digital design flows and error-

correction schemes. However, due to the nature of analog devices, analog computing is

approximated computing. Encoding real numbers into continuous physical quantities, the

analog memory cannot guarantee perfect fidelity due to limits of physical principles. For the

emerging ANVM devices, the programmed continuous analog state (e.g., current under some

fixed bias) deviates from the intended value due to several reasons:

1. Programming process. Since the programming mechanism of many emerging ANVM

devices has uncertainty, they require a closed-loop verification process to determine

whether the programming is finished. The criterion for the termination of the program-

ming process depends on the user’s ability to fine-tune the device and the precision of

the measurement hardware. The non-ideal termination of the programming will affect

6



the accuracy of programming.

2. Device and cycle variation. For devices that use an open-loop process for programming,

the variation among the devices and among the different cycles of the same device will

contribute to the error of the programming.

3. Imperfect data retention. The analog state of the device will keep changing over time

due to various reasons related to its programming mechanism. It is important to predict

the time of failure for the ANVM-based systems and suggest solutions such as data

refreshing. However, the refreshing process itself will again suffer from the programming

errors.

As a result, there is ubiquitous continuous error in the programmed states. Figure 2.2

shows that such error can usually be modeled by a Gaussian noise.

Figure 2.2: Typical ANVM device programming error characteristics (adapted from [GWI19])
in scatter plot (a) and histogram (b).

Indeed, such error could be reduced, but making analog computing as accurate as its

digital counterparts using sophisticated circuits would undermine its advantage in energy

and area efficiency.

2.2.2 Hardware Characteristics

In this section, we analyze the analog errors in CTT ANVM-based CIM devices in more

detail. Figure 2.3 illustrates CTT ANVM-based vector-matrix multiplication. Matrix entries
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Figure 2.3: Operation schematic: array of ANVM such as CTTs can be used for vector-
matrix multiplication (VMM). Twin-CTT cells are programmed to represent the synaptic
weights with their differential conductance (denoted by Gij). Input is represented by pulse-
width modulated (PWM) signal sent to the word-line (WL) of the array, which connects the
gates of the CTTs in a row. Multiplication is thus computed by Ohm’s law (iij = ViGij).
Summation is computed by collecting the drain current of all the devices in a bit-line, which
consists of two columns due to the twin-CTT cell structure. The equation in the top box
further elaborates how y1, the first among the two output elements, is obtained by integrating
the output sum current for a fixed time interval t.
Error analysis: Device related error terms are highlighted in red, and the circuit related
error terms are highlighted in yellow.

are programmed into the conductance of CTT cells, the input vector gets multiplied with the

matrix through Ohm’s law, and the summation is done by Kirchhoff’s Current Law.

Programming-error in CCT conductance is inevitable; moreover, the programmed-

conductance will relax over time. The actual conductance of an analog-cell can be modelled

by G = Gtarget +∆Grelax(t) +∆Grand, where G is the actual conductance, Gtarget is the target

conductance, ∆Grand is a Gaussian random variable of zero mean reflecting the programming

error, and ∆Grelax(t) reflects the relaxation. With proper over-programming, the two types

of error in conductance combined can be modeled with a Gaussian distribution. (see Fig-

ure 2.4(a)). We quantify the level of such uncertainty by the ratio between the standard

8



deviation of the device conductance error and the entire range of device conductance, which

is around 5% to 10% from our CTT characterization, and can be more for the other analog

devices.

In additional to the programming-error of the analog devices, peripheral circuits can

contribute to errors in the computation. We note that by using appropriate designs, it is

always possible to reduce any circuit noise so that the device noise is the only significant

noise during the VMM.

2.3 Performance Degradation of Deep Neural Networks Under

Analog Parameter Noise

As analog computing architectures emerge for deep learning acceleration, the analysis

of the influence on deep model performance due to analog device errors is necessary. For

neural networks deployed to digital systems, the impact of errors in digital memories has been

studied [RGP18], but the continuous nature of the analog device error makes it fundamentally

different from the discrete error in digital memories. For analog systems, studies on relatively

small networks for simple tasks have been reported [MQC18, HGP19], but it is not clear

whether larger DNNs for more practical applications are — or can be made — resilient to

such uncertainties from analog computation.

Analog device errors randomly perturbs neural network parameters away from trained

optimal values, which degrades the model performance. To quantify the degrading effect in

analog CIM architectures, we propose a simulation framework for the analog inference of

both multilayer perceptrons (MLPs) and convolution neural networks (CNNs).

2.3.1 Error modeling

Based on the hardware characteristics, we model the uncertainties in analog implemen-

tations of DNN components including (1) fully connected layers; (2) convolutional layers;

(3) batch normalization layers, and (4) shortcuts in residual networks.

9



(a) CTT cells’ actual conductance v.s. target conductance

(b) CTT cells’ conductance error histograms

Figure 2.4: Uncertainties of CTT ANVM devices: (a) The figures plot the device
conductance measured through current versus the programming target values, seconds, 2 h,
20 h and 200 h after programming. The initial conductance is over-programmed to compensate
for the relaxation. The standard deviation of the errors is thus 4% to 5% of the dynamic
range of the devices, which is −600 nA to 600 nA. (b) The histogram of the fine-tuning
error achieved, including the relaxation (at room temperature) after up to 200 hours of the
fine-tuning. After 2 h, the error distribution is Gaussian-like.
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As is introduced above, DNN’s parameters (synaptic weights) {wi}ni=1 are proportionally

programmed into the conductance of CTT devices {G(wi)}ni=1. The conversion relation is

shared among the CTT devices per die.

To maximize resolution and minimize the influence of noise, the full dynamic range of the

devices should be utilized to encode the DNN weights. The uncertainties of the conductance

is thus translated to the uncertainties of the DNN parameters by

σG

rangeG
= noise level =

σw

rangew

where σG is the standard deviation of the conductance error in a die, rangeG is the

dynamic range of the conductance in the die; σw is the standard deviation of the resulted

DNN weight error, and rangew is the range of the weights programmed to the die.

2.3.2 Modeling the Analog Implementation of DNN Components

Fully-connected layers

Fully connected layers are the most basic type of layers in DNNs. They (before any

non-linear activation) simply perform a linear transformation on its input. The linear

transformation is defined by the parameter matrix of the layer, W:

xout = Wxin

With analog noise, each entry Wij in W is perturbed to Wij + νij, νij
iid∼ p(ν). p(ν) is the

device-dependent random weight error distribution, which can be (näıvely) modeled as a

Gaussian distribution with standard deviation σw.

There can also be bias terms, b, which can be merged into W:

xout = Wxin + b⇒ xout =
[
W b/s

]xin

s
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Figure 2.5: Range-matching - an example: set s = 8 to shrink the range of b’s entries
down to match that of W’s entries.

Note that there is a degree of freedom of the scaling factor s. The scaling factor can be

utilized to match the range of W’s entries and the range of b’s entries, so that both of W

and b make use of the full dynamic range of the device and minimize the effect of the device

noise (see Figure 2.5). Experiments show that such range-matching significantly improves

analog resiliency when the range of b dominates the range of W, which is found to be often

the case in practice.

Convolutional layers

Convolutional layers are another prevalent layer type in DNNs, where (before any non-

linear activation) a small-size filter (“kernel”) is used to linearly transform the input over

sliding windows. The kernel is again a matrix, and thus in an analog implementation it will

be perturbed in a way similar to that of fully-connected layers.

One analog in-memory computing design that differentiates the convolutional layer case

from the fully-connected layer case is “unfolding”. In a convolution operation, the same

filter weights is reused on multiple positions. Equivalently, to eliminate the time delay and

syncing issues, one can duplicate the filter for each position, and use routing between devices

to perform the convolution. In contrast, digital implementations will loop and calculate for

each position (or perform limited unfolding).

12



......

... ...
Unfoldings:

Figure 2.6: 1D example of “unfolding”: a convolutional filter is duplicated into identical
ones for each sliding-window position so that the convolution layer can be implemented in
the same way as the fully connected layer is. Each color corresponds to a replica of the filter.

Batch normalization layers

Batch Normalization has been widely employed and shown great success in accelerating

and stabilizing the training of DNNs.

During inference, it’s nothing but a linear operation, normalizing its input for each channel

individually with learned parameters (mean µc, variance σ2
c , learnable scaling factor γc and

learnable bias βc, for each channel c):

xout,c = Weff,cxin,c + beff,c

whereWeff,c =
γc√
σ2
c + ϵ

, beff,c = βc−
γcµc√
σ2
c + ϵ

and ϵ is a small scalar used to avoid singularity.

Therefore, it can be implemented through convolutional layers with unit-size convolutional

kernel, using Weff,c as weight, beff,c as bias, and unit stride.

The range-matching also needs to be done for batch normalization layers.

Shortcut in residual networks

Shortcut connections were introduced by ResNet [HZR16] to address the gradient vanishing

problem, and have become an indispensable component in deep neural networks.

Without noise, it’s a special form of linear operation where W = I.

In our noise-considering implementation of shortcut connections, we assume that each
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positive entry of the identity matrix suffers from a Gaussian noise u. ui
iid∼ N (0, δ), where δ

is the device noise, and W = Ishortcut = diag(u) + I. This is to reflect the noise from possible

circuit implementation of the shortcut (e.g. current mirror).

ReLU

Rectified linear unit (ReLU) and its variants need not to involve CTT, and can be

implemented by circuits (e.g. comparators), thus we don’t consider noise in activation layers.

Residual block

Using components discussed, the basic building block of residual convolutional neural

network — residual block — can be assembled (Figure 2.7).

Assemble and simulate arbitrary architecture

We implemented the basic building blocks mentioned above with analog noise injection

API in PyTorch. Currently, two forms of noise distribution – Gaussian and uniform – have

been implemented; more distributions can be added. The modules implemented allows the

noise level of each component to be individually set dynamically to characterize hardware

specs.

With the basic building blocks implemented with proper API, most modern DNN archi-

tectures can be assembled and hence modeled and simulated.

2.3.3 Simulations

Our modeling framework is used to simulate DNNs based on the WideResNet archi-

tecture [ZK16]. The networks are trained on commercial GPUs using 32-bit floating point

precision. However, during testing of the trained network, noise models are included to

emulate the behavior of analog devices. Each trained network is instantiated with analog
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Figure 2.7: Residual Block Structure

errors added for 50 times by independently sampling from the device noise statistics. Then

the system is evaluated by all testing patterns on all instantiated neworks to obtain the

statistics for network performance (classification accuracy).

In the experiment, two different sizes of WideResNet with depth of 16 (17.1 million

weights) and 28 (36.5 million weights) are trained and tested on the CIFAR-100 dataset

(same for all network simulation results shown). In Figure 2.8(a), all networks presented

show significant degradation of the network accuracy as the device noise increases, while the

larger network is more resilient. When device noise is 6%, the top5 accruacy is degraded

from 94.28% to 44.96% for the 16-layer network and from 94.39% to 70.99% for the 28-layer

network. Both networks start to fail completely at device noise of 14%. For comparison, the

28-layer network structure is used for the later experiments. Some improvement in both the

network accuracy and the resiliency can be achieved by using the standard generalization

methods such as ℓ2-regularization and dropout. For example, at 4% device noise the top5

accuracy can be improved from 68.25% to 90.72% as shown in Figure 2.8(b).

15



(a) The degradation of network
due to analog device noise

(b) Effect of conventional regularization methods

Figure 2.8: Simulation experiment results: (a): Two WideResNet models of depth 16
and 28 are trained and tested on the CIFAR-100 dataset with optimzied ℓ2-regularization
and dropout factor. (b): Accuracy of WideResNet (depth = 28) is trained with different
ℓ2-regularization strength (L) and dropout factors (D). Some improvement in the analog
resiliency can be achieved, but the degradation is still much.
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2.4 Hessian-aware Stochastic Gradient Descent (HA-SGD)

Efforts can be put to both hardware and software side to improve an ADNN’s accuracy.

Hardware precision can be improved at the cost of thoughput, energy and area-efficiency. On

the other hand, computation errors due to device noise can be compensated for by better

training algorithms that generate more resilient networks.

To improve the analog resiliency of the DNNs at the software level, where no changes

to the hardware and device are needed, we introduce a Hessian-Aware Stochastic Gradient

Descent (HA-SGD) algorithm, motivated by including Hessian information in descent steps

to converge to a flat minimum, where the performance degradation caused by perturbations

to parameters is low.

2.4.1 ADNN Performance and Minima Flatness

A DNN is trained through optimizing its loss function J(w;X ), where w is the parameters

of the DNN and X is the training data.

w∗ = argmin
w

J(w;X )

During the inference of a trained DNN, analog CTT noise is adding random perturbation

to w∗. Since the loss function quantifies the performance of the DNN model, we want the

loss function not to go up much after such perturbation. This equivalently means that we

want the loss function landscape around w∗ to be flat.

The Hessian at local minima captures the curvature information of the loss landscape, and

norms of Hessian (e.g. spectral norm, trace) have been used as a measure of flatness [CCS16,

KMN16, DPB17]. In the following we show that the performance degradation of DNN due

to analog noise can also be quantified using Hessian, and motivate our HA-SGD algorithm.

Consider a random perturbation ∆w ∼ p
∆w
(∆w), whose distribution p

∆w
(∆w) depends

on device characteristics. We denote its mean as µ and covariance matrix as Σ. We assume
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µ = 0 because constant shifts can always be compensated for.

Expand the loss function at the perturbed position near a minimum, J(w∗ +∆w;X ), to
the second order:

J(w∗ +∆w;X ) =J(w∗;X ) + g(w∗)T∆w+

1

2
∆wTH(w∗)∆w +O(∆w3)

(2.1)

where g(w∗) := ∇wJ(w
∗;X ) is the gradient at w∗, and H(w∗) := ∇2

wJ(w
∗;X ) is the Hessian

at w∗.

Since w∗ is a local minimum, g(w∗) = 0, and H(w∗) is (semi-)positive definite.

Take expectation of the Equation (2.1), we have

E [J(w∗ +∆w;X )] ≈ J(w∗;X ) + 1

2
E
[
∆wTH(w∗)∆w

]
= J(w∗;X ) + 1

2

[
Tr (H(w∗)Σ) + µTH(w∗)µ

]
= J(w∗;X ) + 1

2
Tr [H(w∗)Σ] (2.2)

Thus the expected value of the loss function is higher than that at w∗ by a gap of

1
2
Tr (H(w∗)Σ).

We can also compute the variance of the loss function value due to random perturbations:

Var [J(w∗ +∆w;X )]

≈ g(w∗)TΣg(w∗) + g(w∗)TCov
[
∆w,∆wTH(w∗)∆w

]
+

1

4
Var

[
∆wTH(w∗)∆w

]
=

1

4
Var

[
∆wTH(w∗)∆w

]
(2.3)

For normally distributed ∆w, or for ∆w that has independent components (that is,

∆wi ⊥⊥ ∆wj if i ̸= j),

1

4
Var

[
∆wTH(w∗)∆w

]
=

1

2
Tr [H(w∗)ΣH(w∗)Σ] (2.4)
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It’s desirable to have both the expectation and variance low, so that the DNN will reliably

have low degradation under analog noise.

Thus, low norm (trace norm and Frobenius norm) of the Hessian (which is the sum and

the sum of the squares of the eigen values respectively) is desirable at w∗, which corresponds

to wide valleys in the loss function landscape.

The conventional training techniques of DNNs, including various optimizers and reg-

ularization techniques, however, don’t regularize the eigenvalues of the Hessian, and thus

would not be able to find wide valleys/flat minima. This explains our empirical findings

of severe degradation in performance. Attempts have been made to find such wide valleys

in [HS97, CCS16], but such attempts have remained peripheral to the suite of mainstream

training algorithms, and lack evaluation of analog resiliency of the trained networks.

2.4.2 Our Algorithm: HA-SGD

Intuitively, to find a flat minimum, we want the optimizer to “look around” the landscape

in the neighborhood, instead of just considering the gradient at a single point.

Due to the extremely high dimensionality of the parameters in DNN models, an exhaustive

inspection in the neighborhood is impracticable; instead, one can take samples in the

neighborhood to collect local landscape information. Thus we propose to use Equation (2.5)

to replace the conventional mini-batch gradient ∇wJ(w;x(i)) in SGD:

g̃(w) =
1

L

L∑
ℓ=1

∇wJ(w +∆ω(ℓ);x(i)) (2.5)

where x(i) is the ith mini-batch and ∆ω(ℓ) iid∼ q(∆ω) are samples of deviation from the

parameter point w following a distribution q(·).

It can be seen how the Hessian information is incorporated if we expand ∇wJ(w +

∆ω(ℓ);x(i)) to the first order:

∇wJ(w +∆ω(ℓ);x(i)) = ∇wJ(w;x(i)) +H(w)∆ω(ℓ) +O
(
(∆ω(ℓ))2

)
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Thus

g̃(w) ≈ ∇wJ(w;x(i)) +H(w)
L∑

ℓ=1

∆ω(ℓ)

In the first-order, this adds a Hessian-related perturbation to the ordinary gradient at w.

Let the covariance matrix of ∆ω be Σq. The variance of this Hessian-related perturbation is

1

L
Tr [H(w)ΣqH(w)] (2.6)

Thus, the optimizer will never “settle down” until it finds a local minimum where the

gradient vanishes, and the Hessian-related perturbation is always low.

Based on this Hessian-related perturbation insight, we claim that the sampling number L

doesn’t have to be high to provide proper perturbation and enable good convergence. Thus

this modification in descent step doesn’t introduce much extra cost.

Also, recognizing the relation among Equations (2.2), (2.4) and (2.6), we note that it

makes the Hessian-related perturbation more targeted to have the sampling q distribution

similar to the analog noise distribution p
∆w
. This implies the potential of utilizing noisy

analog devices for training ADNNs.

We formalize the algorithm in Algorithm 1.

2.4.3 Results

In our HA-SGD implementation, q is chosen to be in the same form as the analog

perturbation in our simulation framework. Analogous to simulation noise level, the training-

noise level is defined as the ratio between standard-deviation of the perturbation and the

range of the parameters per DNN component.

Effect of different training noise level

We train WideResNet-28 on CIFAR-100 with three training noise levels: 0, 0.05 and 0.1,

where 0 means HA-SGD is reduced to vanilla SGD, and test them at testing noise level from
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Algorithm 1: HA-SGD

Result: Perturbation-resilient parameters of the DNN, w∗

Hyper-parameters: L: number of samples to take per step;
q(·): the perturbation distribution;
a gradient-based optimizer;
hyper-parameters of the optimizer;

initialization: w(0), i← 0;
while not converge do

sample mini-batch x(i) from X ;
for ℓ← 1 to L do

generate perturbation ∆ω(ℓ) ∼ q(∆ω);

calculate ∇wJ(w
(i) +∆ω(ℓ);x(i)) by forward-backward propagation;

end

g̃(i) ← 1

L

∑L
ℓ=1∇wJ(w

(i) +∆ω(ℓ);x(i));

use the optimizer and g̃(i) to update w: calculate w(i+1);
i← i+ 1;

end

return w(i)

0 to 0.2 with step 0.02. At each testing noise level, each trained network is instantiated

200 times by independently sampling from the device noise statistics, then each instance is

tested on the test dataset on our analog-noise simulation framework, yielding a data-point.

Results show that HA-SGD greatly improves the performance of the network under analog

noise (Figure 2.9). At testing noise level 0.06, training noise of 0.05 increases the average

top1 accuracy of the network from 53.9% to 68.0%, and training noise of 0.1 increases that

to 69.2%. When the testing noise goes up to 0.12, the network trained by vanilla SGD

completely fails and have top1 accuracy as random guess: 1.0%; while the network trained

with 0.05 training noise level has 5.6% accuracy, and the network trained with 0.1 training

noise level on average still has 43.4% accuracy.

Effect of different numbers of sampling

We further explore the effect of the hyper-parameter L: the number of gradient samples

to take during HA-SGD. As shown in Figure 2.10, higher L has benefits, but only marginal.

However, it has been found that larger L reduces the noise introduced and make the training
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Figure 2.9: Under-noise performance comparison of networks trained with different noise
(WideResNet-28 on CIFAR-100, L = 1). Colored lines connect the mean of test accuracy
across the testing noise levels.
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Figure 2.10: Under-noise performance comparison of networks trained with different L
(WideResNet-28 on CIFAR-100, training noise level = 0.05)
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easier than low L cases sometimes.

2.4.4 Smoothed landscape

In this section we provide an alternative perspective on why HA-SGD works.

Consider using J̃(w;X ) = Eq(∆ω) [J(w +∆ω;X )] as loss function, instead of J(w;X ).
That is, instead of optimizing performance at w, we optimize the expected performance at

the randomly perturbed parameter w +∆ω.

To optimize J̃ , we calculate its gradient w.r.t. w:

∇wJ̃(w;X ) = ∇wEq(∆ω) [J(w +∆ω;X )]

Under mild assumptions for applying the Leibniz integral rule, the expectation operator

and derivative operator can be swapped, giving

∇wJ̃(w;X ) = Eq(∆ω) [∇wJ(w +∆ω;X )]

which can be estimated with L samples:

∇wJ̃(w;X ) ≈ 1

L

L∑
ℓ=1

∇wJ(w +∆ω(ℓ);X )

Its SGD version is

∇wJ̃(w;X ) ≈ 1

L

L∑
ℓ=1

∇wJ(w +∆ω(ℓ);x(i))

which is exactly the step taken in HA-SGD.

From this perspective, HA-SGD is optimizing the expected performance of the DNN

under random parameter-perturbation defined by q:
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J̃(w;X ) = Eq(∆ω) [J(w +∆ω;X )] =
∫

J(w +∆ω;X )q(∆ω) d∆ω (2.7)

This new objective is not only intuitionally meaningful, but also favors flat minima. Note

that J̃(w;X ) is the original loss function J(w;X ) smoothed by a kernel defined by q(∆ω).

After smoothing, sharp minima in the original landscape are penalize, while flat minima are

still good minima (see Figure 2.11).

2.4.5 Comparison with Entropy-SGD

[CCS16] also proposed a training algorithm called “Entropy-SGD” that intentionally

search for flat minima based on smoothed loss landscape:

argmin
w

Jent = − logEq(∆ω) [exp (−J(w +∆ω;X ))] (2.8)

where q(∆ω) is chosen to be a Gaussian distribution with variance 1
γ
. The smoothing effect

of Jent is demonstrated in Figure 2.12.

The authors demonstrated the algorithm’s ability to find flat minima by showing the

sparseness of the eigen-values of the Hessian at the minima found. However, our analog

resiliency evaluation will provide another good measure of the flatness of the minima found.

We trained a WideResNet-28 network on CIFAR-10 dataset using Entropy-SGD and

compared its analog resiliency with the same architecture trained with our HA-SGD and

vanilla SGD (see Figure 2.13). Although the differently-trained networks attain similar

testing accuracy when there is no noise, they show different analog resiliency. The network

trained Entropy-SGD has better resiliency than the network trained with vanilla SGD, but

its resiliency is lower than the network trained with HA-SGD (training noise level is 0.1).

This shows the power of HA-SGD as well as the value of our simulation framework as a

minima-flatness measurement tool.
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Figure 2.11: Illustration of the smoothed-loss interpretation of HA-SGD with
univariate loss function. The solid blue curve is the original loss function; the dashed
orange curve is the smoothed loss after taking expectation. (a): At any w, HA-SGD computes
the average (the red arrow) of the sample gradients (gray arrows). This average (the black
arrow) is an estimation of the gradient of the smoothed loss function J̃(w;X ). The slope of
each arrow shows the gradient at the point. (b): The optimal training weights correspond to
the local minima in the smoothed loss function. The good local minima of the smoothed loss
correspond to wide-valley local minima in the original loss function.
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Figure 2.12: Entropy-SGD’s smoothed loss function landscape illustration (taken
from [CCS16])

●

●

●

●
●●●●

●

●● ●
●●●

●

●

●

●

●
●

●

●

●●

●
●

●

●●●●
●●

●

●● ●●●
●●●

●●

●
●
●

0

25

50

75

100

0.00 0.05 0.10 0.15 0.20

Testing Noise Level

Te
st

 T
op

1 
A

cc
ur

ac
y 

(%
)

method

Entropy−SGD

HA−SGD

SGD

(a) Top 1 Accuracy

●
●●●

●

●

●●
●

●
●

●

●

●

●●
●

●

● ●● ●●
●

●

●

●
●
●

●

●●

●●

●

●

●

●

●

60

80

100

0.00 0.05 0.10 0.15 0.20

Testing Noise Level

Te
st

 T
op

1 
A

cc
ur

ac
y 

(%
)

method

Entropy−SGD

HA−SGD

SGD

(b) Top 5 Accuracy

Figure 2.13: Under-noise performance comparison of networks (WideResNet-28 on CIFAR-
10) trained with different method (for similar training time). Colored lines connect the mean
of test accuracy across the testing noise levels.
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CHAPTER 3

Physics-informed Reduced-order Modeling of

Mechanical Systems — Slinky™ as a test case

3.1 Introduction

Many dynamical systems are computationally expensive to simulate with classic numerical

methods based on discretized differential equations, due to the fine spatiotemporal resolution

required for the discretization to hold. Reduced-order modeling (ROM) [BOC17, HM17,

FMD19, MML20] provides a computationally efficient alternative to simulating complex

dynamical systems with a large number of degrees of freedom. By reducing the number of

variables and equations needed to describe the system, ROMs can significantly reduce the

computational cost of simulation and analysis. Traditionally ROMs are built by experts

with domain knowledge through repeated trial-and-error and time-consuming analysis.

Alternatively, recent advances in deep learning based on deep neural (DNNs) networks [LBH15,

KKL21] enable a data-driven approach to automatically construct ROMs from observed data.

As demonstrated in the following, the computation time can be cut down by one to two

orders of magnitude.

Slinky, a helical elastic rod, is a seemingly simple structure with unusual mechanical

behavior; for example, it can walk down a flight of stairs under its weight. Taking Slinky as

a test-case, we propose a physics-informed deep learning approach for building reduced-order

models of physical systems. The approach introduces a Euclidean symmetric neural network

(ESNN) architecture that is trained under the neural ordinary differential equation framework

to learn the 2D latent dynamics from the motion trajectory of a reduced-order representation
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of the 3D Slinky. The ESNN implements a physics-guided architecture that simultaneously

preserves energy invariance and force equivariance on Euclidean transformations of the input,

including translation, rotation, and reflection. The embedded Euclidean symmetry provides

physics-guided interpretability and generalizability while preserving the full expressive power

of the neural network. We demonstrate that the ESNN approach can accelerate simulation

by one to two orders of magnitude compared to traditional numerical methods and achieve

a superior generalization performance while classic neural networks fail to learn the Slinky

dynamics, i.e., the ESNN, trained on a single demonstration case, predicts the motions

accurately for unseen cases of different Slinky configurations and boundary conditions.

Further investigation into the ESNN reveals that it learns the nonlinear coupling between the

stretching and bending of the Slinky, which has never been captured in classical modeling.

3.2 Reduced-order Modeling of a Slinky with 2D Representation

We start by clarifying the degrees of freedom (DoFs) of a Slinky in 3D space, and

subsequently, the reduced-order 2D representation that we assume.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Figure 3.1: A 3D illustration of a Slinky. Numerical simulation methods discretize the helix
into connected 3D nodes, resulting in a large number of DoFs. In this example, there are 16
nodes per cycle in the Slinky, each having 3 DoFs — their x, y, and z coordinates.

As shown in Figure 3.1, a Slinky is a long 3D helix consisting of many cycles. To

numerically simulate the motion of a Slinky from first principles, classical methods discretize

the helix into a series of nodes, approximate the stretching, curvature, and twisting along the

helix, and calculate elastic energy following Kirchhoff’s theory of elastic rod. Such method is

known as Discrete Elastic Rod (DER) [BWR08, BAV10, KJM10, JDJ14, JNO18, PKI19].
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Sophisticated optimizations have been done for DER to take advantage of the band structure

of the Hessian matrix of the elastic energy wrt the DoFs, allowing an efficient implicit method

for simulation [JNO18].

Despite the optimizations in the DER algorithm, the large number of DoFs necessitate

by the discretization introduces an inevitable computation burden, while a closer look at the

motion pattern of a Slinky suggests that these DoFs from discretization could be unnecessarily

many to describe the motion. In the typical motions of a Slinky, the many discretized nodes

don’t move individually, but collectively. Overall, a Slinky behaves like a thick elastic cylinder

whose “cross-section” is a cycle in the helix, although comprising a long thin rod. This

observation motivates us to describe 3D Slinkies whose center-lines stay within a vertical

plane with 2D representations.

The proposed 2D Slinky representation is shown in Figure 3.2. The top and bottom

vertices of a 3D Slinky cycle are projected onto the XOY plane. The vector pointing from

the projected bottom vertex to the projected top vertex is the 2D representation of that cycle,

referred to as a bar hereafter. The coordinates of the ith bar are ui =
[
xi yi αi

]T
∈ R3:

xi and yi are the coordinates of the bar’s center point, and αi is the angle of the bar with

respect to the y axis. For a Slinky of C cycles, its 2D representation has C bars, and the

states of these C bars along time constitute the 2D system trajectory of the Slinky. Such a

2D reduced-order representation retains the essential geometry of a Slinky’s 3D structure,

based on which a 3D helical shape is still reconstructable despite the substantial reduction in

the number of DoFs.

3.2.1 3D Slinky reconstruction from 2D representation

The reconstruction from 2D bar to 3D helical shape of the Slinky is shown in Figure 3.3.

Given the positions of a bar, a half-circle of radius R is drawn perpendicular to the XOY

plane, from the top vertex to the bottom vertex of the bar. R is the Slinky helical radius at

its initial undeformed shape. Another half-circle is drawn from the bottom vertex of the bar

to the top vertex of the next bar. These two half-circles form one Slinky cycle. Repeating
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(a) Construction of the 2D bars by projecting 3D Slinky cycles into the XOY plane. Each cycle in
the helix is simplified to a bar with 3 DoFs: the x and y of its center and the tilting angle α.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

(b) An overview of the reduced-order 2D representation of a 30-cycle-long 3D Slinky.

Figure 3.2: Illustration of the reduced-order 2D representation of a 3D Slinky.

this process for all bars, a helical Slinky shape is drawn.

3.2.2 Data Schema

Dynamics modeling of Slinkies essentially involves solving the initial value problem (IVP),

a time-series forecasting problem where the model’s task is to predict the system’s trajectory

(state as a function of time) based on a given initial state. Correspondingly, we generate the

time series data of Slinkies’ trajectories. Each trajectory consists of the states of a Slinky at

a series of time steps during its motion.

We consider a commercially-available 76-cycle Slinky (Poof-Slinky, Inc.) under large

nonlinear deformation. The experiment setup is shown in Figure 3.4. We record a single Slinky
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Figure 3.3: Reconstruction from 2D reduced-order model to 3D helical shape. For each bar,
two half circles are drawn to form a Slinky cycle: one from the top vertex to the bottom
vertex of the bar, the other from the bottom vertex of the bar to the top vertex of the next
bar. The half circles are perpendicular to the XOY plane.

motion using a camera where the Slinky falls under gravity from a horizontal configuration

with both ends clamped to the rack. A 3D DER model is calibrated based on the recording

and used for 2D training data generation. With the calibrated model a 3D simulation is

run with the same initial and boundary conditions as the experiment and with the damping

removed. The 2D system trajectory is constructed based on the projection of 3D data.

Aiming at data-efficient modeling, our training dataset contains only this single trajectory.

Trajectories with various initial and boundary conditions are simulated for evaluation of the

trained models. See supplementary materials of [LWR23] and Section 3.5 for more details.

The concrete definition of trajectories is further elaborated on in Section 3.3.1 below.

3.3 Physical Priors to Consider for Modeling a Slinky’s Dynamics

Although the 2D representation preserves the essential geometry of a Slinky’s 3D structure,

such order reduction is not invertible, and the 2D DoFs are not physically “real”. Therefore,

no first principle can be directly applied to the 2D representation for dynamics modeling,

making data-driven modeling a good fit. However, direct fitting with generic neural network

models fails to generalize (see Section 3.6 in the following for more details). To address

this problem, we incorporate several physical priors into the DNN-based modeling, which

31



Figure 3.4: Experimental apparatus: a 76-cycle Slinky (1) is supported by an experiment
frame (2). A camera (3) records the Slinky motion.

collectively amount to the modeling framework that we propose.

3.3.1 Newton’s Second Law of Motion — Neural Ordinary Differential Equation

Newton’s Second Law reveals that mechanical dynamical systems are second-order au-

tonomous, described by ODEs of the form

let w =

u
u̇

 , ẇ =

u̇
ü

 =

 u̇

M−1 F(w)

 (3.1)

where Fφ is the force vector containing all the internal and external forces, andM is the inertia

matrix. Note that ODEs of any order can be rewritten into first-order ODEs by including time

derivatives of the DoFs into the state vector, which enables us to express Newton’s Second

Law with a first-order ODE as Equation (3.1). With a set of physical parameters φ, the force

function F (·) dictates the dynamics of the system, which determines a unique trajectory

w(t) given an initial condition w(t0). In the following, without loss of generality, inertia is

normalized to an identity matrix, i.e., M = I. It is worth reiterating that the definition of

states in ODE Equation (3.1) delineates the trajectories in the datasets considered. each

trajectory is a time series of observed states, i.e. T =
[
w(t0) w(t1) . . . w(tT )

]
.
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Most time-series forecasting technologies from deep learning (e.g. Recurrent Neural

Networks (RNNs) and Temporal Convolution Neural Networks (TCNNs)) are for generic

time-series data and cannot incorporate the a priori knowledge of Newton’s Second Law

to regularize the learned model for mechanical systems. [CRB18] proposed to use a neural

network f̂θ(·) to fit data w(t) with an ODE

f̂θ(w, t) ≈ f(w, t) =
dw

dt
⇐⇒ ŵ(t) = w(0) +

∫ t

0

f̂θ(ŵ(τ), τ,θ)dτ ≈ w(t) (3.2)

Forward computation of the integral can be achieved through any suitable numerical ODE

solver based on the system’s requirements. When it comes to gradient-based training, one can

employ the adjoint sensitivity method to calculate the gradient. This method circumvents

issues common in conventional backpropagation that may arise from numerous integration

steps, such as gradient vanishing or explosion and substantial memory costs. This architecture

is known as Neural Ordinary Differential Equations (Neural ODEs).

Such a formulation allows Newton’s Second Law to be explicitly enforced in a neural

model, which enables us to introduce more physical priors to the model as explained in the

following sections. A bonus from this continuous-time framework is the ability to deal with

irregular observations that are not evenly spaced in time, and to predict for arbitrary time,

free from the time-step resolution limitation in discrete-time frameworks.

We adopt the Neural ODE framework and learn a neural network Fθ in the place of the

force function Fφ in Equation (3.1) for the prediction of a Slinky’s trajectory in terms of

its 2D representation, i.e., the reduced-order modeling of its dynamics. The DoFs u, in this

case, is the 2D representation of the Slinky’s configuration, i.e. u =
[
uT

1 . . . uT
C

]T
, and

physical parameters φ here include the geometry, the elasticity and the density of the Slinky,

along with gravitational acceleration and the damping factor.
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3.3.2 The Locality of Elastic Energy and the Homogeneity of Slinkies

The dynamics of a Slinky entailed by the neural network involves elastic force, gravity,

collision, and damping, among which the elastic force and gravity play the major roles.

Gravity requires no learning, and consequently the major task of the data-driven neural

model is to learn the elastic force F E, which is attributed to local deformation, and therefore

only requires local geometry information to predict.

We hypothesize that the elastic energy of one cycle of the Slinky is essentially determined

by the three-cycle segment of the cycle and its two adjacent cycles. Correspondingly in the

2D representation, we expect to be able to predict the elastic force experienced by the ith

bar using the configuration of only three bars,
[
uT

i−1 uT
i uT

i+1

]
. Hereafter, such a group of

three adjacent bars is referred to as a triplet. At the ends of the Slinky, “ghost bars” are

prepended or appended to allow such triplet-based force prediction for the end bars (see

Section 3.4.3 for more details).

A Slinky is a uniform long helix (apart from its two ends), therefore the cycles should be

identical and share the same dynamics, which means the same neural elastic force predictor

should apply to all cycles.

3.3.3 Euclidean Symmetry

Because elastic forces are entirely determined by the geometrical configuration of a Slinky,

they should remain invariant in a local reference frame of the Slinky under rigid body rotation

and translation. In other words, when the Slinky is rotated with its geometrical configuration

unchanged, in the global reference frame, the internal elastic forces should also rotate in the

same way. Also, suppose the Slinky’s configuration is mirrored, the elastic forces should be

mirrored accordingly. Formally, in the case of 2D Slinky representations, given any element

from the 2D rotation group, i.e. a rotation matrix R ∈ O(2),

F E(Ru) = RF E(u), (3.3)
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(a) Configuration of three bars in a Slinky’s
2D representation based on which the force and
torque experienced by the middle bar can be
computed.

Force
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(b) Rotated and translated configuration of the
three bars. The force and torque should trans-
form accordingly

Figure 3.5: Demonstration of Euclidean equivariance: rotation equivariance and translation
invariance.

where Ru means the Slinky DoFs u rotated by the group element R. Similarly, the elastic

forces should be invariant under arbitrary translation applied to the entire Slinky. Considering

three bars as described in Section 3.3.2, these properties are demonstrated in Figure 3.5.

The group of all possible combinations of translation and rotation in n-dimensional space

form the so-called Euclidean group E(n), thus the rotation equivariance and translation

invariance sometimes are collectively referred to as Euclidean equivariance [SHW21, GS22].

Euclidean equivariance is important prior knowledge because it allows a model to generalize

to unseen configurations by exploiting symmetry, which proves to be vital to the data efficiency

of a deep learning model in ablation studies (Section 3.6).

However, equivariance is not easy to enforce. Novel neural network architectures that

guarantee various equivariance are still a popular research topic [TSK18, CWK19, FWW21,

HHR21, SHW21, GS22], and current general-purpose equivariant neural network models in-

evitably sacrifice model’s flexibility or performance for equivariance. In this work, considering

the conservative nature of elastic force, we induce force equivariance from the invariance

of elastic energy. Concretely, ∀R ∈ O(2), if the elastic energy E(u) is invariant under the

transformation of R,

E(Ru) = E(u), (3.4)
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Figure 3.6: The neural network module takes three bars of the 2D representation as input,
and gives the force and torque for the middle bar by automatic differentiation of the surrogate
energy.

then the elastic force F E(u) = −∇uE(u) is naturally equivariant,

−∇uE(Ru) = −∇uE(u) (3.5)

−RT (∇uE) (Ru) = −∇uE(u) (3.6)

because RRT = I,

− (∇uE) (Ru) = −R∇uE(u) (3.7)

F E(Ru) = RF E(u) (3.8)

Note that the R could involve the transformation of a mirror reflection in addition to a

rotation. The translation invariance is also guaranteed in this way as any translation — a

constant offset in u — vanishes when taking the gradient (∇u).

In practice, we train a neural network to take a Slinky’s DoFs as input and produce a

scalar “surrogate energy” as output, from which the corresponding elastic force is calculated

as the derivative of this scalar energy with respect to the input DoFs, using PyTorch’s

automatic differentiation. Overall, the input and output of the neural network is illustrated

in Figure 3.6.

Local Coordinates for Energy Invariance

To achieve Euclidean invariance of the neural network output, a set of relative coordinates

of both rotation and translation invariance are adopted.

36



Figure 3.7: Transformation of global coordinates of a triplet into relative coordinates. ζi−1 is
parallel to the angular bisection between αi and αi−1.

Consider a single input of the network, i.e., the global coordinates of the ith triplet

µi =
[
uT

i−1 uT
i uT

i+1

]
=

[
xi−1 yi−1 αi−1 xi yi αi xi+1 yi+1 αi+1

]T
∈ R9. (3.9)

For simplicity, we omit the triplet index i and denote µi as µ. To make the representation

invariant to rigid body translation and rotation, the global coordinates µ are transformed

into relative coordinates z =
[
∆ξi−1 ∆ζi−1 ∆αi−1 ∆ξi ∆ζi ∆αi

]
∈ R6, where

∆ξi = cos

(
αi+1 + αi

2

)
(xi+1 − xi) + sin

(
αi+1 + αi

2

)
(yi+1 − yi) (3.10)

∆ζi = − sin

(
αi+1 + αi

2

)
(xi+1 − xi) + cos

(
αi+1 + αi

2

)
(yi+1 − yi) (3.11)

∆αi = αi+1 − αi (3.12)

See Figure 3.7 for an illustration of relationships among the quantities.

What remains to cover in Euclidean symmetry is the reflection invariance. To achieve

that, z and its 3 reflected copies are passed through the neural network fθ. The outputs are

4 scalars, and their summation is the energy surrogate E:

E(z) = fθ(z) + fθ (Reflx(z)) + fθ (Refly(z)) + fθ (Reflx(Refly(z))) (3.13)

37



where Reflx(·) and Refly(·) stand for the reflection of the triplet coordinates about x and y

axes, respectively. Note that the reflections are self-inverse and commutative, i.e.,

Reflx(Reflx(·)) = I(·), Refly(Refly(·)) = I(·), and Reflx(Refly(·)) = Refly(Reflx(·)) (3.14)

where I(·) is the identity transformation. Therefore, the energy surrogate E satisfies the

following property:

E(z) = E(Rx(z)) = E(Ry(z)) = E(Rx(Ry(z))) (3.15)

In summary, by feeding the neural network reflected copies of relative coordinates, the

Euclidean invariance of the scalar output surrogate energy is guaranteed.

3.3.4 Conservative Force and Energy Conservation

Another benefit in computing the force prediction as derivatives of a scalar is that such

force is guaranteed to be a conservative force that corresponds to a potential energy (a scalar

field in the configuration space). Motions driven by such force following Equation (3.1) have

conserved mechanical energy (the sum of potential energy and kinetic energy is a constant).

Therefore, the dynamics prescribed by the neural can be regularized and divergence can be

avoided by regularizing the surrogate potential energy.

The aforementioned approach using the derivatives of a scalar neural function to predict

vector quantities can be seen as a special case of Lagrangian Neural Networks [LRP18,

CGH20], which also aims to introduce the energy conservation constraints to neural networks

for modeling dynamical systems.
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Figure 3.8: The workflow of Euclidean symmetric neural network (ESNN). Dashed frames
enclose quantities, and solid boxes denote processes transforming the quantities (and intro-
ducing symmetries). Black arrows are forward computation towards the surrogate energy,
and red arrows are corresponding backpropagation towards the force output.

3.4 Modeling Framework: Euclidean Symmetric Neural ODE

3.4.1 Neural Network Architecture

To sum up, the neural network force predictor that enjoys Euclidean equivariance by

incorporating the aforementioned techniques is illustrated in Figure 3.8.

The neural network used is a multilayer perceptron (MLP) with skip connections inspired

by DenseNet [HLv16]. For activation function, Softplus proves to have better performance

compared to ReLU. To regularize the potential energy landscape, the final output uses a

square activation.

3.4.2 The DenseNet-like Backbone

The backbone in the Euclidean symmetric neural network (ESNN) is a DenseNet-like

structure, where shortcut pathways are created for a layer from all its previous layers. The

backbone network receives a z ∈ R6 vector as input. It first increases the feature dimension

to 32 by a fully-connected (FC) layer. Then the feature is passed through FC layers with

Softplus activation. The new feature with an increased dimension is formed by concatenating
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the previous feature with the FC layer output, i.e.,

xi =

 y

xi−1

 =

FCSoftplus(xi−1)

xi−1

 (3.16)

After 5 layers, the feature dimension is increased to 192. This feature is then squared and

passed through an FC layer with no activation to produce the final scalar output.

 

Figure 3.9: The DenseNet-like network first increases the feature dimension from 6 to 32
by an FC layer without activation, and then in the subsequent 5 layers, concatenating the
feature in a layer with the output of an FC layer to produce the feature for the next layer.
This is equivalent to creating shortcuts for a layer from all of its previous layers. The feature
dimension will increase by 32 after passing through each layer and eventually reach 192.
Then the feature is squared and passed through an FC layer without activation to generate a
scalar output.

3.4.3 Bounrday Condition Treatment

When elastic force prediction is needed for the boundary bars at the ends of a Slinky,

extra “ghost bars” are added to the ends to form triplets of which the boundar bars are the

“middle bar”.

For clamped boundary conditions, no special treatment is needed since it is unnecessary

to calculate the elastic force on the boundary bar. For free boundary conditions, a ghost bar

is constructed, as shown in Fig. 3.10. Assume that the N th bar of a N -cycle Slinky is free.

Then the coordinates of the ghost bar (the (N + 1)th bar) are the same as those of the N th

bar, i.e., (xN+1, yN+1, αN+1) = (xN , yN , αN). The elastic force on the Nth boundary bar is
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calculated with

(xN−1, yN−1, αN−1, xN , yN , αN , xN+1, yN+1, αN+1)

as the ESNN input.

 

Figure 3.10: The boundary treatment for free-end boundary conditions. The ghost bar (the
(N + 1)th bar) has the same coordinates as the N th bar.

3.4.4 Training Workflow

Figure 3.11 illustrates the overall training workflow of ESNN with Neural ODE. Given

a batch of clips in the training trajectory, comprising T steps of states, the predictions for

later time steps are autoregressively generated starting from the initial time step with ESNN

and Neural ODE. The loss is calculated by comparing the predicted trajectory with the

groundtruth. The ESNN model is trained to optimize such loss with Adam optimizer [KB14].

During ESNN training, the trajectory clip length T is gradually increased from 2 to 70 to

let the model gradually learn long-term effect of its instantaneous predictions while keeping

the loss stable. As described in Section 3.2.2 The simulation time step is 0.01 s, making the

final training trajectory time span 0.7 s. A damping and a contact model [LFS20] are added

in the ESNN deployment to match the real-world energy dissipation and non-penetration.

The ESNN is trained on this one case, and tested on other unseen cases.
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(a) Illustration of state update from time step t0 to t1. The predicted force changes along the state,
which in turn influences the state’s evolution. Such a continuous process is solved by integrating
the Neural ODE prescribed by the ESNN.

Loss

ESNN + Neural ODE

A batch of initial conditions

A batch of length-T clips from 
the training Slinky trajectory

(b) The training diagram of ESNN with Neural ODE.

Figure 3.11: The training schematic of the dynamics modeling framework comprising ESNN
and Neural ODE.
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Figure 3.12: Computation time comparison between 3D DER simulation and ESNN reduced-
order model.

3.5 Generalizable Dynamics Learned from Single Trajectory

3.5.1 Trajectory Prediction Beyond Training Time Span

After 1000 training epochs, a 2D simulation is run with the trained ESNN for 2.5 s to

evaluate its ability to predict trajectories for the same Slinky. Recall that the training data

contains only the first 0.7 s of the trajectory. Therefore we refer to the first 0.7 s span of

the predicted trajectory the “train phase” and the 0.7 s to 2.5 s span the “extrapolation

phase”. The predicted trajectory of the 2D Slinky is compared with 3D DER simulation

visually in Figure 3.13(b). The ESNN results match the ground truth well not only within

the training phase, but also in the extrapolation phase up to 2.5 s, which is more than 2 times

the training time span. Note that extrapolation here refers to time-domain forecasting rather

than making predictions on “out-of-distribution” data. The final static deformations for

real-world experiment, DER, and ESNN are in good agreement, as shown in Figure 3.13(a).

In terms of computational speed, the ESNN outperforms the DER method by roughly 60

times as shown in Figure 3.12.

3.5.2 Generalizable Prediction in Various Unseen Cases

With the weights and all physical parameters fixed, we test the generalization of the

ESNN on previously unseen cases: on a Slinky (1) of a different number of cycles; (2)

under a different boundary condition; (3) of a different density; and (4) of a different
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Young’s modulus. (refer to Supplementary Materials for the videos of the comparison). In

test case (1), the Slinky cycle number is changed to 40 with both ends clamped, as shown in

Figure 3.13(c). The Slinky is initially held horizontally and then dropped freely under gravity.

The motion time shots of the Slinky from the real-world experiment, DER simulation, and

ESNN simulation are compared in the Figure 3.13(c) and show an excellent agreement. In

test case (2), the 40-cycle Slinky is held vertically, clamped at the upper end, and dropped

freely from its undeformed configuration. The motion time shots from different methods are

compared in the Figure 3.13(d) and again we observe a good agreement. In these two test

cases, a satisfactory agreement is achieved without making any changes to the ESNN. The

agreement originates from the embedded Euclidean symmetry and the fact that the NN is

learning generalizable physics locally. In contrast, [LKA20] and [HRM21] construct NN-based

surrogate models for full-field solutions under a certain boundary condition. The benefit is

that the NN prediction is extremely fast since only one forward pass through the trained NN

is required for each prediction. The price paid is in the generalization ability. For a new type

of boundary condition, a new dedicated training dataset is required and the NN needs to

learn from scratch. However, in our ESNN approach, different boundary conditions can be

readily incorporated after training since the ESNN learns local physics which is boundary

condition agnostic. In test case (2), the orientation of the Slinky is shifted by 90 degrees.

The ESNN is still capable of generating the correct surrogate forces and system trajectory

prediction since it preserves rotation equivariance.

3.6 Ablation Study

In this section, we compare the ESNN Neural ODE approach to various data-driven

dynamics modeling baselines to understand the effectiveness and necessity of the prior

knowledge and principles incorporated in the method, which enables highly data-efficient

training with a single demonstration and reliable generalize to unseen scenarios where both

initial and boundary conditions are varied.
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Exp DER ESNN

(a) Static deformation comparison across a real-world Slinky experiment, the discrete elastic rod
(DER) simulation, and the ESNN reduced-order model.

True NN Train True NN Extrapolate True NN Extrapolate

(b) Comparison between 3D DER ground truth and reconstruction from the ESNN reduced-order
model in the training phase and extrapolation phase. Time of shots are at 0.45 s, 2.03 s, and 2.50 s.

Exp DER NNNN NN NNDERExp DERExp DERExp

(c) Comparison of an unseen 40-cycle Slinky across real-world experiment, 3D DER simulation, and
reconstruction from the ESNN reduced-order model. Time of shots are at 0.53 s, 1.43 s, and static.

Exp NNDER NNNNNNDERExp DERExp DERExp

(d) Comparison of testing on a 40-cycle Slinky with a different boundary condition and orientation.
Time shots are at 0.2 s, 0.53 s, and static.

DER NN

0.25 s

0.50 s

0.75 s

1.00 s

(e) Comparison of testing on a 40-cycle
Slinky with half of the material density.

NN

0.25 s

0.50 s

0.75 s

1.00 s

DER

(f) Comparison of testing on a 40-cycle
Slinky with half of the Young’s modulus.

Figure 3.13: Comparison across real-world experiments, 3D DER simulations and ESNN 2D
simulations.
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3.6.1 The Importance of Physical Knowledge

To provide a physics-agnostic, data-driven baseline for comparison, a convolutional neural

network (CNN) architecture is used to directly learn the one-step dynamics of the Slinky.

Given the 2D coordinates of a Slinky at a time step, the CNN predicts the 2D Slinky

coordinates at the next time step using a series of non-linear filters convoluting along the

Slinky cycles with a receptive field of three cycles. Such a convolutional architecture assumes

homogeneity of the Slinky across cycles (as other methods do) and allows the application

of the trained model to Slinkies consisting of an arbitrary number of cycles. Boundary

condition treatment is the same as that used in the ESNN. As shown in Figure 3.14(b),

the training result is fairly accurate. After training, the CNN is tested on a 40-cycle Slinky

vertically held at the upper boundary. The unreasonable result in Figure 3.14(c) shows

that the CNN “memorizes” the data pattern in the training dataset, but fails to learn the

underlying dynamics, therefore does not generalize to unseen conditions (Figure 3.14(f)).

Two other comparison methods are the “direct force predictor” and the “direct energy

predictor”. The schematics of the methods are shown in Figure 3.14(a). The NNs in the

direct force predictor method (referred to as “force NN”) and in the direct energy predictor

method (referred to as “energy NN”) share the same structure as the ESNN in terms of the

number of layers and neurons per layer. See Section 3.6.2 for training data preparation for

these two methods.

3.6.2 Data generation for “direct force predictor” and “direct energy predictor”

methods

After the 3D simulation is run, the total energy of each discrete elastic rod at each time

step, including bending, stretching, and twisting energy, is recorded. The total energy of

each Slinky cycle is the summation of the energies from the associated discrete rods. The 2D

triplet coordinates and the corresponding total energy of the middle cycles constitute the

inputs and outputs of the training data pairs for the direct energy predictor method. The
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NN in the direct energy predictor method is supposed to learn the mapping between triplet

coordinates and middle bar energies.

After converting the 3D Slinky trajectory to 2D bar trajectory, the instantaneous acceler-

ation of each bar is calculated with the finite difference method. The pseudo elastic force

on each bar is calculated by Newton’s second law of motion. The NN in the direct force

predictor method is supposed to directly learn the mapping between triplet coordinates and

middle bar elastic forces.

3.6.3 The Importance of Euclidean Symmetry

The force NN is trained to directly learn the mapping between the coordinates of a

triplet and the elastic forces on its middle bar without equivariance enforced in the NN

architecture. Although a reasonably low loss is achieved for training, the simulation that

solves the motion equation Equation (3.1) with the force NN as the elastic force function

fails to converge (Figure 3.14(d)). Without the equivariance property, the force NN fails to

generate physically reasonable and consistent predictions on unseen inputs. A natural thought

to solve this issue is to train a more capable NN on an augmented dataset with rotation and

chiral transformations. This approach is unrealistic because the rotation angle is a continuous

variable, making the amount of data augmentation required to enforce rotation-equivariance

prohibitively huge. This highlights the necessity of incorporating physical symmetries to

improve the efficacy and efficiency of NN-based reduced-order models.

3.6.4 The importance of the NODE training framework

The results from the energy NN are shown in Figure 3.14(e). The energy NN is trained

to predict the elastic energy given the coordinates of a triplet. Similar to the ESNN, the

elastic force on the middle bar, which is the negative energy gradient w.r.t. the coordinates

of the middle bar, can be accordingly derived with backpropagation. The energy NN differs

from the ESNN in the training scheme: the energy NN is trained on coordinates-energy

data pairs; the backpropagation to calculate forces is performed during the testing phase for
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motion simulation. Recall that for the ESNN, the backpropagation is already embedded in

the training phase under the NODE framework to fit the Slinky trajectory. The energy NN

simulation diverges at 10.7ms. The divergence is due to two reasons: (1) Although the energy

NN achieves a nearly perfect energy fitting, there is no guarantee that the derivatives of the

predicted energy, i.e. predicted forces, are fitted correctly, especially in a high dimensional

space, with limited training data; (2) There will inevitably be errors in the energy prediction

of the NN and the associated force calculation after training. The errors after propagating

through an ODE solver should not diverge the simulation. This property is guaranteed when

the NN is trained under the NODE framework, but not when directly fitting input-output

data pairs. This highlights the necessity of using NODE as the training scheme for NN-based

reduced-order models.

3.7 Comparison with classic 2D Slinky models

By investigating the prediction of the intermediate energy surrogate of the ESNN, we

show that it automatically discovers the nonlinear stretching-bending coupling of the Slinky

without any prior knowledge. Figure 3.14(g) shows the triplet energy at different bending

angles with 3 initial stretching lengths. As the initial stretching length increases, it takes

more energy to bend the bars to a certain angle, i.e., the instantaneous bending stiffness

is a function of the stretching length, which is a physical insight not reflected in classic

models [HBM14].

3.8 Conclusion

In this study, we developed a highly generalizable and data-efficient, deep-learning-based

reduced-order dynamics model for Slinkies. This method leads to a 60-fold acceleration

in Slinky motion simulations compared to finite-element numerical methods. The model

successfully learns reduced-order physics from a single demonstration case and delivers

numerically stable, accurate, and rapid predictions on a range of unseen cases. The cornerstone
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of the method is the ESNN, trained with the Neural ODE framework, which enforces physical

principles, specifically Euclidean symmetry and Newton’s second law of motion. A series of

ablation studies comparing the ESNN with alternative data-driven deep learning methods

underscored the effectiveness and importance of our approach’s components. Furthermore,

we demonstrated that the ESNN automatically identifies the phenomenon of nonlinear

stretching-bending coupling that manifests in a Slinky’s dynamics, which has never been

accounted for in classical reduced-order studies.

3.9 Additional Information

This research was collaboratively conducted with Dr. Qiaofeng Li during his post-doctoral

appointment in the Structures-Computer Interaction group at UCLA led by Prof. Khalid

Jawed. The findings have been published in Extreme Mechanics Letters, notably featured on

the journal’s cover [LWR23]. The original code repository of this work is released on Github

at https://github.com/StructuresComp/slinky-is-sliding.
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Figure 3.14: Comparison between the ESNN and 3 other methods (CNN, direct force
predictor, direct energy predictor). (a) Schematic comparison between different approaches.
CNN takes the triplet coordinates at the current time step and predicts the center bar
coordinates at the next time step without any physical symmetry or dynamics encoded. The
direct force predictor method has the same input but predicts the forces on the center bar.
The direct energy predictor method incorporates invariances to predict the energy first and
then by backpropagation derives an equivariant force field. Both of the “direct predictor”
methods perform data-fitting directly. The ESNN trains an invariant NN under the NODE
framework. (b) Comparison between 3D DER ground truth and CNN training results. Time
shots are at 0.20 s, 0.43 s, and 1.18 s (from left to right). (c) Comparison between 3D DER
ground truth and CNN generalization results. Time shots are at 0.03 s, 0.17 s, and 0.33 s
(from left to right). (d) The training results of the direct force predictor method at 9.4ms,
11.4ms, 13.4ms, and 14.9ms (from left to right). The direct force predictor method fails
to generate a reasonable simulation. (e) The training results of the direct energy predictor
method at 7.5ms, 8.5ms, 9.5ms, and 10.5ms. The simulation diverges at 10.7ms. (f) The
error comparison between the ESNN (4 generalization cases) and CNN (generalization for
a 40-cycle Slinky). The error is the vertex distance between NN prediction and 3D DER
averaged on all the Slinky vertices. The CNN generalization error is significantly larger
than those of the ESNN (capped at 1.0 for visualization). (g) The learned surrogate energy
of the ESNN at different bending angles α. The symmetric rotation configuration in the
inlet ensures that at different bending angles, the stretching stays the same and the shear
remains 0. The energy increase is purely caused by bending motion. The bending energy
and the associated bending moment are different for the same bending angle under different
stretchings. This indicates a nonlinear coupling between stretching and bending.
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CHAPTER 4

Interpretable Deep Meta-learning of Families of

Dynamical Systems

4.1 Introduction

Chapter 3 has demonstrated the power of data-driven modeling of dynamical systems.

With properly designed inductive bias that incorporates physical prior knowledge, a data-

driven model can generalize to many unseen cases. However, the applicability and data-

efficiency of such data-driven methods remain restricted, primarily due to the necessity of

fitting distinct models for each system instance with different parameters, although they

share the same dynamical structure.

Even if two systems share the form of dynamics, varied physical parameters lead to

distinctive behaviors. Therefore, most previous works fit dedicated models separately for

different system instances, which limits the models’ applicability to one specific system.

One solution is to include the systems’ physical parameters as a part of the neural network

model input [LP21, DMJ22]. This method, however, requires non-trivial expert knowledge

to identify the characteristic system parameters, which is often difficult for complex or novel

systems that necessitate data-driven modeling in the first place. Recently [ZWT18] considered

systems comprising multiple interacting objects and attempted to learn one shared model for

object motion and their interaction with the object properties unlabelled. This approach,

however, does not apply to most systems where system-level dynamics are tracked.

For system instances that share the same dynamical structure but differ in parameters,

learning separate models does not optimally utilize data, which leads to lower data efficiency.
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In this chapter, our goal is to learn the shared dynamics form from the trajectories generated

by a series of dynamical system instances despite their diversified behaviors in data, without

labels of system parameters. The learned dynamics form can subsequently boost the data-

driven modeling of new systems that share the dynamics form. This goal aligns well

with that of multi-task meta-learning [WZL21], which aims to leverage the similarities

between different tasks to enable better generalization and efficient adaptation to both seen

and unseen tasks. In particular, a line of works is termed gradient-based meta-learning

(GBML) [FAL17, NAS18, FRK19, RFK19, RRB19], which, given a set of tasks and a neural

network model, tries to find an initialization of the model such that the adaptation to a task

takes only a small number of gradient descent steps while resulting in good generalization on

the task’s test data.

We propose an efficient and interpretable method to model a family of dynamical systems

using their observed trajectories, by combining GBML with neural ordinary differential

equations introduced in Chapter 3. The method generalizes well on unseen systems from

the same family, and the adaptation parameters show good interpretability. The intrinsic

dimension of the varying system parameters can be estimated by analyzing the adaptation

parameters. Given the ground truth of the system parameters, simple correspondence can

be established between the adaptation parameters and actual physical parameters through

diffeomorphism, which can be utilized as a “Neural Gauge” to measure the properties of new

systems through observed trajectories. We name our method interpretable Meta Neural

ODE (iMODE).

4.2 Problem Statement and Data Schema

Similar to Chapter 3, we consider autonomous dynamical systems described by ODE

ẇ(t) =
dw(t)

dt
= fφ(w(t)) (4.1)
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where w(t) is the state of the system at time t, and φ is the system parameters that

parameterize the temporal derivative of states fφ, which prescribes the evolution of the state.

To clarify the terms, we take the simple pendulum system as an example. An instance is

a pendulum with a specific arm length, therefore the system parameter φ is the arm length.

For different instances, the functional form of fφ is the same while the value of φ is varied as

the parameter of fφ. The state variable contains the location and speed of the pendulum

and a trajectory consists of the state observed during a certain amount of time.

In the context of dynamics modeling for autonomous systems, the foundational task is to

learn from a set of observed system trajectories so that the trajectories with unseen initial /

boundary conditions of the system can be accurately predicted. The modeling of distinct

system instances characterized by varied system parameters is regarded as separate tasks.

In this chapter, we continue using the Neural ODE framework as in Chapter 3. Therefore,

for a task T (i) modeling a system i, the aim is to use a dynamics model f̂ (i) to approximate

its dynamics fφ(i) , where we use parenthesized superscripts to index the system instances.

Data-wise, T (i) involves a training set and an evaluation set of trajectories — the training

set D(i),train =
[
T

(i)
1 . . . T

(i)
K

]
and the evaluation set D(i),eval =

[
T

(i)
K+1 . . . T

(i)
N

]
, where

K is the number of trajectories in the training set, and N is the total number of trajectories

that are associated with the task. The modeling quality of a model f̂ (i) can be quantified by

L(f̂ (i),D(i),test), the prediction error on the evaluation set and the modeling efficiency by the

time and amount of data required to obtain a model with a certain level of performance L.

The goal is to leverage the shared dynamics form learned from multiple instances (cor-

responding to tasks Dmeta-train = {T (1), . . . , T (Ns)}, where Ns denotes the number of system

instances in the meta-training set), so that given a new system with an unseen value of φ, its

dynamics can be efficiently modeled with a minimal amount of data. In other words, using

the knowledge extracted from Dmeta-train, to achieve low modeling loss L for test tasks from

Dmeta-test = {T (1), . . . , T (Ns)} with minimal data requirement and computational cost.
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4.3 Parameter Partitioning for Dynamics Modeling and System

Adaptation

w

w

Figure 4.1: A neural module f̂ parameterized by θ takes the concatenation of system state
w and the adaptation parameters η and generates the estimated force as output.

Recognizing that the system instances have shared dynamics form and varying physical

parameters, we separate the neural network model parameters into two parts: the shared

parameters θ that capture the shared form of dynamics, i.e. the meta-knowledge, and the

adaptation parameters η that account for variations across system instances.

A neural network f̂θ(w;η) (Figure 4.1) replaces fφ(w) in Equation (4.1) to approximate

the observed trajectories, where η is adapted to each system instance such that with a

certain η(i), f̂ (i) = f̂θ(w;η(i)) approximates the dynamics of the ith system instance. After

training, η becomes a proxy for the physical parameters φ. θ is the model parameters that

capture the functional form of dynamics shared across system instances. The predicted

trajectory starting from an initial condition w0 = w(t0) is given by integration (the 5th-order

Dormand-Prince-Shampine solver is used to compute integrals)

ŵ(t,w0,θ,η) = w0 +

∫ t

t0

f̂θ (ŵ(τ);η) dτ, ŵ(t0) = w0 (4.2)

4.4 Bi-level Optimization for Joint Learning of a Family of Systems

Let us first define some notations for clarity. We represent the jth trajectory of the ith

system instance as T
(i)
j =

[
w(i)(t0), . . . ,w

(i)(tT )
]
. The trajectory prediction generated by a

neural module f̂θ( · ;η) given its initial state as in Equation (4.2), is denoted as T̂
(i)

j (θ,η).
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(θ,η) (θ,η1)

(θ,η2)

(θ,η3)

meta gradient

instance-specific gradient
at η-adapted positions

Figure 4.2: The bi-level optimization in the iMODE method. The NN weights θ are shared
across system instances while η is adapted for each instance. The meta gradient w.r.t. θ
aggregates the gradients evaluated with instance-adapted η.

We define ∥T(i)
j − T̂

(i)

j (θ,η) ∥2 to be the squared difference between T
(i)
j and T̂

(i)

j (θ,η) across

all time steps, which mathematically expands to
∑

t

(
w

(i)
j (t)− ŵ(i)(t,w

(i)
j (t0),θ,η)

)2

.

The goal of the modeling is formulated as a bi-level optimization,

outer: min
θ
L̃(θ) = 1

Ns

Ns∑
i=1

L(i)(θ,η(i)
m ), where (4.3)

L(i)(θ, ζ) =
1

K

K∑
j=1

∥T(i)
j − T̂

(i)

j (θ, ζ) ∥2, (4.4)

inner: η
(i)
l+1 = η

(i)
l − α∇ηL(i)(θ,η

(i)
l ), η

(i)
0 = η (4.5)

where the inner-level involves an m-step gradient descent adapting η for each instance, while

the outer-level finds the optimal initialization for θ. α is the inner-level stepsize and η
(i)
m

is the adaptation parameters for the ith system instance after m steps of adaptation. For

short, we denote such ith adaptation result as η(i). Note that η(i) depends on both θ and η

as shown in Equation (4.5). To avoid higher-order derivatives, we simplify such dependency

following the first-order Model Agnostic Meta-Learning (first-order MAML) [FAL17] and

take the outer-level step as

θ ← θ − β

Ns

∑
i

∇θLi(θ,η
(i)), (assuming that

∂η(i)

∂θ
= 0) (4.6)

where β is the outer-level stepsize. At both the inner-level and outer-level, the gradient
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calculation for functions involving integrals is enabled by Neural ODE. The relation between

gradient descent steps at the inner-level and the outer-level in the bi-level optimization is

illustrated in Figure 4.2.

4.5 Dynamics Modeling for Dynamical System Families

In this section, we examine the modeling capability of the proposed iMODE method in

terms of trajectory prediction quality on both the meta-training dataset and the meta-test

dataset of unseen system instances, as well as the efficiency of such data-driven modeling.

Various dynamical system families are considered, most of which are mechanical dynamical

systems.

When it comes to mechanical dynamical systems, which are second-order autonomous,

we again focus on Equation (3.1) in Section 3.3.1. For convenience, we repeat it below:

ẇ =

u̇
ü

 =

 u̇

M−1 F (w)

 , where u is the coordinates of the system

In this case where the dynamics is essentially prescribed by a force field function F (w),

the neural network module f̂ is used to approximate F (w) instead of the whole ẇ. Again,

we assume normalized inertia M = I.

We demonstrate the modeling capabilities of the proposed method with three system

families: simple pendulum oscillators, bistable oscillators, and Van der Pol oscillators. These

three families cover a spectrum of complexity. A simple pendulum oscillator is conservative

and can be characterized by a quadratic potential energy function with a single system

parameter. Each of the conservative bistable oscillators we consider is characterized by a

quartic potential energy function that has two system parameters and two local minima. The

Van der Pol oscillators are non-conservative and each has three system parameters.

Using the modeling of Van der Pol systems as an example, Figure 4.3 shows that f̂θ(·;η)
specifies a force field that morphs as η changes. Trajectories with arbitrary initial conditions
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Figure 4.3: Left: Examples of estimated force field f̂θ( · ;η) for Van der Pol system instances
that differ in their ϵ parameter (in ascending order from top to bottom). The estimation
quality is further evaluated through the trajectories generated by the fields as shown on the
right. Right: The estimated force field can be used to predict system trajectories for unseen
initial conditions through integration (Equation (4.2)). The signature limit cycles of Van der
Pol systems are faithfully reproduced.

can be predicted based on the force field using Neural ODE. See Section 4.5.1.3 for more

details on Van der Pol systems.

4.5.1 Dynamics Modeling Accuracy

4.5.1.1 Simple Pendulum

The dynamics of a simple pendulum (Figure 4.4) can be described by the ODE Equa-

tion (4.7)

ml2ü+mgl sin (u) = 0 s.t. u(0) = u0, u̇(0) = u̇0 (4.7)
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u

Figure 4.4: Illustration of the single pendulum system. The one-dimensional DoF is the angle
between the pendulum arm and the vertically downward direction.

where the coordinate u of the system is simply the angle of the pendulum, and the state is

the concatenation of the angle and its angular speed, making the state space a 2D plane.

Being conservative in mechanical energy, the trajectories of a system instance in the state

space is a closed curve.

The oscillating pendulum has 1 physical parameter, i.e. the arm length l (rotational

inertia normalized). The training dataset contains 5 system instances with l = 1, 3, 5, 7, and 9

m. A long trajectory of 10 s is generated following Equation (4.7) for each instance with the

initial position of π/2 and velocity of 0 rad · s−1 and simulation time step of 10ms. During

training, a batch of 20 1 s-long clips is sampled randomly in each epoch. Essentially the

iMODE training sees 1 s-long trajectories with various initial conditions. The learned model

is tested on 8 unseen system instances with l = 2, 3.5, 4, 5.1, 6, 6.9, 8, and 10 m. The

adaptation to each unseen system uses similar data sampling as the training. For each testing

system instance, a batch of 20 randomly sampled 1 s-long clips is fed to the neural network

for adaptation of η. The task adaptation only takes 5 steps. Then the adapted model for

each instance is used to calculate a trajectory of 5 s given an initial condition, and compared

with ground truth.

The results are shown in Figure 4.5. The solid lines (the ground truth) match well the

circles (prediction), showing that iMODE successfully models the simple pendulum systems

with reliable prediction accuracy.
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(b) The predicted simple pendulum trajec-
tories vs the ground truth in the meta-test
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(c) The plot of an adapted model’s prediction of a simple pendulum (l = 7m) system’s coordinate
vs time and velocity vs time with three unseen initial states. Different colors correspond to different
initial conditions.

Figure 4.5: The meta-learning results for the simple pendulum systems. The iMODE
trajectory prediction (circles) for different arm lengths l and initial conditions (different
colors) match those of the ground truth (solid lines).
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Figure 4.6: Examples of the quartic potential function of the bistable oscillator systems.

4.5.1.2 Bistable Oscillator

For a slightly more complicated case, we consider the system family described by ODE

Equation (4.8) with a symmetric quartic potential E(u) = k1u
2 + k3u

4 + const. Figure 4.6

illustrates some examples of such potential functions (with their minima shifted to zero by

adjusting the constant term). Again, the DoF is 1 and the state is the concatenation of the

only coordinate and its time derivative.

ü+ k1u+ k3u
3 = 0 s.t. u(0) = x0, u̇(0) = ẋ0 (4.8)

A bistable system has a potential energy function controlled by 2 parameters k1 and k3.

The potential energy has two local minima, or so-called potential wells. When the initial

conditions vary, the bistable system can oscillate intra-well or inter-well. Figure 4.7(a) shows

that the task adapted trajectories (m = 5) match the ground truth well.

The training dataset contains 20 system instances, a mesh of k1 = −0.4, −0.6, −0.8
and −1.0 and k3 = 2.0, 2.9, 3.7, 4.6, and 5.0. Trajectories of multiple initial conditions

with stepsize of 10ms and duration of 10 s are generated with Equation (4.8) for each
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instance. During training, a batch of 100 randomly sampled 1 s-long clips is used for

each epoch. During testing, task adaptation takes 5 steps on previously unseen systems

[k1, k3] = [−0.5, 3.1], [−0.7, 4.2], [−0.5, 4.7]. The learned models calculate trajectories of 5 s

given an initial condition. The results are shown in Figure 4.7(b).

4.5.1.3 Van der Pol System

The Van der Pol systems described by Equation (4.9) have 1 DoF and 3 physical parameters

φ = [ϵ, δ, ω]. They exhibit limit cycles due to the negative damping for small oscillation

amplitudes. Figure 4.7(a) shows that the variation of limit cycles due to the change of

physical parameters is well predicted.

ü− ϵu̇(1− δu2) + ω2u = 0 s.t. u(0) = x0, u̇(0) = ẋ0 (4.9)

The training dataset contains 27 system instances, a mesh of ϵ = [1.0, 2.0, 3.0], δ =

[1.0, 2.0, 3.0], and ω = [0.5, 1.0, 1.5]. Trajectories of multiple initial conditions with stepsize

of 10ms and duration of 10 s are generated for each instance. During training, a batch of 100

randomly sampled 1 s-long clips is used for each epoch. During testing, task adaptation takes 5

steps on previously unseen systems instances [ϵ, δ, ω] = [1.2, 1.2, 2.1], [1.2, 1.8, 1.4], [2.6, 1.5, 2.5].

The learned models calculate trajectories of 5 s given an initial condition. The results are

shown in Figure 4.8(b).

4.5.2 Dynamics Modeling Efficiency for New System Instances

Note that the m in Equation (4.5) is chosen to be quite small (e.g. 5), so given trajectories

of a previously unseen system, η can be efficiently updated with few gradient descent steps,

adapting the network to account for behaviors of the new system, which is one order of

magnitude faster compared to training from scratch.

The fast adaptation of iMODE is demonstrated with the bistable systems in Figure 4.9.

iMODE is able to adjust the (only two-dimensional) adaptation parameters in 5 steps to learn

61



different
parameters

(a) The predicted bistable oscillator trajecto-
ries vs the ground truth in the meta-training
dataset (3 instances are picked for visualiza-
tion). Different colors correspond to different
system instances.

(b) The predicted bistable oscillator trajec-
tories vs the ground truth in the meta-test
dataset (3 instances are picked for visualiza-
tion). Different colors correspond to different
system instances.

t (s) t (s)

(c) The plot of an adapted model’s prediction of a bistable oscillator (k1 = −0.6, k3 = 5) system’s
coordinate vs time and velocity vs time with three unseen initial states. Different colors correspond
to different initial conditions.

Figure 4.7: The meta-learning results for the bistable oscillators. The iMODE trajectory
prediction (circles) for different arm lengths and initial conditions (different colors) match
those of the ground truth (solid lines).
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different
parameters

(a) The predicted Van der Pol oscillator tra-
jectories vs the ground truth in the meta-
training dataset (3 instances are picked for
visualization). Different colors correspond to
different system instances.

(b) The predicted Van der Pol oscillator tra-
jectories vs the ground truth in the meta-test
dataset (3 instances are picked for visualiza-
tion). Different colors correspond to different
system instances.

t (s) t (s)

(c) The plot of an adapted model’s prediction of a Van der Pol oscillator (ϵ = 1, δ = 2, ω = 1.5)
system’s coordinate vs time and velocity vs time with three unseen initial states. Different colors
correspond to different initial conditions.

Figure 4.8: The meta-learning results for Van der Pol systems. The iMODE trajectory
prediction (circles) for different arm lengths and initial conditions (different colors) match
those of the ground truth (solid lines).
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Figure 4.9: Comparison of iMODE adaptation v.s. training from scratch in terms of the loss
decrease along training. The statistics are obtained by repeating experiments on 50 unseen
bistable system instances with randomly chosen physical parameters. iMODE demonstrates
fast adaptation and good generalization within the first 5 adaptation steps.

the dynamics of unseen system instances. Training the same network from scratch (random

initialization) on the same test dataset requires much more epochs (and computation cost per

epoch because all neural network parameters are updated) to achieve comparable accuracy.

When evaluated on trajectories with unseen initial conditions (of distinct conserved energies),

the performance of iMODE-adapted models outperforms that of the model trained from

scratch by several orders of magnitude, showing superior generalization ability with limited

data.

Further investigation verifies our thesis that iMODE achieves the aforementioned data-

efficiency by successfully learning the shared dynamics form. To account for the conservative

nature of the bistable system, we take a specialized form of the neural force estimator f̂ ,

similar to that of the ESNN in Chapter 3:

f̂θ(u;η) =
∂Eθ(u;η)

∂u
(4.10)

That is, the neural network first outputs a scalar energy and the force prediction is induced

from the energy as the derivative w.r.t. the system coordinates. In this way, iMODE

enables the fast adaptation of not only the force field but also the potential energy field

for conservative dynamical systems. This also allows us to examine the “meta-knowledge”
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learned by iMODE from a family of dynamical systems by inspecting the learned energy

function, which can be much more easily visualized and understood compared to the vector

function of the force field.

Figure 4.10(a) shows that the energy function learned by iMODE for each system instance

in the meta-training dataset matches the ground truth. With only the adaptation parameter

η varied, the neural energy estimator gives potential energy functions with varied landscapes,

all of which have two symmetric local minima. This verifies that the iMODE learns the

shared potential energy landscape signature — the double potential well — from multiple

instances in the meta-training dataset.

When adapted to a single trajectory generated by an unseen system instance, iMODE keeps

the landscape signature in its predicted energy function, which leads to good performance

even if the data from the new system is scarce. Figure 4.10(b) demonstrates one example of

such data-efficient modeling of a new bistable system, of which only a trajectory of intra-well

oscillation is given. In this case, the information contained in the provided trajectory is

insufficient to depict the entire potential energy landscape. The energy function estimated by

the adapted iMODE network is very close to the true energy function, while a neural network

of the same architecture and the same number of parameters, trained from scratch on the

trajectory, gives a totally incorrect energy estimation, and of course, has poor generalization

performance for unseen initial conditions of the system.

4.6 Adaptation Parameter Interpretability

In iMODE, η modulates the neural network and makes f̂θ(w,η(i)) the approximator

of the ith system’s actual dynamics fφ(i) , making η a proxy for the physical parameters φ

that can be leveraged to reveal information on the physical parameters when they are not

available.

In this section, we first examine the correlation between adapted η and the actual physical

parameters φ to confirm their correspondence. Then we demonstrate that the intrinsic
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dimension of φ can be unveiled without supervision through principal component analysis

(PCA) as an example of data-driven study of physical systems with the help of iMODE.

4.6.1 Correlation with Physical Parameters of System Instances

Figure 4.11 shows the correlation between adapted η and the physical parameters φ of

the corresponding system instances by plotting the adapted η values in the space of η and

annotating how the variation of φ aligns with the “constellations” of the η value points.

Such correlation can be used to study whether a controllable experiment parameter in φ

influences the system dynamics by checking whether there is a component in the η space

correlating with that controllable experiment parameter.

4.6.2 Inferring Intrinsic Dimension with PCA

The intrinsic dimension dφ of the physical parameters φ can be estimated by applying

Principal Component Analysis (PCA) to the collection of the η vectors, each adapted to one

of the system instances. Using an “elbow” method on the cumulative explained variance ratio

curve of the PCA result, the number of the principal components that explain most of the

variance has a good correspondence with dϕ, as long as dη ≥ dφ, where dη is the dimension

chosen for η. The PCA results on the pendulum, bistable system, and Van der Pol system

are shown in Figure 4.12. Taking the Van der Pol system as an example, dη is respectively 3,

4, or 5 for the three curves with triangle markers. In all three cases, the first three principal

components explain more than 99% of the variance, and the “elbow” appears at 3, which

corresponds well with the fact that dφ = 3 for the Van der Pol system.

This technique can be useful to infer the number of “intrinsic” parameters instead of

“apparent” controllable parameters of dynamical systems. For example, the dynamics of an

axially vibrating rod is governed by E/ρ, the ratio between Young’s modulus and the density

of the material of the rod. In experiments, one can control both E and ρ (by changing the

material), but the dimension of the “intrinsic” parameter is just 1, which can be revealed by
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the optimal dimension of the adaptation parameter.

4.7 Application: Neural Gauge

Without labels for the physical parameters, iMODE develops a latent space of adaptation

parameters accounting for the variations in dynamics among system instances. Given the

physical parameter labels of the system instances in the training data, a mapping between

the space of the physical parameters and the latent space can be established so that the

corresponding physical parameters can be estimated given any point in the latent space.

iMODE therefore can be exploited as a “Neural Gauge” to identify the physical parameters

of unseen system instances, and the establishment of such mappings can be seen as a

calibration process. We propose to construct such mappings as diffeomorphism, which can

be learned with a neural ODE dz(t)/dt = gξ(z), such that starting from a given point

in the latent space, z(0) = η(i), the state z at t = 1 gives the corresponding physical

parameters, z(1) = φ(i), i = 1, . . . , Ns. For simplicity, the dimension of the latent space

and that of the physical parameter space are assumed to match (dη = dφ). In general,

such diffeomorphism can be established as long as dη ≥ dφ by padding zeros to the end

state of z and let z(1) =
[
ϕT

i 0 . . . 0
]T

. gξ is a NN whose weights are optimized by

ξ = argminξ

∑
i

∥∥z(i)(1)−φ(i)
∥∥2

2
.

Figure 4.13 shows the learned diffeomorphism for the bistable system. The diffeomorphism

establishes a bijection between the physical space and the latent space of η so that a grid in

the physical parameter space can be continuously transformed into the adaptation parameter

space. The visualization highlights the advantages of diffeomorphism mapping: (1) The

transformation is smooth so that the local geometric structure is preserved; (2) Invertible

transformation allows a better interpretation of the latent space compared to degenerating

ones.

After constructing the diffeomorphism, we test the physical parameter identification

performance on 100 randomly selected unseen instances (with random physical parameters).
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The identification errors are shown in Figure 4.14 for the simple pendulum, bistable, and

Van der Pol systems. The end-to-end identification starting from data feeding normally takes

around 2 seconds.

4.8 Complex Systems

In this section, we demonstrate iMODE on two more complex systems, the reduced-order

Slinky system introduced in Chapter 3, and reaction-diffusion systems described by the

Kolmogorov-Petrovsky-Piskunov (KPP) equation.

4.8.1 iMODE Applied to 2D Reduced-order Slinkies

In the Slinky case, we follow Chapter 3 to enforce Euclidean invariance of the energy field

and induce equivariance of the force field. iMODE is able to learn from 4 Slinky cases (of

Young’s modulus 50, 60, 70, and 80 GPa, dropping under gravity from a horizontal initial

configuration with both ends fixed) and then quickly generalize to an unseen Slinky under

unseen initial and boundary conditions (Figure 4.15).

In the training set, the Slinkies are clamped at both ends and freely drop under gravity

from a horizontal initial configuration. Two inner steps are taken to update η ∈ R for each

Slinky. After training the NN, we perform task adaptation (2 steps) on a unseen Slinky of

Young’s modulus 56 GPa and observe a good fitting result (Figure 4.15(a)). The resulting

NN is then directly applied to computation under an unseen boundary condition and Slinky

orientation (the bottom end is free and the Slinky drops under gravity from a vertical initial

configuration) without any modification (Figure 4.15(b)).
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4.8.2 iMODE Applied to KPP systems

To solve the KPP equation, we discretize the spatial domain [0, 1] into 20 segments. So

the the partial differential equation system (here x denotes the spatial coordinate)

∂u

∂t
= D

∂2u

∂x2
+ ru(1− u) (4.11)

is represented by an ordinary differential equation system containing 21 variables. The

diffusion term is approximated by 2nd-order central difference and the diffusivity is assumed

known. The meta-learning is performed to learn the reaction term with different reaction

strength coefficients r (without knowing the mathematical form). The training dataset

contains 5 systems with r = 0.01, 0.02, 0.03, 0.04, 0.05. The Neumann boundary condition

u′(0) = u′(1) = 0 (′ denotes derivative with respect to x) is used across the training dataset.

The iMODE task adaptation takes 5 iterations. The training results for r = 0.01, 0.05 are

shown in Figure 4.16(a). The iMODE NN is then adapted on the data from a unseen system

instance with r = 0.034. The resulted NN is directly applied to computation with unseen

initial and boundary conditions (Dirichlet type u(0) = u(1) = 1). The results of the latter

are shown in Figure 4.16(b) and a good agreement is observed. This again validates the

capability of the iMODE algorithm to fast adapt on unseen complex parametric systems and

accurately predict on initial and boundary conditions different from those in the training

dataset.

Another testing result for the KPP system is shown in Figure 4.16(c). The testing has the

same type of boundary condition (u′(0) = u′(1) = 0) as the training dataset but an unseen

initial condition. The prediction (right) matches the ground truth (left) well.

4.9 Conclusion

We have presented the iMODE, the interpretable Meta Neural ODE, introducing

meta-learning to dynamical system modeling. As a major difference from existing NN-
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based methods, iMODE learns the functional form of the dynamics, from only observed

trajectories from a family of dynamical systems, requiring no knowledge of the systems’

physical parameters. The modeling capacity of iMODE, including prediction accuracy,

efficiency, generalizability, and interpretability are demonstrated with various dynamical

systems. iMODE could open new possibilities for numerous potential applications. To name

a few, iMODE can be used to:

(a) Construct a mapping between the true physical parameters and the “apparent” con-

trollable physical parameters (usually with significantly different physical meanings).

For example, consider the case where one wants to study the physical parameters

(and the number of them) that are responsible for force-deformation of biological cells.

Such causal physical parameters are not directly controllable but can be significantly

influenced by the concentrations of different ions in the culture medium. iMODE can

be adopted to construct the mapping between the hidden parameters η (as surrogates

of true physical parameters) and the concentrations of ions φ.

(b) Determine whether a controllable experiment parameter φ influences the system dy-

namics by determining whether there is a component in the latent space correlating

with that controllable experiment parameter. This is the causality analysis of φ.

(c) Determine the number of “intrinsic” parameters instead of “apparent” controllable

parameters.

In particular, for reduced-order modeling, the “intrinsic” physical parameters of the

reduced-order models may not be obviously and directly controllable in experiments.

(d) Provide latent encodings for parameters that are hard to characterize. One case

is characterizing the fluid dynamics around an immersed bluff body conditioned on

different geometries of the body, e.g. constructing a latent encoding space using iMODE

for circle, square, star, and other irregular bluff body shapes. Once such shape encoding

space is constructed, we can consult the iMODE model for dynamics of unseen bluff

body shapes by adaptation in the encoding space.
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(e) To measure the physical parameters of a new system as a “Neural Gauge” if the system

parameters φ are available. The “Neural Gauge” functionality of iMODE serves as a

virtual instrument to measure the physical parameters of a new system by observing

trajectories from the system.

4.10 Additional Information

This research was collaboratively conducted with Dr. Qiaofeng Li during his post-doctoral

appointment in the Structures-Computer Interaction group at UCLA led by Prof. Khalid

Jawed.
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(a) The energy functions learned by iMODE
for bistable oscillators in the meta-training
set vs the ground truth.
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(b) The energy function given by iMODE
adapted to a new bistable oscillator, the
energy function given by a neural network
trained from scratch on the new system only,
and the ground truth.

Figure 4.10: iMODE successfully learns the double-well potential energy of bistable oscillators.
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(a) The learned η is in good correlation with
the effective stiffness of different pendulums
(1/L).
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(b) Two principal axes can be identified from
the latent space of the learned η, each regard-
ing the variation of one physical parameter.

ε increasing
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(c) The three variation directions in the latent space for the physical parameters of the Van der Pol
system ϵ, δ, and ω.

Figure 4.11: The correspondence between η and φ in various system families.
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Figure 4.12: Inferring intrinsic dimension with PCA. The number of top PCA components
that preserve a significant portion (> 99%) of the variance gives a good estimation of the
intrinsic dimension of true physical parameters.
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Figure 4.13: The diffeomorphism constructed for the bistable system. It shows how a grid in
the physical space is continuously deformed into the latent space of adaptation parameters.
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Figure 4.14: The mean error and computation time of Neural Gauge for 100 systems with
randomly generated unseen parameters.

(a)

(b)

True

NN

True

NN

D

D = 68mm

Figure 4.15: iMODE applied to Slinky. (a) The testing performance of the iMODE model
on an unseen Slinky (of an unseen Young’s modulus) with the same boundary condition as
the training dataset. The top row is the ground truth and the bottom row is the iMODE
model prediction at 0.28 s, 0.47 s, 0.65 s and 0.83 s (left to right). The mean squared error
of the 3D Slinky reconstruction over the entire trajectory is 8 × 10−4m2. (b) The testing
performance of the iMODE model on unseen initial and boundary conditions. The top row is
the ground truth and the bottom row is the iMODE model prediction at 0.15 s, 0.32 s, 0.48 s
and 0.65 s (left to right). The mean squared error of the 3D Slinky reconstruction over the
entire trajectory is 1.26× 10−3m2.
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Figure 4.16: iMODE applied to KPP systems. (a) The training results of the iMODE
algorithm on the KPP system for r = 0.01 (left) and r = 0.05 (right). Solid lines are ground
truth. Dashed lines are iMODE predictions. The arrow indicates time marching of u. (b) The
iMODE testing results on an unseen system r = 0.034 with an unseen boundary condition.
The ground truth (left) match the iMODE prediction (right) well. (c) The iMODE testing
results (r = 0.034) on an unseen initial condition from the training dataset. The ground
truth (left) match the iMODE prediction (right) well.
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CHAPTER 5

Conclusions and Future Research Opportunities

In this chapter, we conclude the dissertation and propose the problems to be studied in

the future following this dissertation.

5.1 Conclusions

Deep neural networks, as a powerful data-fitting tool, have unlocked a new realm of

modeling possibilities, capable of handling vast amounts of data across numerous disciplines.

These tools are now not only able to contend with previously unmanageable complexity of

data and problems, but also to facilitate knowledge discovery. In an optimistic vision, such

techniques pave the way to a future where artificial intelligence agents learn the knowledge

of the world effectively and build predictive models without human supervision, thereby

enabling revolutionary automation.

Describing how the state of a system evolves over time, the study of the ubiquitous

dynamical systems provides a crucial lens to understand the world. We have demonstrated

ways to address unique challenges faced by the data-driven modeling approach based on deep

learning, in particular, its low data efficiency compared to classic approaches.

First, we recognize the importance of physics prior knowledge and design a deep learning

framework that incorporates physics principles including Euclidean symmetry and Newton’s

second law. The framework combines a novel network architecture that guarantees Euclidean

equivariance of the estimated elastic force and Neural ODE [CRB18]. The method achieves

unparalleled data efficiency and generalization ability, accurately predicting trajectories for

unseen initial / boundary conditions while trained on only a single demonstration trajectory
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of a Slinky’s motion.

Second, we draw attention to the limitation of the majority of current data-driven modeling

methods that they require knowledge of the system parameters to make use of the data from

multiple dynamical system instances from the same family and learn the shared form of

dynamics. We accordingly propose interpretable Meta Neural ODE (iMODE) that learns

the common dynamics form shared by multiple dynamical system instances without requiring

labels of their varied physical parameters. Partitioning the neural network parameters into

shared parameters that capture the shared dynamics form and adaptation parameters that

account for variations across system instances, a meta-trained iMODE can adapt to a new

system instance by updating the (often low-dimensional) adaptation parameters for only

several gradient descent steps, with scarce observations. After adaptation, the adaptation

parameters correlate well with the unknown physical parameters of the systems, and therefore

can be used to reveal knowledge of a family of dynamical systems.

From the other perspective, the “lens” of dynamical systems can also be applied to deep

neural networks. The optimization of a deep neural network is a dynamic process where

the optimizer navigates in the loss landscape [SBC16, SDJ22]. With the analysis of the

optimization dynamics of deep neural networks, we propose Hessian-aware (HA-SGD), a

novel gradient descent algorithm that searches for flat minima within the network’s loss

landscape by introducing perturbations to the optimization process. Through device-aware

simulations, HA-SGD has demonstrated its capability to considerably improve the noise

resiliency of analog neural networks, which is crucial to the deployment of large-scale analog

neural networks to analog CIM platforms, thereby heralding a promising direction for orders

of magnitude greater inference throughput and energy efficiency.

5.2 Future Work

In the future, the following open questions may be studied following this dissertation.
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5.2.1 Physics-informed Deep Learning for Dynamics Modeling

The ESNN introduced in Chapter 3 focuses on the 2D reduced-order modeling of a very

specific system, the Slinky. Concrete extensions to this work will include broadening the

applicable scenarios of the method. One example is to generalize the reduced order modeling

of Slinkies to 3D to capture the motion where the center line of the Slinky does not stay

within one plane. Another example is to endow the neural model with the capability of

capturing the dynamics of collision from data, which ESNN currently lacks.

More general extensions in the direction of physics-informed deep learning for modeling

dynamical systems include

Data-driven learning of interpretable reduced-order state The reduced-order repre-

sentation of Slinky in Chapter 3 is heuristically designed to ensure interpretability and

to demonstrate the power of data-driven dynamics modeling. In more general cases of

reduced-order modeling, manual design of the reduced-order representation of system

states can be spared by data-driven learning-based methods. However, it is a challenge

to obtain disentangled, parsimonious, and interpretable representation from data-driven

approaches, especially deep learning. Such reduced-order representations are desirable

in many applications, as they allow for more regularized modeling, easier control and

diagnosis, and provide more insights.

General-purpose Equivariant neural networks The ESNN presented in Chapter 3 is

designed specifically for the 2D representation of Slinky, but the incorporation of

symmetry is valuable to the modeling of many systems. As mentioned in the in-

troduction, there have been works of geometric deep learning [AGS21, BBC21] and

equivariant neural networks [WGW18, TSK18, FWW21, SHW21] that aim to design

general-purpose symmetry-aware neural network architectures. However, the task is

still far from complete. Currently the trade-off between the generality and trainability

of the symmetry-aware architectures limits the usage in many cases.

High-trainability neural ODE Although powerful and useful for the incorporation of
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physics prior knowledge, we observe that the neural ODE framework can be unstable

and inefficient to train in practice, mostly due to the loss that easily diverges during

the “autoregressive” prediction following the neural ODE. Improving neural ODE in

terms of its trainability is a field being actively explored [FJN20, KBJ20, LP21].

Uncertainty-aware and prior-knowledge-guided extrapolation In both Chapters 3

and 4, part of the reason that the neural ODE gets unstable to train is that the neural

predictor for energy or force is not well regularized for unseen states. For example, if

the elastic energy predictor of ESNN in Chapter 3 is not bounded below in the state

space when the state goes to infinity in some direction, the resulted dynamics gets

easily diverged because the energy can be infinitely lowered as the state diverges. It

is desirable that the neural network is aware of the uncertainty of its prediction when

there are not enough training data supports its predictions, and further extrapolates

with caution following prior knowledge, e.g. the potential energy of a bounded system

should go to infinity whenever the state gets out of the bounded region, while the

“bounded region” may not be fixed but allows for data-driven learning.

5.2.2 Deep Learning for Automated Knowledge Discovery

We demonstrate in Chapter 4 that iMODE as a deep learning method can reveal physics

knowledge of dynamical systems, which has become a popular research topic [KKL21, KPG22].

Recently deep learning has been used to discover from data the physics knowledge including

conservation law [LT21, LMT22], symmetries [LT22], system coordinates [CLK19, CHR22],

and other physical properties [ZWT18]. As the AI-assisted scientific research arises as a new

paradigm, countless problems and opportunities remain to be explored.
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5.2.3 Beyond First-order Optimization for DNNs Derived From Dynamics

Analysis

A trend in optimization techniques for deep learning is to go beyond the first-order

methods and leverage second-order information. As shown in Chapter 2, modification in

dynamics can bring in second-order information, which can be further explored and exploited

to facilitate second-order optimization of DNNs. Conversely, the estimation of the Hessian

information in the proposed HA-SGD can be improved in terms of its accuracy and efficiency

by leveraging techniques from second-order optimization algorithms.
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