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Abstract

We propose a novel regularized mixture model for clustering matrix-valued data. The proposed 

method assumes a separable covariance structure for each cluster and imposes a sparsity structure 

(eg, low rankness, spatial sparsity) for the mean signal of each cluster. We formulate the problem 

as a finite mixture model of matrix-normal distributions with regularization terms, and then 

develop an expectation maximization type of algorithm for efficient computation. In theory, we 

show that the proposed estimators are strongly consistent for various choices of penalty functions. 

Simulation and two applications on brain signal studies confirm the excellent performance of the 

proposed method including a better prediction accuracy than the competitors and the scientific 

interpretability of the solution.
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1 | INTRODUCTION

The past decade has witnessed a dramatic development in technologies that generate high­

volume data sets with complex statistical structure. Among them, matrix-valued data are 

commonly encountered in brain images and signals, where the sampling unit can be viewed 

as a two-dimensional array (ie, matrix), for example, electroencephalography (EEG) and 

local field potentials (LFPs). These signals are in general high-dimensional and possess 

complicated structure such as spatial/temporal correlation, low rankness, and sparsity (Gao 

et al., 2019; Hu et al., 2019; Wang et al., 2019). The main goal of this paper is to provide 

a novel approach for clustering matrix-valued data while taking their complex structure into 

account.

Clustering is a fundamental problem in statistics and many scientific applications including 

studies that investigate brain function and its responses to stimuli (King, 2015). One key 

motivation for this paper is the nonspatial working memory experiment conducted by 

coauthor Fortin’s lab to study the neuronal learning process on the sequential ordering of 

odors (Allen et al., 2016). The discovery of temporal coding by the hippocampal neurons 

extends our basic understanding of the episodic memory neurobiology and thus provides 

cross-species foundations for clarifying the underlying neural mechanism in memory 

impairments. Throughout the experiment, series of five odors (denoted as ABCDE) were 

presented to rats from the same odor port. Each odor presentation was initiated by a nose 

poke. Rats were tested to correctly identify whether sequence of odor presentation was 

in-sequence (ABCDE) or out-sequence (eg, AABDE, ABCDD) by holding their nose in the 

port until the signal was confirmed or withdrawing before the signal, respectively. LFPs 

were recorded from 12 microelectrodes that were implanted into rats’ hippocampus. The 

major scientific question of interest here is to explore and understand (latent) features in LFP 

signals that are associated with neural mechanism in developing sequential odor memory. 

To demonstrate the power of clustering analysis, we conducted an exploratory analysis. 

Figure 1 (this figure appears in color in the electronic version of this article, and any 

mention of color refers to that version) presents the smoothed LFPs from one rat across 

12 microelectrodes for five odors (ABCDE) and their associated mean signals aggregated 

over odors. In each plot, x-axis represents time rescaled to interval [0, 1], while y-axis 

represents the different microelectrodes (channels). It is clear that the mean patterns vary 

dramatically across different sequences, and there is a strong spatial dependence as we 

compare the signals among different tetrodes within each odor. Across all the six heatmaps, 

we observe that tetrodes 1 to 8 and tetrodes 9 to 12 form two different paradigms separately 

across tetrodes for odors A, B, and D. Moreover, those two “paradigms” also evolve as time 

changes, which suggests that a clustering analysis in this study will be helpful to reveal 

the latent patterns/structure in LFP and hence provide more insights on their connections to 

different odors. Specifically, an ideal clustering approach should be able to discover “latent 

features” in LFP in the following ways: (a) Row-wise (within tetrode) and column-wise 

(between tetrodes) correlation should be identified and hence provide insights on spatial and 

temporal dependencies; (b) it should be capable of uncovering the true mean difference by 

introducing regularization terms and thus improve the SNR of the LFP signals; (c) it should 

be able to shed light on the nature of sparsity inherent from the data (eg, detecting boundary 
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of image signals); and (d) by applying the proposed method to both time and frequency 

domains, it should be able to identify different “structures” that are not easily discernible by 

mere visual inspection of these signals.

In this paper, we focus on using finite mixture models for the purpose of clustering because 

statistical inference can be carried out in a computationally efficient and conceptually 

simpler way and the results have a nice probabilistic interpretation. Existing approaches 

such as biclustering (Chi et al., 2017), hierarchical clustering (Euan et al., 2018, 2019), 

spectral clustering (Ng et al., 2002), and mixture models (of random vectors) are not directly 

applicable for matrix data analysis since the set of input covariates are treated as a vector, 

where the matrix structure and its interpretability are not taken into account (Reiss and 

Ogden, 2007). Moreover, by vectorizing a matrix, the resulting dimension of the input space 

can be extremely large, ie, a p × q matrix will be converted to a pq-dimensional vector, 

which creates additional challenges in both computation and theory.

To solve the aforementioned issues, we propose a novel penalized mixture model for 

clustering matrix-valued data. The framework is inspired by the mixture model proposed 

by Viroli (2011) and Gao et al. (2019) where each mixture component is represented by 

a matrix normal distribution, whose covariance matrix can be factorized into the Knocker 

product of two separate column and row covariance matrices (Dawid, 1981; Dutilleul, 

1999). The separable covariance structure provides both computational convenience, since it 

effectively reduces the number of covariance parameters, and useful practical interpretation 

as it separates the variations according to time and spatial domains. In addition, we consider 

a penalization approach equipped with three different norms (ie, ℓ1, ℓ2 and the nuclear norm) 

to give the method flexibility and robustness in capturing the different features in the mean 

structures, and therefore, enhance the ability to correctly identify the clusters. For example, 

the use of nuclear norm provides a useful low-rank approximation of the true image (Zhou 

and Li, 2014), and the use of ℓ1-norm is helpful for detecting image boundaries (Wang 

et al., 2017). We introduce a new expectation maximization (EM)-type of algorithm that 

allows efficient computation for all three penalization norms. In theory, we show a strong 

consistency result for the proposed estimator using the technique by Fan and Li (2001) 

which we have to modify to accommodate the matrix-valued data.

Note that matrix normal distribution and its separable covariance structure serve as the 

building blocks for our proposed mixture model. Although not within the scope of our 

current paper, it is possible to generalize the matrix normal distribution and consider a more 

general class of covariance models such as the spiked covariance model (Donoho et al., 
2018). We expect our proposed idea of applying different regularization norms on matrix 

mean signals still useful in those scenarios.

The rest of the paper is organized as follows. In Section 2, we give a brief review of 

the matrix normal distribution and then introduce the proposed penalized matrix normal 

mixture model. We propose a new EM-type of algorithm for computation and discuss a 

related one-step-late (OSL) algorithm. In Section 3, we study the theoretical properties of 

the proposed method by showing a consistency result for the (regularized) estimators. We 

evaluate the finite-sample performance by simulation studies in Section 4. Finally, we apply 
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the proposed method to analyze two LFP datasets obtained from imaging studies on odor 

memory and stroke experiment in Sections 5 and 6. Additional numerical results, technical 

proofs, and a description of computational code and data sets are provided in the Supporting 

Information.

2 | METHOD

We begin with a review of matrix normal distribution and its finite mixture in Sections 2.1 

and 2.2. Mixture models of matrix normal distribution and their applications for classifying 

three-way data have been previously discussed by Viroli (2011). We will discuss and 

highlight our main contributions in Section 2.3.

2.1 | Matrix normal distribution

We give a brief review of matrix normal distribution. This distribution will be used to model 

the matrix-valued image data. We define an r × p random matrix Y to have a matrix normal 

distribution with mean M and covariance matrices U and V, denoted by MNr,p(M, U, V), if 

its density function is

f Y ∣ M, U, V =
exp − 1

2 tr V −1 Y − M TU−1 Y − M

2π rp/2 V r/2 U p/2 , (1)

where M ∈ ℝr × p, U ∈ ℝr × r, V ∈ ℝp × p, matrices U and V are treated as between- and 

within-covariance matrices, | · | and tr denote the determinant and the trace of a matrix, 

respectively. In Gupta and Nagar (1999), an equivalent definition of (1) is given by

vec Y N vec M , V ⊗ U , (2)

where vec is the column vectorization operation and ⊗ is the Kronecker product. The 

matrix normal distribution provides a natural extension of the usual multivariate normal 

distribution for modeling image and spatial-temporal data. For example, in spatial-temporal 

statistics, the row and column directions in the matrix correspond to the spatial and temporal 

attributes, respectively. The separability of the covariance structure is particularly useful in 

applications such as spatial statistics (Haas 1995; Cressie 2015) and electrophysiological 

data (Gao et al., 2020). It is believed that such assumption drastically alleviates the number 

of parameters and thus provides a computational efficient and robust procedure for large 

scaled spatial-temporal data (Genton, 2007).

Statistical inference for the matrix normal distribution is usually conducted via the 

likelihood function. Given i.i.d. observations Y1, Y2, …, Yn ~ MNr,p(M, U, V), the log­

likelihood function is

ℓ M, U, V = − npr
2 log2π − nr

2 log V − np
2 log U

− 1
2 ∑

i = 1

n
tr V −1 Y i − M TU−1 Y i − M .

(3)
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The resulting maximum likelihood estimator (MLE) for M, U, and V are as follows:

M = Y , U = 1
np ∑

i = 1

n
Y i − Y V −1 Y i − Y T ,

V = 1
nr ∑

i = 1

n
Y i − Y TU−1 Y i − Y .

(4)

Note that both U and V are identifiable only up to a constant multiple (Dutilleul, 1999), but 

their Kronecker product U ⊗ V remains invariant. There is no closed-form solution for U
and V . One can utilize iterative algorithm to obtain their values numerically as summarized 

in Algorithm 1.

2.2 | Matrix-normal mixture model

For the purpose of probabilistic clustering, we consider a matrix normal mixture model and 

its inference using the EM algorithm. Given i.i.d. (r × p)-dimensional observations Y1, …, 

Yn from a mixture of K matrix normal distributions, each indexed by Θj = (Mj, Uj, Vj), and 

the weights π1, …, πK that belong to a K-dimensional simplex, denoted by ΔK. Then the 

mixture density can be written as

∑
k = 1

K
πkf Y ∣ Θk = ∑

k = 1

K
πkMNr, p Mk, Uk, V k , (5)

where f is the matrix normal distribution with mean Mk and covariances Uk and Vk as 

defined by (1). We use Θ = (Θ1, …, ΘK; π1, …, πK) to denote the collection of parameters 

in (5). Then the log-likelihood function is

ℓobs Θ = ∑
i = 1

n
log ∑

j = 1

K
πjf Y i ∣ Θj . (6)
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EM algorithm (Dempster et al., 1977) has widely been used in all areas of statistics and has 

been demonstrated to work well for Gaussian mixture model. Thus, we also employ the EM 

algorithm to conduct inference, which is an iterative approach consisting of the expectation 

(E) and maximization (M) steps.

In the E-step, the posterior probability of observation Yi belonging to the jth cluster is 

obtained by Bayes Theorem as follows:

αij = πjf Y i ∣ Θj
∑l = 1

K πlf Y i ∣ Θl
. (7)

In the M-step, the estimates of the parameter vector are obtained by solving the 

nonconstraint optimization problem

Θj = argmax
Θj

∑
i = 1

n
∑

j = 1

K
αijlog πjf Yi ∣ Θj .

By some algebra, we obtain the following relationship:

πj =
∑i = 1

n αij
n , Mj =

∑i = 1
n αijY i

∑i = 1
n αij

,

Uj =
∑i = 1

n αij Y i − Mj V j
−1 Y i − Mj ′

p∑i = 1
n αij

,

V j =
∑i = 1

n αij Y i − Mj ′Uj
−1 Y i − Mj

r∑i = 1
n αij

.

(8)

Note that Uj and V j, j = 1, …, k do not have closed-form solutions, but can be obtained 

numerically following the similar steps in Algorithm 1.

2.3 | Penalized matrix normal mixture model

Mixture of matrix normal model has previously been discussed by Viroli (2011) for 

classifying three-way array data. However, for many imaging studies, there is a underlying 

spatial (matrix) structure that needs to be taken into account (eg, the motivating example 

in Section 1). Such structure can be effectively modeled by the use of penalty functions on 

the mean matrix signals, such as the low-rank approximation (Zhou and Li, 2014) or total­

variation-norm-based penalization (Wang et al., 2017). In this paper, we propose a penalized 

approach by including a penalization term on the means of each mixture component in the 

matrix normal mixture model. The penalty function takes the form of ℓ1, ℓ2, or nuclear norms 

of the mean matrices M1, …, Mk. The choice of the penalty function depends on the domain 

knowledge such as sparsity, smoothness, and low rankness for the mean structure of each 

cluster (Green, 1990), which gives results that are easily interpretable and also eases the 

computational burden. Specifically, we consider the penalized log-likelihood function
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Q(Θ; λ) = ∑
i = 1

n
log ∑

j = 1

K
πjf Y i ∣ Θj − λ ∑

j = 1

K
P Mj , (9)

where P(·) is some penalty function, such as ℓ1, ℓ2, and nuclear norms, and λ ≥ 0 is the tuning 

parameter. For ℓ1 and ℓ2-penalty, the norms are defined on vectorized matrix means Mj, and 

for the nuclear norm penalty, it is defined as the sum of singular values of Mj. The proposed 

model in (9) is general and, in fact, setting λ = 0 is equivalent to the mixture model of 

matrix normal with no regularization as introduced in Viroli (2011).

Similar to Section 2.2, we propose a modified EM algorithm to estimate the parameters. 

The E-step proceeds in the same way as Equation (7). The M-step boils down to solving an 

optimization problem,

Θ = argmax
Θ

∑
i = 1

n
∑
j = 1

K
αijlog πjf Y i ∣ Θj − λ ∑

j = 1

K
P Mj . (10)

Note that the solution Θ may not have an explicit form. Lange (1995) proposed a gradient 

method related to the EM algorithm. It replaces the M-step by conducting one iteration of 

Newton’s method. Alternative approaches, such as surrogate functions (Lange et al., 2000) 

and overrelaxed EM algorithm (Yu, 2012), have also been introduced in the literature. Pan 

and Shen (2007) introduced ℓ1-penalty to the mean parameters for mixture of univariate 

normal models. They obtained an explicit solution for the M-step using a subgradient 

approach. Green (1990) developed the “OSL” algorithm that can be applied to more general 

case. Inspired by the aforementioned methods, we develop a subgradient approach when 

ℓ1-norm is used and an OSL approach for ℓ2 and nuclear norms.

For the ℓ1-norm penalty, following a similar derivation by Pan and Shen (2007), Mj can be 

updated by

Mj = sign Mj Mj − λ
∑i = 1

n αi, j
Ui1r × pV i

+
,

j = 1, …, K,
(11)

where Mj =
∑i = 1

n αi, jY i
∑i = 1

n αi, j
 is the update for Mi without the penalty, B+ = max(B, 0), 1r×p is a 

matrix of all 1’s, and sign() and (.)+ are all component-wise operators.

For the ℓ2-norm penalty, the partial derivative of the objective function Qℓ2 Θ  is

∂Qℓ2 Θ
∂Mj

= Uj−1 ∑
i = 1

n
αi, j Y i − Mj V j−1 − 2λMj, j = 1, …, K .

Therefore, Mj can be updated by
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Mj = Mj − 2λ
∑i = 1

n αij
UjMjV j, (12)

where Uj, Mj, Vj are the updates from the previous step.

For the nuclear norm penalty ‖ · ‖*, which is defined as the sum of singular values of a 

matrix, similar derivation yields

Mj = Mj − λ
∑i = 1

n αij
UjΦjΩj

TV j, (13)

where Mj has the singular value decomposition Mj = ΦjΛjΩj
T . The use of nuclear norm 

regularization is essentially equivalent with L1-regularization on the singular values of M. 

More details of derivations of (11) to (13) are given in Section 3.3 of the Supporting 

Information.

In summary, the estimation procedure involves algorithms for initialization and alternating 

between E-step and M-step. Here, we provide more details.

I. (Initialization)—Pick a fixed clustering number K. We start with vectorizing the 

original matrix-valued observations Y1, …, Yn and apply K-means to achieve the initial 

cluster membership values, written as S1, …, SK, where Sj = {i | Yi in jth cluster}. 

Note that alternative methods to K-means can also be used in this step, eg, randomly 

assign observations to different clusters. Then for each cluster, the initial value of Θj can 

be obtained following the approach in Section 2.1, and πj can be directly estimated by 

πj = Sj /n, where |Sj| is the cardinality of Sj.

II. (E-step)—We update the posterior membership by

αij =
πjf Yi ∣ Θj

∑l = 1
K πlf Yi ∣ Θl

.

III. (M-step)—Update the mean parameters Mj with respect to various penalties by 

Equations (11) to (13), respectively. Other parameters πj, Uj, Vj can be updated following 

Equation (8) and Algorithm 1.

IV. (Stopping criteria)—Repeat II and III until certain number of iterations have been 

reached or the change of the estimate of the mean parameter Mj (in terms of Frobenius 

norm) is below certain prespecified cutoff.

IV. (Choosing the number of clusters)—A key question in clustering is to determine 

the number of clusters. Inspired by Smyth (2000), we consider a predictive criteria by 

adopting the cross-validated penalized likelihood (CVPL) as the key measure. We split the 

dataset Y = {Y1, …, Yn} into training and testing groups denoted by Ytrain, Ytest, and then 

fit a k-mixture model (for k = 1, …) on Ytrain and then use the estimated parameters to 
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obtain the penalized log-likelihood function on Ytest, denoted by Q(Ytest | Ytrain, k). One 

nice property of the CVPL is that its expectation is the Kullback-Leibler (KL) divergence 

between the true penalized likelihood function and the k-mixture penalized likelihood plus 

some constant. Given this measure, we can define CVPL by first dividing Y = (Y1, …, YL) 

equally into L parts randomly, and then consider

Q L, k = L−1 ∑
l = 1

L
Q Y l ∣ Y −l, k ,

where Y−l is the data Y excluding Yl. Then we choose k = argmaxkQ L, k  for a preselected 

L. In numerical analysis, we choose L = 3, ie, three-fold cross validation, for computational 

convenience. Choosing a larger value for L is also possible, and it will be of future interest 

to investigate the stability of CVPL as a model selection criteria under different values for L. 

We will give more details for the calculation in the simulation study.

3 | THEORY

In this section, we study the theoretical properties for the proposed mixture of matrix 

normal model, assuming that the true number of clusters, denoted by K, is known. The 

theoretical understanding of mixture models (in particular Gaussian mixture model) has 

received attention (in particular, see Chen, 2017). Here, we first give a consistency result 

for the MLE of the matrix normal mixture model. It is well known that the likelihood for 

the mixture of univariate normal distributions is unbounded if there is no constraint on the 

parameter space. Therefore, we consider a constrained parameter space Ψd1, d2 as

Ψd1, d2 = Θ: π1, …, πk
T ∈ ΔK, M1, …, Mk ∈ ℝr × p × V 1, …, V K ∈ ℝr × r, U1,

…, Uk ∈ ℝp × p: × min
1 ≤ ℎ ≠ j ≤ k

ρ UℎUj
−1 ≥ d1, × min

1 ≤ ℎ′ ≠ j′ ≤ k
ρ V ℎ′V j′

−1 ≥ d2,

ρ Ul > 0, ρ V l > 0 for l = 1, …, K . ,

(14)

where d1, d2 are two fixed constants defined on (0, 1], ΔK denotes a K-dimensional simplex, 

and ρ(·) denotes the minimum eigenvalue of a matrix. We first state a consistency result for 

the matrix normal mixture model. The proof is given in the Web Appendix C.

Theorem 1.

Let Y1, … , Yn be a random sample from a mixture of matrix normal distribution as 

defined in (5) indexed with parameter Θ that belongs to the space Ψd1, d2 defined by 

(14). Assume that the true parameter value Θ0 ∈ Ψd1, d2 and denote Θn as the solution of 

argmaxΨd1, d2ℓobs Θ . Then Θn converges to Θ0 almost surely.

Here, Θ0 = (π10, …, πK0; M10, …, MK0; V10 ⊗ U10, …, VK0 ⊗ UK0) is the collection of 

the true mixture model parameters, Θn = π1, …, πK; M1, …, MK; V 1 ⊗ U1, …, V K ⊗ UK , and 
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the convergence of Θn to Θ0 means the convergence of each component in Θ. The condition 

of the parameter lying in (14) is not easy to check in practice. A sufficient condition is to 

bound all the eigenvalues within a given interval (a, b) for numerical stability (Ingrassia and 

Rocci, 2007).

Next, we show that under mild conditions, the penalized likelihood estimator of (9) is 

consistent. It provides a theoretical justification for the use of regularization within the 

matrix normal mixture model. We define a new parameter space Ψd1, d2 as

Ψd1, d2 = π1, …, πK, M1, …, MK, V 1 ⊗ U1, …, V K ⊗ UK ∈ Ψd1, d2: σi Uℎ
σi V ℎ

= cℎ  for i = 1, …, min r, p ,  and  ℎ = 1, …, K ,
(15)

where σi(Uh) denotes the ith eigenvalue of matrix Uh and ch is a positive constant for every h 
= 1, …, K.

Theorem 2.

Let Y1, … , Yn be a random sample from a mixture matrix normal distribution (5). Let Θλ be 

a maximizer of the penalized likelihood (9) where the penalty function takes in the form of 

ℓ1, ℓ2, or nuclear norms. Assume that the true parameter value Θ0 ∈ Ψd1, d2, and λ → 0 as n 

→ ∞, then Θλ − Θ0 = op 1 .

Here, Θλ − Θ0 = ∑i = 1
K πi − πi0 + Mi − Mi0 F + V i ⊗ Ui − V i0 ⊗ Ui0 F . It is possible 

to establish the asymptotic normality and oracle property for the regularized estimator using 

the techniques in Fan and Li (2001) under stronger conditions. However, the focus here is 

the introduction of new methodology and its application in image clustering; therefore, we 

choose not to pursue this direction in the paper.

4 | SIMULATIONS

We first evaluate whether the proposed CVPL criteria is able to identify the correct 

number of clusters under different scenarios. All of the simulation results are based on 200 

Monte-Carlo replications; and the reported CVPL and ARI values are averaged over those 

replications. In Scenarios I and II, we generate data from a mixture of two matrix normal 

distributions with equal proportions and mean structures of a cross and a rectangle shape, 

as shown in Web Figure 1. In both scenarios, the row-wise and column-wise covariance 

matrices follow an autoregressive setting where cov Y k1, l1, Y k2, l2 = 0.9 k1 − k2 + l1 − l2 , 1 ≤ 

ki ≤ r, 1 ≤ li ≤ p. In Scenario I, we set the sample size n = 500 and image size r = p = 60. In 

Scenario II, we let n = 100, r = p = 80.

We apply the proposed method with ℓ1, ℓ2 and nuclear norm penalties, and summarize the 

results in Web Table 1. As noted, when λ = 0, our model is equivalent with the mixture 

model without regularization as proposed by Viroli (2011). It can be seen that the proposed 

method manages to choose the true number of clusters (K = 2) under most cases based 
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on the maximum value of CVPL. Over the three regularization methods, by comparing the 

CVPL values, nuclear norm outperforms both the ℓ1 and ℓ2 norms and ℓ2 norm performs 

slightly better than ℓ1 norm. This is expected because the true mean structure has a low rank 

but is not entry-wise sparse.

To achieve a realistic signal noise ratio (SNR), in Scenario III, we utilize the estimated 

parameters from the real data example in Section 5.2 (Theta band time-frequency analysis 

under two clusters for Theta activity oscillations between 4 and 8 Hz). We set the sample 

size n = 500 and apply the proposed approach. Web Table 2 shows that the CVPL values are 

in favor of two clusters, which is consistent with our settings. In Scenario IV, we generate 

synthetic signals by adding white noise to the original images in Scenario II such that the 

covariances are no longer separable. As shown in Web Table 2, the proposed approach can 

identify the right number of clusters for most cases and ℓ2 regularization seems a proper 

choice. Compared with simulation scenarios I and II, clustering is more challenging in 

Scenarios III and IV given the increased noise level. Therefore, the latent sparsity structure 

in images become more difficult to be detected, which is one reason why we do not observe 

a substantial difference in terms of CVPL values between λ = 0 (no regularization) and λ ≠ 

0. For Scenarios I to IV, we also present the percentage of correct detection of the number 

of clusters (over 200 Monte-Carlo replications) based on the highest CVPL values in Web 

Table 8. We find that in most cases, the correct K can be identified with more than 70% 

probability. For those cases with selection probability below 70%, one possible explanation 

is that there is another “competitive” K (usually next to the true K) whose CVPL value is 

very close to the CVPL value from the true K, eg, Scenario I with no penalty.

We also conduct an in-depth study to understand how the proposed three regularization 

methods perform over different sparsity levels. In Scenario V, we generate mean structures 

of a triangle and square with values 0 and 1. In Scenario VI, we follow the same setting as V 

except that we change all zero values of the triangle to small numbers close to 0 by adding a 

Gaussian noise. In Scenario VII, we consider a new mean structure of separated squares (see 

Web Figure 6). We then apply the proposed approach and calculate the mean square errors 

(MSEs) of the mean parameter estimates. From Web Table 7, it can be seen that using proper 

regularization penalties would result in more accurate mean parameter estimates. In Scenario 

V where values are 0 and 1, ℓ1 with λ = 0.5 outperforms the other penalties and settings. The 

results are also consistent after comparing their CVPL values. Moreover, ℓ2 with λ = 0.2 and 

nuclear norm with λ = 1 works the best for Scenarios VI and VII, respectively. The results 

confirm the intuition that ℓ1 norm is in favor of zeroes, ℓ2 norm shrinks small values, and 

nuclear norm pushes for a low-rank structure (eg, Scenario VII).

We then compare the performance of the proposed approach with other competing 

approaches: K-means, biclustering (Turner et al., 2005), and spectral clustering (Ng et al., 
2002). We generate signals using the same settings as in Scenario I to VII. To evaluate the 

performance, we calculate the adjusted random index (ARI) (Milligan and Cooper, 1986) to 

compare clustering results with the underlying truth. ARI is a number that has a maximum 

value of 1; and it measures the agreement between two clustering solutions (even when 

the two clustering solutions have different number of clusters). In addition, we consider the 

prediction accuracy for all methods. Web Tables 3 to 6 summarize the results for Scenario I 
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to IV. The proposed approach outperforms all three competing methods under all scenarios, 

possibly because our method takes account for the underlying sparse structure in the signals. 

For example, in Web Table 4, the proposed approach outperforms all three competing 

methods while biclustering performs slightly better than K-means and spectral clustering. 

In Scenario IV, our method still has a better predictive performance over the competitive 

methods even when the separable covariance assumption is violated in the data generation.

It is worth mentioning that our primary goal in the simulation is to demonstrate that CVPL 

is useful in guiding the selection of tuning parameters and the regularization effect on image 

clustering in an efficient manner. If one is more interested in selecting the “best” model 

based on the highest CVPL value. Then ideally, this can be done by conducting a fine grid 

search over all possible combinations of three tuning parameters (regularization norm, λ, 

and number of clusters). In our simulation studies, we first search over a wide range of 

values for both λ (eg, {0,.2,.5,.8,1,1.5,2,5,10}) and K (eg, 1 to 6) over a few Monte-Carlo 

replications, and then narrow down to a small range for computational convenience.

5 | ANALYSIS OF ODOR MEMORY DATA IN A RAT NEUROBIOLOGY 

EXPERIMENT

In this section, we use the proposed method to analyze an LFP dataset obtained from a 

memory coding experiment on nonspatial events (Allen et al., 2016; Hu et al., 2020). In 

that experiment, rats were trained to identify a series of five odors during the experiment. 

For most of the cases, those five odors were in the same sequence (“in-sequence” odors), 

while there were some violations (“out-sequence” odors). For example, odor sequence 

ABCDE is an “in-sequence” yet ABBDE is an “out-sequence.” Rats were required to poke 

and hold their nose in the port to correctly identify whether the odors were “in” or “out” 

sequence. Throughout the experiment, spike and LFP data were collected based on 12 

microelectrodes exhibiting task-critical single-cell activity. The LFP dataset contains 247 

trials with a sampling rate of 1000 Hz and T = 2000 time points. Web Figure 3 gives a 

snapshot of the LFP signals across 12 tetrodes. A clustering analysis is useful for this study 

because it may reveal latent pattern information in LFP signals and provide an in-depth 

understanding of their connections to different odors and in-/out-sequences.

5.1 | Time domain analysis on imaging clustering

As an initial step, we focus on the time domain to study the association between raw 

multimicroelectrode signals with “in-sequence” or “out-sequence” patterns. We implement 

the proposed method to the raw LFP signals across all the 247 trials. Table 1 summarizes the 

CVPL values among different number of clusters and penalties. Based on the highest CVPL 

value, our method chooses two clusters for all penalty norms, which correspond to the 

inand out-sequences. Moreover, our method has a significantly higher ARI value compared 

with that of K-means, which suggests that the proposed method has desired performance in 

detecting the latent structure that is related to “in-” or “out”-sequences.

As a further step, researchers are also interested in understanding how LFP signals are 

related to rat’s ability to correctly identify the odor sequence in this experiment. Due to the 
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small sample size of the out-sequence trials, we only focus on those in-sequence trials. In 

other words, we focus on the “sensitivity” (true positive rate) of the experiment. Web Table 

9 summarizes the CVPL and ARI values. Based on the highest CVPL value, nuclear norm 

regularization with K = 2 clusters is preferred. Based on ARI values, both ℓ1 and nuclear 

norm regularization perform better than ℓ2 norm, which may suggest a possible low-rank and 

sparse mean structure in the signals. For the number of clusters, K = 2 is preferred since its 

CVPL values are in general (6 out of 10 times) higher than those obtained by other choices 

of K under the use of different regularization norms. The ARI values are much higher from 

our method compared with K-means and other competing approaches.

5.2 | Time frequency clustering analysis

Next, we study the latent structure from a time-frequency perspective. Allen et al. (2016) 

suggest that two particular oscillatory bands (theta: 4 to 8 Hz and slow gamma: 20 to 40 

Hz) yield strong power and play significant roles in detecting the in-/out-sequences. Web 

Figure 3 shows that the time-frequency plot suggests that the low-frequency theta band 

obtains much more power than the slow gamma band. We applied the proposed method to 

the spectrum of theta and slow gamma bands separately. Table 2 presents the results for 

the number of clusters and the ARI that compares with the true odor sequence for the theta 

band. Based on CVPL values, we find that a three-cluster model will be preferred if no 

penalty is used and a five-cluster model with nuclear norm regularization is the best among 

models that adopts a penalty. We then look into those two models in depth and it turns out 

that time-frequency signals related to odors A, B, and D are quite similar visually. That 

explains the different results between the two approaches in some way and demonstrates a 

clear advantage of our proposed model. By adding the nuclear norm penalty, the method is 

able to incorporate more information into the clustering procedure, which results in a larger 

number of clusters. The ARI value also falls slightly in favor of nuclear norm regularization. 

We then looked into results from other methods, similar to the previous observation, odors 

C and E result in the most consistent results, while odors A, B, and D lead to different 

groupings. Our approach provides some evidence indicating the association between the 

low-frequency band (theta) and the odor sequence. We also applied our method to the slow 

gamma band and obtained similar results (presented in the Supporting Information, Web 

Table 10).

6 | ANALYSIS OF RAT STROKE DATA

In this section, we apply the proposed approach to another LFPs dataset from a rat stroke 

experiment conducted by the Frostig laboratory at UC Irvine, where LFPs were recorded 

before and after the stroke. There are 32 microelectrodes implanted with four layers for 

each rat. The data we consider here are collected based on the signals of 5 minutes before 

and after the stroke. The sampling rate is 1000 Hz and each epoch is 1 second long. One 

of the scientific questions of interest from this experiment is to identify the latent patterns 

that change before and after the stroke. A preliminary time-frequency analysis in Figure 1 

(bottom 4) shows the log power spectra of two microelectrodes. These results are obtained 

by averaging all epochs before and after stroke separately. The LFPs at most microelectrodes 

behave smoothly within each epoch and there appears to be a low level of dissimilarity 
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before and after the stroke. However, for some microelectrode (in particular 10), there are 

some nonnegligible dynamics and obvious difference between prestroke and poststroke. 

These findings show that it may not be optimal to average over or vectorize all the channels 

when conducting a cluster analysis to identify the latent patterns that change before and after 

the stroke.

We also study the dynamics across all the 32 microelectrodes before and after the stroke. 

Figure 2 shows the time-frequency plot of beta and slow gamma frequency bands across 

the microelectrodes. The log power spectra are obtained by averaging over the epochs. 

By comparing the plots before and after the stroke, we observe strong dependence across 

microelectrodes for both bands. This highlights the importance of introducing regularization 

into the mixture model. Also, by comparing the plots before and after stroke, there is a clear 

sign of local discrepancy. Such difference will be easily ignored if one naively vectorizes 

the original signals when conducting cluster analysis without taking the matrix structure into 

account.

We apply the proposed approach to the time-frequency images across all the epochs before 

and after stroke. Table 3 shows the CVPL values across different number of clusters and 

penalty norms. With only one exception, all the scenarios suggest two clusters, which 

correspond to two statuses “normal” and “stroke.” We also compare the clustering results 

with the truth status index, and summarize the ARI of the proposed method and K-means in 

Table 4. There is a significant advantage in ARI for our method compared to the K-means. 

Our method, through regularization, produced ARI values that increase by 80% (comparing 

λ = 0 with λ ≠ 0). In particular, slow gamma band performs perfectly with an ARI of 1.00 

when a nuclear norm penalty is used with λ = 2. Similar results are also obtained for beta 

band. These findings are consistent with the findings in the preliminary analysis.

7 | CONCLUDING REMARKS

In this paper, we have proposed a regularized probabilistic clustering framework to 

analyze matrix data. Compared to the existing clustering approaches such as K-means, the 

advantages are as follows: (a) By working directly with matrix data, we are able to capture 

the row-wise and column-wise correlation simultaneously; (b) the proposed framework has 

the ability to uncover the nature sparsity that is inherent to the signals and images; (c) by 

using CVPL, the proposed method is able to find the optimal regularization method and 

the tuning parameters, which works for different types of signal structures and levels of 

sparsity; and (d) the proposed approach is grounded on theoretical foundations; provides 

straightforward interpretability; and has low computational cost (by parallel computing) and 

hence amenable to big datasets.

To incorporate different sparsity structures in images, we have proposed three regularization 

methods in this framework. In particular, ℓ2 norm penalizes on large matrix element values, 

ℓ1 norm targets on identifying nonzero ones, and nuclear norm encourages a low-rank 

approximation. In practice, one can choose the best regularization norm to use based on 

the CVPL criteria or prior knowledge about the image structure. Our simulation results 

confirm the excellent performance of the method in terms of image structure recovery and 
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estimation accuracy improvement (eg, MSE) by using an appropriate regularization method 

under different scenarios.

Although this paper provides some promising results, there remain many open problems that 

are encountered when analyzing matrix data. For instance, in the current work, choosing 

the number of clusters relies on some prespecified measures (CVPL). As an extension of 

the framework introduced by Viroli (2011), one could introduce a Bayesian framework 

into the clustering analysis and conduct Bayesian inference on the number of clusters. 

Similarly with the use of elastic net in regression models, it will be of future interest to 

consider a combination of both ℓ1 and ℓ2 penalties in our model. Incorporating regularized 

covariance matrix estimation in the proposed mixture model will also be helpful, especially 

for analyzing images with large sizes. Another future working direction of interest is to 

develop inference procedures that can be used to quantify the similarity (and its uncertainty) 

between the cluster centroids and image signals for prediction purpose.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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FIGURE 1. 
Top 6 (memory coding experiment): smoothed LFPs for odors ABCDE and their means 

(aggregated over all the odors) where x-axis represents rescaled time and y-axis stands 

for different tetrodes (channels); Bottom 4(rat stroke study): the time-frequency plot of 

microelectrodes 10 and 20 among all the 600 epochs for before and after the stroke. This 

figure appears in color in the electronic version of this article, and any mention of color 

refers to that version
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FIGURE 2. 
Rat stroke study: the time-frequency plot of particular frequency bands among all the 

microelectrodes before and after stroke. This figure appears in color in the electronic version 

of this article, and any mention of color refers to that version
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