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Abstract

New chemical probes have been designed to facilitate the identification of adenosine-to-inosine 

(A-to-I) edited RNAs. These reagents combine a conjugate acceptor for selective inosine covalent 

modification with functional groups for bioorthogonal biotinylation. The resulting biotinylated 

RNA was enriched and verified with RT-qPCR. This powerful chemical approach provides new 

opportunities to identify and quantify A-to-I editing sites.

Graphical Abstract

RNA molecules perform a wide variety of functions, from regulating gene expression to 

scaffolding protein complexes to controlling enzymatic reactions. Beyond the canonical 

chemical structure of RNA nucleosides, it is now appreciated that RNA can be modified and 

that such modifications can alter RNA localization, decay, and translatability.

One such RNA modification that can significantly alter RNA structure and function is 

adenosine-to-inosine (A-to-I) RNA editing (Scheme 1a). A-to-I editing has been widely 

identified in a range of species, including mammals.1 This editing process is primarily 

catalyzed by three different adenosine deaminases acting on RNA (ADARs), including two 

isoforms of ADAR1 and one of ADAR2; no deaminase activity has been detected for 
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ADAR3.2, 3 These enzymes are conserved for A-to-I RNA editing throughout the animal 

kingdom and have been suggested to have different subcellular localization in a cell-type/

tissue-type dependent manner.4–6

A-to-I RNA editing plays essential roles in the control of cellular functions. The editing 

event changes the hydrogen bonding patterns of involved nucleobase and the resulting 

inosines readily base pair with cytidine. As a result, the editing site will be recorded as 

guanosine instead of originally adenosine.7 If the editing site happens in the protein-coding 

region, a different amino acid sequence will be generated, which results in protein diversity. 

For example, the protein recoding capacity has been demonstrated to be crucial for cell 

survival when it comes to the editing of Gria2 at the Q/R site to achieve functional GluA2 

protein expression.8

If the editing site occurs in the non-coding region, the biogenesis and target specificity of the 

corresponding small-interfering RNAs (siRNAs) and microRNAs (miRNAs) will be 

significantly affected, thus impacting gene transcription and protein translation.9 

Dysregulation of A-to-I RNA editing could potentially lead to neurodegenerative diseases, 

autoimmune disorders and even cancers.10, 11

Despite the high importance of A-to-I RNA editing it remains challenging to identify RNA 

editing sites with single nucleotide resolution. Chemical approaches have been developed to 

understand the chemical raeactivty of ADAR enzymes and substrate specificity.12–14 Recent 

methods to screen the editing sites have mainly relied on the development of deep 

sequencing and the advancements in bioinformatics.15, 16 Although the approach did allow 

transcriptome-wide analysis of editing sites, the process is intrinsically prone to false 

positive results owing to the abundant and unexhausted lists of single nucleotide 

polymorphisms (SNPs) as well as sequencing errors. Suzuki and coworkers reported a 

chemical approach to facilitate the identification of editing sites with confidence.17, 18 This 

new method coupled the use of a traditional inosine alkylator, acrylonitrile, with reverse 

transcription that stops at the modification site (Scheme 1b). Despite the initial success in 

global and unbiased screening of new A-to-I editing sites, this biochemical identification 

method could be considerably enhanced with the integration of a protocol for enrichment of 

edited sites for downstream sequencing analysis (Scheme 1c).

A-to-I editing sites are sparse in cellular RNA when compared with the whole RNA 

populations, although it is one of the most abundant RNA modifications. No A-to-I 

modifications have been found in rRNA, which accounts for 90% of cellular RNAs. Many 

key edited sites are present only on rare transcripts.16 To reveal A-to-I editing sites with 

confidence, large quantities of material and cost-prohibitive RNA sequencing depth are 

required. In addition to the relatively sparse signals, A-to-I editing sites are dynamic, which 

not only depends heavily on cell and tissue types but also varies at different cell states 

throughout developmental processes or disease progression.6, 19, 20 Enrichment of edited 

RNA would allow targeted RNA sequencing, thus eliminating unnecessary RNA sequencing 

reads; while some progress has been made for designing alkylating reagents that could 

enable enrichment,21 there still is a critical need to develop bi-functional agents that could 

be used for analyzing inosine in RNA.
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We designed the new A-to-I RNA editing probes based on the structure of acrylonitrile. 

(Scheme 2). We envisioned the 2-(N-alkyl-N-methylamino)acrylonitrile scaffold as an 

attractive target for probe development, because the tertiary amine linker should ensure 

solubility in biological media and the alkyl residue on the amine can be freely chosen. We 

elected to incorporate an azidoethyl group (1; AtoI_N3) and a propargyl group (2; 

AtoI_yne), each of which offers the capability of attaching a biotin tag via different “click” 

reaction modalities. The 2-(N,N-dialkylamino)acrylonitrile scaffold could be easily accessed 

via a Mannich condensation, decarboxylation, aldol condensation cascade of cyanoacetic 

acid, formalin, and the corresponding amine22 or ammonium salt in a one-pot reaction. The 

triethylammonium acetate buffer (pH = 4.5) ensures fast carbonyl condensation and 

decarboxylation at ambient temperatures in aqueous media and makes it especially useful 

for thermally labile substrates. Applying this strategy, the AtoI_N3 probe could be prepared 

in 71% yield and the more volatile AtoI_yne was accessed in 54% yield. Furthermore, the 

more complex, biotinylated probe 3 was prepared by a CuAAC “click” reaction of 2 with 

commercially available N-(prop-2-ynyl)biotinamide (31% yield).

Probes 1 and 2 each demonstrated reasonable aqueous solubility, whereas solutions of 3 
were observed to be quite turbid, suggesting limited solubility. This observation, coupled 

with the fact that RNA degradation can result from CuAAC “click” reactions23, prompted us 

to focus on utilizing 1 for all subsequent characterizations. We therefore could rely on strain-

promoted azide-alkyne cycloadditions (SPAAC), which do not require catalysis by copper 

complexes.

We next tested alkylation selectivity by incubating 1 with inosine and the canonical 

nucleosides (adenosine, cytidine, uridine, guanosine) and by analyzing relative reactivities. 

Mixtures of the probe and the corresponding nucleoside were heated at 70 °C for either 15 

or 30 minutes, followed by HPLC analysis. This systematic study revealed that AtoI_N3 is 

significantly more selective for inosine over the other nucleosides (Figure S1).

To further test the selectivity, we utilized synthetic oligos, one with an inosine and one 

without. (Figure 1, a). First, we demonstrated selective inosine alkylation by reverse 

transcription (RT; Figure 1, b, c). As shown, we observed a very strong RT stop at the 

inosine site that was absent in control oligos. We also demonstrated the selectivity of 

modification through dot blot analysis, whereby each of the oligos was alkylated, subjected 

to SPAAC with dibenzocyclooctyne-biotin (DIBO-biotin). Biotinylation was evaluated using 

dot blot (Figure 1, d–f). More detailed labeling condition optimizations could be found in 

Figure S2.

Having demonstrated that our novel reagents can selectively alkylate inosine in synthetic 

oligos, we aimed to test their utility in a complex pool of RNAs. To test the specificity of 

enrichment by 1, a known A-to-I transcript was evaluated using RT-qPCR. Human brain 

total RNA was modified with 1 and later biotinylated by SPAAC, followed by enrichment 

with streptavidin (Figure 2a). We then compared the RT-qPCR profiles for a known A-to-I 

transcript, dihydrofolate reductase (DHFR)24, and a negative control, branched chain 

ketoacid dehydrogenase kinase (BCKDK)16. As predicted, DHFR, which was highly edited 

in the 3’ UTR, was significantly enriched (Figure 2b). These results clearly demonstrate that 
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RNA incubation with AtoI_N3 results in transcript-selective alkylation and subsequent 

enrichment.

In conclusion, we have successfully designed a new acrylonitrile-based chemical probe for 

inosine-selective alkylation. In addition, we have demonstrated through a battery of tests that 

AtoI_N3 can modify inosine in the context of intact RNA species to enable inosine site 

identification by reverse transcription and dot-blot analyses. Lastly, we have utilized 

AtoI_N3 to demonstrate the stringency of inosine modification through transcript-specific 

enrichment to enable profiling by RT-qPCR. We envision that AtoI_N3 will be invaluable to 

the discovery of novel RNA editing sites, in particular on lowly expressed RNAs or highly 

complex mixtures of RNAs such as those derived from patient samples or complex tissues 

such as the brain. Such analyses are currently underway in our lab and will be reported in 

due course.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Characterizing acrylonitrile-based probe alkylation of RNA. a. Oligonucleotide sequences 

used in this study. b. Schematic of experiment to characterize alkylation by reverse 

transcription. c. Denaturing gel electrophoresis demonstrates selective RT-stop at inosine 

site. d. Schematic of experiment to characterize alkylation by dot-blot. e. Dot blot 

demonstrating selective alkylation of inosine-containing oligo. f. Integration of signal in 

panel e.
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Figure 2. 
a. RT-qPCR of AtoI edited transcript compared with transcript without modification. b. 
Enrichment was calculated against a negative control with the ΔΔCt method (SI), in 

biological duplicates.
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Scheme 1. 
Comparison of the previous and current work on adenosine-to-inosine identification. a. 
Conversion of adenosine to inosine. b. Known selective alkylation of inosine by conjugate 

addition to acrylonitrile. c. Proposed reagent for selective inosine modification and 

identification.
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Scheme 2. 
Synthesis of acrylonitrile probes for inosine alkylation. a. A three-component coupling from 

cyanoacetic acid, formaldehyde, and a secondary amine directly provides alkyne- and azide-

bearing probe molecules. b. A Cu-catalyzed azide/alkyne dipolar cycloaddition generates the 

biotinylated reagent.
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