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Abstract of the Dissertation

Topics on Schrodinger Operators

By
Chi Shing Sidney Tsang

Doctor of Philosophy in Mathematics
University of California, Irvine, 2016
Professor Abel Klein, Chair

We study two topics in the theory of Schrodinger operators:

1. We establish bounds on the density of states measures for Schrodinger
operators with singular potentials. We obtain log-Holder continuity for
the density of states outer-measure in one, two, and three dimensions for
Schrodinger operators with singular potentials, results that hold for the den-
sity of states measure when it exists. To do this, we study the local behavior
of solutions of the stationary Schrodinger equation with singular potentials,
establishing a local decomposition into a homogeneous harmonic polynomial
and a lower order term, and, we prove a quantitative unique continuation
principle for Schrodinger operators with singular potentials.

2. We develop an eigensystem bootstrap multiscale analysis for prov-
ing localization for the Anderson model at high disorder. The eigensys-
tem multiscale analysis studies finite volume eigensystems, not finite volume

Green’s functions. It yields pure point spectrum with exponentially decay-
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ing eigenfunctions, and dynamical localization. The starting hypothesis for
the eigensystem bootstrap multiscale analysis only requires the verification
of polynomial decay of the finite volume eigenfunctions, at some sufficiently
large scale, with some minimal probability independent of the scale. It yields
exponential localization of finite volume eigenfunctions in boxes of side L,
with the eigenvalues and eigenfunctions labeled by the sites of the box, with

probability higher than 1 — e~%*, for any desired 0 < & < 1.
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Introduction

We study two topics in the theory of Schrédinger operators:

Bounds on the density of states of Schrodinger operators with sin-
gular potentials

In Chapter [1}, we establish bounds on the density of states of Schrodinger
operators H = —A+V on L?(R%), where A is the Laplacian operator, and V
is a singular real potential. Given A = Ap(x) =z + (%, %)d C R?, the open
box of side L > 0 centered at z € R%, we let Hy and A, be the restriction
of H and A to L?(A) with Dirichlet boundary condition. The finite volume

density of states measure is given by

1
na(B) := Wtr{XB(HA)} for Borel sets B C R%. (0.0.1)

Note that for V satisfying appropriate conditions (as in Theorem [1.0.1]) and
all £ € R we have

na(B) < Cyyp < oo for all Borel sets B C (—o0, EJ. (0.0.2)

For periodic and ergodic Schrodinger operators, density of states measure
71 can be defined as weak limits of the finite volume density of states measure
na for sequences of boxes A — R? in an appropriate sense. The infinite

volume density of states measure cannot be defined for general Schrodinger



operators, so we follow [BoKI| and study the density of states outer-measure,

defined on Borel subsets B of R? by

7(B) = limsupn (B), where nj(B):= supmy,0)(B),  (0.0.3)

L—oo rER4

always finite on bounded sets in view of .

We obtain log-Holder continuity for the density of states outer-measure
of Schrodinger operators with singular potentials in one, two, and three di-
mensions, extending [BoKI, Theorem 1.1].

To establish the bounds on the density of states for d = 2,3, we follow
the proof in [BoKI|, consider a class of approximate eigenfunctions for which
we have local upper bounds, and pick one for which we have a global lower
bound. The local upper bounds will come from the local behavior of approx-
imate solutions of the stationary Schrodinger equation, and the global lower
bound will come from the quantitative unique continuation principle. We
extend these theorems to singular potentials.

In Section [1.1], we study the local behavior of solutions of the stationary
Schrodinger equation with singular potentials, establishing a local decompo-
sition into a homogeneous harmonic polynomial and a lower order term. As a
corollary, we obtain bounds on the local behavior of approximate solutions for
these equations. Singular potentials introduce technical problems not present
for bounded potentials. This can be seen by considering the Schrodinger op-
erator H = —A + V. If V is a bounded potential, i.e., V € L*, we have
D(H) = D(—A) C H% However, if V is a singular potential, say V € L7,
where p € (d,00), we only have D(H) C H'. Thus we have to work with
solutions in H!, not solutions in H? as in [BoKI|. The results in this section

are published in [KT2].



In Section we prove a quantitative unique continuation principle for
Schrodinger operators H = —A + V on L?(Q), where 2 is an open subset
of R%, A is the Laplacian operator, and V is a singular real potential: V &
L>o(2) +LP(2). Our results extend the original result of Bourgain and Kenig
[BoKl, Lemma 3.10], as well as subsequent versions [GK3, Theorem A.1] and
[BoKI, Theorem 3.4], where V' is a bounded potential: V € L>(£2). To
prove the quantitative unique continuation principle for singular potentials
we use Sobolev inequalities (not required for bounded potentials). Also, as an
application, we derive a unique continuation principle for spectral projections
of Schrodinger operators with singular potentials, extending the bounded
potential results of [KI2, Theorem 1.1] and [KN, Theorem B.1]. The results
in this section are published in [KT1T].

The proof for the bounds on the density of states of Schrodinger operators
with singular potentials will be discussed in Section [I.3] The results in this
section are published in [KT2].

Eigensystem bootstrap multiscale analysis for the Anderson mod-
el

The eigensystem multiscale analysis is a new approach for proving local-
ization for the Anderson model introduced by Elgart and Klein [EK]. The
usual proofs of localization for random Schrodinger operators are based on
the study of finite volume Green’s functions [FroSl [FroMSS| Dl [DrKl [Spl
CH| [FK| [GK1l, K11, BoK], IGK3, [AiM] [Ai, [AiSFH, [AIENSS|]. In contrast to
the usual strategy, the eigensystem multiscale analysis is based on finite vol-

ume eigensystems, not finite volume Green’s functions. It treats all energies



of the finite volume operator at the same time, establishing level spacing and
localization of eigenfunctions in a fixed box with high probability. A new
feature is the labeling of the eigenvalues and eigenfunctions by the sites of
the box.

In Chapter , we use a bootstrap argument as in [GKI|] to enhance the
eigensystem multiscale analysis. It yields exponential localization of finite
volume eigenfunctions in boxes of side L, with the eigenvalues and eigenfunc-
tions labeled by the sites of the box, with probability higher than 1 — e Lt
for any 0 < £ < 1. The starting hypothesis for the eigensystem bootstrap
multiscale analysis only requires the verification of polynomial decay of the
finite volume eigenfunctions, at some sufficiently large scale, with some min-
imal probability independent of the scale. The advantage of the bootstrap
multiscale analysis is that from the same starting hypothesis we get conclu-
sions that are valid for any 0 < £ < 1. The results in this chapter are written

in [KT3].



Chapter 1

Bounds on the density of states
of Schrodinger operators with

singular potentials

We establish bounds on the density of states of Schrodinger operators H =
—A + V on L%RY), where now A is the Laplacian operator, and V is a
singular real potential. Given A = Az(z) =z + (£, £)¢ C R, the open box
of side L > 0 centered at z € R?, we let Hy and A, be the restriction of
H and A to L*(A) with Dirichlet boundary condition. The finite volume

density of states measure is given by

1
na(B) == mtr{XB(HA)} for Borel sets B C R% (1.0.1)

Recall that for V satisfying appropriate conditions (as in Theorem
below) and all £ € R we have

nA(B) < Cyyp < oo for all Borel sets B C (—oo, EJ. (1.0.2)
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For periodic and ergodic Schrodinger operators, density of states measure
71 can be defined as weak limits of the finite volume density of states measure
na for sequences of boxes A — R? in an appropriate sense. The infinite
volume density of states measure cannot be defined for general Schrodinger
operators, so we follow [BoKI| and study the density of states outer-measure,

defined on Borel subsets B of R? by

n*(B) := limsupn; (B), where nj(B):= sup na,w(B), (1.0.3)

L—oo z€R4

always finite on bounded sets in view of ((1.0.2)).
We obtain log-Holder continuity for the density of states outer-measure
of Schrodinger operators with singular potentials in one, two, and three di-

mensions, extending [BoKI, Theorem 1.1].

Theorem 1.0.1. Let H = —A+V on L2(RY), where d = 1,2,3, and V is a

real potential such that:
(i) if d =1, sup,cg f{|x—y|§1} [V (y)|dy < oo;
(ii) ifd=2,V =VO VO where V) € L®(R?) and VP € LP(R?) with
p>2
(iii) if d=3,V =VO 4V where VY € L¥(R?) and VP € LP(R?) with
p > 6.

Then, given FEy € R, for all E < Ey and 0 < e < %, we have

C —d)p—
n([E, E+e]) < %, where Ky = 1,ﬁd:%ford:2,3.
Ogg

(1.0.4)



To prove Theorem for d = 2,3, we follow the proof in [BoKI|, con-
sider a class of approximate eigenfunctions for which we have local upper
bounds, and pick one for which we have a global lower bound. The local up-
per bounds will come from the local behavior of approximate solutions of the
stationary Schrodinger equation, and the global lower bound will come from
the quantitative unique continuation principle. We extends these theorems

to singular potentials.

1.1 Local behavior of solutions of the station-
ary Schrodinger equation

We study the local behavior of solutions of the stationary Schrodinger e-
quation with singular potentials, establishing a local decomposition into a
homogeneous harmonic polynomial and a lower order term. As a corollary,
we obtain bounds on the local behavior of approximate solutions for these
equations.

Singular potentials introduce technical problems not present for bounded
potentials. This can be seen by considering the Schrodinger operator H =
—A 4+ V. If V is a bounded potential, i.e., V € L* we have D(H) =
D(—A) C H2 However, if V is a singular potential, say V € LP, where
p € (d,>), we only have D(H) C H'. Thus we have to work with solutions
in H', not solutions in H? as in [BoKI.

Let Q = B(xg,r) = {y € R?: |y — x| < r}, the ball centered at z, € R?
with radius r > 0, where |z| := (Z?:1|a:j|2)% for © = (v1,29,...,24) €

R?. Given a real potential W € LP(Q), where p € (d, ), we consider the



stationary Schrodinger equation
—Ap+Wep=0 ae. on . (1.1.1)

We let & (Q) be the linear space of solutions ¢ € H*(2), and define linear
subspaces

En(Q) = {(b € &(Q) - limsupM < oo} for N € N. (1.1.2)

sz | T — ToN

We have & (Q) = {¢ € &(Q) : ¢(zg) = 0}, and En(Q) D Ens1(Q) for
all N € Ny = {0} UN. The following theorem is an extension of [BoKI,
Lemma 3.2] to singular potentials. (See [Bl, [HW] for previous results.)

For dimensions d > 2, let H%) denote the vector space of homogenous
harmonic polynomials on R? of degree m € Ny, and set ’H,(<d z)v = @Z:o H.

Recall that there exists a constant 74 > 0 such that (e.g., [ABR])

N
dim A = dimHD <N forall N € N. (1.1.3)

m=0

Constants such as C,; . will always be finite and depending only on the

geee

parameters or quantities a, b, .. .; they will be independent of other parame-

ters or quantities in the equation. Note that C,; = may stand for different

yooe

constants in different sides of the same inequality.

Theorem 1.1.1. Let d = 2,3,..., Q = B(xg,3r) for some 1o € R? and
ro > 0. Fiz a real potential W € LP(Q2), where p € (d,00), and set W, =
|Wlir@y. For all N € Ny there exists a linear map Vi en(Q) —» HY
such that for all ¢ € Ex(QY) we have, for all x € B (xo, %0), that

[(a) = (Vy V) (@ — o) (1.1.4)

d (N+1)(N+2)

<70 (Capwyr) 2 (8) 7 (VDN — 20| [0l 2(0)-



As a consequence, for all N € Ny we have
Eni1(Q) =ker Y and dimEy,1(Q) > dim Ex(Q) — dim K. (1.1.5)
In particular, if J is a vector subspace of Ey(2) we have
dim J N En11(Q) > dim J — 4N for all N € N, (1.1.6)

where 4 is the constant in (1.1.3)).

As a corollary, we obtain bounds on the local behavior of approximate
solutions of the stationary Schrodinger equation (|1.1.1) with singular poten-

tials, extending [BoKl, Theorem 3.1].

Corollary 1.1.2. For d = 2,3,..., let Q@ C RY be an open subset. Let
B(xg,7m9) C Q for some xg € R? and ro > 0. Fiz a real valued function

W e LP(B(xg,r0)) for some p € (d,00). Suppose F is a linear subspace of
HY(Q) such that for all v € F we have A € L2(B(zg,70)) and

[(=A + W)L (B(ao,ro)) < CFl[Y]l2(0)- (1.1.7)

Then there exists 0 < 1 = ri(d,p, Wp) < 19, where W, = [|W||Le(Bzo,ro))»
with the property that for all N € N there is a linear subspace Fy of F, with

dim Fy > dim F — ygN* ™, (1.1.8)
where g is the constant in (1.1.3)), such that for all v € Fyn we have
[Y(z)] < (Cg;,wpm]x—xo\NH—i—C;)HzﬁHLz(Q) for all z € B(xg,r1). (1.1.9)

The fundamental solution to Laplace’s equation is given by

(d(d — 2)wg) Hax|7+2 if d=3,4,...
O(z) = Oy(x) := ,  (1.1.10)
—5-log || it d=2

where wy denotes the volume of the unit ball in R¢.

9



Proof of Theorem[I.1.1. We start as in [BoKI, Proof of Lemma 3.2]. We take

d = 2,3,..., and prove the lemma for Q = B(0,3) C R% the general case

then follows by translating and dilating. We set €' = B(0,2), and write
&, = &E,(Q). Since we only have & C H'(Q), we must proceed differently
from [BoKI, Proof of Lemma 3.2]. A function ¢ € H!(Q) satisfies an elliptic

regularity estimate [T, Theorem 5.1]:

[9llLe @) < Capw, @]z, (1.1.11)

but for ¢ € H'(Q) we do not have a readily available estimate for || V¢||re(5(0,1)
as in [BoKI, Eq. (3.18)], where we had ¢ € H?(Q), and thus we must modify
the induction.

We fix ¢ € & and consider its Newtonian potential given by

P(r) = — N W(y)o(y)®(x — y)dy for x € R (1.1.12)

Let ¢ be defined by % +% =1,s0¢q< % < d;i2' Then & € L(Q2), and it
follows from ([1.1.11)) that
V(@) < WpllgllLe @) | Rlls(@) < Capw, Walldllo(@)  forall z e Q.
(1.1.13)
Setting h = ¢ — 1, we have Ah = 0 weakly in €', as AyY = W¢ weakly in €.

It follows that h is a harmonic function in Q" D B(0,1), and, using [ABR|

Corollary 5.34 and its proof]), we have that
h(z) = me(x) for all z € B(0,1), where p,, € HYD form =0,1,...,
m=0
(1.1.14)
with

[pm ()| < Cqm@2|z|™ sup |h(y)| for all € B(0,1). (1.1.15)
y€dB(0,1)

10



It follows from the mean value property that for all y € 9B(0,1) we have

1
1B (4:3) | Ja.4)

using ([1.1.11)) and ((1.1.13). Thus, it follows from ({1.1.15]) that

h(y)] < \h(y)|dy' < Capw, | 6llL2 (1.1.16)

P ()| < Capv,m® 2G|z |z|™  for all z € B(0,1), m=1,2,....
(1.1.17)
Setting hy = fo:o pm(z) € H(de)v, it follows that

1) = h(@)] < Capp [ llizy(V + D[ for x € B(0.5).
(1.1.18)
Given y € RN\{0}, we let ®,(z) = ®(z — y). Since ¥, is a harmonic
function on R¥\{y}, it is real analytic in B(0, |y|), and we have (see [ABR])

O(z—y) =Dy(x) = Z Im(z,y)  for all z € B(0, |y|), (1.1.19)
m=0
where J,,,(+,y) € HYD for allm = 0, 1,.. ., and the series converges absolutely

and uniformly on compact subsets of B(0, |y|). Moreover, for all y € R? and
m =1,2,... we have (see [ABR] Corollary 5.34 and its proof]) that
d—2 4|:L’| " /
| (2, )] < Cgm e sup | P, (2")] (1.1.20)
|y| x’E@B(O,%\yD

_ 4|3:| mn Y
< d—2 d
Cqam (_3\y|) (0] <—4> forall ze€R

Setting @, n (1) = S0 _o Jm(w,y) € HEY, it follows that for = € B (0, 1[y|)

m=0

we have

|, () — @y n(@)] < Ca(N + 1) (%)NH o (%) . (1.1.21)

11



We now proceed by induction. We set £_1 = & and H) = {0}. We
define Y_; : £.1(Q) — H(_dl) by Y_1¢ =0 for all ¢ € £_;. The theorem holds
for N = —1 from the elliptic regularity estimate .

We now let N € Ny and suppose that the lemma is valid for N — 1.
If p € Ey, it follows that ¢ € Ex_1 with Yy_1¢ = 0, so by the induction

hypothesis
0(z)| < Cnl|o(x) |2 lz|Y  for all B(0,1), (1.1.22)
~ N(N+1)
where Cy=Cplh, (%) *  (N)©2 (1.1.23)

Using (1.1.20) and (1.1.22)), we define

Un(@) = = | Wpo@)Pyn(a)dy € HE. (11.24)

We fix x € B (O, %) and estimate

(o) = (@ < W, ([ Qoliwpontian)’ . (129
where ©, - n(z) = &y () — @, n(x). From and (1.1.22), with p > d,

we get

q

( / <|¢<y>||<1>y,>N<x>|>qdy> (1.1.26)
B(0,5)\B(0,2[z|)

< CyCn |92y (N + 1)%2 (%)N+1’$‘N+l</

B(0,3)

o 4\ N4
< CapCnlldlliaoy (N + )72 (3) 2N+

If y ¢ B(0,2]|z|) U B(0,3) we have y > 2|z| and y > 1, and hence, using

12



([T.1.21),

(I)y,>N x)|)d 1.27
(/ (pomr) y) (1127

< sy () o @ ([ )’
N

_ N+1
)2 () 2Nl a e

+
—_

Using (1.1.20) and (1.1.22)), we get

q

(/ 1 (|¢(y)||q)y7>N(=T)|)qdy> (1.1.28)
B(O,2\x|)ﬂB<0,§)
< Onll9llez e </B(02x|)mB<0 l)(|y|N|<1>y,>N(@“)|)qdy>

N d(x — )
e wby>

<werm\¢><%>|>qdy)

Q=

1
q

< Cn||Bllrz@)

1
q

N
+ CdCNWHL?(Q)Z m? (%|x|)m</3

< CaCylllizqey (2% + N2 (™) [,

(0,2@\)03(0,%)

3‘2',\ > 1 for y € B(0,2|z]). (Note that we get [z|Y*>77 if

|z

where we used

13



d > 3 and |x](N+2_%>_ if d =2.) Also using (1.1.20), we get

1
q

(/ —y (19 >||<1’y,>zv(:v)|)qdy> (1.1.29)
\B(0,3)

< (/Q,\B( sepe >||<I><x—y>|>qdy)

cerS et g (s @)a)

_ N+1
< Capm0lliz (14 N2 (1)),

1
q

where we used |z| < 1. Since |z| > 1 if y € B(0,2|z])\B (0, 3), we obtain

q

( / <|¢<y>||<1>y,>N<x>|>qdy> (1.130)
(NB(0,2[z)\B(0,3)

_ N+1
< Capw, 19]l2(0) (4N+1 + N2 (1) * ) 2|V

Combining (T.1.25), ([.1.26), ([.1.27), (T.1.28) and (T.1.30), we have (Ciy >
1)

(@) — n (@) < Capar, CvWo(N + D2l ¥ Gl (1131)

forall z € B (O, %)

Now let Yn¢ = hny + ¢y € ’HS\?). It follows from ((1.1.18)), (1.1.31)) and
(1.1.23)), choosing the constant éd,p,Wp in ([1.1.23) large enough, that for all

14



x € B(O, ) we have

N[ —=

3(z) — (Yno)(@)| < |h(x) — hn(@)] + [(x) — dn ()|
< (Capw, + CapWpCn) (N + )2 (1) N1 6| 20

3
Capw,Cn (N + 1)472 (16) N0l 12 (0
N(N+1)

=~ ~ _ _ N+1
o (Cgpfvlvp (F) = (@) 2) (N+ D)7 ()" 20l

(N+4+1)(N+2)

< CNRR (S9) T2 (N + D)2 M 6 leaqe.

N+1’

IN

IN

This completes the induction.

Since (1.1.5]) is a consequence of ([1.1.4)), and (1.1.6) follows from (1.1.5)).

the lemma is proven. O
Corollary is an immediate consequence from the following corollary.

Corollary 1.1.3. For d = 2,3,..., let Q@ C R? be an open subset. Let
B(zg,r1) C Q for some o € R? and r1 > 0. Fiz a real valued function

W e LP(B(xg,r1)) for some p € (d,00). Suppose F is a linear subspace of
HY(Q) such that for all ¢ € F we have Ay € L?(B(xg,71)) and

I(=A + W)l (@aaray < Crl¥llizo. (1.1.32)

Then there exists 0 < 19 = ro(d,p, Wp) < 71, where W, = [|W||Le(B(zo,m))»
with the property that for all r € (0,ry] there is a linear map Z, : F —
Eo(B(xg,r)) such that

||Q,D - Zr¢||L°°(B(x0,r)) < Cd’r0f||¢||L2(Q), where }}LI(]) Cd,r =0. (1.1.33)
As a consequence, for all N € N there is a vector subspace Fy of F, with
dim Fy > dim F — ygNe !, (1.1.34)

15



such that for all vb € Fn we have
()] < (Chow, i |l2—20| " +CF)[Ylli2)  for allz € Blwo, %2). (1.1.35)

Proof. We proceed as in [BoKl, Lemma 3.3]. It suffices to consider xy = 0.
We set B, = B(0,r). Given 0 < r < r; and ¢ € HY(Q) with Ay € L*(B,),
we define Z,1) € £(B,) as the unique solution ¢ € H'(B,) to the Dirichlet
problem on B, given by

—Ap+Wep=0 on B,,

o= on 0B,.
This map is well defined in view of [T, Theorem 3.2]. (Since W € L?(B,)

(1.1.36)

for some p € (d,00), |W| is compactly bounded on H}(B,) by [T}, Lem-
ma 1.4]. Moreover, for ¢ € H'(Q) with Ay € L*(B,) we have ||V"7Z)||%2(BT) +
J5 W1 [ dz < oo (see and for details). Therefore [T
Theorem 3.2] can be applied.) It is clearly a linear map.

To prove ([1.1.33]), we use the Green’s function G, (z,y) for the ball B,
(see |GIT, Section 2.5]),
B(fr —yl) ~ B — 2yl ity £ 0,
O(|z|) — (r) ity =0.
Let ¢» € F. Using Green’s representation formula |GiT, Eq. (2.21)] for v

Gr(z,y) = (1.1.37)

and Z,1, for all x € B, we have

vie) == [ 009G (r.0dS(0) - / W)Hw)G (r.5)dy
(1.1.38)
" / (=4 W)0)) Gul )iy, (1.1.39)
(20 == [ 000G 0.0d50) = [ Wa(Zw) )G
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where dS denotes the surface measure and 0, is the normal derivative. For

all x € B, an explicit calculation gives

, d(ag—1) d(ag—1)
G, Vs < Cir™ % G (e, Mieai < Car” %0, (1.1.40)
, d(adfq) d(ad*Q)

”GT(QZ, ')HL‘I(BT) S OdT “dq HGT(.CE, ) Led(B,) S CdT *de (1.1.41)
Wherea2:2and0zd:%fordz?),and%%—ézl(q<d;flgadas
p > d). We conclude that

1Y = Z ) |l=s,) (1.1.42)

d(ag—1)

d(ag—aq) d
< Careat Wyl = Zeth|[uee(s,) + Car 2t [(=A 4+ W)i[|Les,).

d(ag—aq)

Taking 7 € (0,7) such that Cgr™=as (14 W,) < i, and using (1.1.32)), we
get (L.1.33).

Letting J = Ran Z,,, and setting Iy = J NEn41(Br,), Fn = Z,,' (In),
the estimate follows using the argument in [BoKl, Lemma 3.3]. O

1.2 Quantitative unique continuation princi-
ple

We prove a quantitative unique continuation principle for Schrodinger oper-
ators H = —A +V on L2(Q2), where  is an open subset of RY A is the
Laplacian operator, and V' is a singular real potential: V' € L*>°(Q) 4+ L?(9).
Our results extend the original result of Bourgain and Kenig [BoK| Lem-
ma 3.10], as well as subsequent versions [GK3| Theorem A.1] and [BoKI,
Theorem 3.4], where V' is a bounded potential: V' € L*>(2).

17



As an application, we derive a unique continuation principle for spectral
projections of Schrodinger operators with singular potentials, extending the
bounded potential results of [KI2, Theorem 1.1] and [KNJ, Theorem B.1].

To prove the quantitative unique continuation principle for singular po-
tentials we use Sobolev inequalities (not required for bounded potentials).
Since the Sobolev inequality we use in dimension d = 2 is expressed in
terms of Orlicz norms, we review Orlicz spaces, following [RR]. A function
¢ : RT — RT U {+o0} is called a Young function if it is increasing, con-
vex, p(0) = 0, and lim;_,, ¢(t) = co. Its complementary function, given by
©*(t) = sup,ep+{st — ¢(s)} for t € RT, is also a Young function. Given a
Young function ¢ and a o-finite measure p on a measurable space X, we

define the Orlicz space

L?(X) = {f : X — R measurable

/ o(alf])dp < oo for some a > O} :
X
(1:2.1)

a Banach space when equipped with the Orlicz norm

1lly == inf{k:>0:/go(%|f|)du§ 1}. (1.2.2)
be
(A standard example is () = t* with 1 < p < o0; in this case L¥(X) =

L?(X).) There is a Holder’s inequality for Orlicz spaces:

/ Foldu < 21£].]lg
X

We now state our main theorem, a quantitative unique continuation prin-

o forall fel?(X), gel?(X)  (1.2.3)

ciple for Schrodinger operators with singular potentials. We fix the Young
function
0 if 0<t<1

et)=¢e"—1, so ¢*(t)= . (1.24)
tlogt —t+1 if ¢t>1

18



Theorem 1.2.1. Let 2 be an open subset of R, K = K|+ K, with K., Ky >
0, and consider a real measurable function V.= VI 4+ V@ on Q with

V]| < Ky. Letyp € L2(Q) be real valued with Ay € L2 (), and suppose

loc
(=—A¢+ Vi € L3(Q). (1.2.5)
Fiz a bounded measurable set © C Q where ||[Yell2 > 0, and set

Q(z,0) :=sup |y — x| for z € (1.2.6)
yeO®

Consider xo € Q\O such that
Q=Q(x0,0)>1 and B(z,6Q+2) C €, (1.2.7)

and take
0 < § < min{dist(zo,0), 1} (1.2.8)

There is a constant mg > 0, depending only on d, such that:

(i) If eitherd > 3 and |V ?||, < Ky withp > d, ord = 2 and (|||[V PP 90*)%

K5 with p > 2, we have

IIwQII2)
lYell2

Q
In particular, if d = 2 it suffices to require |V ||, < Ky with p > 2 to

obtain (1.2.9).

(i) If d =1 and |[VP|, < Ky with p > 2, we have

5\ maLHK 7T (Q P51 tlog 2 o
( ) [Yellz < [[¥egsll2t+07[ICallz- (1.2.9)

Yol

IWellz < [1te sl +0%lI¢all2. (1.2.10)

Q

2p o gl
( ) )W(HKW)(QWH% Te)

19
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Letting p — oo in Theorem we recover [BoKI, Theorem 3.4]. The
proof of Theorem [1.2.1] given in Section [1.2.1] relies on a Carleman estimate
of Escauriaza and Vesella [EsVl Theorem 2], stated in Lemma [1.2.4 To
control singular potentials we use all the terms in this estimate, including
the the gradient term, and Sobolev’s inequalities. In the proofs for bound-
ed potentials [BoKl| [GK3, BoKI] it suffices to use a simpler version of this
Carleman estimate without the the gradient term (see [BoKl Lemma 3.15]).

As an application of Theorem [1.2.1] we prove a unique continuation prin-
ciple for spectral projections of Schrodinger operators with singular poten-
tials, extending [KI2, Theorem 1.1] (in the form given in [KN, Theorem B.1})
to Schrodinger operators with singular potentials. (See also [CHKIL Sec-
tion 4|, [CHK2 Theorem 2.1], [GK3l Theorem A.6], and [RoV), Theorem 2.1]
for unique continuation principles for spectral projections of Schrédinger op-
erators with bounded potentials.)

We consider rectangles in R? of the form

A=) = T (<5.5) - TT (- %o+ ). (20
j=1

j=1
where a = (ay,...,a9) € R and L = (Ly,...,Lg) € (0,00)¢. (We write
Ap(a) = Ap(a) in the special case L; = L for j = 1,...,d.) Given a
Schrodinger operator H = —A + V on L2(RY), by Hy = —Ap + Vi we
denote the restriction of H to the rectangle A with either Dirichlet or peri-
odic boundary condition: A, is the Laplacian on A with either Dirichlet or

periodic boundary condition, and V) is the restriction of V' to A.

Theorem 1.2.2. Let H = —A +V be a Schridinger operator on L*(RY),
where V =V + V@ with [V < K, < o0 and |VP|, < Ky < 0o with

20



p>dford>3,p>2ford=2 andp>2 ford=1. Set K = K; + K.
Fiz 6 € (0,3], and let {yi}reza be sites in R with B(yy,d) C Ai(k) for all
k € Z%. There exists a constant My > 0, depending only on d, such that,
defining v = v(d, p, K, 9, Ey) > 0 for Eqg > 0 by

2
Md<1+(K+EO)m—2§§(2p—d)>
2 %5 for d>2
7= , (1.2.12)

L Ma <1+(K+E0) Gr=0)(p—1)
50

) for d=1

then, given a rectangle A as in (1.2.11)), where a € R* and L; > 114v/d for
j=1,...,d, and a closed interval I C (—oo, Eg| with |I| < 2v, we have

Xi(HA)W WX (Hy) 2 42X (Hy), (1.2.13)

where

W= N Xpg) (1.2.14)

kezZd, A1 (k)CA

The proof of Theorem is discussed in Section [1.2.2]

Remark 1.2.3. Using Theorem we can prove optimal Wegner estimates
for Anderson Hamiltonians with singular background potentials, extending

the results of [KI2].

1.2.1 The quantitative unique continuation principle

The proof of Theorem is based on a Carleman estimate of Escauriaza
and Vesella [EsV], Theorem 2|, which we state in a ball of radius ¢ > 0.

Lemma 1.2.4. Given ¢ > 0, the function wy(zr) = ¢(%|m|) on R, where

et

s 1— . . . . . .
d(s) = se~Jo =i is a strictly increasing continuous function on [0, 00),
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C> on (0,00), satisfying

1 1
— | S w,(z) < —|z| for x € B(0,p), 1.2.15
ol Sw(@) < el g (0,0) (12.15)

where C; = ¢(1)™ € (2,3). Moreover, there exist positive contants Cy and
Cs, depending only on d, such that for all o > Cs and all real valued functions
f € H*(B(0, 0)) with supp f C B(0, 0)\{0} we have
a3/ wgl_Qandx + ag2/ w;_2o‘|Vf|2dx < 0394/
Rd Rd

) w2 (Af)?dw.
R

(1.2.16)

This estimate is given in the parabolic setting in [EsV], but the estimate
in the elliptic setting as in the lemma follows immediately by the argument in
[KSU, Proposition B.3]. In the proofs of the quantitative unique continuation
principle for bounded potentials [BoKl [GK3| [BoKI] only the first term in the
left hand side of is used (see [BoK| Lemma 3.15]), but for singular
potentials we also need to use the gradient term in the left hand side of

(1.2.16]) and Sobolev’s inequalities.

Proof of Theorem[1.2.1} Let C;,Cs,C5 be the constants of Lemma [1.2.4]
which depend only on d. Without loss of generality Cb, > 1. By Cj,
J = 4,5,..., we will always denote an appropriate nonzero constant de-
pending only on d.

We follow Bourgain and Klein’s proof for bounded potentials [BoKI, The-
orem 3.4]. Let zy € Q\O be as in (1.2.7). Without loss of generality we take
xo =0, © C B(0,2C1Q), and Q = B(0, p), where o = 2C1Q + 2, and let
d be as in (1.2.8)). Proceeding as in [BoKI, Theorem 3.4], we fix a function
n € C®(R?) given by n(z) = &(]z|), where ¢ is an even C* function on R,
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0 < ¢ <1, such that

E(s)=1 if 35 <|s| <2C1Q, &(s)=0 if [s| < 1dor|s| >2C1Q+ 1,
FE)< ) i Jsl<3, @6) <Y i s 220:Q,5 = 1,2,

(1.2.17)
Vi(e)] < Vdlg'(|z])| and  |An(z)] < d|¢"(|z])],

supp Vn C {4 < |z < 2} U {2C4Q < |z| < 2C1Q + 1}

Let a > Cy. Applying Lemma to the function ny gives

3

o o 1m202,2
= o d
303@4 /Rd ¢ w T

ror g RO
< / 2(A(ny)) de < / w22 (Ay) dx (1.2.18)

=3 iy

+ 4 / w22 V|V Pde + / w22 (An)*Y da.
supp Vn supp Vn
Using (1.2.5), |[V®|| < K1, and w, < 1 on suppn, we have

/d W3_2QU2<Aw)2dl’ S Q/d V2w§_2°‘772¢2dx + 2/ 2—2a 2C2d.’17
R R

Rd
(1.2.19)

§4K12/ —1—2a 2¢dl’+4/ (V(Q))Q 2—2a Z@ZJCZZE—{—Q/ 2—2x 2€d$
R4 R4

Rd
Given M > 0, we write V?) = Uy, + Vi, where Uy, = V(2)X{|v(2)|gm} and
Wy = V(Q)X{W(g)|>m}. We have

/ (v(Z))Q 2—2« 2,¢ dr <M/ —1—2« 2w2dm+/ WM(U2 2a 2w2d$
Rd

(1.2.20)
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Combining (|1.2.18)), (1.2.19)) and (1.2.20)), we have

OZS [0
_4K2_4M —1—2c, 2 2d / 172av 2d
(30394 1 ) /Rd wg 77 2/) x + 30392 R wg | (mﬁ)’ T

§4/ Wfdwzzan2w2dx+2/ wﬁ’%‘nQCde (1.2.21)
Rd

R4

+4 / wy 2P| VY Pde + / wy 2 (An)*Yida.
supp Vn supp Vn
Note that for 1 < ¢ < p we have
Warlly < M™5 W[l < M= [V g < M5 K. (1.2.22)

We set K = Kl + K2 with Kl,KQ 2 0.

We consider three cases:
(a) d > 3: Let |[V®], < K, with p > d. Using Hélder’s inequality and
(11.2.22)) with ¢ = d, we get
[ Wher s < (Wit ety (1223)
R
—d

2p
= IWarllllowg ™ milPa < M™50 K" [lay™ 10 o -

Using Sobolev’s inequality (e.g., |[GiT, Theorem 7.10]), we get

oy oo, < o ( [ 1V emR) (1224
<204 /Rd [Vw, *Pr*y*de + 2C, /Rd w, 2|V () Pd.
Since -
Vw, * = (1- a)Q%—w < O‘—jw;m, (1.2.25)

|z exp(Zlz]) ~ o

we have (recall w, < 1 on suppn)
1—a)2, 2 /2 o’ 120, 2,12
/ Vw, *"n* 1 dr < —2/ w, nride. (1.2.26)
Rd 0" Jrd
4

2



Combining (|1.2.21)), (1.2.23]), (1.2.24)) and (1.2.26)), we conclude that
o? Y
& uK?—aM - sCM R Pyt
(303@4 ! * QZ) /Rd dJ *
(Y soME K / W2V () 2
303@2 2 R4 ¢
2-20 |7, |2 2 220 2
§4/ WOV dm+/ (AP (1.2.27)
supp vn

supp Vn
2—2a, 2 2
+2/ w, “nCdx.
suppn
—2d

Assuming o > o and setting M = K2a b o » , we have

—2d

ped 2P
AK? 4+ 4M + 8CyM "' K, 02072 = 4K2 + 4K2(1 + 2C))ar o v

—2d

< (AK*(1+20))ar o7 . (1.2.28)

Taking
a > Cs(1 + Km)giai > Cy(1 + K 52 ) g8 (1.2.29)
we can guarantee that a > (Y,
i > 3(4K%(1+2C)ar o+ ) (1.2.30)
Cigt 2 Dar o), 2.
and
¢ oMK >0 (1.2.31)
303Q2 4 2 fdl . oL

Using (1.2.15) and recalling (1.2.6)), we obtain
1+2a
« Q (63
[oaepeao= (§) Iveld = GO luelt.  (1232)

Combining (|1.2.27)), (1.2.30)), (1.2.31)) and (1.2.32)), we conclude that

20 1+2a 2 2-2a 2 2
90394(201) vellz < 4/ w, “VnF| V| ida (1.2.33)

supp Vn

+ / w2 (An)* Y da + 2 / wy 2 P,
supp V7

supp7
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Let f € D(V). For arbitrary M > 0 we have

/ V fdx
Rd

Using Hélder’s inequality, (1.2.22) with ¢ = g, and Sobolev’s inequality, we

/ V f2dx
Rd

2
Taking M = (2C’4K27p)% (we can require Cy > 1), we get

< (K, + M3 f]12 +/ Wl f2d. (1.2.34)
Rd

get

2p—

d __2p
< (K + M| fIE+ CM™ 5 K, VA3 (1.2.35)

2p 1
/Rd V fds| < 20,1+ K559)| 3+ SV A3 (1.2.36)
We have
/ AEAVIEIVOR + (Bt (1237
{2C1Q<z|<2C1Q+1}
< 16d? (ﬁ)sz (4|VY]? + ¢?)dx
20,Q (201Q<[2|<201Q+1}
<G (o)™ | (@ + (L K550)0%)d
{201Q-1<]2]<2C1Q+2)

< Co (B> (a2 + (1 + K55 0)|[¢hal12),

where we used (1.2.36) and an interior estimate (e.g., [GK2, Lemma A.2]).
Similarly,

/ WUV PV 4 (A2 de (1.2.38)
{2<ja|<32}

< 256d%0 (4671 Cp)** 2 / (4|VY]? +¢?)d

{2<|z|<3}

< Cho (4671 Cr)? / (€ + (K75 4 62)¢?)da
{|z|<6}

< Cr674 (1667 C2Q) > (|| Call2 + (K577 + 672) [0 s]12)-
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In addition,

[ wrmpcds < (45710 Gl < (165G Gl
supp n

(1.2.39)
If we have
a® (8™ _2p
2(8) Iwelgz G+ KFEall, (1240
we obtain
202 2 1 2a3 N
Co (501)™" 7 1+ K39) |l < 35500 el (1241
so we conclude that
O 20 e (12.42)
9C30*

< Cod~H(16671C2Q) (K %=1 + 672) [0 6112 + [[Call?).

Thus,

(1/3

@ BC1Q) ™ el < Cuol (K57 + 572 ol + Gal): (1243)
Since (5)° < (3)° < &5 by (L28). we have
a 5 12a+14 .
g (@) IWell3 < Cua((1+ K50) ol + 8l al).  (1.2:44)

To satisfy ((1.2.29)) and ((1.2.40)), we choose

a = Cp(l+ Kﬁ‘;fgd) (Qm + log %) : (1.2.45)

Combining with (1.2.44]), and recalling Q) > 1, we get

_2p 4p—2d
( 6 > 013(1+K 3p—2d)(Q 3p—2d +log ||1PQ||2)

2p lvell2

(1+ KSp*Qd)3

el

< Cua((1+ K573) |9 6|2 + 6% Call?), (1.2.46)
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and hence

5 md(l—f—K%)(Q%Hog \WQHQ) ) . 2 2
(5) 9ol < gl + B2l (1247)

=Y P
Q

where mg > 0 is a constant depending only on d.

(b) d = 2: Let (||[V@P|,)r < K, with p > 2. Given Ky > 0 and M > 0,

Wil / ' (lV(Q)lp)
| —=— | dz < 0 dz, 1.2.48
/R2 <M2K§ R? K3 ( )

and hence, using [||[V@|P|,- < K%, we get

we have

W2 < M~ K2, (1.2.49)

Using Holder’s inequality for Orlicz spaces ([1.2.3), and (1.2.49)), we get

®* W372a772¢2”¢

/2 Wiw2 2o PP de < 2||Wi;
R

< 2MF KR w22y (1.2.50)
Using the Sobolev inequality given in [AT, Theorem 0.1], we obtain
ozl < ([ lemban s [ VG moPa) 2
< Cy /R2 |wy~“nip| P 4 2C /]R2 Vw, P’y da

+ 20, / Wl () P
RQ

Combining (1.2.21)), (1.2.50)), (1.2.51)), and ([1.2.26|) with d = 2, we con-
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clude that

2

o’ p2 =2
—4K? —4M — 8O, M~ = K? —16C,M 2z KP— / —1=202024
(303Q4 1 : S 2@2) e TVE

- B s 1—-2a 2
+ (303Q2 — 16C4,M™ 2 K§> /R2 w, V()| dx

< 4/ w3_2‘1|V17|2|V@/)|2dx +/ w22 (An)* i d (1.2.52)
supp Vn

supp Vn

+ 2/ wz_Qan2C2dx.
supp7)

Assuming a > p and setting M = K%a%[%, we have

2
AK? +4M +8C,M "7 K2 + 160, M~ "7 K3 (1.2.53)
0

2 -2 pa2
<AKT +4M +24C, M~ 7 Ky —

0
= AK2 + 4K2(1 4+ 6Cy)aro » < AK2(1+6C)aro ».
Taking
a > Cy(1+ K5) gt > Cs(1+ K5°1) 08, (1.2.54)

we can guarantee that a > Cj,

3

0] 4 4
> 3(4K%(1 +6C)aro » 1.2.55
301 2 SUKA(1+6C)are ™), (1.2.55)
and
(8% p—2
—16C,M~ =2 K? > 0. 1.2.56

Using ((1.2.15)) and recalling ([1.2.6]), we obtain

1+2a
_1-2a 0 a
[t eapanz (£) el = o) velp. (250
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Combining (|1.2.52)), (1.2.55)), (1.2.56)) and (1.2.57]), we conclude that

20 o
s CC el <4 [ w v
supp Vn
+/ wz_%‘(An)szd:p—kZ/ w2 Cd. (1.2.58)
supp Vn suppn

Given M > 0, we have

|W| / (\V !”)
|l ———— | dz < dx, 1.2.59
/R2(p (M"a K? RQQD K3 ( )

and hence, using |||V @ P||,« < KT, we get ||[Wall+ < M~" KL, Let f €

D(V). Then, using (1.2.34), Holder’s inequality for Orlicz spaces (1.2.3)), and

the Sobolev inequality in [AT, Theorem 0.1], we get

Vf2dz| < (K, + M2 +20,M "= KB)||f|2 + 20, M~ "= K|V f|2.
]R2
(1.2.60)
Taking M = (4C’4K§)p%1 (we can require Cy > 1), we get
[ | <aciue KEOISE+ YA (1.2.61)
R2
We have
/ CUVIEIVOE 4 (Bt (1262)
{2C1Q<z|<2C1 Q+1}
< 64( Cre )QM/ (4Vo[? + ) da
20,Q {201Q<[2|<2C1 Q+1}
<G (o)™ | (@ + (14 K7T)0)d
{201Q-1<|a|<2C1Q+2}

< Cs (3C1) 7 (Iall3 + (1+ K77)[gal3),
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where we used ([1.2.61)) and an interior estimate. Similarly,
/ w2 2 (4P + (An)*y?)da (1.2.63)
{§<le1<$}

< 10246 ~4(4071C p) %2 / (4|VY]? + ¢°)da

5 5
{Zﬁmﬁ%}

< Ch5 (467 Cr)? / (4 (K757 + 6 2)0P)de
{|z| <8}

< C67 (16671 C2Q) % 2 (|| Call2 + (K77 4 672)|[tbos]12).-
In addition,

/ wy PP ¢Pdr < (4071 Cro)* 2 ICall3 < (16671 CTQ)* 2| Call5.
PP (1.2.64)

If we have

a3 8\ p_
2 (3) vl = Cua+ ) el (1265)

we obtain

20—2 p_ 1 2a3
Cs (2C1) (1+ K71)|[all3 < 290,00

(2C1) "1 vell3, (1.2.66)

so we conclude that

CYS

9051 (2C0) e I3 (1.2.67)

< Cod (1651 CTQ** > (K71 +672) |53 + lICall3)-

Thus,

ol

EQ“((SGQ)%)M||w@||§ < Cro((K 7T 4 6720052 + I¢alld). (1.2.68)
Since (%)5 < (3)° < g by ([L.2.8), we have

o3 120414 L
EQﬁ( ) [Pells < Cri((1+ K#1)[vos]5 + 0%[ICall3).  (1.2.69)

Qf =
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To satisfy (1.2.54]) and ((1.2.65]), we choose

a = Cp(l + K5) (Q +log ”ig“z) , (1.2.70)

Combining with (1.2.69)), and recalling Q) > 1, we get

2 4p—4
st (B)
3p—4 J—

Q

< Cua((1+ K771 ||tho 5|12 + 82[|¢all?), (1.2.71)

Vel

and hence there exists m > 0 such that

2P 4p—4
(5 m(1+K3P74)(Q3p74 +log H:ﬁg“;)
Q

If |V@®|, < Ky < oo for some p > 2, we have (|||[V 3P

Iellz < ¥wsllz + 0%1Call3.  (1.2.72)

1
7

LP*)p S K2 fOl"

any p’ € [2,p) since

@) @\ ¥ @)|p
/ SO*(W ,| >dx§/ <|V ,| ) dng 14 pl do < 1. (1.2.73)
R2 K? r2 \ Kb r2 K5

We conclude that holds with p’ substituted for p. Letting p’ 1 p we
obtain since K is independent of p'.

(¢c) d = 1: Let |[VP, < Ky with p > 2. Using Hélder’s inequality and
(11.2.22) with ¢ = 2, we get

/RWzﬁw““nzﬁdl‘ < [ WatlBllw2 20 oo < M™% KE[|w? 27202 .

4 4 4
(1.2.74)

Applying Sobolev’s inequality, we obtain
o200l < [ ok enoPds + [ |} eno)Pda (1.2.75)
R R

< / ol P + 2 / (Y PrPPde 12 / w22 (Y .
R R R
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Combining (1.2.21)), (1.2.74)), (1.2.75)), and (1.2.26|) with d = 1, we con-
clude that

043 p=2 p—=2 a2
— —AK? —AM —4AM T KP —8C,M "z KP— / =20 .22

« p=2
+ ——8M2Kp>/w12a '\2dx
(30 1) [l

< 4/ wgh\n’|2\w/\2dx+/ w§’2o‘(n”)2w2d1’ (1.2.76)
supp n’

supp 7’

+ 2/ wz_%‘n?@?da:.
supp

Assuming a > o, and setting M = K%aﬁg_%, we have

2
AK? + 4M +4M~"7 K + 8M "7 K3 (1.2.77)
0

2 _p=2 pa2 2 2 4 _4 2 4 _4
<AKT7 +4M + 12M™ 2 KQE =4K] +16K5arp » < 16K arp »r.
Taking
a>Cs(1+ Kwi)gs i > CO5(1+ K)o, (1.2.78)

we can guarantee that a > Cj,

3

%3@4 > 3(16K2ar o 7), (1.2.79)
and
%3@2 —SM TR > 0. (1.2.80)

Using (1.2.15)) and recalling (|1.2.6]), we obtain

1+2a
~1-2a 0 N
/Rw; 2t > (@) [Pell3 > (2C1) 2 |[velf3. (1.2.81)
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Combining (|1.2.76)), (1.2.79)), (1.2.80) and (1.2.81]), we conclude that

203
903 Q4

C) el <4 [ wk Py s

supp 7’

+ / wy 2 (") P da + 2 / w2 Cdx (1.2.82)
supp 7’

supp 7

Let f € D(V) and M > 0. Using (1.2.34]), Holder’s inequality, (|1.2.22))
with d = 1, and Sobolev’s inequality, we get

/R V f2dx

Taking M = (QKS)%, we get

p—1 _p—1
< (Ky+ Mz + M "7 KD)||f|12+M = K2||f|2.  (1.2.83)

. 1
[vias <20 kEOIBH IR (28
R
We have
/ G Al I 4 (%) de (1.2.85)
{2C1Q<|z|<2C1Q+1}

ClQ 200—2
< 64( ) / P+ ?)de
20,Q {201Q<[x|<2C1Q+1}

5 200—2 e
<G (—cl) / (@ + (14 K7 T)?)do
4 {201Q-1<]e|<2C1Q+2)

5 2a—2 e
<ai(36) Gl + @+ K7D al)

where we used ((1.2.61)) and an interior estimate. Similarly,
[ PR+ s (1.2.86)
{3<l=I<3}

< 102464 (4071C0)** 2 / (4]0 + ¢?)da

5 35
{zﬁmﬁj}

< Ch5 (4671 Cr)? / (C+ (K7 4 672)¢?)da
{|z|<6}

< C674 (16671 C2Q)* 2 (|| Call2 + (K77 4 672)|[tbos]12).-
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In addition,

[ wrmpcds < (45710 Gl < (165G Galf
supp”n

(1.2.87)
If we have
Oé3 ] 2a0 b
C(5) Iwelgz e KEal  (289)
we obtain
oa— _Dp_ 1 2@ a
Co (3C1) 7 (14 K7 alls < 5565200 " vells,  (12:89)
so we conclude that
i (2C) " [ve 3 (1.2.90)
9C30*

< Cod (16071 CTQY* (K7 + 67 ol + [lCall3).
Thus,
z—jQ4((8ClQ)_15)2“+2ll¢e||§ < Cao((K77 4 072) [ ]13 + lICall3). (1.2.91)
Since (%)5 < (5)° < g by [L.2.8), we have

Oé3 5 12a+14 .
EQG(—) lol2 < Cu((1 + K70 sl + 2lcalld).  (1.2.92)

Q
To satisfy (1.2.78)) and ((1.2.88)), we choose
a = Cho(l+ K1) (Qsp it log WQ'l?) (1.2.93)
[Yel[2

Combining with ([1.2.92)), and recalling Q > 1, we get

gomomm (e afink)
) Ve ll2 (1.2.94)

35343 —
1+ K )(Q

< Cha((1 4 K7°7)|[ebo 512 + 6% Call2),
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and hence there exists m > 0 such that

[Yoll3 < [¥wsll3 + 8°lICall3 (1.2.95)

2 4p—4
(¢ s (¥ e i)
0

1.2.2 Unique continuation principle for spectral pro-

jections

The following theorem, a consequence of Theorem [1.2.1] is an extension of
[KN, Theorem B.4] to Schrodinger operators with singular potentials. The-
orem [1.2.2] follows from Theorem [L.2.5

Theorem 1.2.5. Let H = —A + V be a Schridinger operator on L2(R?),
where V.=V + V@ with |V, < K; < o0 and [|[VP|, < Ky < 0o with
p>dford>3,p>2ford=2,andp>2 ford=1. Set K = K1+ K,. Fiz
6 € (0,1, let {yr}reza be sites in R with B(yy,d) C Ai(k) for all k € Z°.
There exists a constant My > 0, such that given a rectangle A as in ,
where a € R? and L; > 114V/d forj = 1,...,d, and a real-valued 1) € D(H,),
we have

Bd,p
S )l 2 < ST sl CI(—A + V))alZ (1.2.96)
kezd, A1 (k)CA

where
2p or d>?2
Bap=1g P J - (1.2.97)
—3524 for d=1

Proof of Theorem[1.2.5. Under the hypotheses of the theorem V € L (R%),

which implies that D(Ay) N{¢ € L*(A) : V¢ € L*(A)} is an operator core
for Hy, so it suffices to prove the theorem for ¢» € D(A,) with Vi € L2(A).
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Using the notation in the proof of [KN| Theorem B.4], we have ||V, =
VOl < Ky and [V, gl < 34V, < 39Ky for any € A, since
Ay, (k) C Asp, as Y75 < %,j =1,2,...,d. Using Theorem and follow-
ing the proof of [KN|, Theorem B.4], we prove ((1.2.96]). ]

Proof of Theorem[1.2.2, From (1.2.36)), (1.2.61]) and (1.2.84)), there exists a
constant Cy > 0 such that for all f € D(V)

/ V fdx
Rd

where 6 = Cy(1 —|—K2P27§d) for d > 2 and § = Cy(1 4+ K#1) for d = 1.

1
<Ollfls+ IV Al (1.2.98)

Therefore o(Hy) C [—6,00), and hence it suffices to consider Ey > —6 and
E € [-0,Ey). Wehave V — E = (V) — E) + V®  where

VO = Bl < VOl + max{Eo, 0} < Ky + By +6  (12.99)

and ||[V®], < K,. Applying Theorem and following the proof of [KN|
Theorem B.1], we prove (1.2.13)). O

1.3 Bounds on the density of states

The proof of the Theorem for d = 1 is almost the same as for bound-
ed potentials. For d = 2,3, we follow the proof in [BoKI], consider a class
of approximate eigenfunctions for which we have local upper bounds, and
pick one for which we have a global lower bound. The local upper bound-
s will come from Corollary and the global lower bound will come
from Theorem [I.2.1] Note that when applying Corollary we use that
L>°(Q) C LP(Q) for © C R? bounded, in which case L>(Q) + LP(Q) = LP(Q).
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1.3.1 One-dimensional Schrodinger operators

The case d = 1 of Theorem is an immediate consequence of the following

theorem.

Theorem 1.3.1. Let H = —A +V on L*(R), where V is a real potential
such that

sup/ |V (y)|dy < oo. (1.3.1)
{lz—y|<1}

zeR

Given Ey € R, there exists Ly g, such that for all 0 < ¢ < %, open intervals

A= AL with L > Ly g, log%, and E < Ey, we have

C
(B, E+e]) < 102’3;. (1.3.2)

Proof. Proceeding as in [BoKI, Theorem 2.3|, let A = Ay = (ag,a0 + L),

EeR, ee(0,3] and

K = sup/ IV (y)|dy < . (1.3.3)
{lz—y|<1}

z€R

Setting P = X(g,p+¢(Hr), we have dimRanP < trP < oo, RanP C
D(H,) € CY(A), and

|(Hx — E)Ylla < el|¢]]a for all » € Ran P. (1.3.4)

Given 0 < R < L,set aj =ap+jRfor j =1,2,..., (%W — 1, and consider

the vector space

Fr = {77/} € Ran P : ¢(a;) =¢'(a;) =0 for j=1,2,..., ’%-‘ — 1}.
(1.3.5)
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1/}/

g £ ) ) R G
Y Vip — Hp V—-FE 0 —

where ( = (H — E)Y¥. We have ||(]l2 < ¢|[¢]|2 from (1.3.4). For j =
1,2,...,( W—1andxe(aj—R,aj+R)ﬂA,Wehave

Given ¢ € Fg, set ¥ = ( v ) We have

L
R

o 0 1 x 0
x) = W (y)d d 3.7
v, ((V@)E) o) i . (<<y>> ro

since ¥(a;) = ¢'(a;) = 0, and hence

I R RNy ST BT
By Gronwall’s ineoiuality (see [Hd)), we have
v < | e (| [0 im0
We have |
/ym(l +|E|+ |V(2)|)dz| < (1+|E|)|x —y| + /yw |V (2)dz| (1.3.10)

<(1+|E))R+ (%W K < Cmax{R,1},
where C' =1+ |E| 4+ K. Therefore

()] < [®(2)] < ™Y flo —ajf|[¢]l; < DV Re g5
(1.3.11)

Since A is the union of these intervals, we conclude that
19|00 < S B/ Re|lb||,  for all ¢ € Fp. (1.3.12)
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We now assume that

p=na([E,E+e])=1trP> 1, (1.3.13)

since otherwise there is nothing to prove for large L. Taking R = %, it follows

from (|1.3.13]) that

dim Fr > pL — 2 ([£] —1) > pL —2£ = 1pL > 2. (1.3.14)

Applying [BoKI, Lemma 2.1}, we obtain ¢y € Fg, 1y # 0, such that

dimfR
[Y0lloe = 7 [oll2 = \/3ollvoll2: (1.3.15)
It follows from ((1.3.12]) and (|1.3.15]) that
4
V3P < eCmax{R1/Re — ec(m“{p’l})\/%a. (1.3.16)
If p <4, we have ‘—; > 1, and we get
8C
< ) 1.3.17
If p > 4, we have ﬁ < 1, and we get
2/2e¢
p < 2v/2¢Ce < V2e (1.3.18)

log?
Since we have (1.3.13]), we conclude that there exists Cx g such that

C 4  4logt
p < K? if L>-> gs.
log < p Ck.p

(1.3.19)

Since H) is semibounded (see [J]), there exists #y such that o(Hp) C
[0y, 00). Thus we have na([E, E +¢]) = 0 unless E > 6y — £. Thus, given
Ey € R, there exists Ly g, such that, for all 0 < ¢ < %, open intervals A = Ay,
with L > Ly g, log%, and E < Ey, we have (|1.3.2)). O]
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1.3.2 Two and three dimensional Schrodinger opera-

tors

As noted in |[GK3, Corollary A.2], when we apply Theorem to ap-
proximate eigenfunction of Schrodinger operators defined on a box A with
Dirichlet or periodic boundary condition, it can be extended to sites near the

boundary of A as in the following corollary.

Corollary 1.3.2. Letd = 2,3, .... Consider the Schrodinger operator Hy :=
—Ap+V on L2(A), where A = Ap(z0) is the open box of side L > 0 centered
at vo € R Ay is the Laplacian with either Dirichlet or periodic boundary
condition on A, and V =V + V2 is q real potential on A with ||V | <
Ky < oo and ||VP||, < Ky < 0o, with eitherp > d ifd >3 orp > 2 ifd = 2,
Let i € D(Hy) with Ay € L2(A) and fir a bounded measurable set © C A
where [|1Poll2 > 0. Set Q(x,0) := sup,cq |y — | for v € A, and consider x, €
Q\O such that Q = Q(z0,0) > 1. Then, given 0 < § < min{dist(zo, ©), 1},
such that B(x,0) C A, we have

_2p 4p—2d
< )md(1+K3p—2d)(Q3p—2d+1Og %112

)
Yol
5 Ol o2 < [hao sl + 62| Ha]2, (1.3.20)

where K = K1 + Ky and mg > 0 is a constant depending only on d.

This corollary is proved exactly as [GK3|, Corollary A.2]. (Note that using
the notation in the proof of [GK3, Corollary A.2], we have ||\7(\1)AL,||OO =
Vs and VO, [, < 20+ DAV, if L' = (2n + 1)L for some
neN.)

The case d = 2,3 of Theorem is an immediate consequence of the

following theorem.
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Theorem 1.3.3. Let H = —A +V on L*(R%), where d = 2,3 and V =
VO + V@ s q real potental with V) € L*(R?Y) and VP € LP(R?) with
p> 2. Set Voo = |Vl and V, = ||V||,. Given Ey € R, there exists

i—d
L such that for all 0 < ¢ < %, open bozes A = Ap with L >

d’p7V<>(01)’Vp(2)7EO

3p—2d
Lapv,5, (log 1) and E < E,, we have

C

dp,V Vi B

(B, B +e]) € — =g (1.3.21)
(log ) =

Proof. We fix € € (0,1], let L > Lo(e), where Ly(e) > 0 will be specified

later, and take a box A = Ap. There exists 6 = 0(d, p, Vog), ‘/},(2)) > 0 such

that (see (|1.2.36)) and (1.2.61)))

[ viirtas
Rd

It follows that o(H,) C [—0, 00), and hence it suffices to consider Ey > —6—1
and E € [—0—1, Ey]. We set P = x(g, g+ (Ha); note that Ran P C D(H,) C
H'(A) and

<OIfIZ+ IVl forall feD(V). (1.3.22)

|(Hy — E)lly < e||¢]l2 for all 4 € Ran P. (1.3.23)

Recalling that for ¢ > 0 we have

_ 1
le™ D [z ) s ay < M2 o) srma)

1
< [le2" || 2rayo e rey < 00, (1.3.24)
for ¢ € Ran P we get
9]0 = [le™FatOeHatOy || (1.3.25)

< e FATO Lo ay ooy | €FA T2 < Caeo 0T[4
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Since P(Hy — E)Y = (Hy — E)P = (Hp — E)t for ¢ € Ran P, we conclude
that

H(HA — E)z,b”oo < 50d7p7V£>7Vp<2)7E0|]w|\2 for all b € Ran P. (1.3.26)

Since V € L*(R?) + LP(R?) with p > 2, we have V € L} _(R?). Therefore
Vi € L2(A) as ¢ is bounded. Thus we have Ay = —Hpp + Vb € L2(A).
Let

p=ns,(E,E+e])=f7tr P, (1.3.27)

We have the uniform upper bound (e.g., [GK2, Eq. (A.6)])

p<pw:=C without loss of generality p,, > 1. (1.3.28)

dp, V) Vi By

Let 74 be the constant in Theorem [1.1.2} we assume 2%y; > 1 without

loss of generality. We take

L4 > g3d+1y Pub. (1.3.29)
p
otherwise there is nothing to prove for L large. Let R satisfy
I\
od+ly Pub o pd (—> : (1.3.30)
p 4
we have

2 < pR? and 2 < R (1.3.31)

Using ((1.3.28)) and (1.3.30]), we have

PN e a1
V= gar; RTT| > |pht | > 1. (1.3.32)
d

We now choose G C A such that

K=URalw) and 6= ([E])"€ [(5)" ()] 0N (1333)



Give y; € G, we apply Corollary with Q = A D B(y,1), W =
V — E, and F = RanP. The hypothesis (1.1.7)) follows from (1.3.26]).

We conclude that there exists a vector subspace Fy, x of Ran P and ry =

ro(d, p, VO(.}), \/})(2),E0) € (0,1) such that, using (1.3.32) and (|1.3.30)), we have
dim F,, x > pL? — 44Nt > 1, (1.3.34)

and for all ¢ € F,, y we have

2 .
[Y(y1 +2)| < (Cc]l\,[p,Véé),Vp(Q),Eo‘ﬂN—i_l + 60d,p,V£)7Vp(2),E0)H¢|’2 if |z| <.

(1.3.35)

Picking y» € G, y2 # y1, and apply Theorem with Q@ = A D B(ys, 1),
W =V — FE, and F = F,, y, we obtain a vector subspace Fy, ,, v of Fy, n,

and hence of Ran P, such that
dim F,, ,, n > dim F,, v — 7N > pL? — 29, N1 > 1, (1.3.36)

and (|1.3.35) holds for all ¢ € F,, ,, v also with y, substituted for y;. Re-

peating this procedure until we exhaust the sites in G, we conclude that there
exists a vector subspace Fg of Ran P and ¢ = ro(d, p, v, ‘/};(2), Ey) € (0,1),
such that

dim Fp > pL¢ — (26) N1 > 1L > 230y, > 1, (1.3.37)

where we used the assumption ([1.3.29)), and for all ¢ € Fr and y € G we

have

2 .
|¢(y + :L’)| < (Cgp,véj),vﬁ,EJﬂNH + ECd,p,Véj),V,,(”,EO”WHQ if @ <.

(1.3.38)

44



We let Qg denote the orthogonal projection onto Fr. Since trQr =
dim Fg, it follows from (1.3.37) by the argument in [BoKl, Egs. (3.102)-
(3.106)] that there exists ¥y = Qrty with ||g||2 = 1 such that

Yp < ||XA1¢0||2 < ]., where v= 7d,p,V£),Vp(2),Eo > 0. (1339)
We pick yg € G such that
L < 1R < dist(yo, A1) < 2VdR, (1.3.40)

which can be done by our construction, and apply Corollary with xy =
Yo, © = Ay, and potential V' — E; note that

24 Vd<Q=Qyo, M) <2VAR + Vd < 3VdR. (1.3.41)

Let 0 < 0 < 9 := min{%,ro} where 7y is as in (1.3.38]). It follows from

Corollaryn using , that

4p—2d

( 5 )m(1+K3P 2d)(R?’P 2d —log [|oxa, ll2)

3VdR

[boxa.ll3 < [1oxs00l3 + €2,

(1.3.42)
with a constant m = mg > 0 and K = V&) + \/})(2) + |E|. Using and
(11.3.39), we get

4p—2d

) m(1+K 572 )(R5=21 _log(1p))
(3\/83)

(vp)? (1.3.43)

52(N+1)+d +C

< Cdc dp, VO Vi B

V(l) Vi B,

3 \[R 3 f < 1 by (1.3.31), the inequality (1.3.43)

Since p > 2R~ and

implies the existence of strictly positive constants R=R ITRORACE and
M=M dp VD, V(z) o such that
4p— 23
F) MR3pr—2 N2 oON 2 ~
(ﬁ) < Cd,p,VS),Vf),EO(S + Od,p,véj),vf),Eog for R> R. (1.3.44)
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We require

R> R =max{R, 6}, (1.3.45)
and choose ¢ by (note Cgp,VS),Vﬁ,Eo > 1)
0= (Cgp,vg)yp(z)ﬂoR)_l < 8o, 50 5 = Ca]l\,[p,\/;(}),vf),EOéz = (ng,vg)yéz)’EoRQ)_%
(1.3.46)
obtaining
MRH= N
(%) < (2)" + 0,0 o g (1.3.47)

We now take d = 2,3 and take R large enough so that

4p—2d 4p—2d

N MR3p=2d . _ 3p—2d
< % (%) , Le., (Cgp,VS),VéQ),EORQ)N MEZPTE > 9 (1.3.48)

—~
=/
~—

To see this, note that gﬁ:gg < % when p > % for d = 2,3, so

_1
MR% 51 < N = KL) o Rdle if p>C" R “mhr

2d+17d &pﬁég)ﬂé2hﬁb
(1.3.49)
and hence
4p—2d 4p—2d d—4)p+2d
N 2\N-MR3»=2d o N-MR¥»=2d o " (d=4)p+2d
lf 3p—2d
(Cd,p,v§§>,v,§2),EoR ) = = p= d,p,Véi),v;”,EoR
(1.3.50)
We now choose R by
(d—4)p+2d

where the constant c is chosen large enough to ensure that, us-

dp, V) V) B

ing (1.3.28)), all the conditions (1.3.30), (1.3.45), (1.3.50), and (1.3.48) are
satisfied. It follows from ([1.3.47)) and (1.3.48) that

4p—2d
1 (5 \MR3p—2d 2 .
5 (R) < Cd,p,Vo((}),Vp(Q),EOE , that is, (1.3.52)
4p—2d
N 2\—MR3p—2d <9 2
(Cd,p,VéJ),VISQ),EoR ) = Cd,p,Véé%v;”,EoE :
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Using (1.3.32)), and (|1.3.51)) with a sufficiently large constant Capv® v py:
we get from (|1.3.52]) that

—M'R3p—2d _ _M'RGp— — p— 9
’ —° - Cd,:v,vo(ol),vp@),EO6 ’ (1.3.53)
where M' = M o) @ - Thus
d,p,Veo' V™', Ep
1 paa Cyoy) y@ g
— _ PyVoo sVp L0
log = <G, vy g B2 = ——F5 75—, (1.3.54)
£ 2P, WVp p(4_d)p_2d
and hence
~ 1 _ (4—=d)p—2d
8p—4d
P<Copv o g, (l0g2) =, (1.3.55)
as long as L is large enough to satisty (1.3.30) with the choice of R in (|1.3.51)),
3p—2d
1\ 8p—dd
namely L> Ld,p,V£)7Vz,<2),Eo (log 6) D ) 0
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Chapter 2

Eigensystem bootstrap
multiscale analysis for the

Anderson model

The eigensystem multiscale analysis is a new approach for proving localiza-
tion for the Anderson model introduced by Elgart and Klein [EK]. The usual
proofs of localization for random Schrédinger operators are based on the s-
tudy of finite volume Green’s functions [FroS, [FroMSS| Dr, [DrKl [Spl, [CH,
FK| [GK1l, K11, BoK| I[GK3, [AiM| [Ail [AiSFH| [AIENSS|. In contrast to the
usual strategy, the eigensystem multiscale analysis is based on finite volume
eigensystems, not finite volume Green’s functions. It treats all energies of
the finite volume operator at the same time, establishing level spacing and
localization of eigenfunctions in a fixed box with high probability. A new
feature is the labeling of the eigenvalues and eigenfunctions by the sites of

the box.
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We use a bootstrap argument as in [GK1] to enhance the eigensystem
multiscale analysis. It yields exponential localization of finite volume eigen-
functions in boxes of side L, with the eigenvalues and eigenfunctions la-
beled by the sites of the box, with probability higher than 1 — e for any
0 < & < 1. The starting hypothesis for the eigensystem bootstrap multi-
scale analysis only requires the verification of polynomial decay of the finite
volume eigenfunctions, at some sufficiently large scale, with some minimal
probability independent of the scale. The advantage of the bootstrap multi-
scale analysis is that from the same starting hypothesis we get conclusions
that are valid for any 0 < £ < 1.

We consider the Anderson model in the following form.

Definition 2.0.4. The Anderson model is the random Schrodinger operator
H.,:=—eA+V, on *Z%, (2.0.1)

where € > 0; A is the (centered) discrete Laplacian:

(Ap)(z) = D @y for ¢e*(Z%; (2.0.2)
yeZ4,|ly—x|=1
Vo(z) = w, for z € Z where w = {wy},eze is a family of independent

identically distributed random variables, with a non-degenerate probability

distribution g with bounded support and Holder continuous of order o €
(3:1]:
Su(t) < Kt* forall tel0,1], (2.0.3)

with S, (t) := sup,cg pt{[a, @ + t]} the concentration function of the measure

i and K a constant.
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Given © C Z%, we let Tg = xoTxo be the restriction of the bounded
operator T' on (%(Z%) to (?2(0). If ® C © C Z4, we identify (*(®) with
a subset of £?(0) by extending functions on ® to functions on © that are
identically 0 on © \ ®. We write g = xop if ¢ is a function on ©. We let
]l = llgla and [lplloc = maxee [4(y)] for & € 2(O).

For x = (w1, %,...,24) € R? we set ||z|| = || = maxj—12,. a7, |2| =

2|y = (Z;.lzl x?)é, and |z|; = Z;l:l |z;|. Given 2 C R?, we let diamE =
sup, ez ||y — z|| denote its diameter, and set dist(z, Z) = infyez [Jy — 2| for
r € R

We use boxes in Z? centered at points in R?. The box in Z¢ of side L > 0

centered at x € R? is given by
Ap(z) = Af(z)NZY,  where Af(z)={yeR%|y—z|<%}. (204)

We write Az to denote a box Ap(x) for some x € R% We have (L — 2)¢ <
AL < (L + 1) for L > 2, where for a set © C Z¢ we let |©| denote its
cardinality.

The following definitions are for a fixed discrete Schrodinger operator H..
We omit ¢ from the notation (i.e., we write H for H., Hg for H.g) when
it does not lead to confusion. We always consider scales L > 200, and, for
7€ (0,1), set

L'=|%| and L,=|[L7]. (2.0.5)

For fixed ¢ > 0, 8,7 € (0,1), we have the following definitions:

Definition 2.0.5. Let Ay be a box, x € Az, and ¢ € (*(A) with ||| = 1.
Then:
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(i) Given f > 0, ¢ is said to be (z, §)-polynomially localized if

o(y)| < L7 forall yeA, with |ly—z| > L. (2.0.6)

(ii) Given s € (0,1), ¢ is said to be (x,s)-subexponentially localized if

lp(y)| < e forall yeA, with |ly—z|>L.  (2.0.7)

(iii) Given m > 0, ¢ is said to be (x, m)-localized if

lo(y)| < e ™=l forall ye A, with |ly—xf > L. (2.0.8)

Definition 2.0.6. Let R > 0, and © C Z% be a finite set such that all

eigenvalues of Hg are simple (i.e., |0(Hg)| = |©]). Then:

(i) © is called R-polynomially level spacing for Hg if |A — N| > R~ for
all \, N € o(Hg), A # N.

(i) © is called R-level spacing for He if A — N| > e ® for all A, X €
o(Ho), A # N.

When © = A, a box, and R = L, we will just say that Ay is polynomially

level spacing for Hy,, or Ay is level spacing for Hy, .

Note that R-polynomially level spacing implies R-level spacing for suffi-
ciently large R.

Given © C Z4, (p, ) is called an eigenpair for He if ¢ € (3(0), ) €
R with ||¢|| = 1, and Hep = A (i.e., A is an eigenvalue for Hg with
a corresponding normalized eigenfunction ¢). A collection {(p;, \;)};es of
eigenpairs for Hg is called an eigensystem for He if {¢; } ;e is an orthonormal
basis for £2(©). We may rewrite the eigensystem as {(¢x, A) }reo(mo) if all

eigenvalues of Hg are simple.
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Definition 2.0.7. Let A;, be a box. Then:

(i) Given 0 > 0, A, will be called 6-polynomially localizing (PL) for H if
the following holds:

(a) Ap is polynomially level spacing for Hy, .

(b) There exists a 5—polynomially localized eigensystem for Hy, , that

is, an eigensystem {(¢u, Az)}zen, for Hy, such that ¢, is (z,0)-

polynomially localized for all x € Aj,.

(ii)) Given m* > 0, Ay will be called m*-mix localizing (ML) for H if the
following holds:
(a) Ap is polynomially level spacing for Hy, .

(b) There exists an m*-localized eigensystem for H,,, that is, an
eigensystem {(¢z, A\z) tzea, for Hy, such that ¢, is (x, m*)-localized

for all x € Ay.

(ili) Given s € (0,1), Ay will be called s-subexponentially localizing (SEL)
for H if the following holds:
(a) Ay is level spacing for Hy, .

(b) There exists an s-subexponentially localized eigensystem for H,, ,
that is, an eigensystem {(@u, A\y)}zen, for Ha, such that ¢, is

(z, 5)-subexponentially localized for all x € Ap.

(iv) Given m > 0, Ay will be called m-localizing (LOC) for H if the follow-
ing holds:
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(a) Ayp is level spacing for Hy, .

(b) There exists an m-localized eigensystem for Hy, .

Remark 2.0.8. It follows immediately from the definition that given s €
(0,1),

log - -
log L -SEL = A is s-SEL,

(2.0.9)

Ay is m*-mix localizing = Apis (1 —

for sufficiently large L. (We consider m* < 40.)

We now state the bootstrap multiscale analysis. We will use Cy C(’Lb’__,
C(a,b,...), etc., to denote a finite constant depending on the parameters
a,b,.... Note that C,p, . may denote different constants in different equa-
tions, and even in the same equation. By a constant we always mean a finite

constant. We will omit the dependence on d and p from the notation.

Given 6 > (2a6_1 + g) d and 0 < ¢ < 1, we introduce the following pa-

rameters:

o We fix ¢, p, 1 such that

Mo <g<i(@-2d), 0<p<(2a—1)g—3d, (2.0.10)

200—1 2

. D 20—4d
and 1<~y <min {1 + e 5d+4q} ’

and note that
0>2d+y (¥+2¢) >%+2 (2.0.11)

e We fix (, 8,7, 7 such that

0<§<C<ﬁ<%<1<'y<\/§and max{l;zl,l?ﬂ,”_lv)ﬁ“}<T<1,

(2.0.12)
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and note that

S <l-7+ <7 and (2.0.13)

0<§<€72<C<5<§<%<T<1<%<7<§-

e We fix s such that
w1 - 2 (- B <s <l (201
and note that

0<(<B<yf<s<l and 1-7+2<7-78  (2.0.15)

e We also let

g: # < (C?B)? T= HTT € (7—7 1) and L‘T' = LL;J <2016>

In what follows, given 6 > (2;%1 + g) d, we fix ¢, p,v; asin (2.0.10)), and then,
given 0 < £ < 1, we fix (, 5,7, 7 as in (2.0.12). We use Definitions 2.0.

with these fixed ¢, 5, 7, which we omit from the dependence of the constants.

Theorem 2.0.9. Let 0 > (% + g) d and €9 > 0. There exists a finite
scale L(eg, ) with the following property: Suppose for some € € (0,e0], Lo >

L(g9,0), and 0 < Py < we have

1
2(800)27 7

inf P{Ar,(x) is 0-polynomially localizing for H. ,} > 1— Fy.  (2.0.17)

z€R4

Then, given 0 < & < 1, we can find a finite scale L = z(go,ﬁ,f,Lo) and
me = m(&, L) > 0 such that

inf P{A[(z) is me-localizing for H. ,} > 1 — e ™ for all L > L. (2.0.18)

zCcRd
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The eigensystem bootstrap multiscale analysis, stated in Theorem [2.0.9),

follows from a repeated use of a bootstrap argument, as in [GKI, Section 6],

making successive use of Propositions [2.3.1] [2.3.3] [2.3.4] [2.3.6] [2.3.8, and
2.3.9 Propositions [2.3.1], [2.3.4] [2.3.6] and [2.3.9] are eigensystem multiscale

analyses. But there is a difference in the procedure comparing with the
Green’s function bootstrap multiscale analysis of [GK1]. Unlike the defini-
tions of good boxes for the Green’s function multiscale analyses, the defini-
tions of good (i.e., localizing) boxes for the eigensystem multiscale analyses,
given in Definition , require intermediate scales, namely % and L7 in
Definition [2.0.5] For this reason we only have the direct implications given
in Remark Thus the bootstrap between the eigensystem multiscale
analyses requires some extra intermediate steps, given in Propositions
and 2.3.8

In Section we will prove that we can fulfill the hypotheses of Theo-
rem [2.0.9] obtaining the following theorem.

Theorem 2.0.10. There exists ¢g > 0 such that, given 0 < & < 1, we can
find a finite scale L = Z(Eg,f) and mg = m(€, Z) > 0 such that for all

0 < e < gy we have

inf P{A.(z) is me¢-localizing for H. .} > 1 — e X forL>L. (2.0.19)

z€R4

Theorem [2.0.10] yields all the usual forms of localization. To see this,

we introduce some notation and definitions. We fix v > ¢, and set (z) =

27
V14 |z

A function ¢ : Z¢ — C is called a v-generalized eigenfunction for H, if

¥ is a generalized eigenfunction (see (2.1.12))) and 0 < ||(x) 9| < co. We
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let V.(A) denote the collection of v-generalized eigenfunctions for H. with

generalized eigenvalue A € R.
Given A € R and a,b € Z¢, we set

pol
WD) = d TV o)~ it Ve(A) #0
£,\ T

0 otherwise

(2.0.20)

Theorem [2.0.10] yields the following theorem, from which one can de-

rive Anderson localization (pure point spectrum with exponentially decaying

eigenfunctions) dynamical localization, and more, as in [EK| Corollary 1.8].

Theorem 2.0.11. Let H., be an Anderson model. There exists g > 0 such

that, given & € (0,1), we can find a scale L= E(eo, €) and me = m(¢,

L) >0,

such that for all 0 < e <¢gq, L > L with L € 2N, and a € Z2 there exists an

event Ve 1. with the following properties:

(i) V-0 depends only on the random variables {wy}zen,, (a), and

P{V. 1.} >1-Ce ™.

(i) For allw € Y. 1, and X € R we have, with

(b) > e 1™ —  max W%

(a)
max W
yeAr(a) S9N

beA,(a) TP
3

where

Ap(a) ={yeZ L <|ly—a| <8L}.
In particular,

W(a)

£,W,A

(@W () < e mmelv=al  for all y € Ap(a).

£,W,A

Theorem [2.0.11|is proved as the same way as [EK] Theorem 1.7].
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2.1 Preliminaries to the multiscale analysis

We consider a fixed discrete Schrodinger operator H = —eA + V on (2(Z%),

where 0 < € < ¢ for a fixed 5 and V' is a bounded potential.

2.1.1 Some basic facts and definitions

Let ® ¢ © C Z% We define the boundary, exterior boundary, and interior

boundary of ® relative to O, respectively, by

%0 = {(u,v) € d x (O\ ®);|u—v| =1}, (2.1.1)
000 ={ve (0\®);(u,v) € d°P for some u e d},

020 = {u € ®; (u,v) € %P for some v €O\ d}.
We have
Ho = Hp ® Ho\g +elgep on (7(0) = (@)@ *(O\ @), (2.1.2)

-1 if either (u,v) or (v,u) € 8°®
where T'geg(u,v) = . (2.1.3)

0 otherwise

For ¢t > 1 we set

PO = {y € ®; Ay (y) N O C @} = {y € ;dist(y,0\ @) > [t]}, (2.1.4)
IV =@\ 0O = {y € d;dist(y,0 \ D) < [t]},
9%td = 02" 0 U @,
Given a box Ay (z) C © C Z* we write A" () for (Ay(z))®".

For abox A;, C © C Z4, there exists a unique ¢ € aijl\f@ for each v € 920

such that (9,v) € 95,0. Given v € O, we define 9 as above if v € 9220, and
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set © = v otherwise. Note that [0220| = |84,0|. If L > 2, we have
|0PAL| < [09AL| = |0°AL| < s4L%7',  where s4=2%. (2.1.5)

To cover a box of side L by boxes of side ¢ < L, we will use suitable covers

as in [EK], Definition 3.10] (also see |[GK3|, Definition 3.12]).

Definition 2.1.1. Let A;, = Az (7), 70 € R? be a box in Z¢, and let ¢ < L.

A suitable ¢-cover of A, is the collection of boxes

Cre(wo) = {Ae(a) }aez, (2.1.6)

where
EL’g = {l‘o + pEZd} N A% with p G { 2€k ke N} (217)

We call Cp, () the suitable ¢-cover of Ay, if p = pp o := max{ % % 1N { 2Ek ke N}}

Note that | %

% {ng k€ N} £+ (if ¢ < L For a suitable f-cover
Cru(zo), we have (see [EK|, Lemma 3.11])

6

Aps N
U Ag (CL), (218)
a€Zr ¢
d
(1) <#2n= (5 +1) < ()" (219

2.1.2 Lemmas about eigenpairs

Given © C Z¢ and an eigensystem {(¢;, \;)}jes for Hg. We have

0y = Zgoj(y)cpj for all y € O, (2.1.10)
jeJ
U(y) = =" 0)e;,w) forall v e?(©) and yeO.
jedJ
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Given © C Z%, a function v : © — C is called a generalized eigenfunction

for Ho with generalized eigenvalue A € R if ¢ is not identically zero and

—€ Z P(y)+ (V(z) = N(z) =0 forall ze€0, (2.1.11)

y€O,|y—z|=1

or, equivalently,
(Ho — N)p,¥) =0 for all ¢ € (*(©) with finite support.  (2.1.12)

If ¢ € (2(0©), ¢ is an eigenfunction for Hg with eigenvalue A. We do not re-
quire generalized eigenfunctions to be in £2(0), we only require the pointwise
equality in (2.1.12). If © is finite there is no difference between generalized

eigenfunctions and eigenfunctions.

Lemma 2.1.2. Let a box A, C © C Z%, and suppose (¢, \) is an eigenpair
for Hy,. Then:

. . -~ . . ~ . . 97 ’
(i) Given 6 > 0, if ¢ is (x,0)-polynomially localized for some x € A} L

we have

dist(\, o(He)) < ||(Ho — \)|| < Cyeg L~01). (2.1.13)

(ii) Given s € (0,1), if ¢ is (z,3)-subexponentially localized for some x €

o,L’
A", we have

dist(\, 0(He)) < ||[(Ho — N)e|| < e, (2.1.14)
where ¢ =c¢ (L) >1— Cdm%. (2.1.15)
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) . ) . O,L,
(ili) Givenm >0 and T € (0,1), if ¢ is (x,m) localized for some x € A]"™",

we have
dist(\,0(Hg)) < ||(He — N)o| < e ™7, (2.1.16)
where  my =my(L) > m — Cyg, loLgTL. (2.1.17)

Proof. We prove part (i), the proofs of (ii) and (iii) are similar. If z € A?’L,,
we have dist(z,09Az) > L', thus it follows from [EK| Lemma 3.2] that

?¥In

Ho —MNp|| <¢ de% Vaor, |l < € de%L’g 2.1.18
81nAL
< 50\/3_dL_(5_%>-

]

For the following lemmas in this and next subsections, we fix § > (2a6_1 + %) d
and 0 < ¢ <1 (so ¢,p,7,¢,B,7,T,s are fixed). Also, when we consider A,
to be a # box, where f stands for #-PL, m*-ML, s-SEL or m-LOC, with

m* > m*(¢) >0 and m > m_({) > 0, we let:

)
Y/lor ¢ ifgis 6-PL
o if 4 is m*-ML ¢ iffis 6-PL or s-SEL
L=L;= and {; = ,
Y/lor (7 ifgis s-SEL (. if §is m*-ML or m-LOC
kﬁ if § is m-LOC
(2.1.19)

where Y > 1. We will omit the dependence on @, £ and Y from the notation.
We prove most of the lemmas only for # being #-PL. The proofs of other

cases are similar.
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Lemma 2.1.3. Given © C Z2, let 1 : © — C be a generalized eigenfunction

for Ho with generalized eigenvalue A € R. Consider a § box Ay C © with a

corresponding eigensystem {(@u, Vu) buen,, and suppose for all u € A?’e‘i we

have

%L*q if § is 0-PL or m*-ML
A= v| > . (2.1.20)
%e_LB ift is s-SEL or m-LOC
Then the following holds for sufficiently large £:

(i) Lety € A?’%“. Then:
(a) If 4 is O-PL, we have

()| < Caco LU 2 P(yr)|  for some y1 € 9% Ay
(2.1.21)

(b) If § is s-SEL, we have

l(y)| < e*CﬂSW(ylﬂ for some y; € 8@’24//\@, (2.1.22)

where ¢y = cy(£) > 1 — Cye, LPL75. (2.1.23)
(¢) Ift is m*-ML, we have

[P(y)| < e_m5£7|¢(y1)| for some vy, € 097 A, (2.1.24)
where  mj =m3(l) > m* — Cd,s()%Q%- (2.1.25)

(d) If § is m-LOC, we have
[v(y)| < e_mQZTW(yl)\ for some 1y, € 092 A,, (2.1.26)

where  my = my(f) > m — Cy 07 (2.1.27)
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(ii) Lety € A, Then:
(a) If 4 is m*-ML, we have
[yl < ey (yo)|  for some s € 99N, (2.1.28)
where  m3 =m3() > m” (1 - 4€TT_I> - C’d@%q%. (2.1.29)
(b) Ift is m-LOC, we have
1 (y)| < e ™=l (yy)|  for some  yo € ®F A, (2.1.30)
where ms =mgz(l) >m (1 - 4€TT_1> — CyeP77. (2.1.31)

Proof. Let y € Ay, we have (see (2.1.10))
Z Pu(Y){Pu, V) = Z ©u(Y){Pu, ¥) + Z PulY){Pus ¥

!
u€hy ueA! ued®? A,

(2.1.32)
Ifue A?’Z,, we have |\ — v,| > %L‘q by (2.1.20). Using (2.1.12)), we get

(Pu, V) = A=1) " Hpu, (Ho—v)00) = (A—v) " (Ho — 1) ous 1) (2.1.33)

It follows from |[EK| Lemma 3.2] that

() (0w )] < 2L% > |pu(y)pu(®)]|e(v)]. (2.1.34)

If ' € 99 Ay, we have ||/ —ul| > ¢, so gives |, (v')| < €79 Tt follows
from ([2.1.34)) and [|¢,|| = 1 that

|ou() (0w )| < 2eL9070 Y [(v)] < 2e5,L0 "V ()] (2.1.35)

’UE@&A[
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for some v; € 99 A,. Therefore

D ) {u )| < 2e54 L0072 ()| (2.1.36)

Q ¢!
ueA?’lZ

for some vy € 99 A,.
Let y € A If u € 09 Ay, we have |ju—y|| > 20— ¢ = ¢, thus ([2.0.0)
gives |, (y)| < €79, and hence

Y el ew )| < OO pxall < O )] (2.1.37)

!
uedS " Ay

for some v3 € Ay. Combining (2.1.32)), (2.1.36) and ([2.1.37]), we conclude
that

[W(y)] < (14 2e080) L9 2D (3)| (2.1.38)

for some y; € AyUOQA,. Ify, & 092 A, we repeat the procedure to estimate
|1(y1)|. Since we can suppose 1(y) # 0 without loss of generality, the pro-
cedure must stop after finitely many times, and at that time we must have
E12).

We prove part (ii) only for § being m*-ML. The proof for § being m-LOC
is similar. Let y € A7, then ||y —v'|| > ¢ for v’ € 9 A,. Thus for u € AY*

and v' € 92 A, we have

e (=ull+lo'—ul) < g=mlo'=ul if gy — uf > £,
| ou(y)pu (V)] < / . :
eIl < gmil ity —ull < £,
(2.1.39)
where
my > m* (1= 2007) =m’ (1 - 26%1> , (2.1.40)
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since for ||y — u|| < ¢;, we have

Il = ull > 1 =yl =y —ull = o =yl = & > | =yl (1= &) (2.141)

F

Combining (2.1.34)) and (2.1.39)), we conclude that

[ 0u () (o )] < 26L8 D emU=vI=Dg(0))| (2.1.42)

'UEBS(AZ

< 2esgat It emmalvi=yl=D1y (y))| < e eIyl (4y)
for some v; € 99 Ay, where we used |lv; — y|| > ¢> and took
mhy >m) (1 —207) — Cde(ﬁlqlogz m* (1 - 46%_1) C’dm%qloge. (2.1.43)

Therefore
D u)(u, 0)| < Ll (vy)| < eI (0g)] (2.1.44)
uEA?’ET

for some v, € 99 A,, where

my > mh — Cg' %t > m* <1 — 4[7_1) — Caegmq EE. (2.1.45)

If u e dO7A, we have |u —y| > 6 — 0, > 10z, thus (2.0.8) gives
lou(y)| < e ™ lv=vll - Also, (2.0.8)) implies

lpu(v)] < e remm vl for all v e A, (2.1.46)
Therefore
{pw 0) = | D wu(@)ip(v)| < Y e Il w)), (2.1.47)
vEAy vEA,
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so we get

o) (pu, )] < D e Ulnvli=trtlomul g () (2.1.48)

vEAy
5;(g_%])defmfwufwaﬂdfm*mwfmwdwvgﬂ
< e miallumyll=mllvs=ul ), (4,

<e M maX{Hvs—yll,Hu—yH}W)(USN < e—mgmax{\lvs—yﬂéf;}|77/}(U3)|

for some vy € Ay, where we used |lu — y|| > 367 and took

m, > m* (1 - 46%’1> — Oyl (2.1.49)
Therefore
Z Sou(y) <90u7 ¢> S gde—mﬁl max{vafyH,%é;}'w(v?))‘ (2150)
uedS A,

< emmhmaxlllva=yll 365 3 (1)
for some v € Ay, where

mf > my — CglBt > m (1 - 46%1) Oyl (2.1.51)

Combining (2.1.32)), (2.1.44)), and (2.1.50)), we conclude that

lv(y)| < e M3 max{llyl—y\\a%f?}‘¢(y1)| for some 1y, € Ay U Q(iAg, (2.1.52)

where mj is given in (2.1.29). If y; ¢ 99 A, we repeat the procedure to
estimate [¢(y;)]. Since we can suppose ©(y) # 0 without loss of generality,
the procedure must stop after finitely many times, and at that time we must

have

[W(y)| < e™™s max{||§—y\\,%£;}|w(@’)| for some g € 097 A,. (2.1.53)

Ifye A?’%;, 2.1.28]) follows immediately from (2.1.53)). ]
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Lemma 2.1.4. Given a finite set © C Z%, let {(¥x, N) }reo(re) be an eigen-
system for Hg.
Then the following holds for sufficiently large £:

(i) Let Ag(a) C O, where a € RY, be a f-localizing box with a corresponding
eigensystem {(@“),A;"")} Ay and let © be L-polynomaially level s-
rxENy(a

pacing for H if § is 0-PL or m*-ML, L-level spacing for H if § is s-SEL
or m-LOC.

(a) There exists an injection

z € A% (a) = A € o(He), (2.1.54)

such that for all = € Ay (a):

1. If g is 0-PL, we have

< Oy 7 07) (2.1.55)

Y

‘X{(;) @

and, multiplying each gp&a) by a suitable phase factor,
Hl/};@ - so§“>H < 2Cd,€0Lqe—(9—dz;1). (2.1.56)
1. If 4 is s-SEL, we have

S e—Clgs, wlth cp = Cl(é) as ’Ln 2115;
(2.1.57)

‘Xéa) _ @

and, multiplying each go;“) by a suitable phase factor,

Hlﬂxgw - 90§;a)H < 26~ (2.1.58)
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wi. If § is m*-ML, we have

‘X@ @

x

and, multiplying each gog(va) by a suitable phase factor,

H%g) —

’ < 2e it [,
w. If §is m-LOC, we have

’;g) _ @

xT

and, multiplying each g0§f) by a suitable phase factor,

H%Eﬂ) - ¢

_ 8
‘ < Qe mtrel”

(b) Set
ot} (Ho) = {X_,(E“); x € A?’en (a)} )

Then if X € ogqy(He), for ally € © \ Ay(a) we have

(2100 (-5)  ip4is0-PL
[Wa(y)| < 2e7 e’ ift is s-SEL
N 2~ milr 4 if 4 is m* ML :
2emmtrel! ift ism-LOC

\

(c) If N € o(He) \ 0(ay(He), for all x € A?’Z”(a) we have

!)\ N )| %L‘q if s 0-PL or m*-ML
- ¢ Z )

%e_LB if # is s-SEL or m-LOC
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and for all y € Aée’%”(a),

)
Cd,aoLqéi(972d)|¢)\(y1)| Zfﬂ 18 0-PL
e " iha(y if 8 is s-SEL
[a(y)] < )l : (2.1.66)
e 2\ (1) if § ism*-ML
\efm% VA (y1)] if§ ism-LOC

for some y; € 09 \y(a), where ¢y = c3(€) as in (2.1.23)), mj =

m3(l) as in (2.1.25), mo = ma(€) as in (2.1.27). Moreover, for
all y € Ay (a),

e sl (o) if § is m*-ML

[a(y)] < (2.1.67)
e~mallv2=vll|py (o) if # is m-LOC

for some yp € 99 Ay(a), where mi = mji(£) as in (2.1.29)), ms =

ms(€) as in (2.1.31)).

(ii) Let {A¢(a)}acg, where G C RY such that A¢(a) C O for alla € G, be a
collection of § boxes with corresponding eigensystems {(gp,&“), )\E;a))} @
z€Ny(a

and let © be L-polynomially level spacing for H if § is 0-PL or m*-ML,

L-level spacing for H if § is s-SEL or m-LOC. Set

EZ(N) = {/\éa);a €eg,x e A?”Z”(a),ig‘“ = /\} for A € o(He),

(2.1.68)
0g(Ho) = {\ € 0(Ho); E§(N) # 0} = | 010} (Ho).
;a€@
(a) Fora,be G, a#b, ifre Ay (a) andy € A (b),
MDA € E2(N) = ||z — y|| < 2. (2.1.69)
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As a consequence,

Ag(a) N Ag(b) =)= O'{a}(He) N O'{b}<H@) = 0. (2.1.70)

(b) If X € 0g(He), we have for ally € ©\Og, where Og := J,cg Ae(a),
r (gdt
20y, L1~ "=")  iftis-PL
261t el” ift is s-SEL
[Pa(y)] < : (2.1.71)
2e~mitr 4 if tis m*-ML
2e~mitr gL’ iftism-LOC

\

(c) If X € o(He) \ 0g(He), we have for all y € O5 :=J,cq A?’M”(a),

.
Cuey LU=O2D 4 s -PL
et if  is s-SEL

[a(y)] < . (2.1.72)
e M3t if t is m*-ML
e-m2tr ift ism-LOC

\

(d) If 18] < (L + 1), we have

6| < log(He)| < [Og]. (2.1.73)

Proof. Let Ay(a) C O, where a € RY, be a #-polynomially localizing box

(@ (@

with a corresponding eigensystem {(gpx ) Az )} ) It follows from Lem-
xENy(a

ma that there exists A\ € o(Heg) satisfying (2.1.55) for z € A?’él(a).

cha) is unique since © is L-polynomially level spacing for Hg and ¢ < v1q <

0 — %. Moreover, we have PY #* Xéa) if v,y € A?’Zl(a), x # y, since

3@ _ 3@
X - 36

> A0 - x|~ X a0

_ 3@ _ \@
‘)\y Ay

(2.1.74)

> 070 — 20,0~ (=F) > 1,
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Ay(a) is polynomially level spacing for Hy, ), and ¢ < 0 — %. (2.1.56))
follows from [EK| Lemma 3.3].

If A € 0(q}(He), we have \ = M for some z € AP (a), thus
follows from (2.1.56)) as go;“)( )=0forally € ©\ A(a).

If A€ o(He) \ 0(a}(Ho), for all € A?’[(a) we have

> L7 Cyeyt™3) > 170,
(2.1.75)
since O is L-polynomially level spacing for Hg, we have , and g <
v1g < 0 — 1. Therefore follows from Lemma (1) (Note that
follows from Lemma [2.1.3((ii).)

Now let {A¢(a)}aeg, where G C R? such that Ay(a) C © foralla € G, be a

D=

A= 2A@] > ‘)\ _ 3@

_ \Xg;o ~ @

collection of #-polynomially localizing boxes with corresponding eigensystems

{(goé“),)\(“))} o Let A € o(Ho), a,b € G, a # b, x € A" (a) and
rxENy(a

y € A?’Z (b). Assume A AP € EF(N), then it follows from ([2.1.56) that

¢ — o®| < 4Cy ., L7 (=), (2.1.76)
thus
(@, 0| > R (o), ) > 1 - 803, L2~ 20~F), (2.1.77)

On the other hand, (2.0.6) gives

lz =yl =20 = [{p{?, )| < (€ +1)%° (2.1.78)

Combining (2.1.77) and (2.1.78]), we conclude that

AD A € E8(N) = ||z —y|| < 20 (2.1.79)
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To prove (2.1.70)), let a,b € G, a # b. Assume Ay(a) N Ay(b) = (), then
o, o, /
rel) (a) and ye A" (b) = |z —vy| >27, (2.1.80)

thus it follows from that o,y (He) Nogy(He) = 0.

Parts (ii)(b) and (ii)(c) follow immediately from parts (i)(b) and (i)(c)
respectively. To prove part (ii)(d), we let Pg be the orthogonal projection
onto the span of {i)\; A € og(He)}. gives

(1 = P3)d,|| < Cuey L9 C2D|0)2 for all y € O, (2.1.81)
thus
(1 — Pg)xey || < 105]710] Cey L1020 < |0]Cyp, L2~ O2D. (2.1.82)
If |©] < (L + 1)%, we have
11— Po)xey |l < (L4 DACon L0020 <1 (2.1.83)
since d + ¢ < y1(d + q) < 6 — 2d, so it follows from [EK| Lemma A.1] that
Og] = trxe, < tr P = |og(He)l. (2.1.84)

Using a similar argument and (2.1.71)), we can prove |og(He)| < |©g|. O

2.1.3 Buffered subsets

For boxes Ay C Ay that are not § for H, we will surround them with a buffer

of # boxes and study eigensystems for the augmented subset.

Definition 2.1.5. Let A; = Ap(x) and 29 € RL T C Ay is called a -
buffered subset of Ay, where £ stands for 6-PL, s-SEL, m*-ML or m-LOC, if
the following holds:
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(i) T is a connected set in Z? of the form
J
T = JAg,(aj) N AL (2.1.85)
j=1

where J € N, ay,a9,...,a; € A}, and { < R; < L for j =1,2,...,J.

(ii) T is L-polynomially level spacing for H if § is §-PL or m*-ML, L-level
spacing for H if § is s-SEL or m-LOC.

(iii) There exists Gy C A% such that:

(a) For all a € Gy we have Ay(a) C T, Ay(a) is a § box for H.

(b) For all y € 9T there exists a, € Gy such that y € Ag’%”(ay).

In this case we set

T=J Ma), T=[JA @, T=T\T, and T =T\T.
acGy a€Gy

(2.1.86)

(T =Yg, and T = Tg, in the notation of Lemma [2.1.4)

Lemma 2.1.6. Given a §-buffered subset Y of Ap, let {(¥v, V) }veo(uy) be an
eigensystem for Hy. Let G = Gy and set

O’B<HT) = O'(H'r) \ O'g(HT), (2187)

where og(Hy) is as in (2.1.68). Then the following holds for sufficiently large
l:
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(i) If v € og(Hy) we have for all y € T

(
Cle L9020 if f is 0-PL
e 28 with cy = co(€) as in - ift is s-SEL
WA(?J)’ < )
ezt with my = as in - if § is m*-ML
ke*m?‘ZT7 with mg = as in - if g ism-LOC
(2.1.88)
and
]T) < |os(Hy)| < ‘f . (2.1.89)

(ii) Let Ap be polynomially level spacing for H if § is 0-PL or m*-ML, level
spacing for H if § is s-SEL or m-LOC, and let {(¢x, A) brco(m,,) be an

eigensystem for Hy, . There exists an injection
veop(Hy)—vea(Hp,) \og(Hy,), (2.1.90)
such that for all v € op(Hy):
(a) If 4 is O-PL, we have
7 —v| < Cyp Lote00-2) (2.1.91)
and, multiplying each 1, by a suitable phase factor,
65 — || < 204z, LaT200~ (02, (2.1.92)
(b) If t is s-SEL, we have
[T —v| <e " where ey = c3(£) > 1 — Cyoy L2075, (2.1.93)
and, multiplying each 1, by a suitable phase factor,

65 — Wl < 207" (2.1.94)
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(c) If § is m*-ML, we have
[T—v| < e ™% where m} = mj(0) > m*—C’d@%q%, (2.1.95)
and, multiplying each 1, by a suitable phase factor,
g5 — || < 2e7™i LY, (2.1.96)
(d) If t is m-LOC, we have
7 —v| <e ™5 where my = my(£) >m — Cye 07777, (2.1.97)
and, multiplying each 1, by a suitable phase factor,

g5 — || < 26 ™4trel’. (2.1.98)

Proof. Part (i) follows immediately from Lemma [2.1.4{ii)(c) and (ii)(d).
Let A; be polynomially level spacing, and let {(@,)\)},\GU(HAL) be an
eigensystem for Hy,. It follows from [EKl Lemma 3.2] that for v € op(Hry)

we have

I(Ha, = )l < (2d = DO iy || < (2d— DeLiCu,, L0020

.

(2.1.99)

<O, EOL§+q£—(972d)’

where we used GSILT C T and (2.1.88). The map in (2.1.90)) is a well defined

injection into o(Hy, ) since Ay and T are L-polynomially level spacing for

H, and (2.1.92)) follows from (2.1.91)) and [EK|, Lemma 3.3].

To show v & og(Hy,) for all v € og(Hy), we assume 17 € og(Hy,)

for some vy € og(Hy). Then there is a € G and x € A?L’”(a) such that
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A e 5$L(171). On the other hand, A\ € &G (M) for some \; € ag(Hv) by

Lemma [2.1.4{i)(a). We conclude from (2.1.56) and (2.1.92)) that

V2= lln, =t |l < los, = 2| + [ = dall + ém —vnll (21.100)
<40y L5 4oy, LEt2ap-0-2)
a contradiction. O
Lemma 2.1.7. Given Ay = Ap(z0), zo € R, let T be a t-buffered subset of
Ar. Let G = Gy and set
EXr(v) = {Af;l);a € G,z € A" (q), N0 = y} C EX(v) forv € o(Hy),
(2.1.101)

USL(HT) ={ve U(HT>;(€$L(>\) #0} C og(Hr).
The following holds for sufficiently large £:

(i) Let (¢, \) be an eigenpair for Hy, such that for all v € a/g\L(HT) U
O-B(HT)7

sL™9  iftis 0-PL or m*-ML
A—v|> : (2.1.102)

%e_Lﬁ if 4 is s-SEL or m-LOC
Then for all y € YA
(a) Ift is O-PL, we have

[ (y)] < Caeo LX2U~CO2D(v)|  for some v € Y,
(2.1.103)
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(b) If § is s-SEL, we have

lh(y)| < e |p(v)|  for some v e @Y, (2.1.104)
where ¢y = cy(£) > 1 — Cye, LPL75. (2.1.105)

(¢) If ¢ is m*-ML, we have

1W(y)| < e ™ |(v)|  for some v € dAHY, (2.1.106)
where mi; =mi(l) > m* — C’dm%q%. (2.1.107)

(d) If & is m-LOC, we have

[W(y)| < e ™ h(v)|  for some v € MU, (2.1.108)

where  ms = mg(£) > m — Cy 07 (2.1.109)

(ii) Let A be polynomially level spacing for H if § is 0-PL or m*-ML, level
spacing for H if 4 is s-SEL or m-LOC. Let {W/\»)\)}/\GU(HAL) be an
eigensystem for Hy,, and set (recalling (2.1.90)) )

UT(HAL) = {;77 Ve O'B<H'r)} C O'(HAL) \ JQ(HAL)- (21110)

Then the condition (2.1.102)) is satisfied for all X € o(Hy, )\ (0g(Ha,)U
UT(HAL)): S0 fOT all Y € TAL,%ﬁ

( Cueo L24H20=0=2D 4 (v)|  ift is 6-PL
—cal? ft is s-SEL
INCEE M e (2.1.111)
e st | (v))| if t is m*-ML
ke_mf’éf [ (v)] if t ism-LOC
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for some v € O 24,

Proof. Let {(Vy,V)}veo(y) be an eigensystem for Hy. For v € og(Hy) we
fix M) € &4 (v), where a, € G, x, € A}’gl(ay). If ve aéL(HT), we choose
A e EQL(V), thus z, € A?L’El(al,). If v € og(Hy) \ JSL(HT) we have

2y € A (@) \ AP (ay).
Given y € T, we have (see (2.1.10))

= > 900 (2.1.112)
veo(Y)
= > 9 (y) (W, ¥) + > 9 (y) (W, ).
veogh (Hr)Uos(Hr) veog(Hr)\ob¥ (Hr)

Let (1, \) be an eigenpair for Hy, satisfying (2.1.102). If v € a L(Hy)U
os(Hy), we have

(D, p) = (A= I/)_1<191,, (Ha, —v)Y) = (A= V)_1<(HAL — )y, ¢). (2.1.113)
It follows from and [EK| Lemma 3.2] that

[0, (y) (9, )] < 2Ll (y)] > Yoo )] ()

PN A
VEDe T v’E@inLT,|v’—v|:1

(2.1.114)

< 2eL7H <2d max |9, (u )|> [4(vy)|  for some v € OAET.

u€d;, LT
If v € op(Hy), (2.1.88)) gives

max |J, ()] < Caey L1729, (2.1.115)
u€o; LT
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Ifve USL(HT), it follows from (2.1.56]) and (2.0.6)), that

) (2.1.116)

max [, (u)| < max (|9, (u) = i) | + [l
L

ueaALT u€d

<20, L) 070 < 30, L) < ¢y, Lo 02,

Therefore (recalling (2.1.38))),

> Oy () (0,1 | < 4de L (Ca LU O72D) ih(v5))|

A
I/GO'gL (Hy)Uop(Hy)

(2.1.117)

S Cd,so L2d+2q€f(972d) ’w (02) ‘ ’

A
for some vy € OF Y.

If v € og(Hy)\ aéL(HT), we have z, € Ag’el(al,) \A?L’El(al,), thus
dist(z,, T\ Ag(a,)) > ¢ and dist(z,, A\ Ae(a,)) <7, (2.1.118)

and hence there is ugp € Ay \ T such that ||z, — upl| < ¢. We suppose
y € TAL2Y then ||y — ug|| > 2¢". Therefore

2y — yll > |y — uol| — ||zn — wol| > 20 — €' =2 (2.1.119)

Thus it follows from (2.1.56)) and (2.0.6]) that

al,)

10, (w)] < |9, (u) — o <20y, L= F) 4 0= (2.1.120)

< 3Cd,8oLqe—<9—T).

Therefore

S 00| < 3Ca UL+ 1) F T ()],

veog(Hy)\ogh (Hr)
(2.1.121)
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for some v3 € T.
Combining (2.1.112), (2.1.117) and (2.1.121)), we conclude that for all
,y E TAL,QE/’

[ (y)| < Caeg L2~ O2D ) (0y)], (2.1.122)

for some vy € YUY, If vy € Y222 we repeat the procedure to estimate
|1(vy4)|. Since we can suppose 1(y) # 0 without loss of generality, the pro-

cedure must stop after finitely many times, and at that time we must have

@.1.103).

Now let Ay, be polynomially level spacing. If A & og(Hy, ), it follows from

Lemma 2.1.4{(i)(c) that (2.1.65)) holds for alla € G. If A & ov(Hy, ), using the
argument in ([2.1.75)), with (2.1.91)) instead of (2.1.55), we get [A\—v| > $L7¢
for all v € og(Hy). Therefore we have (2.1.102)), which implies (2.1.103). O

2.2 Probability estimates

The following lemma gives the probability estimates for polynomially level

spacing and level spacing.

Lemma 2.2.1. Let H.,, be the Anderson model. Let © C Z% and L > 1.

Then, for all € < gy,
P{O is L-polynomially level spacing for H} > 1 — YEOL_(QO‘_l)q|@|2, (2.2.1)
and
P{O is L-level spacing for H} > 1 — Y. e~ DI |92, (2.2.2)

where

Y., = 2201 K2 (diam supp p + 2deq + 1), (2.2.3)
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with K = K ifa=1 and K = 8K if a € (3,1).

Lemma follows from [EK| Lemma 2.1] and its proof. (Also see [KM|,

Lemma 2].)

2.3 Bootstrap multiscale analysis

In this section, we fix 6 > (2:%1 + %) dand 0 < £ < 1. (Note that Propo-

sition is independent to £.) We will omit the dependence on 6 and ¢

from the notation. We denote the complementary event of an event £ by £°€.

2.3.1 The first multiscale analysis

Proposition 2.3.1. Fizeo >0, Y > 400, and Py < 5(2Y)*%. There exists
a finite scale L(gg,Y) with the following property: Suppose for some scale

Ly > L(gy,Y), and 0 < € < g9 we have

inf P{AL,(z) is O-polynomially localizing for H. ,} > 1—Fy.  (2.3.1)
zeR

Then, setting Ly.1 =Y Ly, fork =0,1,..., there exists Ko = Ko(Y, Lo, ) €
N such that

infd P{Ar,(x) is O-polynomially localizing for H. ,} > 1 — L,* for k > K.
zeR
(2.3.2)

Proposition follows from the following induction step for the multi-

scale analysis.
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Lemma 2.3.2. Fiz ey > 0, Y > 400, and P < 1. Suppose for some scale ¢

and 0 < € < gy we have

inf P{A,(z) is 8-polynomially localizing for H.,} > 1 — P. (2.3.3)

rER4

Then, if { is sufficiently large, for L =Y { we have

inf P{AL(z) is 6-polynomially localizing for H. .} > 1—((2Y)*'P? + 1L 77).
T€R
(2.3.4)

Proof. We fix 0 < ¢ < gy and suppose for some scale ¢. Let A; =
A (), where zo € R, and let Cr, = Cr ¢(z0) be the suitable ¢-cover of Ay.
For N € N, let By denote the event that there exist at most N disjoint boxes
in Cr that are not 6-PL for H,,. Using , and the fact that

events on disjoint boxes are independent, if N = 1 we have

P{B?v} < (%)(NJrl)d PN+ _ (2y)(N+1)dPN+1 _ (2y)2dp2‘ (2.3'5)

We now fix w € By. There exists Ay = An(w) € 2 = Zp0(x0), with
|An| < N and ||a — b|| > 2pf (i.e., Ag(a) N Ag(b) = 0) if a,b € An, a # b,
such that for all a € 2, with dist(a, Ay) > 2pf (i.e., Ag(a) N Ay(b) = 0 for
all b € Ay), Ay(a) is a § box for H,, (4 stands for §-PL). In other words,

a€Zpe\ U A%pﬂ)e(ao) = Ay(a) is a § box for H,,. (2.3.6)
beAn

To embed the box {Ay(b) }rea, into f-buffered subsets of Az, we consider

graphs G; = (2.4, E;), ¢ = 1,2, both having =, , as the set of vertices, with
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sets of edges given by

By = {{a,b} €S2 la — bl = pt) (237
= {{a,b} € ] ;;a # band Ay(a) N Ay(b) # 0},
Ey = {{a,b} € ] ;; either [la — b|| = 2pL or ||a — b]| = 3pl}

= {{a.b} € =342 A(@) N Ar(b) = 0 and Aggpinye(@) N Agpinye(D) # 0},

Let {®,}1 = {®,(w)}2, denote the Gy-connected components of Ay (i.e.,
connected in the graph Gs). Note that

R
Re{1,2,...,N}, Y |®|=|Ay| <N, and diam®, < 3pl(|®,] - 1).
r=1

(2.3.8)
Set

=Z5sN U A eprye(@) = {a € g dist(a, ©,) < pl}, (2.3.9)

a6<1>r

~ \R
and note that {CDT} is a collection of disjoint, Gi-connected subsets of

r=1

=L, such that

diam @, < diam @, + 2p¢ < pl(3|®,| — 1) and dist(P,, D7) > 20, r # 7.

(2.3.10)
Moreover, ([2.3.6) gives
a€G=0Gw)=Z=r,s\ U<I> =  Ay(a)is atbox for H.,. (2.3.11)

For ¥ C =14, we define the exterior boundary of ¥ in the graph G; by
OS5 = {a € Zp4; dist(a, ¥) = pl}. (2.3.12)
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It follows from (2.3.11)) that As(a) is § for H., for all a € 82’(1%“ r o=
1,2,...,R. Set U =W UJS ¥, and set, for r =1,2,..., R,

T =1Ow) = | ] Ala), (2.3.13)
ae%r
T, =Tr(w) =100 [ Ada)= ] Adla).
aeagxl‘ir aegr

Each T,, r=1,2,..., R, satisfies all the requirements to be a 6-PL-buffered
subset of A; with Gy, = 85’(1&% (see Definition [2.1.5), except that we do
not know if Y, is L-polynomially level spacing for H.,. (Note that the sets

{T,(ﬂo)}f:1 are disjoint, but the sets {1, }2£| are not necessarily disjoint.) Note

also that
diam @, < diam @, + 2p¢ < pl(3|®,| + 1), (2.3.14)
and hence
diam T, < diam &, + £ < pl(3|®,| + 1) + £ < 50|d, ], (2.3.15)
thus
R
> diam T, < 5¢N. (2.3.16)
r=1

We can arrange for {Y,}% | to be a collection of §-PL-buffered subsets of
A as follows. It follows from Lemma that for any © C Ay we have

P{© is L-polynomially level spacing for H. ,} > 1—Y, e’(2a’1)LB L+ 1)%.
Y Y g ; 0
(2.3.17)

Given a Go-connected subset ® of =, 4, let T(®) C AL be constructed from
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® as in ([2.3.13). Set

N
Fn = U F(r), where F(r) = {® C =14; ® is Gy-connected and |®| = r}.

r=1
(2.3.18)
Let F(r,a) = {® € F.;a € ®} for a € =14, and note that each vertex in the

graph Gy has less than d(3%°! 4 4971) < d4¢ nearest neighbors , we have

|F(r,a)| < (r—D)(d4DH™' = |F(r)] < (L+ 1)%r —1)(d4h)"?
(2.3.19)

= | Fn| < (L+ 1IN (ddHN

Let Sy denote the event that the box Aj, and the subsets {Y(®)}pcr, are all
L-polynomially level spacing for H.,, using (2.3.17)) and (2.3.19), if N =1

we have

P{S5} < Yoo (L+ (L + )N aAHN ) (L + 1)*H(L + 1)2M Lo e < 1P
(2.3.20)
for sufficiently large L since p < (2ac — 1)q — 3d.
Let Exy = By N Sn. Combining (2.3.5) and (2.3.20]), we conclude that if
N=1,

P{En} >1— ((2Y)* P>+ 1L77). (2.3.21)

To finish the proof we need to show that for all w € £y the box Ay is -PL
for H, .

We fix w € Ey. Then we have , Ay is polynomially level spacing
for H.,, and the subsets {Y,}2 | constructed in (2.3.13)) are §-PL-buffered
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subsets of Ay for H.,,. It follows from (2.1.8)) and Definition [2.1.5iii) that

Ap = {U A?L’leo(a)} U {U T?“%} . (2.3.22)

a€g

We omit ¢ and w from the notation since they are now fixed. Let

{(¥x, N }aco(a,, ) be an eigensystem for Hy, . Fora € G, let {(gpg(f), )\gf))} “
zeN(a
be a f-polynomially localized eigensystem for Ay(a). For r = 1,2,... R, let

{(¢,m, V(T))}V(T)GU(HT ) be an eigensystem for Hy , and set
or, = {70 € op(Hy,)} C a(Hy,) \ og(Hy,), (2.3.23)

where (") is given in (2.1.90), which also gives o, (Ha,) C 0(Ha,)\ogy, (Ha,),
but the argument actually shows oy, (Hy,) C o(Hy,) \ 0g(Hp,). We also

set
UB(HAL) = U UTr<HAL) - U(HAL) \ UG(‘HAL)' (2324>
We claim i
U(HAL) :UQ(HAL)UUB(HAL)- (2.3.25)

To do this, we assume A\ € og\(0g(Ha, )Uog(Hy,)). Since Ay is polynomially
level spacing for H, Lemma [2.1.4(ii)(c) gives

1A (y)] < Caeg LU™O72D forall y e U A?L’%/(a), (2.3.26)

a€g

and Lemma [2.1.7](ii) gives

R
[Ua(y)| < Cd,gOL2d+2qf_(0_2d) for all y e U Tf}L’%/. (2.3.27)

r=1

Using (2.3.22) and 0 — 2d > v, (%d + 2q) > %d + 2¢q, we conclude that
1= [[a)] < Cuoy L2200~ C72D(L 4 1)2 < 1 (2.3.28)
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for sufficiently large ¢, a contradiction. This establishes the claim.

We now index the eigenvalues and eigenvectors of Hy, by sites in Ay
using Hall’s Marriage Theorem, which states a necessary and sufficient con-
dition for the existence of a perfect matching in a bipartite graph. (See [EK,
Appendix C] and [BuDM, Chapter 2].) We consider the bipartite graph
G = (Ap,0(Hy,);E), where the edge set E C Ay x o(Hy,) is defined as
follows. For each A € og(H,,) we fix A ¢ Eé\L(/\), and set (recall

and (2.1.19))

(A€og(Hy,)illos—al <6} for ze A \ULT,

No(z) = -
0 for zeJ%, T,
(2.3.29)
We define
No(z) for ze€Ap\ Ule 1,
N(z) = or(Hy,) for ze€X,, r=12_....R ;
No(z) Uoy(Hy,) for ze Y, \Y,,r=1,2,....R

(2.3.30)
and let E = {(z,\) € A, x 0(Hp,); X € N(x)}.
N (z) was defined to ensure |1, ()| < 1 for A € N (). This can be seen
as follows:
o Ifz € Apand A € og(Ha, ) \Ny(2), we have A = A with ||zy — 2| >
¢'; so, using (2.0.6) and (2.1.56)),
[a@)] < o) (@)] + o) = ]| < €0 + 20y, L7 7T
(2.3.31)

< 30y, L (0=7),
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o Ifr e AL\f’T and A € oy, (Hy, ), then A = 7" for some v\") € o5(Hy),
and, using (2.1.88]) and (2.1.92)), (Note ¢, (z) =0if x € T1,.)

[A@)] < 1@y (@)] + B0 () = Wall < Cupey LU 4 2Cy . L2 T20471072

(2.3.32)
< 30y EOL%+2qg—(9—2d)_
Therefore for all x € A and A € o(Hy, ) \ N(z) we have
a(x)] < Cyey L2200~ 020, (2.3.33)

Since |Ap| = |o(Hy, )|, to apply Hall’'s Marriage Theorem we only need
to verify |©| < |N(O)], where N (©) = |J,co N (z) for © C Ap. For © C Ay,
let Qo be the orthogonal projection onto the span of {1y\; A € N(O)}. If
A € N(©), for all 2 € © we have (2.3.33)), thus

11~ Qe)xell < |AL|3|O]2Cp, L0702 (2.3.34)
S (L + 1)dCd7€OL%+2q€f(072d) < 1,
for sufficiently large ¢ since 8 — 2d > (%d + 2q) > gd + 2¢q, so it follows
from [EK| Lemma A.1] that
O] =trxe < trQeo = |N(O)]. (2.3.35)
Using Hall’s Marriage Theorem, we conclude that there exists a bijection

€Ay A\, €0(Hy,), where A, € N(x). (2.3.36)

We set ¢, = ¢y, for all z € Ayp.
To finish the proof we need to show that {(¢,, A\z) }zea, is a 6-polynomially
localized eigensystem for A,. We fix N =1, x € Ay, take y € A, and con-

sider several cases:
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(i) Suppose A\, € og(Ar). Then z € Ay(ay,) with ay, € G, and A\, €
Ofay,}(Ha,). In view of (2.3.22) we consider two cases:

£
(a) If y € A?L’w(a) for some a € G and |ly — || > 2¢, we must
have Ag(ay,) N Ag(a) = 0, so it follows from (2.1.70) that \, &
013 (Hy, ), and (2.1.66) gives

[0 < Caeg L1721, (y1)] for some gy € 992 Ay(a). (2.3.37)

£
(b) If y € TfL’m, and ||y — x| > ¢+ diam Yy, we must have Ay(ay,) N
T, = 0, so it follows from (2.1.70) that A\, & og, (Ha,), and
clearly \, & oy, (Hy,) in view of (2.3.23). Thus Lemma [2.1.7(ii)

gives

|the ()] < Coy L24F200= 024y (1)|  for some v € 2T,
(2.3.38)

(ii) Suppose A\, & og(Ar). Then it follows from ([2.3.25) that we must have
2

Ae € oy, (Hyp,). lfy € A?L’m(a) for some a € G, and ||y — z| >

¢ 4+ diam Y1, we must have Ay(a) N Yy = (), and (2.1.66)) gives (2.3.37)).

Now we fix x € Ay, and take y € Ay such that ||y — z|| > L’. Suppose
|V.(y)| > 0 without loss of generality. We estimate |¢,(y)| using either

(2.3.37)) or (2.3.38) repeatedly, as appropriate, stopping when we get too close

to x so we are not in any case described above. (Note that this must happen
since |, (y)| > 0.) We accumulate decay only when using , and just
use Cyp,L2*T24¢~(0=24) < 1 when using (2.3.38), then recalling L = Y/, we
get

n(Y)
)

|00 (y)| < (Caeo L2 N)7 (2.3.39)
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where n(Y’) is the number of times we used (2.3.37). We have

n(Y)(0+1) + diam Y, +2¢ > L. (2.3.40)

Thus, using (2.3.16]), we have
n(Y)> ;5 (L' =50-20)> 75 (5-7) > 2 (2.3.41)

+1 40

for sufficiently large ¢ since Y > 400. It follows from (2.3.39)),
()] < (Cagy YU 020)" < L0, (2.3.42)

for sufficiently large ¢ since 2(6 — 2d — q) = 0 + (0 — 4d — 2q) > 0.
We conclude that {(¢,, \;) bzen, is a -polynomially localized eigensystem
for Az, so the box Ay is f-polynomially localizing for H. .
O

Proof of Proposition[2.3.1. We assume (2.3.1)) and set Ly, = Y Ly for k =
0,1,.... We set

P, = sup P{Ay, (x) is not #-polynomially localizing for H.,} for k =1,2,....
z€R
(2.3.43)
Then by Lemma [2.3.2] we have

P < @YV)*P2+L0P for k=0,1,... (2.3.44)

If P, < L,” for some k > 0, we have
Popr < V2L, + 107 < @)™ L2 + 1LY < LP (2.3.45)
for Lg sufficiently large. Therefore to finish the proof, we need to show that

Ko=inf{k e N;P, < L, "} < oc. (2.3.46)
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It follows from that for any 1 < k < K,
Py <V)MPL + 107 < (2v)P + 1P, (2.3.47)
SO
22Y)% P, < (22Y)* P y). (2.3.48)
Therefore for 1 < k < K, we have
QY —Ur=2) [P _ 99y 2L P < 9(2V)X P, < (2(2Y)* 1) (2.3.49)

Since 2(2Y)* Py < 1, (2.3.49)) cannot be satisfied for large k. We conclude
that Ky < oc. ]

2.3.2 The first intermediate step

Proposition 2.3.3. Fix ¢y > 0. Suppose for some scale { and 0 < € < g

we have

inf P{A,(z) is 8-polynomially localizing for H. ,} > 1 —¢77.  (2.3.50)

xCcRd

Then, if € is sufficiently large, for L = {7 we have

inf P{AL(z) is mgy-miz localizing for H. ,} > 1 — L7P, (2.3.51)

rER4
where

my > 1 (% +q) L5 og L. (2.3.52)

Proof. We follow the proof of Lemma [2.3.2 For N € N, let By, Sy and
En as in the proof of Lemma [2.3.2l Using ([2.3.50)), (2.1.9) and the fact that

events on disjoint boxes are independent, if N = 1 we have,

]P){B]cv} S (%)%l €—2p — 22d€—2p—2d(’71—1) < %g—’hp =17-p (2353)

1
2
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for all ¢ sufficiently large since 1 < v < 1+ +2 —F=. Also, using (2.3.17) and
(2.3.19), if N =1 we have,

P{Si} < (14 (L+ 1)) Yoo (L + 1) LGV < 4177 (2.3.54)

for sufficiently large L, since p < (2a — 1)q — 3d. Combining (2.3.53]) and
(2.3.54])), we conclude that

P{Ex} >1—L7P. (2.3.55)

To finish the proof we need to show that for all w € £y the box Ay is
mg-mix localizing for H, ,,, where mg is given in (2.3.52)). Following the proof

of Lemma [2.3.2] we get (2.3.25) and obtain an eigensystem { (¢, Az)}zea,

for Hy, using Hall’s Marriage Theorem. To finish the proof we need to show
that {(¢s, A\x) }zea, is an mf-localized eigensystem for A;. We proceed as in
the proof of Lemma [2.3.2, We fix N =1, x € Ay, and take y € Ay such that

lly — x|| > L., we have

n(0)(¢ +1) +diam Y, +2¢ > L,. (2.3.56)

where n(f) is the number of times we used (2.3.37). Thus, using (2.3.16)), we

have

n(l) > 725 (Ly — 50— 20) > ;45 (3071 —7) > 2t (2.3.57)

L
+

for sufficiently large ¢. It follows from ([2.3.39)),

Loyir—1

|0 (y)| < (Caept” O (2.3.58)

C(l—rq Ll
< o H(B+a) L™ T og D)lly—a)
)
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for sufficiently large ¢.
We conclude that {(¢, \z)}ren, is an mf-localized eigensystem for Ap,
where mj is given in ([2.3.52)), so the box Ay is m{-mix localizing for H.,.
O

2.3.3 The second multiscale analysis

Proposition 2.3.4. Fiz ¢y > 0. There exists a finite scale L(gy) with the
following property: Suppose for some scale Ly > L(gy), 0 < € < &9, and

my > Lg"™ where 0 < k < 7, we have

inf P{A,(x) is mg-mix localizing for H. ,} > 1 — Ly". (2.3.59)

z€R4
Then, setting Ly, = L' for k=0,1,..., we have
inf P{AL, (x) is mTS-mix localizing for H.,} > 1—L." fork=0,1,....
zeR
(2.3.60)

Proposition follows from the following induction step for the multi-

scale analysis.

Lemma 2.3.5. Fiz g9 > 0. Suppose for some scale ¢, 0 < ¢ < &g, and

m* > 47", where 0 < Kk < 7, we have

inf P{Ay(z) is m*-mix localizing for H. ,} > 1 —(7P. (2.3.61)

z€R4

Then, if € is sufficiently large, for L = £ we have

inf P{A(x) is M*-mix localizing for H.,} > 1— L7P, (2.3.62)
zeR
where

M* Z m* (1 _ Cd,sofqulgf min{ 1;7',’)/1T*1,T*I€}> 2 L_H. (2363)
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Proof. We follow the proof of Lemma [2.3.2, For N € N, let By denote the
event that there do not exist two disjoint boxes in Cr, that are not m*-mix

localizing for H. ,. Using (2.3.61)), (2.1.9) and the fact that events on disjoint

boxes are independent, if N =1 we have

}P’{Bf\,} < (%)(NJrl)d g_(N—&—l)p _ 22d€—(2p—2d(71—1)) < %g—mp _ %L—p (2.3.64)

for all ¢ sufficiently large since 1 < v; <1+ ]ﬁl.

We now fix w € By, and proceed as in the proof of Lemma with
being m*-ML. Then we have T,, r = 1,2, ..., R such that each T, satisfies all
the requirements to be an m*-ML-buffered subset of A; with Gy, = Ggg <'13T,
except we do not know if T, is L-polynomially level spacing for H, .

Given a Ga-connected subset ® of =4, let T(®) C AL be constructed
from ® as in (2.3.13) with § being m*-ML. Let Sy denote the event that the

box Ay and the subsets {Y(®)}scr, are all L-polynomially level spacing for

H. . Using (2.3.17) and (2.3.19)), if N =1 we have
P{S°) < (1 n (%)d> Yoo (L + 1)2L-2eNa < Ly (2.3.65)

for sufficiently large L, since p < (2ac — 1)q — 3d.
Let £y = By NSy. Combining ([2.3.64) and (2.3.65]), we conclude that if
N =1,

P{Ex} >1— L7, (2.3.66)

To finish the proof we need to show that for all w € Eyx the box Ay is M*-mix
localizing for H.,, where M* is given in .

We fix w € Ey. Then we have , Ay is polynomially level spacing
for H. ,, and the subsets { Y, }X; constructed in are m*-ML-buffered
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subset of Ay for H.,. We proceed as in the proof of Lemma [2.3.2] To claim
(2.3.25)), we assume A € o¢g \ (0g(Hp,)Uog(Hy,)). Since Ay is polynomially
level spacing for H, Lemma [2.1.4{ii)(c) gives

()| < e forall ye | A (a), (2.3.67)

a€eg

and Lemma [2.1.7(ii) gives

R
[oa()| < e ™ forall ye | JaMe (2.3.68)

r=1

Using ([2.3.22)), we conclude that (note mf < mj3)

ol

L=l <e ™™ (L+1)2 <1, (2.3.69)

a contradiction. This establishes the claim.

To index the eigenvalues and eigenvectors of Hy, by sites in Ay, we define

N (z) as in (2.3.30) and proceed as in the proof of Lemma [2.3.2] We have:

o Ifz € Ay and A € og(Hy,) \Np(z), we have A = A% with ||lzy — || >

., so, using (2.0.8)) and (2.1.60)),

[oa ()] < ol ()] + [l — a]] < @77 4 207 LT < 3o L
(2.3.70)

o If x € AL\ f’r and A\ € oy, (Hy,), then A = 7™ for some (") €
og(Hr~,), and, using (2.1.88)) and (2.1.96)), (Note ¢,»(z) =0ifz € T1,.)

A (2)] < [dy) (@) [+ ][ dy () — Wal| < €735 42673 LT < 3™ LA,
(2.3.71)
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Therefore for all x € A; and A € o(Hy, ) \ N(z) we have
[ (2)| < Be M L9 < emamilr, (2.3.72)
If A ¢ N(0), for all z € © we have ([2.3.72)), thus
1(1 = Qo)xoll < |AL|Z|O]7e 2™ < (L4 1)% 2™ < 1. (2.3.73)

Following the proof of Lemma [2.3.2] we can apply Hall’s Marriage Theorem
to obtain an eigensystem { (¢, Az) }zen, for Hy, .

To finish the proof we need to show that {(1., \z) }zea, is an M*-localized
eigensystem for Ay, where M* is given in (2.3.63). We fix N =1, x € Ay,

take y € A, and consider several cases:

(i) Suppose A\, € og(AL). Then x € Ay(ay,) with ay, € G, and A, €
Ofay,}(Ha,). In view of (2.3.22) we consider two cases:

£
(a) If y € A?L’w(a) for some a € G and |y — zf| > 2¢, we must
have Ag(ay,) N Ag(a) = 0, so it follows from (2.1.70) that \, &
0o} (Hy, ), and ([2.1.67)) gives

| < e mslvi=vlljop (31)| for some y; € 9T Ay(a).  (2.3.74)

b) If y € TAL’%, and ||y — x|| > ¢+ diam Y1, we must have Ay(ay )N

( ) Y 1 Y -
T, = 0, so it follows from (2.1.70) that A\, & og, (Ha,), and
clearly A, & oy, (Hy,) in view of (2.3.23). Thus Lemma [2.1.7(ii)

gives

Ve (y)| < e ™5 1hy(v)|  for some v € M2 (2.3.75)
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(i) Suppose A\, & og(AL). Then it follows from ({2.3.25) that we must have
a
Ae € or,(Hyp,). Ify € A?L’lo(a) for some a € G, and ||y — z| >

¢ + diam Yy, we must have Ay(a) N T1 =0, and (2.1.67) gives (2.3.74]).

Now we fix x € Ay, and take y € Ay such that ||y — z|| > L,. Suppose
|Y.(y)| > 0 without loss of generality. We estimate |¢,(y)| using either

(2.3.74) or (2.3.75)) repeatedly, as appropriate, stopping when we get too

close to x so we are not in any case described above. (Note that this must

happen since |1, (y)| > 0.) We accumulate decay only when using ([2.3.74)),
and just use e < 1 when using (2.3.75)), then we get

[V (y)| < e~ ma(ly—zll—diamY=20)  o=mi(lly—=l|-70) (2.3.76)

< o—milly—al(1-TemT) Mly—all

where we used ([2.3.16)) and took

T—1

M = m; (1 - 7617717’) > (m* <1 — 40 > — Cd,sg’YlQ%) (1 _ 7@1*717')
(2.3.77)

1= 405 = Caemat™™™) (1= 707)

>m* <
> m* <1 _ C(d,aofqug_ min{%,717—1,7—5}>

Y
NI

s > e — [k

for ¢ sufficiently large, where we used ([2.1.29)) and m* > ¢7".
We conclude that {(¢,, A\z)}zen, is an M*-localized eigensystem for Ay,
where M* is given in ([2.3.63)), so the box Ay, is M*-mix localizing for H. .
O
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Proof of Proposition[2.3.J. We assume (2.3.59)) and set Ly, = L] for k =
0,1,.... If Ly is sufficiently large it follows from Lemma by an induction

argument that

inf P{AL,(x) is mj-localizing for H. ,} > 1— L, " for k =0,1,...,
T€eR
(2.3.78)

where for k£ =1,2,... we have

my > my_, (1 — Cd,gofquL,;_gl) , with o = min {1’77,717 —1,7— /@} )
(2.3.79)
Thus for all £ =1,2,..., taking Ly sufficiently large we get

k—1 o] )
— o~ * —ov) m
my > mg | | (1 — Caom19Lg W) > myg | | (1 — Caeov19Lg gvl) > =%
j=0 '

J=0

finishing the proof of Proposition [2.3.4] O

2.3.4 The third multiscale analysis

~ 1
Proposition 2.3.6. Fizey > 0, Y > 40075, and Py < (2(2y) (D) T
There exists a finite scale L(eo,Y) with the following property: Suppose for

some scale Lo > L(g¢,Y) and 0 < ¢ < gy we have

inf P{Ar,(z) is s-SEL for H.,,} > 1 — B, (2.3.81)

zcRd

Then, setting Ly =Y Ly for k =0,1,..., there exists Ko = Ko(Y, Lo, 130) €
N such that

inf P{A (z) is s-SEL for H.,} > 1 — e Li fork > K. (2.3.82)

zcRd
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Proposition follows from the following induction step for the multi-
scale analysis.

1

Lemma 2.3.7. Fixeqg >0, Y >4001-s and P < 1. Suppose for some scale

¢ and 0 < e < gy we have

inf P{A,(z) is s-SEL for H. ,} >1— P. (2.3.83)

zeRd

Then, if € is sufficiently large, for L =Y { we have

infd P{AL(x) is s-SEL for H. ,} > 1 — ((2Y)(D/SJ+1)dPLYSJJrl + %e_L<> )
zeR
(2.3.84)

Proof. We follow the proof of Lemma [2.3.2] For N € N, let By denote the

event that there exist at most N disjoint boxes in Cy,, that are not s-SEL for

H. .. Using (2.3.83)), (2.1.9) and the fact that events on disjoint boxes are

independent, if N = |Y*]| we have

P{B°} < (L)1 pNHL— () (U plyl (2.3.85)

We now fix w € By, and proceed as in the proof of Lemma with
being s-SEL. Then we have T,, r = 1,2, ..., R such that each T, satisfies all
the requirements to be an s-SEL-buffered subset of A; with Gy = agl &Dr,
except we do not know if T, is L-level spacing for H, .

It follows from Lemma that for any © C A we have
P{O is L-level spacing for H.,} > 1 — Yoo G (L4 1) (2.3.86)

Given a Gy-connected subset ® of =1, let T(®) C Ay be constructed from

® as in (2.3.13) with § being s-SEL. Let Sy denote the event that the box
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Ay, and the subsets the subsets {Y(®)}scr, are all L-level spacing for H. .
Using (12.3.86) and (2.3.19)), if N = |Y*| we have

PS5} < Y (1+ (L + 1)IN(d4T)N 1) (L + 1)2e~(Ga-DE < 1o-L

for sufficiently large L, since ¢ < 3.
Let Exr = By N Sy Combining (2.3.85)) and (12.3.87)), we conclude that

P{Ex} > 1— ((2y><LYSJ+1>dPLYSJ+1 n %5“) . (2.3.88)

To finish the proof we need to show that for all w € £y the box Ay is s-SEL
for H, .

We fix w € Ey. Then we have , Ay is level spacing for H,,, and
the subsets {Y,}22 ;| constructed in are s-SEL-buffered subsets of Ay,

for H.,. We proceed as in the proof of Lemma 2.3.2l To claim ({2.3.25)),
we assume A\ € og \ (0g(Hp, ) Uop(Hya,)). Since Ay is level spacing for H,

Lemma [2.1.4{(ii)(c) gives

[Ua(y)| < e 2" forall ye U A?L’M(a), (2.3.89)

a€g

and Lemma [2.1.7(ii) gives

R
[a(y)l e forall ye [JTre (2.3.90)

r=1
Using ([2.3.22)), we conclude that (note ¢y < ¢9)

d
2

L= [oa(y)] <e ™ (L+1)2 <1, (2.3.91)

a contradiction. This establishes the claim.

To index the eigenvalues and eigenvectors of Hy, by sites in Ay, we define

N (z) as in ([2.3.30]) proceed as in the proof of Lemma [2.3.2l We have:
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o Ifx € Ap and X € og(Hyp, ) \No(x), we have A = M with ||y — || >

¢') so, using (2.0.7)) and (2.1.58)),

[a(@)] < o) @)] + el =] < e+ 207 el < 3o e,

(2.3.92)

o If x € AL\ f’r and A\ € oy, (Hy,), then A = 7 for some (") €

og(Hr~,), and, using (2.1.88)) and (2.1.94)), (Note ¢,»(z) =0ifz € T1,.)

[r(@)] < [60(2)] + [60(2) — al] < €72 4 2670 el < Beert"el”

(2.3.93)
Therefore for all x € A and A € o(Hy, ) \ N(z) we have
[a(@)] < e’ < o2t (2.3.94)
If A & N(O), for all z € © we have (2.3.94), thus
(1= Qo)xell < |AL|Z|O]7¢ 298 < (L 4 1)%e 25" < 1. (2.3.95)

Following the proof of Lemma [2.3.2] we can apply Hall’'s Marriage Theorem
to obtain an eigensystem { (¢, A\;) }zea, for Hy,.

To finish the proof we need to show that {(¢, Az) }zea, is an s-subexponentially
localized eigensystem for Ap. We fix N = |Y*|, x € Ay, take y € A, and

consider several cases:

(i) Suppose A\, € og(AL). Then x € Ay(ay,) with ay, € G, and A, €
Ofar,}(Hap). In view of (2.3.22) we consider two cases:

4
(a) If y € A?L’E(a) for some a € G and |y — || > 2¢, we must
have Ag(ay,) N Ag(a) = 0, so it follows from (2.1.70) that \, &
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01y (Hy, ), and (2.1.66) gives

1] < e 4h, (y1)| for some y; € 89’%//&@(@). (2.3.96)

4
(b) Ify € Y22 for somer € {1,2,..., R}, and |ly—z|| > (+diam T,
we must have Ay(ay,) N T, = 0, so it follows from (2.1.70) that

Ao & 0gy, (Ha,), and clearly A\, & oy, (Ha,) in view of ({2.3.23).
Thus Lemma [2.1.7(ii) gives

e (y)| < e |, (v)|  for some v e d2T,. (2.3.97)

(ii) Suppose A\, & og(Ar). Then it follows from (2.3.25) that we must
have A\, € oy_(Hy,) for some 7 € {1,2,..., R}. In view of (2.3.22) we

consider two cases:

‘.
(a) Ify € AZ\L’IO (a) for some a € G, and |y — z|| > ¢ + diam Y7, we
must have Ay(a) N T7 =0, and (2.1.66) gives (2.3.96)).
£
(b) Ify € Y10 for some 1 € {1,2,..., R}, and ||y — z|| > diam T+
diam Y., we must have r # 7. Thus Lemma2.1.7(ii) gives ([2.3.97)).

Now we fix x € Ar, and take y € Ay such that ||y — x| > L. Suppose
|¥.(y)] > 0 without loss of generality. We estimate [, (y)| using either
or repeatedly, as appropriate, stopping when we get too
close to = so we are not in any case described above. (Note that this must
happen since |1, (y)| > 0.) We accumulate decay only when we use (2.3.96)),
and just use e~ < 1 when using , recalling L = Y/, then we get

n(Y)

| (y)] < (7)™, (2.3.98)
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where n(Y’) is the number of times we used (2.3.96). We have

R
n(Y)(C+1)+ > diam Y, +20> L. (2.3.99)

r=1

Thus, using (12.3.16]), we have

n(Y) > g7 (L = 500Y°] —20) > 75 (5 —5Y°—2) >2Y°.  (2.3.100)

for sufficiently large ¢ since Y > 400 . Tt follows from (12.3.98]),

s\ 2Y" _Is
[Wa(y)] < (7)) <o, (2.3.101)

for sufficiently large ¢.
We conclude that {(1., Az) }zea, is an s-subexponentially localized eigen-
system for Ay, so the box Ay is s-SEL for H,.,.
O

Proof of Proposition [2.5.6. We assume (2.3.81]) and set Ly, = Y Ly, for k =
0,1,.... We set

P, = sup P{Ap, () is not s-SEL for H.,} for k=1,2,.... (2.3.102)
z€RY
Then by Lemma [2.3.7, we have
Popr < QV)OIDapIF Lo B for k=0,1,...  (23.103)

If P, < e~Li for some k > 0, we have

_ . LY ]+1
Poyr < (2Y) (1) <e—Li) + lelin (2.3.104)

< (2y)(LYsJ+1)de, RalEy + %e_LgH < oL
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for Ly sufficiently large, since ( < s. Therefore to finish the proof, we need
to show that
Ko = inf{k € N; B, < e 5} < oc. (2.3.105)

It follows from (|2.3.103) that for any 1 < k < K,
ﬁk < (2y>(LYSJ+1)dﬁkLz/1SJ+1 + %e—Lk—‘rC < (2Y>(LYSJ+1)d§kL1_/1ﬂ+1 T %ﬁk,
(2.3.106)

SO

1 [Y*$]+1
) (2.3.107)

(2(2y) " 1+0e) 5T B < ((2(2Y)<N+1>d) YT Py
For 1 < k < K, since (2(2Y)(Y"H0d) =7 Py < 1, we have

1

(2(2) (Y DI T o=YSLE _ (9(2y) (¥ I+ T oL (2.3.108)

) (LYs]+1)*

: 1 . LIPS
< (2(2y)(LYsJ+1)d) 7T P, < ((2(2}/)@1/ J+1)d) v B,

1 . Yks
< (2T B
Since ¢ < s, (2(2Y)(LYSH1)d)WﬁO < 1, (2.3.108) cannot be satisfied for

large k. We conclude that Ky < oo. O

2.3.5 The second intermediate step

Proposition 2.3.8. Fiz eq > 0. Suppose for some scale £ and 0 < € < gq

we have
inf P{A(x) is 5-SEL for Heo} > 1 - et (2.3.109)
Then, if { is sufficiently large, for L = {7 we have
inf P{Ap(z) is mo-localizing for H. ,} > 1 — e, (2.3.110)

zcRd
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where

mo > L7752 (2.3.111)

1
8

Proof. We let By, Sy and £y as in the proof of Lemma [2.3.7 We proceed
as in the proof of Lemma [2.3.7 Using (2.3.109), (2.1.9) and the fact that

events on disjoint boxes are independent, we have

P{B°} < (%)(Nﬂ)d o~ (NHDEC _ o(N+1)d p(y—1)(N+1)d—(N+1)¢¢ (2.3.112)

1, —¢ _ 1, —L¢
< §e = 26 s

if N +1>¢0~Y¢ and /¢ is sufficiently large. For this reason we take

N =N, = V(W_l)ZJ = P{B},} < %e_LC for all ¢ sufficiently large.
(2.3.113)
Also, using ([2.3.86)) and (12.3.19)), we have,

P{S]CV} < Y'EO (1 + (L + 1)dN€!(d4d)N|€71) (L + 1)2def(2a—1)Lﬁ < %efLC
(2.3.114)
for sufficiently large L, since (y— 1)3 < (y=1)8 <~vyB and ¢ < 8. Combining

(2.3.112) and (2.3.114)), we conclude that

¢

P{En} >1—e 1. (2.3.115)

To finish the proof we need to show that for all w € &y the box Ay is
my-localizing for H. ,, where mg is given in (2.3.111f). Following the proof
of Lemma [2.3.7, we get 0(H,,) = og(Ha,) U op(Hy,) and obtain an eigen-
system {(tz, Az) }zea, for Hy,. To finish the proof we need to show that

{(Vz, A2) bzen, 1s an mg-localized eigensystem for Ayp. We proceed as in
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the proof of Lemma [2.3.7 We fix x € Ay, and take y € Ay such that

ly — x| > L., we have

R
n(0)(C+1)+ > diam Y, +20 > L. (2.3.116)

r=1

where n(¢) is the number of times we used (2.3.96). Thus, recalling N =

[E(Vfl)zj and using ([2.3.16]), we have

n(f) > 25 (L, — 5000079 —20) > ;4 (%WT” — 500D 2) > 11,
(2.3.117)
for sufficiently large ¢ since (y — 1)5 + 1 < ~7. It follows from ([2.3.98]),

a(y)] < (eme2)3 (2.3.118)

<ot T )y

for sufficiently large ¢.
We conclude that {(¢., \z)}ren, is an mg-localized eigensystem for Ap,

where my is given in (2.3.111]), so the box Ay is mg-localizing for H.,,. O

2.3.6 The fourth multiscale analysis

Proposition 2.3.9. Fiz ¢g > 0. There exists a finite scale L(gy) with the
following property: Suppose for some scale Ly > L(gg), 0 < ¢ < gy and

mo > Lg"™ where 0 < kK <1 — B3, we have
inf P{AL,(z) is mg-localizing for H. ,} > 1 — e L5, (2.3.119)
zeR

Then, setting Ly+1 = L) for k=0,1,..., we have

inf P{Ar,(x) is 52-localizing for He o} > 1 — e Li fork=0,1,....
z€R
(2.3.120)
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Moreover, we have

inf P{Ar,(x) is B2-localizing for He} > 1 — e Li for all L > L.
z€R
(2.3.121)

Lemma 2.3.10. Fix g > 0. Suppose for some scale £, 0 < ¢ < gy, and

m > (7", where 0 < k < T — 0, we have

¢

xieand P{A(x) is m-localizing for H.,,} > 1 —e ", (2.3.122)
Then, if { is sufficiently large, for L = {7 we have
xiélRfd P{AL(x) is M-localizing for H.,} > 1 — e (2.3.123)
where
M m (1 Ot mm{1—77,77—<w—1)6—1,7—~y5—m}) > L (2.3.124)

Lemma ([2.3.10)) and Proposition (2.3.9)) follow from [EK| Lemma 4.5],
[EK] Proposition 4.3|, and [EK] Section 4.3]. (Note that in [EK], they assume

m > m_ for a fixed m_. However, all the results still hold when m > /7"%,0 <

k < T —7p. (See the Lemmas for § being LOC in Sections [2.1.2] and [2.1.3]))

2.3.7 The proof of the bootstrap multiscale analysis

To prove Theorem [2.0.9] first we assume (2.0.18)), which is the same as (2.3.1))
with letting Y = 400, for some length scales. We apply Proposition [2.3.1],

obtaining a sequence of length scales satisfying (2.3.2)). Therefore (2.3.50)) is
satisfied for some length scales. Applying Proposition [2.3.3] we get a length

scale satisfying ([2.3.51)). It follows that (2.3.59) is satisfied since 0 < 1 —7+
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711 < 7. We apply Proposition , obtaining a sequence of length scales

satisfying (2.3.60]). Therefore, In view of Remark [2.0.8 (2.3.81)) is satisfied
with letting ¥ = 4007 . We apply Proposition obtaining a sequence

of length scales satisfying (2.3.82)). Therefore (2.3.109) is satisfied for some

length scales. Applying Proposition [2.3.8] we get a length scale satisfying

(2.3.110)). It follows that (2.3.119)) is satisfied since 0 < 1 —7+ 17;5 <T—7p.
We apply Proposition [2.3.9] getting (2.3.121]), so (2.0.18)) holds.

2.4 The initial step for the bootstrap multi-
scale analysis

Theorem [2.0.10] is an immediate consequence of Theorem [2.0.9| and Proposi-
tion 2.4.11

Proposition 2.4.1. Given q > %d and € > 0, set

o = 120 10g (14 L (241)
L log L 2de )’ o
Then
inf P{A(z) is 6. 1-polynomially localizing for H. ,} (2.4.2)

zCcRd

>1—L1K(L+1)*(8de +2L79)".

In particular, given 8 > 0 and Py > 0, there exists a finite scale L(q,0, Py)
such that for all L > L(q,0, Py) and 0 < ¢ < ﬁL‘q we have

inf P{AL(z) is O-polynomially localizing for H.,} > 1 — F. (2.4.3)

z€R
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Proposition shows that the starting hypothesis for the bootstrap
multiscale analysis can be fulfilled for ¢ < 1.

To prove Proposition , we will use the following lemma given in [EK],
Lemma 4.4].

Lemma 2.4.2 ([EK, Lemma 4.4]). Let H. = —eA +V on (*(Z%), where V

is a bounded potential and € > 0. Let © C Z%, and suppose there is n > 0

such that
V(z)=V(y)|>n foral z,yeB,z#y. (2.4.4)
Then for e < {4 the operator H. e has an eigensystem {(Vu, \e)}oco such
that
Ao — Ay >n—4de >0 forall z,y€O,x#y, (2.4.5)

and for all y € © we have

()] < (2% )'Ml for all z €. (2.4.6)

n—2de

Proof of Proposition[2.7.1. Let € > 0 and A, = Ap(zg) for some z, € R%
Let n = 4de + L~7 and suppose

V(z) = V(y)|>n foral z,ye€0,x#y. (2.4.7)

It follows from Lemma that H. , has an eigensystem {(¢,, A\z)}zen,

satisfying (2.4.5)) and (2.4.6). We conclude from (2.4.5) that Ay is polyno-
mially level spacing for H.. Moreover, using (2.4.6) and ||z|| < |z|;, for all

y,x € A with ||z — y|| > L' we have

lz=yll _lz—ul log (152 )

by(@)| < () = LRt el

lz—yll L—4
— L~ Tog L IOg(1+ 2de ) < [ %t

(2.4.8)
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with 6. 1, as in (2.4.1). Therefore Ay (x) is 6-polynomially localizing.
We have

P{Ay is not 6. -polynomially localizing} < P{({2.4.7) does not hold}
(2.4.9)

IN

LM S, (2 (4de + L79)) <

2

K(L+ 1) (8de +2L7%)",

1
2
which yields (2.4.2). (We assumed 8de + 2L™7 < 1; if not (2.4.2) holds
trivially.)
fo<e< ﬁL‘q, for sufficiently large L we have 0. > 6, and
inf P{A(z) is #-polynomially localizing for H.,} > 1—F,, (2.4.10)

rER4

since aq — 2d > 0. O
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