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A B S T R A C T

Limbic-predominant age-related TDP-43 encephalopathy (LATE) affects approximately one-third of older individuals and is associated with
cognitive impairment. However, there is a highly incomplete understanding of the genetic determinants of LATE neuropathologic changes
(LATE-NC) in diverse populations. The defining neuropathologic feature of LATE-NC is TDP-43 proteinopathy, often with comorbid hip-
pocampal sclerosis (HS). In terms of genetic risk factors, LATE-NC and/or HS are associated with single nucleotide variants (SNVs) in 3
genes—TMEM106B (rs1990622), GRN (rs5848), and ABCC9 (rs1914361 and rs701478). We evaluated these 3 genes in convenience sam-
ples of individuals of African ancestry. The allele frequencies of the LATE-associated alleles were significantly different between persons of
primarily African (versus European) ancestry: In persons of African ancestry, the risk-associated alleles for TMEM106B and ABCC9 were
less frequent, whereas the risk allele in GRN was more frequent. We performed an exploratory analysis of data from African-American sub-
jects processed by the Alzheimer’s Disease Genomics Consortium, with a subset of African-American participants (n¼ 166) having corrobo-
rating neuropathologic data through the National Alzheimer’s Coordinating Center (NACC). In this limited-size sample, the ABCC9/
rs1914361 SNV was associated with HS pathology. More work is required concerning the genetic factors influencing non-Alzheimer disease
pathology such as LATE-NC in diverse cohorts.

K E Y W O R D S : Dementia, Diversity, Epidemiology, Genome-Wide Association Studies (GWAS), KCNMB2, FTLD, KATP

I N T R O D U C T I O N

Aging-related dementia is highly heritable, yet a large propor-
tion of this genetic risk remains unexplained (1–3), particularly
in populations of non-European ancestry. Further, the patho-
genesis of amnestic dementia is quite complex: Pathologies
other than Alzheimer disease (AD)-type Ab plaques and tau
tangles often contribute to the dementia phenotype in aging
(4–6). For example, in approximately 30% of aged individuals
with clinical dementia, autopsy reveals TDP-43 pathology (7,
8). A term for the prevalent non-Alzheimer amnestic dementia
associated with TDP-43 pathology was recently proposed: lim-
bic predominant age-related TDP-43 encephalopathy (LATE)
(9). The presence of LATE neuropathologic change (LATE-
NC) often co-occurs with hippocampal sclerosis (HS) (10),
which indicates cell loss and gliosis in the hippocampal
formation.

While most prior studies on LATE-NC and HS have been
in European ancestry-predominant cohorts, there have also
been prior studies of LATE-NC phenotypes in non-European
populations (11–15). However, pending the availability of

more data, it is currently challenging to draw inferences based
on these studies about commonalities and differences between
ethnoracial populations that are attributable to genetic and/or
environmental factors.

Prior published data indicated that there are specific alleles
conferring risk for LATE-NC and/or HS in aging. Single
nucleotide variants (SNVs) that were associated with risk for
LATE-NC and/or HS, and in which the primary observations
were replicated, are granulin (GRN), transmembrane protein
106B (TMEM106B), and ATP-binding cassette, subfamily C,
member 9 (ABCC9) (16–21). It also has been shown that the
APOE allele linked to risk for AD risk is also associated with
LATE-NC (18, 22), but this phenomenon is not a focus of the
current study.

To date, the genetic architecture of LATE-NC and associ-
ated pathologies is poorly characterized in diverse populations.
Here we evaluated the risk alleles in TMEM106B, GRN, and
ABCC9, which have previously been associated with LATE-
NC pathological phenotypes, among convenience samples of
persons of African ancestry.
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M A T E R I A L S A N D M E T H O D S
SNVs from LDLink online database

The characterization of LATE-NC and/or HS-associated gene
variants by geographical-related ancestry was accomplished
through the public access database, NIH-sponsored LDLink
(https://ldlink.nih.gov) (23), and more specifically the LDpop
Tool, which is described on the website (https://ldlink.nih.
gov/?tab=ldpop) as a resource to “Investigate allele frequen-
cies and linkage disequilibrium (LD) patterns across 1000G
populations” (24). All of the accessioned populations in the
LDLink database of African and European ancestry were
included in the current study.

Participants for genotype/phenotype association testing
The National Alzheimer’s Coordinating Center (NACC) phe-
notype data were derived from 37 different US Alzheimer’s
Disease Research Centers (ADRCs) with autopsies measured
via the NACC neuropathology v10-11 forms through the Sep-
tember 2022 data freeze (https://www.alz.washington.edu/).
Autopsies were performed within each of the contributory
ADRCs. We excluded participants diagnosed with at least 1 of
19 rare brain diseases at autopsy (e.g. prion disorders, multiple
sclerosis, corticobasal degeneration, triplet repeat diseases) as
described previously (25). For example, FTLD-TDP, ALS,
and most other non-LATE-NC conditions with TDP-43 path-
ology were excluded.

Neuropathology data
TDP-43/LATE-NC neuropathological data were operational-
ized as follows: TDP-43 pathology with 0¼ none and
1¼ present in any brain regions including amygdala, hippo-
campus, entorhinal/inferior temporal cortex, and neocortex
(binary LATE-NC); TDP-43 pathology with 0¼ none and
1¼ present in hippocampus and/or entorhinal/inferior tem-
poral cortex (these indicate LATE-NC Stage >1) (26); and

HS with 0¼ none and 1¼ present either unilaterally or bilat-
erally. Alzheimer disease neuropathologic change (ADNC)
was operationalized using semiquantitative metrics as
described previously (27–30).

Genetic data for genotype-pathology correlations
We obtained ADRC genotype data from the Alzheimer’s Dis-
ease Genomics Consortium (ADGC; n¼ 23 131). The geno-
type data were imputed using the TOPMed Imputation Server
(https://imputation.biodatacatalyst.nhlbi.nih.gov/) based on
the Genome Reference Consortium Human Build 38
(GRCh38) (31). To identify predominant genetic ancestry for
each participant, we calculated principal components (PCs)
using a LD pruned subset of genomewide SNVs (pairwise r2

< 0.2) and ran Uniform Manifold Approximation and Projec-
tion (UMAP) based on the first 20 PCs (32).

Statistical analysis
For each of the neuropathology outcomes, we performed asso-
ciation tests under an additive mode of inheritance using logis-
tic regression and adjusted for age at death, sex, and the top 3
PCs computed in PLINK v1.90a (33, 34).

R E S U L T S
SNV frequencies in African and European ancestry samples

The allele frequencies of the LATE-NC associated alleles were
quite different between persons of African (versus European)
ancestry: In persons of African ancestry, the LATE-NC-
associated risk alleles for TMEM106B and HS risk alleles in
ABCC9 were relatively less frequent, whereas the GRN risk
allele was more frequent in persons of African ancestry. Pri-
mary data are shown in Table 1. In contrast to the large differ-
ence between European and African ancestry groups, the
variability within groups (standard deviation, as denoted by

Table 1. Frequencies of selected single nucleotide variants that have been linked to altered risk for LATE-NC pathological phenotype(s) in
cohorts of African or European ancestry*

Ancestry group*
Sample
size, n

TMEM106B GRN ABCC9

rs1990622, A ¼ risk rs5848, T ¼ risk rs1914361, G ¼ risk rs704178, G ¼ risk

YRI Yoruba in Ibadan, Nigeria 108 A: 23.6%, G: 76.4% C: 21.8%, T: 78.2% A: 97.7%, G: 2.3% G: 22.7%, C: 77.3%
LWK Luhya in Webuye, Kenya 99 A: 32.3%, G: 67.7% C: 38.4%, T: 61.2% A: 92.4%, G: 7.6% G: 41.9%, C: 58.1%
GWD Gambian in Western Gambia 113 A: 31.0%, G: 69.0% C: 23.9%, T: 76.11% A: 91.6%, G: 8.41% G: 31.9%, C: 68.1%
MSL Mende in Sierra Leone 85 A: 24.1%, G: 75.9% C: 14.1%, T: 85.9% A: 88.8%, G: 11.2% G: 35.9%, C: 64.1%
ESN Esan in Nigeria 99 A: 15.1%, G: 84.9% C: 24.9%, T: 75.3% A: 96.0%, G: 4.0% G: 23.7%, C: 76.3%
ASW Americans of African

Ancestry in SW USA
61 A: 33.6%, G: 66.4% C: 42.6%, T: 57.4% A: 83.6%, G: 16.4% G: 38.5%, C: 61.5%

ACB African Caribbeans in Barbados 96 A: 25.0%, G: 75.0% C: 25.5%, T: 74.5% A: 94.3%, G: 5.7% G: 29.2%, C: 70.8%
African ancestry, total 661 A: 26.1%, G: 73.9% C: 26.6%, T: 73.45% A: 92.7%, G: 7.3% G: 31.4%, C: 68.6%
CEU Utah residents from

N&W Europe
99 A: 54.0%, G: 45.96% C: 75.3%, T: 24.8% A: 46.5%, G: 53.5% G: 57.1%, C: 42.9%

TSI Toscani in Italia 107 A: 61.2%, G: 38.8% C: 70.6%, T: 29.4% A: 51.9%, G: 48.1% G: 45.8%, C: 54.2%
FIN Finnish in Finland 99 A: 61.6%, G: 38.4% C: 66.7%, T: 33.3% A: 50.0%, G: 50.0% G: 53.0%, C: 47.0%
GBR British in England and Scotland 91 A: 54.4%, G: 45.6% C: 70.9%, T: 29.1% A: 55.5%, G: 44.5% G: 46.2%, C: 53.9%
IBS Iberian population in Spain 107 A: 64.0%, G: 36.0% C: 66.4%, T: 33.6% A: 61.7%, G: 38.3% G: 44.4%, C: 55.6%
European ancestry, total 503 A: 59.2%, G: 40.8% C: 69.9%, T: 30.1% A: 53.2%, G: 46.8% G: 49.2%, C: 50.8%

* Data derive from publicly available website: https://ldlink.nih.gov/.
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error bars in Fig. 1) was relatively small, indicating that the
findings were robust within continental ancestry groups.

Association between selected SNVs and LATE-NC
pathologic phenotypes in a cohort of African-Americans

A total of n¼ 166 genetically identified African-Americans
from US ADRCs (with neuropathology data and SNV geno-
typing available) met inclusion criteria. We also assessed a
larger group of participants of European ancestry (n¼ 3178).
Demographic and neuropathologic summary data on these
subjects are displayed in Table 2. This is a highly educated
cohort (average years of education for African-Americans
¼ 15.6). Note that among both African and European ances-
try groups, most of the included participants had severe
ADNC at autopsy, and approximately one-third had LATE-
NC.

In these convenience samples, we tested the associations
between selected SNVs and LATE-NC phenotypes. Principal
components analyses (PCA) results and UMAP plots are
shown in Figure 2. The results of the genotype-phenotype
association tests (with ethnoracial parameters according to the
PCA/UMAP results) are shown in Table 3 for participants of
African ancestry, and Table 4 for a larger cohort of European
ancestry. Among the various tests performed in individuals of
African ancestry, only the ABCC9 genotype (rs1914361) was
associated with HS pathology in this small sample.

The GRN genetic variant rs5848 is considered to be a likely
disease-driving 3’UTR genetic variant as it changes gene
expression via a miRNA binding site (35). However, both
TMEM106B (36) and ABCC9 (37) have shown evidence that
the disease-associated allele may be a proxy for larger

Figure 1. Allele frequencies for single nucleotide variants (SNVs) associated with LATE-NC phenotype(s) in persons of European (blue) or
African (orange) ancestry. For the identity of the specific increased risk-associated allele, see Table 1. Risk alleles are rs1990622
(TMEM106B), rs5848 (GRN), rs1914361 (ABCC9), and rs704178 (ABCC9). As the plots and Table 1 indicate, there were n¼ 5 cohorts
for European ancestry and n¼ 7 cohorts for African ancestry.

Table 2. Demographic and neuropathologic characteristics of
included subjects for genotype/phenotype correlation

Characteristics

African
Ancestries

European
Ancestries

n¼ 166 n¼ 3178

Age at death, mean 6 SD 80.6 6 11.6 82.3 6 10.6
Years in education, mean 6 SD 15.6 6 9.9 16.4 6 8.5
Sex, n (%)

Male 61 (36.7) 1671 (52.6)
Female 105 (63.3) 1507 (47.4)

Thal phase, n (%)
0 7 (7.4) 113 (6.9)
1–2 13 (13.7) 145 (8.9)
3 9 (9.5) 184 (11.3)
4–5 66 (69.5) 1190 (72.9)

Braak NFT stage, n (%)
0 2 (1.2) 54 (1.7)
I–II 21 (12.7) 433 (13.7)
III–IV 35 (21.2) 778 (24.6)
V–VI 107 (64.8) 1902 (60.1)

Neuritic plaques, n (%)
No 29 (17.5) 457 (14.4)
Sparse 12 (7.2) 412 (13.0)
Moderate 27 (16.3) 651 (20.5)
Frequent 98 (59.0) 1653 (52.1)

TDP-43 in any region, n (%)
No 54 (70.1) 799 (67.6)
Yes 23 (29.9) 383 (32.4)

LATE-NC Stage >1, n (%)
No 48 (70.6) 726 (71.2)
Yes 20 (29.4) 293 (28.8)

Hippocampal sclerosis, n (%)
No 74 (81.3) 1389 (87)
Yes 17 (18.7) 208 (13)

SD, standard deviation.
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Figure 2. Principal components (A) and Uniform Manifold Approximation and Projection (UMAP) plots (B) for participants in the
present study (Table 1), colored by self-identified race. African and European ancestries were identified based on UMAP plot.

Table 3. Genotype/phenotype correlation for SNVs linked with LATE-NC phenotypes (n¼ 166 African ancestries)

Pathology Gene SNV Allele AF OR 95% CI p-value

LATE-NC (any) TMEM106B rs1990622 A 0.34 0.78 0.31 1.91 0.59
GRN rs5848 T 0.66 0.65 0.24 1.65 0.37

ABCC9 rs1914361 G 0.17 1.57 0.54 4.62 0.40
ABCC9 rs704178 G 0.39 0.56 0.21 1.36 0.21

LATE-NC (Stage >1) TMEM106B rs1990622 A 0.34 0.58 0.20 1.60 0.31
GRN rs5848 T 0.66 0.50 0.15 1.43 0.21

ABCC9 rs1914361 G 0.17 1.53 0.48 4.94 0.46
ABCC9 rs704178 G 0.39 0.71 0.27 1.77 0.47

Hippocampal sclerosis TMEM106B rs1990622 A 0.34 0.38 0.12 1.02 0.071
GRN rs5848 T 0.66 1.67 0.64 4.64 0.30

ABCC9 rs1914361 G 0.17 4.60 1.62 14.69 0.0059
ABCC9 rs704178 G 0.39 2.03 0.81 5.41 0.14

SNV, simple nucleotide variant; AF, allele frequency (risk allele); OR, odds ratio; CI, confidence interval. Bold ¼ p<0.05.

Table 4. Genotype/phenotype correlation for SNVs linked with LATE-NC phenotypes (n¼ 3178 European ancestries)

Pathology Gene SNV Allele AF OR 95% CI p-value

LATE-NC (any) TMEM106B rs1990622 A 0.58 1.47 1.23 1.77 3.3 3 1025

GRN rs5848 T 0.30 1.13 0.94 1.37 0.19
ABCC9 rs1914361 G 0.44 0.94 0.79 1.12 0.49
ABCC9 rs704178 G 0.50 0.85 0.71 1.01 0.071

LATE-NC (Stage >1) TMEM106B rs1990622 A 0.58 1.48 1.21 1.82 1.8 3 1024

GRN rs5848 T 0.30 1.03 0.83 1.27 0.81
ABCC9 rs1914361 G 0.44 0.88 0.73 1.07 0.21
ABCC9 rs704178 G 0.50 0.82 0.67 1.00 0.047

Hippocampal sclerosis TMEM106B rs1990622 A 0.58 1.72 1.38 2.16 1.7 3 1026

GRN rs5848 T 0.30 1.47 1.18 1.83 5.1 3 1024

ABCC9 rs1914361 G 0.44 1.12 0.91 1.38 0.29
ABCC9 rs704178 G 0.50 0.99 0.80 1.22 0.92

SNV, simple nucleotide variant; AF, allele frequency (risk allele); OR, odds ratio; CI, confidence interval. Bold ¼ p<0.05.
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haplotypes. For more detailed presentation of the genotype/
phenotype associations and genetic architectures in and nearby
TMEM106B and ABCC9 genes, in samples of African and
European ancestry, see Figures 3 and 4. Notably, with caveats
related to sample size, there does not seem to be a clear signal
of TMEM106B gene variation association with LATE-NC in
persons of African ancestry.

Results are presented in Supplementary Data Tables S1–S3
for KCNMB2 SNV (rs9637454) that was found to be associ-
ated with HS (19). We did not find compelling reasons to

indicate that KCNMB2 genetic variation would explain ethno-
racial differences in LATE-NC/HS.

D I S C U S S I O N

We evaluated SNVs (referent to TMEM106B, GRN, and
ABCC9 genes) in persons of African ancestry. Among the
cohorts we evaluated, the allele frequencies of the LATE-
associated genetic variants were different in relation to the
geographical region of ancestry: In persons of African ancestry,

Figure 3. In persons of African ancestry (A) and European ancestry (B), LocusZoom plots shown for associations between single
nucleotide polymorphisms in ABCC9 and hippocampal sclerosis with linkage disequilibrium (LD) depicted below in heatmap plots. A signal
at rs1914361 was evident in the participants of African ancestry, whereas in this sample of European ancestry participants, ABCC9 genetic
variation was not associated with HS risk.

Figure 4. In persons of African ancestry (A) and European ancestry (B), LocusZoom plots shown for associations between single
nucleotide polymorphisms in TMEM106B and limbic predominant age-related TDP-43 encephalopathy neuropathologic change (LATE-
NC), with linkage disequilibrium (LD) depicted below in heatmap plots. In this sample of participants of African ancestry, TMEM106B
variants were not associated with risk for LATE-NC.
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the LATE-NC-linked risk alleles for TMEM106B and ABCC9
were less frequent, whereas the HS risk allele in GRN was
more common than in persons of European ancestry. In an
exploratory analysis of data on African-American subjects from
the ADGC, only the ABCC9/rs1914361 SNV was associated
with HS pathology.

There are notable limitations to the present study. Ethnora-
cial groupings are partly a sociocultural construct and the his-
tory of biased research should be factored in to any scientific
study related to race/ethnicity (38). Although beyond the pur-
view of the present manuscript, structural racism (inside and
outside of scientific institutions) tends to have insidious influ-
ences that should be considered. Culture-defined groups can
also be differentially recruited into research studies, even
within the same research center. The genetic and cultural
aspects can be intertwined; for example, self-described “Blacks”
in 1 US state can have very different genetic patterns than
those in another (even nearby) state (39). These are only
some of the relevant considerations in the study of the impact
of ancestry in genetic research (40).

In addition to the inherent challenges of dealing with racial
identity as an experimental parameter, another challenge
related to the current study was that the sample sizes of the
gene-pathology association analyses were small, limiting statis-
tical power. The lack of associations (in terms of statistical
testing results) between TMEM106B and GRN SNVs with
LATE-NC pathology in persons with African ancestry should
be considered in light of that limitation due to the high likeli-
hood of type II (false-negative) error. However, we note that
relatively small European-predominant cohorts have seen evi-
dence of TMEM106B association with LATE-NC/HS (41,
42). In the present study, even in the larger analyses of
participants of European ancestry, some but not all of the
previously replicated genotype-phenotype association signals
were not seen. Such (presumably type II error) results are not
unusual in genetic studies with these sample sizes for various
reasons (43, 44). Nonetheless, in the present study, there was
a statistically significant association between the ABCC9 risk
allele rs1914361 and HS pathology in persons of African
ancestry.

Keeping the abovementioned notes of caution in mind, it is
notable that Blacks/African-Americans have been hypothe-
sized to be at higher risk for dementia than other ethnoracial
groups (38, 45). This phenomenon has not been fully
explained but there are some indications that non-AD path-
ways may be important (38, 46). Further, there is precedence
for impactful differences in genotype/phenotype correlations
in different ethnoracial groups. A given genetic variant may sig-
nal different things in persons with differing genetic back-
ground. For example, while APOE e4 is a driving factor in AD
neuropathology, that allele appears to have an attenuated
impact in persons of African ancestry (relative to those of
European ancestry), whereas the correlative impact of ABCA7
gene variants is relatively stronger in persons of African ances-
try (47–52).

Thus, it is not necessarily true that differences in the fre-
quency of a specific allele in one population (versus another)
will have a predictable correlative association with a given phe-

notype: It remains to be seen if the relatively low frequencies
in Blacks/African ancestry individuals, of SNVs (rs1990622 in
TMEM106B, and ABCC9 alleles) that have been associated
with increased risk in White-predominant cohorts, are predic-
tive of a lower vulnerability of LATE-NC in persons of African
ancestry. Nor can we predict whether Blacks/African ancestry
persons are at increased risk given the relatively higher fre-
quency of GRN risk variant rs5848 in persons of African
heritage.

In summary, our findings indicate intriguing phenomenol-
ogy in terms of LATE-NC-associated genetic variants in per-
sons of African ancestry. The findings in the present study are
mostly exploratory and they are part of an emerging under-
standing of the commonalities and differences between ethno-
racial groups in terms of the pathobiology of dementia-related
diseases. It is acknowledged that these observations raise more
questions than they answer. Additional work is required on
genomics underlying dementia-related brain pathology, such
as LATE-NC, in diverse populations.
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