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A Bayesian model of memory in a multi-context environment
Dave F. Kleinschmidt (dave.kleinschmidt@rutgers.edu)

Pernille Hemmer (pernille.hemmer@rutgers.edu)
Department of Psychology, Rutgers University, New Brunswick

152 Frelinghuysen Road, Piscataway, NJ 08854

Abstract

In a noisy but structured world, memory can be improved
by enhancing limited stimulus-specific memory with statisti-
cal information about the context. To do this, people have to
learn the statistical structure of their current environment. We
present a Sequential Monte Carlo (particle filter) model of how
people track the statistical properties of the environment across
multiple contexts. This model approximates non-parametric
Bayesian clustering of percepts over time, capturing how peo-
ple impute structure in their perceptual experience in order to
more efficiently encode that experience in memory. Each trial
is treated as a draw from a context-specific distribution, where
the number of contexts is unknown (and potentially infinite).
The model maintains a finite set of hypotheses about how the
percepts encountered thus far are assigned to contexts, updat-
ing these in parallel as each new percept comes in. We apply
this model to a recall task where subjects had to recall the posi-
tion of dots (Robbins, Hemmer, & Tang, 2014). Unbeknownst
to subjects, each dot appeared in one of a few pre-defined re-
gions on the screen. Our model captures subjects’ ability to
learn the inventory of contexts, the statistics of dot positions
within each context, and the statistics of transitions between
contexts—as reflected in both recall and prediction.
Keywords: Bayesian modeling; memory; learning; belief up-
dating

Introduction
Every cognitive function—perceptual inference, learning,
memory, decision making, etc.—takes place in context, and
understanding these cognitive functions requires understand-
ing the role that the context plays. When cognitive func-
tions are considered in isolation, context can appear to be a
source of errors, distraction, or added uncertainty. For ex-
ample, Roediger and McDermott (1995) induced “false re-
call” by having subjects study lists of near associates of a
word but not the critical word itself. However, when consid-
ered ecologically, larger-scale regularities in the environment
mean that context can function as a source of additional in-
formation, reducing the amount of information that must be
stored about particular instances. Evidence abounds that peo-
ple draw on the context an item occurred in as an additional
source of information (e.g., DuBrow, Rouhani, Niv, & Nor-
man, 2017; Huttenlocher, Hedges, & Duncan, 1991; Orhan
& Jacobs, 2013; Schulz, Franklin, & Gershman, 2018; Qian
& Aslin, 2014). In this view, so-called “false recall” is re-
ally a reflection of the mis-match between the experimenter’s
defined context and the subject’s inferred context.

However, this raises the question of what is a context, and
how do people know? For instance, Huttenlocher et al. (1991)
found that immediate spatial recall of a location in a circular
area is biased towards the average radius of all locations in
the experiment. They proposed that memory for an individ-
ual item’s location is encoded at two levels: the item itself,

Figure 1: All locations that subject 4 studied (left), color-
coded by their block (right), large dots show the average lo-
cation for each block, and the gray lines show the sequence
of blocks

and the category it was assigned to. However, their proposed
model does not address what constitutes a category or how
subjects decide, and instead simply defines the category based
on the long-run statistics of locations encountered in their ex-
periment. However, Robbins et al. (2014) discovered that in
a similar task with multiple (implicit) contexts, subjects re-
call draws on context-level statistics, rather than the long-run
(experiment-level) statistics.

Here, we propose a Bayesian model of learning and mem-
ory in multi-context environments, and apply this model to
the data from Robbins et al. (2014) human spatial memory ex-
periment. The model treats the problem of identifying latent
contexts as a sequential non-parametric clustering problem,
where agents must update their beliefs about which context
they are in and the properties of that context online, with one
data point at a time. This model thus captures psychological
constraints on the discovery of latent contexts which is not
captured by previous Bayesian models.

Data
The data we model is described in detail in Robbins et al.
(2014), but we provide a brief summary of the procedure here.
In this experiment, 8 participants were asked to record the lo-
cation of a dot presented in a circle (see Figure 1) and recon-
struct that location from memory. Participants were given a
cover story in order to keep the task engaging; they were told
that the circle was a garden and the dots were moles. In order
to save their garden, they had to “catch” the moles by clicking
on the locations where they saw them.

After an initial presentation of 20 dots at the center of the
circle, dots were presented in blocks (3, 6, 9, or 12 presen-
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tations in a cluster), sampled from a multinomial normal dis-
tribution with a mean of a given radius and one of three vari-
ances (0.01, 0.04, and 0.06 in a unit circle). There was no ex-
plicit signal to the subject when one block ended and the next
began. The mean angles and radii were informed by Hutten-
locher et al. (1991). There were 24 angle measures including
the axes, and the measures consisted of the same relative an-
gles in each quadrant. Four different distances measuring out
from the center of the circle to the circumference were chosen

Each dot was viewed for one second followed by a com-
bined visual mask and distractor task designed to remove the
dot from participants’ visual field and introduce uncertainty
in the memory process. This mask consisted of a grid of black
and white squares; after this mask was removed, an “X” ap-
peared on the screen and participants were asked to report the
color of the square (black or white)previously in that loca-
tion. Data from the distractor task was recorded but not ana-
lyzed. After the completion of the distractor task, participants
were asked to recall the location of the dot from memory by
clicking a spot in the circle. After every three trials, partici-
pants were asked to make a prediction about a future dot lo-
cation. Prediction trials alternated between prediction for the
next trial and prediction for five trials from now. Each block
(defined as a cluster of trials at one mean) was followed by a
prediction for the expected dot location 10 trials from the cur-
rent trial. This resulted in a total of 280 trials: 80 prediction
trials and 200 recall trials.

Modeling
Our model has three components. First, we model how peo-
ple infer the assignment of stimuli to contexts as nonpara-
metric Bayesian clustering, approximated sequentially with a
particle filter. Second, we model encoding and recall of loca-
tions as Bayesian cue combination with a prior from the con-
text (much like Huttenlocher et al., 1991). Third, we model
subjects’ predictions about future locations via the posterior
predictive distribution of the context model.

Context model
We modeled learners inferences about the underlying context
on each trial as a sequential Bayesian non-parametric cluster-
ing problem. The goal of the learner in this model is to infer
the cluster assignment zi of observation xi, given the previous
observations x1:i−1 and their labels z1:i−1:

p(zi = j|x1:i,z1:i−1)∝ p(xi|zi = j,z1:i−1,x1:i−1)p(zi = j|z1:i−1)

The sequential prior p(zi = j|z1:i−1) is a “Hibachi Grill
Process” (Fox, Sudderth, Jordan, & Willsky, 2011, 2A; Qian
& Aslin, 2014), which is like the standard Chinese Restaurant
Process (CRP) with an added (constant) probability assigned
to the previous state. This corresponds to the following gen-
erative model: with probability 0 < ρ < 1 the previous state
is picked, j = zi−1, and with probability 1−ρ a component is
chosen from a Chinese Restaurant Process with concentration
α, which assigns probability to each state proportional to the

number of observations assigned to it already,1 and creates a
new state with probability proportional to α > 0. We refer to
the ρ parameter as the “stickiness” because it controls how
likely, a priori, the model is to stick to the same state.

The likelihood p(xi|zi = j,z1:i−1,x1:i−1) = p(xi|x{k;zk= j}) is
computed by marginalizing over the mean and covariance of
a multivariate normal distribution given the data points previ-
ously assigned to that cluster and a conjugate Normal-Inverse
Wishart prior (Gelman, Carlin, Stern, & Rubin, 2003). This
has the advantage that it only requires tracking the sufficient
statistics of the previous observations from the cluster (sam-
ple mean and covariance), and not the individual observa-
tions.

Inference: Sequential Monte Carlo
Instead of a standard batch inference technique, we use an
online, Sequential Monte Carlo/particle filter technique. This
method approximates the posterior beliefs after i− 1 obser-
vations p(z1:i−1|x1:i−1) as a weighted population of K parti-
cles, each of which is one possible value of the i− 1 labels,
denoted z(k)1:i−1. This population of particles represents an im-
portance sample from the posterior. When a new observation
xi comes in, the population moves to target the updated pos-
terior p(z1:i|x1:i). There are many algorithms to do this, and
the effectiveness of a particular algorithm will depend on the
problem. We use the algorithm of Chen and Liu (2000), as
described in, Fearnhead (2004): for each particle k, a state as-
signment is sampled for xi according to p(zi|x1:i,z

(k)
1:i−1), and

the weight w(k)
i is updated by the ratio of

∑ j p((z(k)1:i−1, j)|x1:i)

p(z(k)1:i−1|x1:i−1)

to ensure that each particle’s weight reflects its ability to pre-
dict the point xi, rather than just explain it. When too much of
the total weight for the population (constrained to sum to 1) is
captured by a small number of particles (measured by the ra-
tio of the variance of the weights to their mean being greater
than 0.5), a new population is resampled (with replacement)
and the weights are set to be uniform.

This is for two reasons. First, because we wish to query
the model’s beliefs about the current context at every point
throughout the experiment, an online approximation is much
more computationally efficient. A batch algorithm like
Gibbs sampling or Hamiltonian Monte Carlo requires one full
sweep through the data for each sample, which must be done
independently for each data point, so drawing K samples for
each of N data points is O(KN2). A particle filter propagates
uncertainty with a fixed population of K particles, updating
each particle in parallel as each data point comes in, meaning
the complexity is only O(KN). This means it is possible to
effectively model longer experiments.

1One important difference from a standard CRP is that only non-
sticky transitions count for the purposes of sampling new states from
the CRP.

2025



Second, an online learning algorithm better approximates
psychological constraints on learning, and in particular un-
like batch MCMC algorithms does not assume that learners
can go back and revisit each observation and their decisions
about it.2 This class of models thus provides a possible bridge
between computational and algorithmic level approaches to
modeling learning and memory (Kleinschmidt, 2018; San-
born, Griffiths, & Navarro, 2010).

Encoding and recall
The noisy memory trace is modeled as a normal distribution
centered at the studied location x with an isometric covari-
ance matrix Σx, whose diagonal elements are all equal to σ2

x ,
which is a free parameter of the model. This noisy memory
trace is combined with a context prior, which is approximated
by the population of particles. Specifically, each particle k
represents one possible assignment of the observations x1:i to
clusters z(k)1:i . We can thus model each particle’s context as the
expected mean and covariance matrix for all the points that
particle k has assigned to the same cluster as the studied point
z(k)i :

µ(k)c ,Σ
(k)
c = E(µ,Σ)

p(µ,Σ|x1:i,z
(k)
1:i )

Then the best guess of the studied location under particle
k’s model of the context is the combination of a normal like-
lihood (from the noisy trace of the studied item) and a normal
prior (from the context), which works out to be the inverse
variance-weighted average of the two means:

x̂(k) = (Σ
(k)
c
−1

+Σ
−1
x )−1(Σ

(k)
c
−1

µ(k)c +Σ
−1
x x)

Prediction
To model subjects predictions about future locations, we sam-
ple 100 locations from the posterior predictive distribution of
the population of particles. To sample one predicted loca-
tion at a n trials in the future, we sample a particle from the
population according to their weights, draw a sample of n fu-
ture states from that particle’s Hibachi Grill Process, and then
sample one point from the posterior predictive distribution of
the resulting cluster. In the case that the predicted cluster is a
new cluster, we sample from the prior predictive.

Procedure
To evaluate this model, we simulated the data from Rob-
bins et al. (2014) with a range of parameter values. The
concentration parameter α was set to 0.01,0.1,1, or 10, and
the stickiness parameter ρ was set to 0.1,0.5, or 0.9. The
memory noise standard deviation parameter σx varied along
0.01,0.1,1, (for a circle with a radius of 1), although only
results from σx = 0.1 are presented here. The prior for the
cluster parameters was based on the distribution of true block
means/covariances. In principle, this could be inferred as well

2These approaches also do not preclude revising previous deci-
sions, they just do not require it.

Figure 2: Cluster assignment similarity matrix for clusters in-
ferred by one population of particles from subject 4’s studied
locations (left), with the true (experimenter-defined) blocks
outlined in colors (see Figure 1). The similarity matrix based
on the Euclidean distance between each location is shown for
comparison (right) and to show that the model groups some
similar locations into the same cluster even though they are
from different blocks.

but we leave that enhancement for future work. We ran 10
repetitions with each of the 36 combinations of parameters,
all of which used 100 particles for each subject’s data.

The particle filter algorithm was implemented in Julia 1.1
(Bezanson, Edelman, Karpinski, & Shah, 2017). The code,
simulation results, and Weave.jl (Pastell, 2017) source for this
paper is available from osf.io/dqz73/

Results
Clustering
First, how well does this algorithm do at recovering the un-
derlying cluster structure? This is not a straightforward ques-
tion to answer: each particle in the population represents a
potentially different assignment of observations to clusters,
and the cluster indices used in one particle might not align
with those in another particle. To get around this we look at
the assignment similarity matrix, which is an N×N matrix,
where element (i, j) is the probability that trials i and j are
assigned to the same cluster. This probability is calculated by
averaging across all particles in the population according to
their weight.

Figure 2 shows the assignment similarity matrix for one
subject, based on a 100-particle filter with α = 0.01,ρ = 0.9
(left) with the true, experimenter-defined block structure is
outlined in the colors from Figure 1, and the pairwise Eu-
clidean distance between the locations for comparison (right).
This example shows a number of important features of the
model’s inferences about the underlying changes in context.
First, relative to the experimenter-defined blocks, the model
occasionally undersegments, grouping adjacent blocks to-
gether into a single context. Second, the model also some-
times infers that it has returned to a previous context, instead
of creating a new context when it infers that the block has
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Figure 3: Subject 4’s recalled locations (gray arrows, point-
ing from studied to recalled location) compared with model
simulation (blue arrows; α = 0.01,ρ = 0.9,σx = 0.1)

changed. This can be seen from the off-(block)-diagonal en-
tries in the assignment similarity matrix (Figure 2, left). As
the Euclidean similarity matrix (Figure 2, right) shows, this
tends to happen when the points in two blocks are close to-
gether. Third, because of the online nature of the model, it
maintains relatively less uncertainty about the clustering of
early trials. Note though that Figure 2 shows the beliefs of
the model at the end of the experiment, which reflect the to-
tality of the locations it has encountered.

Recall

Next, we assess how well the inferred contexts can predict
recall. Figure 3 shows one subject’s actual deviations from
studied to recalled locations (gray arrows) versus the model’s
predicted deviations (blue arrows). To quantify goodness
of fit, we use the cosine similarity of the model’s and sub-
ject’s recall deviation (i.e., blue and black arrows in Figure
3), which ranges from 1 (deviations perfectly aligned) to −1
(deviations in opposite directions), with 0 corresponding to
orthogonal deviations. We chose this metric because it is less
sensitive to large outlier responses than mean-squared error,
and because approximations of the likelihood of a subject’s
response given the model is highly sensitive to free parame-
ters and difficult to reliably estimate. Moreover, the baseline
models we compare against also do not have straightforward
likelihood models, but they do make straightforward predic-
tions about the directions of recall deviations.

Figure 4 shows the cosine similarity with of all subjects’ re-
sponses with the multi-context Bayesian model. The ribbons
show the 95% bootstrapped confidence intervals over model
runs, which indicate that the approximate inference strategy
leads to reasonably consistent inferences for a given set of pa-
rameters. At all parameter settings, the model performs better
than chance, predicting subjects’ recall deviation directions at
a cosine similarity of around 0.1 (relative to a chance level of

Figure 4: Mean cosine-similarity of model predicted and ac-
tual recall deviations across parameter values (ribbons show
95% bootstrapped CIs over model runs). Gray lines show
baselines: always deviate toward center, average radius, and
center of true clusters

0). The model performs best for high ρ stickiness and low α

concentration.

We also compare the model’s performance against three
baselines. First, we compare it against a “known clusters”
model, which uses the true (experimenter defined) clusters
with the same Bayesian cue combination model of encoding
and recall. Second, we compare it to two baselines based on
previous literature on similar memory tasks (Huttenlocher et
al., 1991): one that always biases recall towards the center
(the average location of all trials), and one that biases recall
towards the mean radius.

First, at the whole range of parameters explored, the multi-
context model performs better than the center- or mean-
radius-biased baselines. Second, except for low stickiness
ρ = 0.1, our model provides a better fit to human behavior
than the “known clusters” baseline, which differs from our
model only in that the true cluster labels are provided for
each data point, rather than being inferred. This suggests
that, at least according to the cosine similarity metric, our
context-inference model better captures how people combine
information about the current context during recall than the
“ground truth” clusters.

However, an important caveat is that there is substantial
variability across subjects. The cosine similarity for α =
0.01,ρ = 0.9 has a 95% boostrapped CI across subjects of
[0.05,0.17], which while significantly better than chance is
not significantly better than the baseline models, even when
taking into account the substantial variability in the cosine
similarity for the baseline models themselves. With only 8
subjects in this dataset it is unclear how well the model’s per-
formance will generalize to other datasets, and future work
with better-powered designs is required.
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Figure 5: Subject 7’s (red points) and model’s (gray re-
gions) predictions about upcoming locations at various points
throughout the experiment and various prediction horizons.
The white points show the last recalled location.

Figure 6: Model predicted (α = 0.01,ρ = 0.9) and actual de-
viations from last studied point for prediction task. Small
points show deviations of predictions for each trial, and large
points show average deviations for each lag (1, 5, or 10 trials).

Prediction
Subjects also, every three recall trials, predicted the location
where points would appear in 1, 5, or 10 trials in the future.
This is a more explicit probe of what subjects know about the
cluster structure than the recall task. Figure 5 shows six ex-
amples of how the model’s prediction about upcoming loca-
tions capture subjects’ behavior. For +1 trial predictions, the
model’s distribution of predicted locations primarily reflects
its beliefs about the current cluster (as reflected by the higher
density of predictions near the white studied point), because
of the “sticky” Hibachi Grill Process prior on states. At +10
trials, the model is much more likely to predict the center
cluster, which recurs frequently throughout the experiment
(see also Figure 2). Likewise, subjects also have picked up
on this pattern and are more likely to predict locations close
to the center on +10 prediction trials.

Our model also captures how the average distance from the
last studied point increases as subjects are asked to predict the
location of points +1, +5, and +10 trials into the future (Fig-
ure 6, large points). Moreover, the model also captures vari-
ation within these delay levels: after removing the effect of
delay level by centering, the model’s and subjects’ prediction
deviations are correlated at ρ = 0.31 (95% bootstrapped CI:
[0.25,0.38], and significant at p = 0.014 in a mixed model
with random intercepts and slopes by subject).

Discussion
We have demonstrated that human recall and prediction in
a multi-context spatial memory task can be modeled by
a Bayesian model that infers the latent contexts via non-
parametric clustering. This model updates its beliefs online,
one observation at a time, with Sequential Monte Carlo. Ex-
ploring a range of parameters for the state transition prior,
we found that subjects recall behavior is best captured with
high “stickiness” (prior probability of remaining in the same
cluster) and low concentration (prior probability of creating
a new cluster). Together, this suggests that people expect—
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until they receive evidence to the contrary—that contexts will
continue for a number of trials, and that old contexts will re-
turn in the future.

While we treated these parameters as free when fitting our
model, this was merely a simplifying assumption that we
made to make the model easier to implement. It is possible—
and conceptually fairly straightforward in a Bayesian model
like this—that they could be inferred from the same data that
the model uses to infer the contexts themselves. It is thus
possible that our interpretation of what these parameter val-
ues mean for people’s expectations about the latent cluster
structure actually reflect what people have learned from their
experience in this particular experiment, where contexts do
tend to go on for a number of trials and recur multiple times
(at least for the central cluster). Future work is required to
tease these possibilities apart.

The possibility that people might be inferring the hyper-
parameters that govern how contexts change raises the ques-
tion of what kind of changes people expect in the structure of
contexts across environments. That is, are people’s models of
contexts nested hierarchically, in a way that allows for vari-
ation not only in the specific features of each context (e.g.,
the location of dots in space) but also the properties of how
contexts change within a larger context/environment (e.g., the
stickiness of contexts)? This calls for future experiments that
manipulate the generative model for the contexts themselves,
within subjects and over time.

More work is also needed to assess whether people actually
are remembering and revisiting old contexts, as our model
assumes. It is possible that people are really just detecting
changes in context, and creating a fresh representation of a
context every time they detect such a change. One way to ad-
dress this is by simulating such a change-point model, which
is the limiting case of our model when the concentration pa-
rameter α goes to infinity. Another way is to collect more
empirical data with changes in context explicitly designed to
elicit anticipation for returning to old contexts.

Finally, the strategy of our model—inferring discrete
changes in context and remembering contexts—presupposes
a particular underlying structure for how contexts actually
tend to change in the world. A number of different strate-
gies could be optimal, given different environments, and it
is an ecological question as to which strategies are likely to
be useful in the kinds of environments people tend to find
themselves in. For instance, environments where latent vari-
ables don’t change suddenly but rather drift slowly and con-
tinuously call for a very different family of strategies. So
while our model describes behavior well in this particular ex-
perimental environment, that does not necessarily mean that
it would also describe behavior well in an environment that
does not follow the structural assumptions that the model
makes.

Conclusion
In a structured world, local context—either simultaneous or
temporally extended—can provide a great deal of informa-
tion about how to interpret or remember stimuli. We have
proposed a Bayesian model that infers latent context variables
from unlabeled data, and uses that context to encode and re-
trieve information from memory. This model processes data
online, one observation at a time, and captures people’s be-
havior in a multi-context spatial memory task.
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