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Abstract

Background: Posttraumatic stress disorder (PTSD) and alcohol use disorder (AUD) are highly 

comorbid and are associated with significant functional impairment and inconsistent treatment 

outcomes. Data-driven subtyping of this clinically heterogeneous patient population and the 

associated underlying neural mechanisms are highly needed to identify who will benefit from 

psychotherapy.

Methods: In fifty-three comorbid PTSD/AUD patients, resting-state functional magnetic 

resonance imaging was collected prior to undergoing individual psychotherapy. We used a 

data-driven approach to subgroup patients based on directed connectivity profiles. Connectivity 

subgroups were compared on clinical measures of PTSD severity and heavy alcohol use collected 

at pre- and post-treatment.

Results: We identified a subgroup of patients associated with improvement in PTSD symptoms 

from integrated-prolonged exposure therapy. This subgroup was characterized by lower insula to 

inferior parietal cortex (IPC) connectivity, higher pregenual anterior cingulate cortex (pgACC) to 

posterior midcingulate cortex connectivity and a unique pgACC to IPC path. We did not observe 

any connectivity subgroup that uniquely benefited from Integrated-Coping Skills or subgroups 

associated with change in alcohol consumption.

Conclusions: Data-driven approaches to characterize PTSD/AUD subtypes have the potential to 

identify brain network profiles that are implicated in the benefit from psychological interventions 
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— setting the stage for future research that targets these brain circuit communication patterns to 

boost treatment efficacy.
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PTSD; alcohol use disorder; biomarkers; network connectivity; treatment prediction; fMRI

INTRODUCTION

Rates of comorbid posttraumatic stress disorder and alcohol use disorder (PTSD/AUD) 

are extremely high (Blanco et al., 2013). PTSD/AUD comorbidity is associated with 

greater symptom severity and functional impairment than either disorder alone (Norman, 

Haller, Hamblen, Southwick, & Pietrzak, 2018). Although several studies show that gold-

standard trauma-focused psychotherapies are efficacious interventions for some patients 

with comorbid PTSD/AUD (Norman et al., 2019; Roberts, Roberts, Jones, & Bisson, 

2015; Ruglass et al., 2017), they are associated with high-dropout rates and a significant 

number of individuals maintaining elevated symptoms after treatment (Krystal et al., 2017; 

Steenkamp, 2016). One potential reason for modest outcomes is that PTSD and AUD are 

highly heterogeneous — suggesting that they are not distinct disorders but are comprised 

of sets of neurobiological mechanisms that have both unique and shared pathophysiology. 

Under this framework, there is a need to construct neurobiologically-grounded subtypes 

focused on dysfunctional brain networks that capture the heterogeneity (Feczko et al., 2019; 

Huys, Maia, & Frank, 2016; Yamada et al., 2017). Subtyping patients on shared brain 

network features instead of clinical symptoms could inform the mechanistic understanding 

of PTSD/AUD pathophysiology and provide clinically-useful biomarkers that are associated 

with treatment outcomes (Milham, Craddock, & Klein, 2017; Woo, Chang, Lindquist, & 

Wager, 2017).

Mapping brain network communication has been instrumental in characterizing the 

pathophysiology of PTSD and AUD in addition to understanding how network connectivity 

patterns relate to treatment success (Sheynin et al., 2020; Zhutovsky et al., 2019). A 

common method to measure brain network communication is through the use of functional 

connectivity (Abi-Dargham & Horga, 2016). Such work has revealed that PTSD and AUD 

are commonly observed to involve dysfunctional neural connectivity within and between 

several regions implicated in affective reactivity, cognition, and emotion regulation (Akiki, 

Averill, & Abdallah, 2017; Koch et al., 2016; Sheynin & Liberzon, 2017). For example, 

increased pregenual anterior cingulate cortex (pgACC) connectivity with the amygdala is 

associated with higher PTSD symptoms after completing a trauma-focused psychotherapy 

(Cisler et al., 2015) and increased connectivity of the insula with the posterior midcingulate 

cortex (pMCC) is observed in PTSD patients who no longer met criteria for PTSD post-

treatment (Simmons, Norman, Spadoni, & Strigo, 2013). In AUD, decreased connectivity 

between regions of the prefrontal cortex (PFC) and the subcortical network consisting 

of reward regions (e.g., ventral striatum) is associated with relapse (Camchong, Stenger, 

& Fein, 2013) and increased connectivity between the prefrontal cortex, striatum, and 

the insula is associated with residential treatment program completion (Kohno, Dennis, 

McCready, & Hoffman, 2017).
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A limitation of these investigations is that they do not consider the clinical and neural 

heterogeneity within these disorders. To date, the majority of neuroimaging studies 

exclude individuals with commonly comorbid conditions, limiting the generalizability and 

translation of their findings (Blanco et al., 2016). Instead, data-driven approaches that 

characterize highly representative patients on functional connectivity patterns show promise 

in identifying neurobiological subtypes within broader heterogeneous diagnostic groups and 

in predicting treatment response (Drysdale et al., 2017; Etkin et al., 2019; Maron-Katz et al., 

2019).

Methods to improve the identification of the complex and directional neural patterns 

underlying psychiatric heterogeneity are needed (Reid et al., 2019). Effective connectivity 

derived biotypes have been shown to be superior in differentiating PTSD patients from 

healthy controls and better predict symptom severity than static connectivity measures (Jin 

et al., 2017; Li et al., 2014). One novel data-driven effective connectivity strategy called 

group iterative multiple model estimation with subgrouping (S-GIMME) has been shown to 

be particularly successful in deriving reliable and parsimonious directed connectivity and 

in separating clinically heterogenous populations into distinct subtypes, even in samples 

as low as 25 (Beltz & Gates, 2017; Gates, Lane, Varangis, Giovanello, & Guskiewicz, 

2017). A recent review of network modeling approaches shows that GIMME is receiving a 

growing interest as an analytical tool to understand the causal relationships between brain 

networks (Robinaugh, Hoekstra, Toner, & Borsboom, 2020). S-GIMME applied to rs-fMRI 

has been fruitful in identifying subtypes in cognitive task ability (McCormick & Telzer, 

2018), accurately distinguishing depressed patients from healthy individuals (Price, Lane, et 

al., 2017), and revealing major depressive disorder, Attention-deficit/hyperactivity disorder, 

and transdiagnostic internalizing psychiatric disorder and personality subtypes (Chahal et 

al., 2020; Lazarus, Sened, & Rafaeli, 2020; Price et al., 2020; Price, Gates, Kraynak, Thase, 

& Siegle, 2017). However, no studies to date have leveraged this data-driven approach 

to identify neural subtypes of comorbid PTSD/AUD individuals or to treatment response 

(Gilpin & Weiner, 2017).

To this end, we applied S-GIMME to rs-fMRI in a sample of 53 psychotherapy treatment 

seeking Veterans diagnosed with comorbid PTSD and AUD participating in a randomized 

clinical trial examining treatment effectiveness of trauma focused and non-trauma focused 

therapies (Norman et al., 2019). Connectivity-based subtyping was conducted using seven 

regions of interest (ROIs) that were selected from a recent meta-analysis showing brain 

regions, including the cingulate cortex, insula, and the PFC, that distinguished PTSD and 

AUD patients from healthy controls (Klaming et al., 2019). The aim of our investigation 

was to extend these findings by examining whether pre-treatment effective connectivity of 

these PTSD and AUD relevant brain regions can be used to identify subgroups of patients 

and to test whether effective connectivity subgroups predict psychotherapeutic treatment 

improvement in Veterans.
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MATERIALS AND METHODS

Participants

A total of 59 subjects (mean age= 40.23, SD=10.73; range=25-63; 47 men) from a parent 

psychotherapy treatment trial (NCT01601067) (Norman et al., 2019) comparing trauma 

focused (integrated-prolonged exposure, I-PE) to non-trauma-focused (integrated-coping 

skills, I-CS) psychotherapy for comorbid PTSD/AUD agreed to complete neuroimaging 

prior to being assigned to a treatment arm (See Table 1 for sample characteristics). I-PE 

and I-CS therapy arms were delivered in 90-minute individual sessions (12-16 sessions for 

both therapy arms) Norman et al. (2019). Subjects completed an average of 10.32 (SD=4.33) 

therapy sessions (I-PEmean = 9.10, I-PESD = 4.35; I-CSmean = 11.79, I-CSSD = 3.89; t(50.67) 

= 2.37, p = .02). Five subjects did not complete scanning due to technical and scheduling 

issues and one subject was removed due to do excessive motion artifact (>0.3mm mean 

FD) measured via frame-wise displacement, leaving a total of 53 pretreatment resting state 

scans. 38 subjects were retained at post-treatment. Subjects provided informed consent and 

were monetarily compensated for their participation. Study procedures were approved by the 

institutional review board of the Veteran’s Administration San Diego Healthcare System.

Clinical Measures

Clinician Administered PTSD Scale for DSM-5 (CAPS-5). The CAPS-5 (score range, 

0-80, with 0 indicating no PTSD symptoms and 80 indicating extreme ratings across all 

symptoms), a 30-item structured interview considered to be the criterion standard for PTSD, 

was the primary measure of PTSD symptoms and diagnosis. The CAPS-5 diagnosis has 

been shown to demonstrate strong interrater reliability (κ = 0.78), and severity scores had 

strong internal consistency (α = .88) (Weathers et al., 2017).

Percentage of heavy drinking days (PHDD). Frequency and quantity of alcohol use were 

assessed using the Timeline Follow-Back, a calendar-assisted structured clinical interview 

that displays good psychometric properties (Sobell & Sobell, 1992). The PHDD was 

calculated by dividing the number of days in which 5 or more drinks for men or 4 or 

more drinks for women were consumed by the total number of days in the reference period 

(i.e., 90 days at baseline and time from baseline assessment for post-treatment assessment).

fMRI Acquisition and Preprocessing

MRI acquisition and preprocessing are detailed in the Supplementary Materials.

Regions of Interest

Five to 15 ROIs are recommended when using S-GIMME for identifying directed 

connectivity paths and sample subtyping (https://gimme.web.unc.edu/63-2/gimme-basics/). 

Therefore, we chose to take a hypothesis-driven approach for ROI selection based upon a 

recent meta-analysis from our group that identified seven key brain regions important for 

distinguishing between PTSD, AUD, their overlap and healthy control populations (Klaming 

et al., 2019). Our aim was to extend this work by determining whether effective connectivity 

of these regions can also identify subgroups of comorbid PTSD/AUD patients and whether 

these subgroups are clinically relevant. To this end, we extracted mean BOLD time-series 
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from seven spherical ROIs with a 10-mm radius. ROIs were placed in three regions of the 

rostral cingulate cortex (See Shackman et al., 2011 for detailed anatomical and functional 

description of the cingulate cortex): one in the posterior midcingulate cortex (pMCC; x = 0, 

y = −4 , z = 34), one in the pregenual anterior cingulate cortex (pgACC; x = 2,y = 42, z = 

20), and one in the subgenual cingulate cortex (sgACC; x = 0, y = 6, z = −6). One ROI was 

placed in the left middle frontal gyrus (MFG; x = −46, y = 10, z = 38). One was placed in 

the inferior parietal cortex (IPC) near the supramarginal gyrus (x = 52, y = −46, z = 44). One 

in the left insula (x = −38, y = −4, z = 6) and one in the right putamen (x = 34, y = −4, z = 

0). The extracted time-series from these seven ROIs were then entered into the connectivity 

clustering analysis described below.

Data-driven subgroup clustering via effective connectivity

The group iterative multiple model estimation with subgrouping (S-GIMME) in R (package: 

gimme) was used to identify whether clinically relevant subgroups of subjects can be derived 

based upon pretreatment resting state effective connectivity patterns (Gates et al., 2017) 

(Supplementary Figure 1). S-GIMME is a unified structural equation modeling strategy that 

reliably recovers both the presence and direction of connectivity paths within heterogeneous 

individuals (Beltz & Gates, 2017; Gates, Molenaar, Iyer, Nigg, & Fair, 2014). S-GIMME 

can be used to identify common pathways across all subjects but importantly can classify 

subjects within subgroups based upon unique connectivity profiles and estimate subject level 

connectivity (Gates et al., 2017).

First, S-GIMME enters all the ROIs in a single step to mitigate the problem of variable 

order during the model building procedure. Next, compared to a null model that assumes 

no connections exist, S-GIMME searches across individuals and adds lagged (lag = 1 

TR) and contemporaneous directed paths that are common for the majority of subjects 

(group-level). S-GIMME uses modification indices to count individuals whose connectivity 

paths exist across individuals and only includes the path if it improves model fit for the 

majority of the subjects (75%) and must survive a conservative Bonferroni correction of 

.05/number of subjects (N=53 in the current analysis). Paths not meeting these criteria are 

pruned. This process is iteratively repeated for each connectivity path and stops adding paths 

when no new path would improve the model-fit indices in the majority of the sample. If 

any remaining connection no longer improves model fit during this iterative process, then 

that path will be removed from the model. This pruning step can occur at the individual, 

sub-group, or group-level model estimation process (Beltz & Gates, 2017). This approach 

is robust to outliers and sign differences of parameter estimates (Gates et al., 2017). 

Next, S-GIMME uses Walktrap unsupervised community detection (Gates, Henry, Steinley, 

& Fair, 2016; Orman, Labatut, & Cherifi, 2012) on the similarity matrix derived from 

the individual-level estimates of the group-level connectivity paths to identify an optimal 

number of subgroups who have similar connectivity profiles. Once subgroups are identified, 

S-GIMME searches for unique connectivity paths for each data-driven subgroup. Finally, 

S-GIMME identifies individual level connections using the group- and subgroup-derived 

temporal patterns as priors (not reported here).
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S-GIMME stops adding new paths/connections once the model achieves good fit on at least 

two out of the following four model fit indices (Brown, 2006): confirmatory fit index (CFI) 

≥ .95; non-normed fit index (NNFI) ≥ .95; standardized root mean square residual (SRMR) 

≤ .05; root mean square error of approximation (RMSEA) ≤ .05 (Gates & Molenaar, 2012). 

Stopping the S-GIMME path search based on model fit instead of stopping based on 

individual path significance ensures that extraneous connectivity paths are not added, a 

critical step to minimize complex models and model overfitting. A simulation study showed 

that these model fits can be achieved with low samples sizes (e.g., N=25) (Gates et al., 

2017). After identification of subgroups derived from GIMME, further characterization can 

be completed by comparing subgroups on clinical and treatment measures. Because the 

contemporaneous and lagged pathways were identical and highly correlated in our analysis 

(R2s > .79), we only visualize the contemporaneous pathways for simplicity in the main 

report (Price, Gates, et al., 2017; Price, Lane, et al., 2017). Full connectivity maps are 

presented in Supplementary Figure panels 1b and 1d.

Subgroup characterization analysis

To examine connectivity subgroup differences in treatment outcomes, a linear mixed effects 

model (lmer in the lme4 R package) was conducted on CAPS-5 scores. Connectivity 

subgroup, treatment group (integrated-prolonged exposure [I-PE] and integrated-coping 

skills [I-CS]), and time (pre-treatment and post-treatment) were entered as fixed effects and 

the intercept was specified as random to account for repeated measurements per subject. We 

used the Satterthwaite’s method to calculate the Type III sum of squares. An identical model 

was used to examine subgroup effects on PHDD. Post-hoc independent-samples t-tests were 

corrected for multiple comparisons using the Benjamini & Hochberg false discovery rate 

(FDR) (Benjamini & Hochberg, 1995).

Exploratory subgroup analysis

We conducted a series of exploratory analyses to further phenotype the connectivity-derived 

subgroups. We examined brain volume differences and additional clinical and behavioral 

measures. The aim of these analyses are exploratory and for generating future research 

questions (See Supplementary Materials).

RESULTS

Subgroup connectivity profiles

Final model fit indices indicated excellent fit across individuals, CFI = .96 and SRMR 

= .03. S-GIMME identified two subgroups with common and unique network effective 

connectivity patterns. First, across all subjects, S-GIMME identified a series of seven 

contemporaneous directed connectivity pathways (Figure 1; Table 2). These connectivity 

paths consisted of directed paths from the left insula to the right putamen, MFG, and the 

IPC, directed paths from the putamen to the pgACC and the sgACC, a path from the MFG to 

the pgACC, and one path from the pgACC to the pMCC. Although these paths are common 

across subgroups, subgroup differences in strength in these networks emerged in 2 out of 

the 7 networks. Specifically, subgroup 2 had significantly lower insula to IPC connectivity 

(t = 3.32, p = .003, pFDR = .011) and greater pgACC to pMCC connectivity compared to 
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subgroup 1 (t = −4.18, p = .0002, pFDR = .001 (Figure 2). Next, examination of subgroup 

connectivity revealed that subgroup 2 was further characterized by a pgACC to IPC path, 

while subgroup 1 had IPC to MFG and putamen to pMCC connectivity paths (Figure 1b).

Clinical characterization of Subgroups

We found a significant subgroup × therapy group × time interaction controlling for 

medication status, F(1,41.2) = 4.58, p = .038. Within the I-CS therapy group, subgroup 

did not significantly predict PTSD symptom outcomes (subgroup main effect, p = .82, 

subgroup × time interaction, p = .63). In contrast, for patients undergoing I-PE, subgroup 

was associated with PTSD symptoms (subgroup × time interaction, p = .041). Post-hoc 

t-tests revealed that before beginning I-PE, there were no subgroup differences, t = −0.17, p 
= .87. As shown in Figure 3a, patients in subgroup 2 showed a greater reduction in PTSD 

symptoms post-treatment, t = 2.63, p = .022, pFDR = .044. Subgroups particularly moderated 

treatment outcomes on avoidance and hyperarousal symptoms (three-way interaction ps < 

.017 ; Supplementary Materials).

In light of the therapy group difference in the number of sessions attended (therapy group: 

t = 2.37, p = .02), and the qualitative difference in the number of sessions attended between 

connectivity subgroup (subgroup: t= −0.39, p = .70) and the qualitative difference in therapy 

drop-out status between connectivity subgroups and therapy groups (subgroup: χ2 = 1.34, 

p = 0.25; therapy group: χ2 = 1.97, p = 0.16), we added number of attended sessions 

and drop-out status as covariates into the model. The subgroup × therapy group × time 

interaction remained significant (p = .047).

To determine whether any of the seven paths that showed subgroup differences influenced 

treatment outcomes, we computed a multiple linear regression. We entered the seven 

directed connectivity path beta values as predictors of CAPS total score post-treatment with 

CAPS pretreatment, therapy group, connectivity cluster subgroup , and medication status as 

covariates. Results indicate that only the putamen -> to sgACC path significantly predicted 

CAPS post-treatment scores after controlling for CAPS at pre-treatment, β = 33.81, t = 2.43, 

p = .022 (uncorrected).

Subgroup was unrelated to drinking behavior as measured with the PHDD (Fs < 1.09, ps> 

.30; Figure 3b). See Supplemental Materials for the results associated with Therapy Group 

Type on the clinical symptoms (see also Norman et al., 2019). Connectivity subgroups 

identified did not significantly differ on age, sex, ethnicity, race, medication status, treatment 

group assignment (I-CS v I-PE), number of treatment sessions attended, or treatment drop-

out, ps > .25. None of the seven connectivity paths predicted drinking behavior, ps > 

.27. There were no significant differences between subgroups on MRI movement-related 

variables: TRs censor, DVARS or FD, Fs< 1.21, ps > .23.

Exploratory Results

We did find subgroup differences in volumes of a handful of regions, including the PFC 

and medial PFC (ps < .07; uncorrected). There were no differences between subgroups on 

diagnostic comorbidities (ps > .46; Supplementary Tables 1 and 2).
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DISCUSSION

The aim of the current investigation was to identify neural connectivity subtypes of 

comorbid PTSD/AUD patients and to test whether the data-driven subtypes are associated 

with psychotherapy outcomes. We observed that the PTSD/AUD connectivity subtype 2 

was associated with PTSD symptom improvement from I-PE. Furthermore, this connectivity 

subgroup was characterized by lower insula to IPC, higher pgACC to pMCC connectivity, 

and was further characterized by a pgACC to IPC connectivity path compared to subgroup 

1. Both subgroups showed similar improvement from I-CS psychotherapy. Finally, we did 

not observe that connectivity subgroup moderated treatment outcomes for alcohol use. Our 

results provide novel evidence that data-driven approaches to characterize PTSD/AUD based 

on underlying neural connectivity patterns can detect clinically relevant subtypes.

There were five connectivity patterns that differentiated subgroup 2 from subgroup 1. Two 

primary regions played a particularly important role in subgroup differences. These regions 

included an ROI in the 1) IPC, and 2) two ROIS in the cingulate cortex: the pgACC, and 

the pMCC. Our findings are consistent with previous work showing that PTSD and AUD 

are associated with aberrant activation and connectivity for each of these regions (Akiki et 

al., 2017; Gilpin & Weiner, 2017) and activity in these regions are associated with clinical 

outcomes (Malejko, Abler, Plener, & Straub, 2017; van Rooij, Kennis, Vink, & Geuze, 2016; 

Zakiniaeiz, Scheinost, Seo, Sinha, & Constable, 2016). The subgroup connectivity profile 

differences among these regions may partially explain why subgroup 2 benefited more from 

I-PE than I-CS.

First, compared to subgroup 1, subgroup 2 had lower insula to IPC connectivity. This is 

consistent with data showing that compared to healthy controls, PTSD is associated with 

decreased IPC and insula connectivity (Zhang et al., 2016). The IPC is highly connected 

anatomically and functionally across the brain (Wang et al., 2016; Zhang & Li, 2014) 

and is a critical region implicated in attention, cognitive control, and emotion regulation 

(Etkin, Buchel, & Gross, 2015). The insula is an integral hub in the salience network 

(Menon & Uddin, 2010), plays a prominent role in integrating cognitive and affectively 

salient information (Craig, 2009; Gu, Liu, Van Dam, Hof, & Fan, 2013), and is important 

for interoceptive awareness (Critchley, Wiens, Rotshtein, Ohman, & Dolan, 2004). Here, 

we show that the subgroup that benefited the most from I-PE had lower insula to IPC 

connectivity compared to the other subgroup, suggesting that this group may be better able 

to disengage attention and cognitive control from affective and interoceptive information 

that can interfere with goal-related behavior (Kuckertz et al., 2014).

Second, we found that subgroup 1 was further characterized by an IPC to MFG connectivity 

path. Experimental evidence indicates that higher levels of anxiety are associated with 

increased parietal and prefrontal activation that biases attention and working memory 

to potential threat (Balderston et al., 2017; Stout, Shackman, Pedersen, Miskovich, & 

Larson, 2017). Our observation that subgroup 1 had unique IPC to MFG connectivity 

and did not improve as much from I-PE as subgroup 2 may suggest that subgroup 1 may 

be characterized by maladaptive utilization of working memory — a cognitive process 

important for facilitating extinction learning (Stout et al., 2018). These results suggest that 
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patients similar to subgroup 1 that have overactive pretreatment frontoparietal connectivity 

may see increased benefit from prolonged exposure therapy when an adjunctive treatment 

that targets the frontoparietal network is added (i.e., working memory training or repetitive 

transcranial magnetic stimulation) (Bomyea, Stein, & Lang, 2015; Osuch et al., 2009).

Third, subgroup 2 was characterized by a pgACC to IPC path. The pgACC is one of two 

primary regions in the anterior portion of the rostral cingulate cortex (Shackman et al., 2011; 

Vogt, Nimchinsky, Vogt, & Hof, 1995). The pgACC is well-positioned anatomically and 

functionally to exert influence on the flexible deployment of cognitive and affective control 

(Rolls, 2019; Shackman et al., 2011; Tang et al., 2019), is a critical node in the default mode 

network and internal cognitive processing (Raichle, 2015; Smallwood, Brown, Baird, & 

Schooler, 2012), and may be an important hub for dysfunction across a broad-spectrum 

of psychiatric disorders (Goodkind et al., 2015). Importantly, individuals with PTSD 

show dysfunctional pgACC connectivity (Kennis, Rademaker, van Rooij, Kahn, & Geuze, 

2015) and decreased activation during affective interference tasks (Clausen et al., 2017). 

Clinically, increased IPC and pgACC connectivity is associated with improvements from 

cognitive behavioral therapy in depressed patients (Sambataro et al., 2018). Furthermore, 

the pgACC resting state connectivity results observed in the current report extend the 

structural neuroimaging findings showing the clinical importance of this region in prolonged 

exposure therapy for PTSD. For example, pretreatment pgACC cortical thickness and 

volume is associated with improved PTSD symptoms following prolonged exposure (Bryant 

et al., 2008). Collectively, our results in combination with the extant literature indicates 

that pgACC connectivity and structure play an integral role in psychological intervention 

improvement. Such improvement may be through the role of the pgACC in cognitive 

or emotion regulation of internally-based cognitions, such as rumination and traumatic 

memories (Palomero-Gallagher et al., 2019).

The fourth and fifth subgroup connectivity difference involved the posterior mid-cingulate 

cortex (pMCC). The midcingulate cortex (MCC) is located on the dorsal portion of 

the rostral cingulate cortex and is divided into anterior (aMCC) and posterior (pMCC) 

subdivisions (Vogt et al., 1995). A meta-analysis revealed that the pMCC and pgACC are 

consistently activated during negative affective states and pain (Shackman et al., 2011). 

Furthermore, low pMCC connectivity with the amygdala prospectively predicts increased 

PTSD severity (Belleau et al., 2020), and PTSD patients show increased putamen activity 

when experiencing thermal pain, aversive images, and when experiencing an electric shock 

as an unconditioned stimulus during a fear learning task (Elman et al., 2018; Geuze et 

al., 2007; Linnman, Zeffiro, Pitman, & Milad, 2011). Here, we observed that subgroup 1 

had weaker pgACC to pMCC and had a putamen to pMCC connectivity path, providing 

evidence for a circuit centered in the pMCC implicated in increased negative affect and pain 

that when less connected may also impair emotional processing — a necessary component 

of prolonged exposure therapy (Foa, Hembree, Rothbaum, & Rauch, 2019).

Biomarkers to aid diagnosis and treatment response are few, potentially requiring patients 

to cycle through multiple failed treatment trials, increasing suffering and resource 

expenditures. Neuroimaging-based biotyping has had recent success in predicting external 

measures of functioning and clinical outcomes using standard functional connectivity 
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(Drysdale et al., 2017; Etkin et al., 2019) and with effective connectivity measures (Li 

et al., 2014; Price et al., 2020). Leveraging data-driven approaches to biotype clinical 

heterogeneity should better capture the complex symptom presentation of PTSD/AUD 

and thus be a more robust treatment response biomarker and aid in clinical decision 

making. Advancements in analytic strategies and methodological tools that allow for 

the measurement and manipulation (e.g., pharmacological or brain stimulation) of causal 

network relationships will be critical to enhance the clinical utility of neuroimaging (Reid et 

al., 2019).

Limitations

There are limitations that will need to be addressed in future studies. First, our sample was 

restricted to a clinical sample of a mostly male Veteran PTSD/AUD patient population. 

We also did not include a healthy control group or separate PTSD and AUD groups 

to determine whether the network connectivity patterns observed here reflect disordered 

connectivity. Although our findings were specific to PTSD symptoms, it will be necessary 

to examine if the connectivity-derived subgroups and connectivity paths generalize to 

women and non-Veteran populations in addition to testing the specificity of effective 

connectivity derived profiles in PTSD patients without AUD and in PTSD patients with 

other comorbidities. Second, our overall sample size is small, limiting our ability to probe 

how the within-subgroup connectivity paths may relate to clinical and behavioral outcomes 

and generalizability. However, our sample size is consistent with other recent neuroimaging 

investigations of psychotherapy outcomes in singly diagnosed individuals (sample size < 

45) (Bryant et al., 2020; Reggente et al., 2018; Zhutovsky et al., 2019) and S-GIMME 

simulation work shows robust model fits and a reduction of model overfitting even at 

small sample sizes as low as 25 (Gates et al., 2017). Nonetheless, further work with 

high-powered samples, multi-site clinical trials, and validation datasets will be required 

to determine the replicability and validity of the subtypes observed in our study and their 

treatment implications (Poldrack, Huckins, & Varoquaux, 2020). Third, a limitation of 

effective connectivity analysis, and to multivariate analysis more broadly, is that variable 

selection can bias model fits when estimating directional relationships and the results are 

dependent on the variables entered into the model (Shi, Westerhuis, Rosén, Landberg, & 

Brunius, 2019). Here, we used a targeted, hypothesis-driven approach for variable selection. 

The ROIs that we selected were based on prior research by our group that showed relevant 

brain regions for PTSD or AUD (Klaming et al., 2019). A direction for future research 

will be to broaden the brain regions selected for subtyping to further identify clinically 

relevant neural circuits involved in benefiting from psychological interventions. Fourth, we 

did not find evidence of a biotype or connectivity path associated with change in alcohol 

use. It is unclear if AUD outcomes are separately detectable in the presence of PTSD 

symptomatology. The high baseline level of heavy alcohol use and low baseline variability 

in this measure may account for the absence of findings related to alcohol outcomes.

Conclusion

Our study provides novel evidence that the capacity to benefit from psychological 

interventions in patients with comorbid PTSD/AUD may involve balanced communication 
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between key nodes from networks important for the integration of affect and cognition. 

Although our results do not provide direct clinical guidance, they do show that patients 

can be subtyped based on clinically relevant brain network relationships — providing a 

deeper understanding of the neural mechanisms contributing to symptom improvement that 

can be tested in future investigations. These results raise the possibility that recruiting 

clinically complex patient samples and leveraging data-driven network analyses may provide 

an unprecedented level of insight into the characterization of comorbid PTSD/AUD and 

identify brain network profiles that are associated with benefiting from standard treatments.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
S-GIMME identified common and unique effective connectivity. (A) S-GIMME group-level 

effective connectivity paths. Paths represent connections common to most subjects (red 

arrows). Green border on arrow represents path significantly greater for Subgroup 1. Yellow 

border on arrow represents path significantly greater for Subgroup 2. (B) Subgroup 1 was 

further characterized by two effective connectivity paths: putamen to pMCC, and IPC 

to MFG (green arrows). (C) Subgroup 2 was characterized by one additional effective 

connectivity path: pgACC to IPC (yellow arrows). Auto-regressive and lagged paths are not 

shown.
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Figure 2. 
Connectivity Subgroup differences in group-level paths. Subgroup 1 had a greater insula 

to IPC path compared to Subgroup 2. Subgroup 2 had a greater pgACC to pMCC path 

compared to Subgroup 1. * = ps < .004 (uncorrected) and psFDR < .02. See online version 

for color.
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Figure 3. 
Connectivity cluster moderated psychotherapy outcome for PTSD symptoms. (A) Clinician 

Administered PTSD Scale for DSM-5 (CAPS-5) total severity scores (estimated marginal 

means) for Pre- and Post-treatment assessments. Connectivity subgroup 2 showed a 

bigger change in PTSD symptoms than subgroup 1 in the I-PE groups: subgroup × time 

interaction, * p = .041. (B) Percentage of Heavy Drinking Days (PHDD) for Pre- and Post-
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treatment assessments (estimated marginal means). Connectivity subgroup did not impact 

improvement in drinking symptoms assessed using the PHDD. See online version for color.
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Table 1.

Descriptive Statistics and Sample Characteristics

Variable Full Sample (npre=53;npost=38)
Subgroup 1 (npre =33; 
npost=26)

Subgroup 2 ( npre =20; 
npost=12)

Age 40.23 (10.73; 25-63) 39.36 (11.42; 25-63) 41.67 (9.59; 25-62)

Sex

 Men 49 31 18

 Women 4 2 2

Therapy Group

 Integrated Prolonged Exposure 29 19 10

 Integrated Coping Skills 24 14 10

Treatment Sessions Attended 10.32 (4.33) 10.15 (4.72) 10.60 (3.69)

Treatment Dropout

 Yes 15 7 8

 No 38 26 12

Medication

 Yes 38 26 12

 No 15 7 8

PTSD Severity (CAPS-5)

 Pre-treatment 42.97 (10.1; 21-66) 42.88 (10.99; 21-66) 43.05 (8.71; 30-60)

 Post-treatment 25.55 (14.74; 0-48) 25.88 (14.87; 0-48) 24.83 (15.09; 0-45)

Percent Heavy Drinking Days (PHDD)

 Pre-treatment 50.0% (25; 0-80%) 40.36% (25.40; 1-80%) 44.50% (17.50; 10-77%)

 Post-treatment 13.0% (21; 0-83%) 10.96% (18.20; 0-83%) 8.00% (16.93; 0-58%)

Note. Data reported are the raw descriptive statistics. No connectivity subgroup differences were found on descriptive measures. npre = number of 

subjects at pre-treatment; npost = number of subjects at post-treatment. CAPS-5= Clinician Administered PTSD Scale for DSM-5
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Table 2.

Path Estimates and Z-scores

Group Level Connectivity Path

Path Beta Mean SE Z p-value

insula to putamen 0.76 0.05 17.05 9.58 × 10−15

insula to MFG 0.51 0.05 10.05 .014

insula to IPC 0.39 0.06 8.19 .024

putamen to pgACC 0.44 0.05 8.34 0.018

putamen to sgACC 0.69 0.05 14.42 6.55 × 10−9

MFG to pgACC 0.37 0.06 6.72 0.018

pgACC to pMCC 0.54 0.05 11.94 0.003

Unique Subgroup Connectivity Paths

Subgroup 1

Path Beta Mean SE Z p-value

putamen to pMCC 0.42 0.05 8.21 0.00015

IPC to MFG 0.30 0.06 5.37 .047

Subgroup 2

pgACC to IPC 0.47 0.07 6.72 0.0017

Note. Beta Means, SEs, Z, and p-values are computed as an average across subjects.
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