Lawrence Berkeley National Laboratory Recent Work

Title
THE CRYSTAL STRUCTURE OF COBALT SULFATE HEXAHYDRATE

Permalink
https://escholarship.org/uc/item/6mv5q6xk

Authors

Zalkin, Allan
Ruben, . Helena
Templeton, David H.
Publication Date
1961-08-01

UNIVERSITY OF CALIFORNIA

Ernest O. Sawrence Radiation Saboratory

BERKELEY, CALIFORNIA

DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.

UNIVERSITY OF CALIFORNIA
Lawrence Radiation Laboratory Berkeley, California
Contract No. W-7405-eng-48

The Crystal Structure of Cobalt Sulfate Hexahydrate
by Allan Zalkin
Helena Ruben
David H. Templeton

August 1961

The Crystal Structure of Cobail: Sulfate Hexahydrate*
 By Allan Zalkin, Helena Ruben, and David H. Templeton Lawrence Radiation Laboratory and Department of Chemistry, University of California, Berkeley, California, U.S.A.

Abstract

$\mathrm{CoSO}_{4} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ crystallizes in the monoclinic system, $\mathrm{C} 2 / \mathrm{c}$. The cell dimensions are $\underline{a}=10.032 \mathrm{~A}, \underline{b}=7.233 \mathrm{~A}, \underline{c}=24.261 \mathrm{~A}$, and $\beta=98.37^{\circ}$. There are 8 molecules in the unit cell; the X-ray density is $2.006 \mathrm{~g} / \mathrm{cc}$. The structure consists of sulfate tetrahedra and cobalt-centered water octahedra linked by a three dimensional network of hydrogen bonds. Eleven of the twelve hydrogen bonds are between water and sulfate oxygens; there is one water to water hydrogen bond. The average S-0 sulfate distance is 1.46 A ; the average Co-0 distance in the water octahedra is 2.11A; and the average hydrogen bond ($0-\mathrm{H} \cdot \cdots$) is 2.8 A . There are two crystallographically different Co^{+++}ions in the structure. The hydrogen atoms are assigned an ordered configuration which would not contribute to residual entropy at low temperatures.
*Work done under the auspices of the U. S. Atomic Energy Commission. \%

Introduction
Calorimetric measurements by Raoland Giauque (1960) showed some unaccountable residual entropy in crystals of $\mathrm{COSO}_{4} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ at low temperatures. We have investigated the crystal structure in search of an explanation of the disorder. The resulting structure offers no possibility of disordered rings of hydrogen bonds such as were found in $\mathrm{Na}_{2} \mathrm{SO}_{4} \cdot \mathrm{IOH}_{2} \mathrm{O}$ (Ruben, Templeton, Rosenstein and Olovsson, 1960), nor do we find any other explanation of the entropy discrepancy.

The crystal morphology was described by Marignac (1855), and Groth (1908).

Experimental

Crystals of $\mathrm{CoSO}_{4} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ were grown from a saturated solution at 50 55°. The intensity data were obtained by multiple film Weissenberg techniques. The film photography was done using Fe $K \alpha$ ($\lambda=1.9373 \mathrm{~A}$) X rays, on Ilford Industrial g film. Intensities were estimated visually by comparison with a calibrated set of spots. The scaling factor used between multiple films of the same layer was $\exp (2.0 \mathrm{sec} \mu)$, where μ is the equi-inclination angle and 2.0 is an empirically determined constant from the data; this scaling factor varied from 7.4 at the zero layer $\left(\mu=0^{\circ}\right)$, to 12.9 at the sixteenth layer $\left(\mu=38.7^{\circ}\right)$.

The first single crystal of $\mathrm{CoSO}_{4} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ was enclosed in a . 1 mm . glass capillary. At the time we felt the crystals would be unstable in the open atmosphere, however, later we found the crystals to be sufficiently stable to handle in air. This first crystal was aligned about the [101] direction. Seventeen layers were photographed and 737 reflections were observed of which

125 were below the detection limit and called zero. Later a second crystal was aligned about its \underline{b} axis and photographed in air. An additional 99 zero layer reflections were measured of which 10 were below the detection limit. The sum total of intensities used was 836 , of which 135 were recorded as zero. For greater accuracy, the cell dimensions of $\mathrm{CoSO}_{4} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ were measured on a General Electric XRD-5 equipped with a goniostat using Mo $\mathrm{K} \alpha$ ($\lambda=.7107 \mathrm{~A}$) X rays.

In order to solve the structure we found it necessary to take some reflection data from $\mathrm{MgSeO}_{4} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ and $\mathrm{MgSO}_{4} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ both of which are isomorphic with $\mathrm{CoSO}_{4} \cdot 6 \mathrm{H}_{2} \mathrm{O}$.

A crystal of $\mathrm{MgSO}_{4} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ was grown from its saturated solution at $50-55^{\circ}$. It was aligned about its \underline{b} axis and photographed with $F e \mathrm{~K} \alpha \mathrm{X}$ rays with the Weissenberg technique. Intensities were recorded of 102 hode reflections of which 6 were below the detection limit. Cell dimensions were measured on the goniostat as with the cobalt isomorph.
$\mathrm{MgSeO}_{4} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ crystals were prepared at room temperature by allowing a filtered solution of dilute selenic acid and excess MgO to evaporate in an open dish. A crystal was aligned along its \underline{b} axis and photographed with the Weissenberg technique with Fe $\mathrm{K} \alpha \mathrm{X}$ rays. Intensities were recorded of 102 hol reflections of which 15 were below the detection limit. The cell dimensions were obtained from the Weissenberg films.

The cell dimensions of $\mathrm{COSO}_{4} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ are :

$$
\begin{array}{ll}
\underline{a}=10.032 \pm .004 \mathrm{~A} & B=98.37 \pm .03^{\circ}\left(98.7^{\circ}\right. \text { by Marignac (1855)) } \\
\underline{b}=17.233 \pm .003 \mathrm{~A} & \mathrm{~V}=1742 \pm 2 \mathrm{~A}^{3} \\
\underline{c}=24.261 \pm .010 \mathrm{~A} & Z=8 \\
\text { space group }=\mathrm{c} 2 / \mathrm{c}\left(\mathrm{C}_{2 \mathrm{~h}}^{6}\right) & \\
\underline{a}: \underline{b}: \underline{c}=1.387: 1: 3.354 & (1.396: 1: 3.381 \text { by Marignac }(1855))
\end{array}
$$

स-ray density $=2.006 \mathrm{~g} / \mathrm{cc}$: measured density $=2.000$ (Gosner, 1907),
2.019 (Thorpe and Watt, 1880), 2.017 (Handbook of Chemistry and Physics, 1957).

The characteristic extinctions of the intensities indicated space group Cc or $\mathrm{C} 2 / \mathrm{c}$. As there are 8 molecules in the unit cell and C2/c has an 8 fold general position as opposed to 4 for Cc, C2/c appeared intuitively to be the most likely space group. A "zero moment test" on the 3 dimensional data was computed (Howells, Phillips and Rogers, 1950) and the results indicated a center of symmetry, space group $\mathrm{C} 2 / \mathrm{c}$. The best evidence we have for the space group C2/c is the successful solution of a chemically reasonable structure.

The cell dimensions of $\mathrm{MgSO}_{4} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ are:

$$
\begin{array}{ll}
\underline{a}=10.110 \pm .005 \mathrm{~A} & \underline{c}=24.41 \pm .01 \mathrm{~A} \\
\underline{b}=7.212 \pm .004 \mathrm{~A} & \beta=98.30 \pm .04 \mathrm{~A}
\end{array}
$$

The cell dimensions of $\mathrm{MgSeO}_{4} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ are:

$$
\begin{array}{ll}
\underline{a}=10.36 \pm .03 \mathrm{~A} & \underline{c}=25.1 \pm .1 \mathrm{~A} \\
\underline{b}=7.38 \pm .04 \mathrm{~A} & \beta=98.1 \pm .2^{0}
\end{array}
$$

Determination of Structure

The three-dimensional Patterson function of $\mathrm{CoSO}_{4} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ was computed. Attempts were made to associate the larger peaks with Co-Co, $\mathrm{S}-\mathrm{S}$, and Co-S vectors; however, two trial structures with Co atoms in general positions failed to give a reasonable Fourier projection in the b direction. Later it was learned that $C o$ atoms are in two sets of special positions.

Crystals of the isomorphic compounds $\mathrm{MgSO}_{4} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ and $\mathrm{MgSeO}_{4} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ were prepared and photographed. From the Patterson projections calculated from the three sets of hod data we found the locations of the Co and S atoms.

A set of trial oxygen positions was obtained from an hol Fourier projection of the $\mathrm{MgSO}_{4} \cdot 6 \mathrm{H}_{2} \mathrm{O}$. The signs of 54 of the 96 non-zero structure factors were estimated from the location of the Mg and S positions. All of the ten oxygen atoms were found. A new calculation of signs led to a sign change in only two of the original 54 data used. A second Fourier projection using 86 non-zero terms clearly showed the basic arrangement of $\mathrm{SO}_{4}=$ tetrahedra and $\operatorname{Mg}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}^{++}$octahedra.

The hol data for the $\mathrm{MgSO}_{4} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ and $\mathrm{MgSeO}_{4} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ is shown in tables I and 2.

In $\mathrm{CoSO}_{4} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ eight cobalt atoms occupy positions $4(a)$ and $4(\mathrm{e})$:
4(a) $0,0,0 ; 0,0,1 / 2+C$ centering.
4(e) $0, y, 1 / 4 ; 0,-y, 3 / 4+C$ centering.
The sulfur atoms and ten sets of oxygen atoms occupy the general 8(f) positions:
8(f) $x, y, z ;-x,-y,-z ; \quad-x, y, 1 / 2-z ; \quad x,-y, 1 / 2+z+C$ centering.
A fourier projection of the hOl data of $\mathrm{COSO}_{4} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ was calculated and the x and z parameters of the cobalt, sulfur and oxygen positions were evaluated. The y parameters were estimated from expected $S-0$ bond distances in the alfate ion and 0-0 distances about the hydrated cobalt ion.

Table 1: The hol observed structure factors for $\mathrm{MgSO}_{4} \cdot 6 \mathrm{H}_{2} \mathrm{O}$

```
h= -10
\ell=0
    2 29 39 0 49 46 0 53 40 17 30 30
    4
    6
    800354042 64 34 7 1444544
10. 13 18 31 18 39 31 65 40 22
12.0}334616469864401
14.643 27 33 32 25 26 19
16."
18 20 21 10 37 33 71 33 34
20}0513946324
22. 14 13 17 9 39
24 12 3841
```

Table 2: The hol observed structure factors for $\mathrm{MgSeO}_{4} \cdot 6 \mathrm{H}_{2} \mathrm{O}$

```
h= -10 -8 -6 -4 -2 00: 2 4, 4, 6
l=0 0 47 17 51 25
    2:20}24336780:0.83:24537 0 16,
    4 20 12 13 50 41 33 56 31 7 7 27
    6 21 0:20:20:73 0114 11149 8
    8}0038\quad34\quad071421026172
10 11 10 13 20 39 17 15 38 0 13
12 16 16 59 0 50 55 48 11:7
14 0 41.7 45 9 39 17 20
16 23 0 10 0 58 15 12 21
18 10 17 10 33 20 5916 26
20 0 32 15 33 15 34
22 15 0 18 0 23
24 13 23
```

Least squares refinement utilizing the full matrix (Busing and Levy, 1959) was performed for a total of 13 cycles on the IBM 704 computer. Atomic form factors of CO^{++}(Watson and Freeman, 1961), neutral S (Tomiie and Stam, 1958), and neutral 0 (Hartree and Hartree, 1939) were used in these calculations. 836 intensity data were used, 737 of which were obtained from a crystal rotated about the [101], and 99 of which were obtained from a zero layer about a [010] rotation. 18 scale factors, 34 positional parameters and 13 isotropic temperature factors for a total of 65 parameters were varied. The overall R factor, where $R=\frac{\Sigma\left|\|_{\text {Fobs }}\right|-\left.\right|_{\text {Fcalc }}| | \times 100}{\Sigma \mid \text { Fobs } \mid}$, was 54% before refinement commenced, dropped to 42% after the first refinement and then dropped steadily to the final value of 13%. The necessity to run so many cycles was in part due to certain blunders in the original estimate of the y parameters for the oxygen atoms. The final R factors are as follows:
R (including zeros) $=13.0 \%$.
R (omitting zeros) $=10.9 \%$.
The data are shown in table 3.
The atomic parameters are shown in table 4. By an oversight the dispersion correction Δf^{\prime} of about -1.8 electrons (for $F e \mathrm{~K} \alpha$) was omitted from the cobalt form factor. As a result, the temperature factors for cobalt in Table 4 are larger than the true values by an unknown amount.

Table 3: Observed and calculated'structure factors for $\mathrm{CoSO}_{4} \cdot 6 \mathrm{H}_{2} \mathrm{O}$. The observed values are listed above the calculated ones.

		19	-18	-17	-16	-15	-14	-13-12	$\begin{gathered} K=1 \\ -11 \end{gathered}$	-10	-9	-8	-7	-6	-5	-4	-3	-2		
				15	76	0	105	3764	77	108	135	47	68.	137	96	323	52	131		
$H=$	1			-17	-6.1	-9	84	-35-56	68	-90	102	-57	56	116	-88-	329	42	131		
		26	27	48	152	75	51	380	0	0	30	237	74	59	94	128	105	97		
$H=$	3	3.2	22	38	151	-67	32	-50 10	0	2	30	213	-66	-49	80	121	101	-109		
				0	112	22	45	3377	6.9	77	62	157	42	29	39	98	0	91		
$\mathrm{H}=$	5			-4	-98	16	-48	44-74	78	78	-58-	-163	-40	-29	-45	116	1	94		
													0	0	39	89	0	43		
$H=$	7												13	-0	45	-88	-18	37		
											24	40	0	43	0	89	19	31		
Hz	9										-28	42	-0	-40	-7	87	26	29		
									$K=2$											
		-19	-18	-17	-16	-15	-14	$-13-12$	-11	-10	-9	-8	-7	-6	-5	-4	-3	-2		
$H=0$					139	106	28	$\begin{array}{lll}74 & 178\end{array}$	94	15	0	178	52	156	30	29	37	43		
							131	98	23	-58-163	86	-5		-154	52	124	19	-40	-24	-41
				15	83	102	0	32	0163	106	23	102	137	47	93	69	66	100	198	
$H=2$	2		-14	83	88	-8	26	-1 156	-95		100	130		-71	55	76	-94	203		
				33	0	0	51	44138	76	21	0	94	23	0	159	171	67	81		
$\mathrm{H}=4$				47	-5	1	-54	-33-134	75	-28	8	-96	-21	-2-	150-	171	-79	83		
			31		0	53	69	37	0	56		39	23	0	0	72	0	49		
$H=6$	6		38		18	-64	-72	47	16	71		36 90	-23	$\begin{array}{r} 8 \\ 50 \end{array}$	-12	69 0	-7 0	55		
$H=$	8											-85	24	-52	-1	-13	-23	9		

$K=3$

$H=1$	18	37	-50	-40	70	86	-65	38	57	124	-43	39	85	151	137	-12
	3430	66	31	21	51	34	56	49	78	144	133	77	174	106	22	39
$H=3$	-46-12	-68	38	-12	-51	-35	-61	-48	-84-	145	141	62-	176	-109	24	39
	45	47	0	64	47	17	41	0	79	104	75	40	66	32	33	19
$H=5$	47	47	9	62	-48	25	-35	-11	88	98	-77	40	-64	-36	-42	-12
				22	39	83	56				25	27	19	62	56	0
$H=7$				-24	-43	-77	61				-21	24	-20	49	61	3
									0	48	34	18	56	37	24	33
$H=9$									-0	-41	-41	20	51	-28	25	-32

	$L=$	-1 0	12	34	56	$K=0$	9	10	11	12	13	14	$\cdot 15$	16
						182				0		64		
	0					167				3		40		
		167	14.2	206	237	64		29		194		8		
$H=$	2	-192	-163	-234	268	-76		35		-256		28		
		0	50	7.4	21	73		135		159				
$\mathrm{H}=$	4	21	-44	91	27.	80		-112		163				
		91	1.6	36	93	106		43						
$H=$	6	-98	18	-37	-101	-95		-54						
		119	42	0	31	82								
$\mathrm{H}=$	8	122	-51	-2	27	81								
		58	24											
$H=10$		-61	-37											
						$K=1$								
	$L=$	-1 0	12	34	56	78	9	10	11	12	13	14	25	16
		19102	40104	61233	- 142	29159	35	50	66	188	17	81	27	
$\mathrm{H}=$	1	21102	43-123	-69 276	5125	-21 154	34	-41	-51	202	-1	74	24	
		6.1106	2238	1423	33110	47.203	43	20	18	31	17			
$\mathrm{H}=$	3	63-138	-28 44	-10 14	-37 1113	50-229	-46	22	-12	-38	-24			
		0135	1947	14117	5676	28.77	0	74	0					
$H=$	5	-16143	1953	15.124	58-79	-29 84	-8	82	-10					
		$23 \quad 57$	41	1597	240	018	12							
$\mathrm{H}=$	7	-27-70	-52	-4-100	-27 15	7-18	14							
		024	$12 \quad 34$	1678	014	15								
$\mathrm{H}=$	9	928	17-29	$\begin{array}{ll}-14 & 77\end{array}$	-4 19	-19								
	$L=$	-1 0	12	34	56	$K=2$	9	10	11	12	13	14	15	16
		74200												
$\mathrm{H}=$	0	-78-222												
		127126	60129	11565	16102	0115	18	64	31	106	55	37		
$\mathrm{H}=$	2	-136132	55148	9781	1993	4118	20	62	-28	80	51	-38		
		5786	035	80226	70-31	$25 \quad 25$	21	21	37	54				
$\mathrm{H}=$	4	53-101	$-20-33$	87-246	-75-38	27-27	22	18	34	-45				
		0113	11766	41104	068	20112	42	60						
$\mathrm{H}=$	6	-7 126	128-63	-46 122	669	-19 97	50	-57						
		3292	$22 \quad 14$	2923	016	4381								
$H=$	8	30-81	$-20-19$	-27 26	218	48-78								
						$K=3$								
	$L=$	-1 0	12	34	56	78	9	10	11	12	13	14	15	16
		2430	0.20	531115	64131	0129	26	59.	64	101	50	0	59	
H=	1	-16 19	-22-19	-45-108	-73-128	12-140	-29	-58	64	-98	-30	2	56	
		3273	$90 \quad 32$	8372	063	24118	66	11	37	12	38			
$\mathrm{H}=$	3	2664	94-30	-84 73	1165	-22 111	60	14	-29	12	-29			
		100143	5648	3391	$48 \quad 43$	13588	0	37	42					
$H=5$		104-144	-62-54	31-93	-48 33	146-84	-5	-42	-37					
		1629	$16 \quad 46$	67.117	950	00	0							
$\mathrm{H}=$	7	130	-21 39	-66 102	92-12	21	-7				,			
		023	1210	28										
$\mathrm{H}=$	9	$2-22$	-13-5	36										

	$L=$	-1	0	1	2	3	4	5	6	$\begin{gathered} K=4 \\ 7 \end{gathered}$	8	9	10	11	12	13	14	15	16
		149.	176																
$H=$	0	142	162																
		112	88	61	80	25	69	65	0	68	30	86	0	37	75	77	24		
$\mathrm{H}=$	2	104	-86	-64	-76	-14	-71	-74	-8	68	-36	-88	-5	31	-53	-69	-25		
		0	0	63	16	97	88	57	35	0	41	0	23	73	45				
$\mathrm{H}=$	4	-3	1	-62	23	-96	77	58	36	-22	38	8	14	-72	42				
		0	32	90	16	68	41	40	57	25	67	65	19						
$H=$	6	13	-36	-78	2	62	-35	38	-60	-29	-51	-58	-16						
		105	38	35	26	20	22	0											
$\mathrm{H}=$	8	-103	33	28	20	17	20	4											
	$\mathrm{L}=$	-1	0	1.	2	3	4	5	6	$K=5$	8	9	10	11	12	13	14	15	16
		19	44	89	43	146	19	47.	35.	0	38	88	28	77	19	27	24	20	
$H=$	1	15	50	76	42-	148	20	48	26	-15	31	75	26	-70	1.6	19	30	28	
		28	51	29.	0	29	0	0	17	87	28	120	51	17	50	15			
$\mathrm{H}=$	3	29	-52	-27	-16	34	-5	-20	-18	81	-20-	-127	-43	8	-50	-14			
		38	39	21	31	0	0	46	12	52	29	0	20	15					
$\mathrm{H}=$	5	-36	34	-20	27	6	-0	42	8	-47	26	0	35	9					
		24	25	17	26	27	21												
$H=$	7	24	-19	-13	-21		-24												
	$L=$	-1	0	1	2	3	4	5	6	$K=6$	8	9	10	11	12	13	14.	. 15	16
		104	0																
$H=$	0	-93	8.																
		76	53.	17	50	0	15	87	59	40	21	11	19	18					
$\mathrm{H}=$	2	$\begin{array}{r} -70 \\ 0 \end{array}$	52 23	-22	39 75	79	18 30	68 36	$\begin{aligned} & 47 \\ & 29 \end{aligned}$	$\begin{array}{r} -30 \\ 9 \end{array}$	20 15	$\begin{array}{r} 2 \\ 28 \end{array}$	13	-7					
$H=$	4	9	$\begin{array}{r} 23 \\ -19 \\ 0 \end{array}$		75 -58	$\begin{array}{r} 75 \\ 64 \\ 7 \end{array}$	$\begin{array}{r} 30 \\ -22 \end{array}$	$\begin{array}{r} 36 \\ -29 \\ 0 \end{array}$	29 -23		- $\begin{array}{r}15 \\ -15\end{array}$	28 -21							
$\mathrm{H}=$	6		7			-20		4											
	$\mathrm{L}=$	-1	0	1	2	3	4	5	6	$K=7$	8	9	10	11	12	13	14	15	16
		37	23	21	52	28	0	0	0	21									
$\mathrm{H}=$	1	$\begin{array}{r} -30 \\ 20 . \end{array}$	$\begin{array}{r} -19 \\ 0 \end{array}$	$\begin{array}{r} -19 \\ 43 \end{array}$	-33	$\begin{array}{r} 18 \\ 0 \end{array}$		$\begin{array}{r} -8 \\ 0 \end{array}$		-29									
$\mathrm{H}=$	3	-23	-4.	. 49		4		-10											

Table 4: Atomic parameters for $\operatorname{CoSO}_{4} \cdot 6 \mathrm{H}_{2} \mathrm{O}$.

		x	y	z	$B\left(A{ }^{2}\right)$
Co_{1}		0	0	0	3.3
CO_{2}		0	$.949 \pm .001$	1/4	3.0
S		$.868 \pm .001$. $452 \pm .001$	$.1244 \pm .0003$	2.2
O_{1}		$\sqrt{.778} \pm .001$:601	$.1352 \pm .0006$	2.6
O_{2}	sulfate	$.980 \pm .002$. $446 \pm .003$	$.1695 \pm .0007$	3.9
O_{3}	oxygens	$.918 \pm .002$. $492 \pm .003$	$.0698 \pm .0007$	3.9
O_{4}		$\underline{699 \pm .001}$	$.276 \pm .002$	$.1193 \pm .0006$	2.9
O_{5}	water	$\sqrt{.592} \pm .001$	$.723 \pm .002$	$.0469 \pm .0006$	2.8
${ }^{0} 6$	octahedra about co.	$.535 \pm .002$	$.325 \pm .002$	$.0673 \pm .0006$	3.2
${ }^{0} 7$		$\underline{.305 \pm .002}$. $557 \pm .003$. $0216 \pm .0006 \cdots$	3.3
${ }^{0} 8$	water	$\sqrt{.885} \pm .002$. $159 \pm .002$	$.2823 \pm .0007$	2.3
0_{9}	octahedra about CO_{2}	$.886 \pm .002$	$.740 \pm .002$	$.2832 \pm .0007$	2.7
${ }^{0} 10$. $858 \pm .001$	$.949 \pm .003$	$.1771 \pm .0006$	3.3

Discussion of the Structure and Hydrogen Bonding

The structure consists of discrete $\mathrm{SO}_{4}=$ tetrahedra and $\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}^{++}$ octahedra, Fig. 1. There are just enough water molecules to satisfy this octahedral hydration of each cobalt ion.

Hydrogen bonds are assigned to the twelve shortest oxygen-oxygen distances (Table 5) after disregarding these between oxygen atoms of the same sulfate ion or of the same coordination octahedron. This assignment is checked by consideration of the hydrogen atom configuration and bond angles. Except for one water molecule $\left(\mathrm{O}_{9}\right)$ each water has two hydrogen bonds to sulfate oxygen atoms. Water molecule 0_{9} has one such bond and also a bond to atom

Fig. l. Packing of $\mathrm{SO}_{4}=$ tetrahedra and $\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}^{++}$octahedra. The encircled numbers are the parameters of the $C o$ and S atoms in the a direction.

Table 5: Interatomic Distances in $\mathrm{CoSO}_{4} \cdot 6 \mathrm{H}_{2} \mathrm{O}$. Standard deviations are about $\pm .03 \mathrm{~A}$.
sulfate oxygens
water oxygens

[^0]O ${ }^{\text {. In }}$ this bond geometry, there is only one configuration of hydrogen atoms with two hydrogen atoms on each water molecule. The angles between hydrogen bonds at these water molecules (Table 6) range from 97° to 126° and are within the range found for other hydrated sulfate crystals. The hydrogen bonds make angles of 111° to 124° with the water-cobalt vectors. The third hydrogen bond to O_{8} makes angles of 80° and 117° with the two hydrogen bonds for which 0_{8} provides the hydrogen atoms.

Table 6: Hydrogen bond angles. O_{1} through O_{4} are sulfate oxygens. 0_{5} through O_{10} are water molecules.
atoms angles

$$
\mathrm{O}_{1}-\mathrm{o}_{5}-\mathrm{o}_{3}
$$

$$
117^{\circ}
$$

$$
0_{3}-0_{6}-o_{4}
$$

$$
105^{\circ}
$$

$$
0_{3}-o_{7}-0_{4}
$$

$$
126^{\circ}
$$

$$
\mathrm{O}_{1}-\mathrm{o}_{8}-\mathrm{o}_{2}
$$

$$
97^{\circ}
$$

$$
o_{2}-o_{9}-o_{8}
$$

$$
116^{\circ}
$$

$$
O_{1}-O_{10}-O_{4} \quad 124^{0}
$$

The hydrogen bond lengths are 2.65 to 2.93 A for the bonds to sulfate and 3.00 A for the water-water bond. The shortest non-bonded oxygen-oxygen distances other than edges of the octahedra, are 3.13 A between 0_{7} pairs (through a center of symmetry) and 3.22 A between O_{9} and O_{4}.

We find no reasonable alternative to this hydrogen configuration, and the entropyy discrepancy is not explained by our work.

The hydrogen bonds tie the sulfate ions and water octahedra together in a three-dimensional network as indicated in Fig. 2. In this figure, the
hydrogen configuration is indicated by small circles on the hydrogen bonds. Because of the bond angles the hydrogen atoms are expected to fall slightly off these lines joining oxygen atoms. We do not have a direct determination of the hydrogen positions from the diffraction data.

The two cobalt ions, CO_{1} and Co_{2}, have point symmetries \bar{I} and 2 respectively. The water octahedron about $\mathrm{CO}_{\mathcal{1}}$ is hydrogen bonded exclusively to sulfate ions. The Co_{2} water octahedron has ten hydrogen bonds to sulfate ions and four involving water molecules of neighboring Co ${ }_{2}$-type octahedra.

The average interatomic distances are as follows:

$$
\begin{aligned}
& \mathrm{S}-0\left(\mathrm{SO}_{4}=\mathrm{J}\right. \\
& \mathrm{O}-\mathrm{O}\left(\mathrm{SO}_{4}^{=}\right) \quad 1.46 \mathrm{~A} \\
& \mathrm{Co}-\mathrm{O}\left(\mathrm{CO}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}^{++}\right) 2.11 \mathrm{~A} \\
& \mathrm{O}-\mathrm{H}-\mathrm{O}(\text { hydrogen bond } \mathrm{A} \\
& 2.79 \mathrm{~A} . .
\end{aligned}
$$

Several other substances have the same structure as $\mathrm{CoSO}_{4} \cdot 6 \mathrm{H}_{2} \mathrm{O}$. In addition to the two magnesium compounds, $\mathrm{CoSeO}_{4} \cdot 6 \mathrm{H}_{2} \mathrm{O}, \mathrm{ZnSO}_{4} \cdot 6 \mathrm{H}_{2} \mathrm{O}$, and one form of $\mathrm{NiSO}_{4} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ are isomorphous (Groth, 1908). This structure has been recognized in nature as the minerals hexahydrite, $\mathrm{MgSO} \mathrm{Ma}_{4} \cdot 6 \mathrm{H}_{2} \mathrm{O}$, and bianchite, ZnSò. $6 \mathrm{H}_{2} \mathrm{O}$ (Palache, Berman and Frondel, 1952).

A more thorough study of the structure of $\mathrm{MgSO}_{4} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ is in progress, and the location and refinement of the hydrogen parameters in that crystal will be the topic of another article shortly.

Fig. 2. Hydrogen bond network in $\mathrm{CoSO}_{4} \cdot 6 \mathrm{H}_{2}{ }^{\circ} \mathrm{O}$. The numbers are the parameters along the a axis of the Co, S, and O atoms. The complete environment about each of the two different $\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}{ }^{++}$ and $\mathrm{SO}_{4}=$ is shown.

Aknowledgement

We thank Dr. Rao and Professor Giauque for their unpublished thermodynamic data and for valuable discussions.

References

Busing, W. R. and Levy, H. A., (1959). Oak Ridge National Laboratory Report 59-4-37.

Goszner, (1907). Ber. deut. chem. Ges. 40, 2374.
Groth, P., (1908). "Chemische Krystallographie", v. 2, 426, Lepzig: Wilhelm Engelmann.

Handbook of chemistry and Physics, (1957). 39th Ed., 521, Chemical Rubber Publishing Co., Cleveland, Ohio.

Hartree, D. R. and Hartree, W., (1939). Proc. Roy. Soc. A238, 229.
Howells, E. R., Phillips, D. C., and Rogers, D.; (1950). Acta Cryst. 3, 210.
Marignac, Ch. De, (1855). Arch. sc. phys. et nat. Geneve (1) 14, 234. Ouevres I, 381.

Palache, C., Berman, H. and Frondel, C. (1952). Dana's System of Mineralogy. Volume II pp. 492-496. New York: Wiley.

Rao, R. V. G. and Giaugue, W. F., (1960). Private conmunication.
Ruben, H. W., Templeton, D. H., Rosenstein, R. D., and Olovsson, I. (1961). J. Am. Chem. Soc. 83, 820.

Thorpe and Watt, (1880). J. Chem. Soc. London 37, 102.
Tomiie, Y. and Stam, C. H., (1958). Acta Cryst. Il, 126.
Watson, R. E. and Freeman, A. J., (1961). Acta Cryst. 14, 27.

This report was prepared as an account of Government sponsored work. Neither the United States, nor the Commission, nor any person acting on behalf of the Commission:
A. Makes any warranty or representation, expressed or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately owned rights; or
B. Assumes any liabilities with respect to the use of, or for damages resulting from the use of any information, apparatus, method, or process disclosed in this report.

As used in the above, "person acting on behalf of the Commission" includes any employee or contractor of the Commission, or employee of such contractor, to the extent that such employee or contractor of the Commission, or employee of such contractor prepares, disseminates, or provides access to, any information pursuant to his employment or contract with the Commission, or his employment with such contractor.

[^0]: h hydrogen bond distances.
 s $\mathrm{S}-0$ bond in $\mathrm{SO}_{4}=$.

