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Abstract 25 

Multidimensional measurements using state-of-the-art separations and mass spectrometry 26 
provide advantages in untargeted metabolomics analyses for studying biological and 27 
environmental bio-chemical processes. However, the lack of rapid analytical methods and robust 28 
algorithms for these heterogeneous data has limited its application. Here, we develop and 29 
evaluate a sensitive and high-throughput analytical and computational workflow to enable 30 
accurate metabolite profiling. Our workflow combines liquid chromatography, ion mobility 31 
spectrometry and data-independent acquisition mass spectrometry with PeakDecoder, a machine 32 
learning-based algorithm that learns to distinguish true co-elution and co-mobility from raw data 33 
and calculates metabolite identification error rates. We apply PeakDecoder for metabolite profiling 34 
of various engineered strains of Aspergillus pseudoterreus, Aspergillus niger, Pseudomonas 35 
putida and Rhodosporidium toruloides. Results, validated manually and against selected reaction 36 
monitoring and gas-chromatography platforms, show that 2683 features could be confidently 37 
annotated and quantified across 116 microbial sample runs using a library built from 64 standards. 38 
 39 
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Introduction 40 

Metabolomics is the study of the small molecules produced by complex networks of cellular 41 
processes and biochemical reactions in living systems. Metabolites are the end point of the flow 42 
of information from DNA to the biological phenotype and represent chemical fingerprints directly 43 
reflecting the physiological conditions, intracellular regulation, and effects that environmental 44 
factors induce in biological cells or organisms. As such, metabolomics helps in a variety of 45 
applications, from understanding disease progression in clinical settings to estimating 46 
overproduction for metabolic engineering1,2.  47 
 48 
Advances in synthetic biology, genome editing, and DNA synthesis capabilities have propelled 49 
the ability to routinely design and generate thousands of novel strains for biomanufacturing 50 
research. The Agile BioFoundry (ABF) consortium of national laboratories utilizes state-of-the-art 51 
capabilities within the framework of the Design, Build, Test, and Learn (DBTL) cycle to develop 52 
engineered organisms3. Accurate analytical tools with fast turnaround time in Test are critical in 53 
developing microorganisms that can produce desired fuels and chemicals from renewable 54 
biological feedstocks. 55 
 56 
The most popular and widely used analytical platform for the analysis of metabolic species in 57 
complex mixtures is mass spectrometry (MS) combined with liquid chromatography (LC) or gas 58 
chromatography (GC) separations2,4,5. However, hundreds to thousands of primary and 59 
secondary metabolites in nature display a high degree of structural diversity with many isomers 60 
and nominal mass isobars that co-elute and have similar fragmentation patterns, all of which 61 
constitute a significant analytical challenge in terms of detection and annotation. The incorporation 62 
of several orthogonal technologies in MS-based workflows can provide heterogeneous 63 
information to tackle these challenges. In fact, experimental measures such as retention time (RT) 64 
from chromatography, collision cross-section (CCS) from ion mobility spectrometry (IM) or stable 65 
isotope labeling, are necessary to complement MS/MS similarity and add confidence in overall 66 
compound identification workflows6.  67 
 68 
Besides increasing annotation confidence, multidimensional LC-IM-MS workflows collecting 69 
extensive fragmentation spectra with data-independent acquisition (DIA) methods are providing 70 
heterogeneous information which allows deeper understanding in metabolomics studies. IM is a 71 
gas phase separation technique increasingly used to distinguish structurally similar molecules, 72 
isomers and molecular classes in biological and environmental samples7. Unlike LC that 73 
separates molecules based on hydrophobicity, IM separates gas-phase molecular ions based on 74 
their charge, size, and shape, which improves selectivity and coverage compared to routine LC-75 
MS-based methods. 76 
 77 
In DIA the mass spectrometer is operated to systematically collect multiplexed fragment-ion 78 
spectra (MS2) from all detectable precursors (MS1) within a wide m/z range and in a single 79 
chromatographic run, independently of their intensities8. Like initially found in proteomics9, in 80 
metabolomics the MS2 spectrum quality of ions that get selected during standard data-dependent 81 
acquisition (DDA) is higher, but the overall MS2 coverage and quantitative precision using DIA is 82 
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better10. While DIA provides increased reproducibility and quantitation performance, it requires 83 
more elaborated processing algorithms compared to DDA. Two main DIA processing strategies 84 
initially established for proteomics have been adapted to metabolomics in a handful of DIA 85 
metabolomics tools. The first strategy applies untargeted feature detection followed by 86 
deconvolution of fragment ion spectra (here referred to as UFD). A popular tool used for UFD in 87 
metabolomics is MS-DIAL11, which groups precursors and their corresponding fragments based 88 
on the similarity of their elution profiles, generates pseudo-MS2 spectra and matches them 89 
against a reference MS2 library. Other reported tools applying UFD are MetaboDIA12 and 90 
DaDIA13. The second DIA algorithmic strategy employs targeted data extraction (here referred to 91 
as TDX). TDX requires a library of target analytes with retention times, and precursors with 92 
corresponding fragment masses, which are utilized as coordinates to mine the DIA spectra and 93 
generate extracted ion chromatograms (XIC) for precursor and fragments per target analyte, as 94 
the so-called ‘peak-group’. Multiple sub-scores are then calculated per peak-group to assess 95 
coelution and identification. Software employing TDX include Skyline14, MetDIA15 and 96 
DIAMetAlyzer16. Another tool demonstrated for DIA using a different approach is DecoID17, where 97 
the MS2 deconvolution is achieved by mixing database spectra to match an experimentally 98 
acquired spectrum using least absolute shrinkage and selection operator (LASSO) regression. 99 
 100 
While these tools exist for DIA metabolomics, new tools capable to fully exploit all dimensions 101 
with controlled error rates in multidimensional LC-IM-MS measurements with DIA spectra are 102 
needed. Skyline and MS-DIAL were adapted to support the additional IM dimension but they do 103 
not provide a false-discovery rate (FDR) control method. Unlike proteomics, the field of 104 
metabolomics still lacks a generally accepted, validated, and automated calculation of error rates 105 
for MS2 compound identification with FDR assessments18. Several methods have been proposed 106 
to generate decoys and estimate FDR in metabolomics. For imaging-MS, pySM19 generates 107 
decoys by using implausible ion adducts. For DDA, Passatutto20 uses re-rooted fragmentation 108 
trees, JUMPm21 adds a small odd numbers of hydrogen atoms, and XY-Meta22 combines original 109 
and randomly selected MS2 peaks. And recently reported for DIA, DIAMetAlyzer16, provides an 110 
FDR estimation employing Passatutto20 but it does not support the IM separation. These methods 111 
rely on annotated spectra or a sample-specific metabolite database for FDR estimation. 112 
 113 
Here, we develop a sensitive and high-throughput analytical and computational workflow that 114 
combines LC-IM-MS multidimensional measurements with PeakDecoder, an algorithm that 115 
automatically calculates error rates for metabolite identification, independently of spectral 116 
annotations or libraries. PeakDecoder proposes an alternative method for decoy generation from 117 
raw DIA spectra, incorporating concepts from DIA and spectral library searching into a machine 118 
learning (ML) strategy that combines both UFD and TDX. To illustrate our metabolomics workflow 119 
and demonstrate its utility, we apply it to study microbial samples from various strains engineered 120 
under projects of the ABF consortium. 121 
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Results 122 

Optimizing the LC-IM-MS analytical method 123 

We defined a list of 64 metabolites of interest for the study of various strains of Pseudomonas 124 
putida, Aspergillus pseudoterreus, Aspergillus niger and Rhodosporidium toruloides, all relevant 125 
microorganisms in the biotechnology field for production of value-added chemicals. The panel 126 
consisted of metabolites from central carbon metabolism including glycolysis, tricarboxylic acid 127 
cycle (TCA) cycle intermediates, amino acids, and ‘coenzyme A’ molecules (CoAs) that are 128 
routinely analyzed in ABF studies to obtain an overview of changes in the metabolism of cells. 129 
Additionally, metabolites specific to ABF host-bioproduct pairs, meaning compounds that are 130 
directly along the engineered pathways were also included. 131 
 132 
The microorganisms in this study are promising industrial hosts and have a variety of application 133 
interests. P. putida is a Gram-negative, rod-shaped bacterium that is metabolically versatile, 134 
tolerant to toxins and solvents, with a high supply of reducing power, making it ideal for numerous 135 
biomanufacturing applications23. The eukaryotic microorganisms A. pseudoterreus and A. niger 136 
(filamentous fungi) were modified for production of 3-hydroxypropionic acid, a polymer precursor 137 
that can be dehydrated to produce acrylic acid and can be used directly within existing 138 
infrastructure24. Similarly, the R. toruloides (oleaginous yeast) strains were engineered for 139 
production of bisabolene, which is a precursor to a diesel alternative and is considered an ideal 140 
platform for bioconversion of lignocellulose into lipids and related chemicals25.  141 
 142 
To select an LC method, we implemented the Automated chromatographic Method Selection 143 
Software (AMSS), which utilizes chemical and physical properties of metabolites to predict the LC 144 
method that maximizes the number of metabolites detected (see Methods). The evaluation of the 145 
selected metabolites using AMSS predicted HILIC with negative ESI as the best method 146 
(Supplementary Fig. 1). The LC conditions were first implemented and optimized by selected 147 
reaction monitoring (SRM) analyses of a subset of the standards and led to a total acquisition 148 
time of 9 min per run. Compared to the methods typically used to perform GC-MS-based global 149 
metabolomics24, this LC method provides a ~3x faster sample analysis time and can detect other 150 
molecules which are undetectable by GC such as CoAs. DDA methods with short LC separation 151 
(<15 min) would be limited to only select the top 3-5 ions18,26 per cycle to preserve the MS1 152 
sampling rate and quantitation dynamic range, which in turn would result in MS/MS under 153 
sampling of medium-low-abundance ions. Therefore, after initial optimization the same LC system 154 
was utilized to perform the LC-IM-MS analyses in the All-Ions DIA mode (Fig. 1). A library with 155 
RT, CCS and transitions (hereafter referred to as precursor and fragments) was built from the 156 
analysis of standards in deprotonated ion form. The list of metabolites can be found in 157 
Supplementary Table 1 and the library can be found in Supplementary Data 1. To evaluate the 158 
LC-IM-MS system against the gold standard SRM platform, dilution experiments were performed 159 
using representative standards. Supplementary Fig. 2 shows the calibration curves with linearity 160 
and increased sensitivity of LC-IM-MS over SRM for concentrations to as low as 0.075 pmol and 161 
covering four orders of magnitude. Next, 81 microbial samples from the various ABF-engineered 162 
hosts and conditions were analyzed by LC-IM-MS and processed using PeakDecoder. 163 
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Developing the PeakDecoder algorithm 164 

We implemented an alternative scoring algorithm for DIA metabolite identification which uses a 165 
‘raw spectrum centric’ approach with UFD for ML training and a ‘metabolite centric’ approach with 166 
TDX for metabolite scoring (i.e., ML inference). Using only the unannotated LC-IM-MS DIA 167 
experimental spectra from biological samples, PeakDecoder learns to discriminate true co-elution 168 
(and co-mobility) of a precursor and its fragments from poor co-elution undistinguishable from 169 
random chance. As Fig. 2-a shows, the PeakDecoder workflow has six steps for ML training and 170 
inference. First, the LC-IM-MS DIA data from the biological samples is processed in UFD mode 171 
using MS-DIAL11. Second, a preliminary training set is generated by using the detected and 172 
deconvoluted peak-groups as targets and producing their corresponding decoys. Third, TDX is 173 
performed using Skyline14 to extract the precursor and fragment ion signals for the training set 174 
from all the LC-IM-MS DIA runs and export their XIC metrics. Fourth, a final training set is 175 
generated applying filtering for high-quality fragments to keep high-quality peak-groups as targets 176 
(i.e., precursor S/N > 20, and at least 2 fragments with mass error < 15 ppm, RT difference to 177 
their precursor < 0.1 min, and FWHM difference to their precursor larger than 2x the precursor 178 
FWHM; details in Methods) and their corresponding decoys. A support vector machine (SVM) 179 
classifier is trained using multiple scores calculated from the XIC metrics of each peak-group in 180 
the training set: the cosine similarity between the expected and XIC intensities, and the mean and 181 
standard deviation of each precursor and its fragments for RT, LC-FWHM and mass error metrics 182 
(details in Methods). These scores are used as ML features which measure co-elution and 183 
similarity to the expected values27. After scoring the training set, the true and false positives can 184 
be used to estimate an FDR. Fifth, TDX is performed to extract the signals of the query set of 185 
metabolites in the library from all the LC-IM-MS runs and export their XIC metrics. Finally, the 186 
trained model is used to score the query set of metabolites and results can be filtered using the 187 
PeakDecoder score corresponding to the estimated FDR threshold from a table with pairs of 188 
values (FDR, PeakDecoder score) automatically generated. 189 
 190 
PeakDecoder takes advantage of DIA spectra, where the combination of precursor and its 191 
fragments enable selective and sensitive detection of a molecule by a peak-group of co-eluting 192 
fragment ion chromatograms28. Our algorithm is similar to the mProphet scoring method in terms 193 
of using decoy transitions29,30. The mProphet method introduced the concept of decoy transitions 194 
at the measurement level for SRM proteomics, and it was later adapted at the data extraction 195 
level for DIA. The decoy transitions are used to optimize a combination of the available individual 196 
scores and to derive statistical error rate estimates by parameterizing a null distribution. However, 197 
decoys in those original methods are generated from the protein database by reversing or 198 
shuffling the sequences. Due to the much larger structural diversity, more complex fragmentation 199 
mechanism and ubiquitous isomers compared to peptides, such decoy generation methods 200 
cannot be applied for small molecules. In contrast, PeakDecoder generates the decoys from the 201 
high-quality peak-groups deconvoluted from the LC-IM-MS DIA experimental spectra of the 202 
biological samples. 203 
 204 
Methods to generate decoys from experimental spectra have been previously reported, however, 205 
from a DDA MS/MS target library (i.e. annotated spectra), first in proteomics31,32 and more recently 206 
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in metabolomics20,22. We propose an alternative strategy to generate decoys taking advantage of 207 
the comprehensive nature of the DIA spectra. Instead of generating decoys from the target library, 208 
we perform UFD and TDX in the LC-IM-MS DIA data to generate a training set of peak-groups. 209 
The high-quality peak-groups constituted by the detected precursors (MS1) and its deconvoluted 210 
fragments (i.e., pseudo MS2) are used as targets. This strategy provides a noise-filtered ‘clean’ 211 
set of targets which was reported to be necessary to reach accurate estimates in spectrum level 212 
decoy-based methods20. We then employ a pairing and swapping strategy, similar to the 213 
precursor-swap method proposed by Cheng et. al.32, but rather than swapping precursors, we 214 
generate the respective decoy precursors and fragments from the same targets by swapping pairs 215 
of fragment m/z (Fig. 2-b). Pairing precursors with the same number of fragments was used as 216 
an approach to increase the chances that the molecules are similar and to ensure that the overall 217 
distributions of general properties of targets and decoys are the same. Generating decoys by 218 
pooling and randomly adding fragments was avoided because it has previously shown poor 219 
performance (naïve method)20, as it increases the probability of generating unrealistic decoys. 220 
Since the deconvoluted data represent real molecules, our decoy strategy is valid in practice and 221 
the generated decoys comply with several conditions or properties, previously proposed for 222 
proteomics31, to calculate FDR with a valid target-decoy model: (i) the decoy library has the same 223 
precursor m/z and charge distributions as the target library, (ii) target and decoy spectra include 224 
the same number of peaks and have the same intensity sum distribution, and (iii) decoy spectrum 225 
peaks are positioned on realistic m/z values (fragments that naturally occur). 226 
 227 
Contrary to previously proposed methods for FDR assessment that rely on large libraries of 228 
annotated MS/MS spectra, PeakDecoder was designed to confidently identify metabolites from 229 
libraries, but independently of the number of metabolites in the library. The estimated error rates 230 
are independent of any library and therefore experimental or in-silico generated libraries of any 231 
size could be potentially utilized. The scoring becomes ‘metabolite centric’ and provides the 232 
probability that a given metabolite is present in the sample based on the quality of its detected 233 
signals in the LC-IM-MS DIA data. After the model is trained directly from the unannotated LC-234 
IM-MS DIA data, it can be used to automatically score metabolites in libraries. 235 
 236 
Since PeakDecoder generates the decoys from unannotated LC-IM-MS DIA experimental 237 
spectra, the size of the target library does not affect its performance. However, the performance 238 
of PeakDecoder depends on the training set and the validity of the estimated FDR depends on 239 
the number of generated false positives. The size and quality of the training set can be controlled 240 
in two ways: the parameters of the UFD tool used to generate the preliminary training set (Fig. 2-241 
a, Step-1) and the filtering for high-quality fragments used to generate the final training set (Fig. 242 
2-a, Step-4). At the same time, a tradeoff in the quality of peak-groups is necessary to avoid 243 
overfitting and perfect training accuracy, and thus, to estimate a reliable FDR. These components 244 
allow the user to define the quality of the resulting annotations and are evaluated using microbial 245 
data in the next section.  246 
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Applying PeakDecoder in microbial samples 247 

We processed the microbial LC-IM-MS data using PeakDecoder. The datasets represented 248 
varied sample complexity and feature density: low for A. pseudoterreus & A. niger, medium for P. 249 
putida and high for R. toruloides. Supplementary Fig. 3 shows the distributions of ions illustrating 250 
the general properties of the targets and decoys generated for training. Fig. 3 shows results for 251 
the P. putida samples. The PeakDecoder score which combines individual scores provided an 252 
improved discrimination power between targets and decoys (Fig. 3-a). An example of 253 
chromatograms and filtered IM window for ‘fructose 1,6-diphosphate (F16DP)’ from the standard 254 
(precursor m/z 338.98877, RT 4.95 min, CCS 155.00 and 6 fragments) and a microbial sample is 255 
shown in Fig. 3-b, confidently identified with a PeakDecoder score of 0.9966 and 0.005 q-value. 256 
Supplementary Fig. 4 shows the PeakDecoder training performance for all microbial samples and 257 
a summary is shown in Table 1. A total of 2683 features could be confidently annotated. 258 
Annotations could be attributed to either all dimensions by RT-CCS-DIA or to RT-CCS for features 259 
without detected fragments (i.e., MS1 level only). The number of features annotated in each 260 
dataset includes replicates and is independent of the number of unique metabolites identified. For 261 
instance, in the case of the A. pseudoterreus & A. niger dataset, many more features were 262 
annotated, indicating that metabolites were detected in multiple replicates across all sample 263 
conditions.  264 
 265 
To control the size and quality of the final training set, we defined the parameters of the UFD tool 266 
(Fig. 2-a, Step-1) and the filtering for high-quality fragments (Fig. 2-a, Step-4) according to the 267 
characteristics of our analytical method and instrumentation (e.g., fragments with RT difference 268 
to their precursor < 0.1 min) and annotation quality preferred (e.g., at least 3 fragments). Because 269 
of the low sample complexity of the A. pseudoterreus & A. niger dataset, a smaller number of 270 
deconvoluted peak-groups were detected, therefore only 234 target peaks could be generated for 271 
training and were not sufficient for a good FDR estimation. The medium sample complexity of the 272 
P. putida dataset provided the best FDR estimation. Supplementary Fig. 5 shows that the training 273 
performance was not significantly impacted by the deconvolution parameters if the numbers of 274 
targets was sufficient (accuracy > 98.86 if the resulting training set contained between 2760 and 275 
6720 targets), but at the same time, if the classifier resulted in a close-to-perfect accuracy (>99), 276 
the minimum non-zero FDR that could be estimated was affected due to the small number of false 277 
positives. Conversely, the high sample complexity in the R. toruloides dataset resulted in poor 278 
performance when using the default filtering for high-quality fragments generating 8674 279 
targets/decoys for training, where the minimum non-zero estimated FDR for the highest 280 
PeakDecoder score was 3% (Supplementary Fig. 6-a). Stringent values were applied to filter the 281 
high-quality fragments generating 1400 targets/decoys (Supplementary Fig. 6-b) and a minimum 282 
non-zero estimated FDR of 1% could be obtained. The results indicate that more training data 283 
does not translate into higher accuracy and further improvements for filtering high-quality 284 
fragments (i.e., generating a smaller training set with peak-groups of appropriate quality) could 285 
be needed for datasets with high sample complexity. Supplementary Fig. 6-c depicts results from 286 
a deuterated standard (tryptophan d5) spiked in solvents and in a microbial sample matrix.  287 
 288 
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In all samples, PeakDecoder could identify the metabolites expected in at least one condition of 289 
each microbial dataset (a list of unique metabolites generated by manual inspection of the most 290 
intense replicates). A handful of cases that were missed initially were recovered after manual 291 
correction of the Skyline chromatogram peak detection. Supplementary Tables 2-4 show the 292 
scores and annotation confidence level (best replicate per metabolite). In addition, we performed 293 
targeted analyses of a subset of metabolites by SRM in P. putida samples and GC-MS analyses 294 
of A. pseudoterreus and A. niger samples to further evaluate the performance of our method in 295 
biological samples (Supplementary Fig. 7). Similar trends were observed for the metabolites 296 
identified in common by the different platforms. 297 
 298 

Comparing PeakDecoder to other workflows 299 

UFD (MS-DIAL) and TDX (Skyline) are two different approaches with different advantages and 300 
disadvantages. While the UFD does not rely on a library and high-quality peak-groups from its 301 
deconvolution results can be used for training, applying TDX offers advantages over UFD for 302 
annotation in DIA, particularly for All-Ions data, where the full mass range is co-fragmented, and 303 
the likelihood of interference greatly increases as sample complexity increases. In complex 304 
samples, multiple precursors with very similar RT and DT are present as a series of partial 305 
overlapping ions which compromise the effectiveness of UFD algorithms. However, when 306 
performing TDX, only the relevant chromatograms are extracted in a directed and highly selective 307 
fashion. 308 
 309 
PeakDecoder combines both UFD and TDX strategies and addresses limitations in the respective 310 
existing tools. Specifically, the re-extraction of signals by TDX in Skyline allows specifying a DT 311 
offset for fragments characteristic for the IM instrumentation33 (see Methods), which is not applied 312 
in MS-DIAL and results in a poor deconvolution of fragments with the smaller masses. On the 313 
other hand, the UFD in MS-DIAL allows accurate CCS evaluation using the experimental CCS 314 
values, which is not available in Skyline because it does not perform a peak detection in the IM 315 
dimension and is limited to use the CCS information as a filtering window (e.g., Fig. 3-b). Besides 316 
combining the best features of these two tools, PeakDecoder uses the peak shape metrics, 317 
combines the individual scores into a composite score, and allows FDR estimation, all of which 318 
are impossible with MS-DIAL or Skyline alone. 319 
 320 
To benchmark PeakDecoder and evaluate the reliability of our FDR estimation, we performed a 321 
comparison against the ground truth generated from manually curating the full P. putida dataset, 322 
with 550 peak-groups including 233 positives and 317 negatives (Fig. 3-c). Due to the poor 323 
deconvolution of fragments with the smaller masses, MS-DIAL resulted in the lowest number of 324 
true positives (TP=70), even when using a relaxed threshold for its total score (> 60). While 325 
PeakDecoder at 1% estimated FDR missed 4 TP compared to Skyline (cosine similarity > 0.8), it 326 
decreased the number of false positive annotations (FP: PeakDecoder=4, MS-DIAL=13, 327 
Skyline=15). The estimated 1% FDR corresponded to a ~2% actual FDR, and while there is an 328 
underestimation and the results are limited by our small library, they show that PeakDecoder 329 
could be used to filter out FP. 330 
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 331 
Our decoy strategy for DIA data together with IM and LC conveys a powerful multidimensional 332 
characterization of metabolites that address several important challenges. For many metabolites 333 
only a few characteristic fragment ions can be detected, rendering the use of classic spectral 334 
similarity searches unreliable18. Moreover, some metabolites could not be detected with even a 335 
single fragment. In these cases, the CCS increased the identification confidence compared to 336 
using the RT and accurate mass alone. Since our library was built from pure standards, even for 337 
standards without fragments, the identification based on RT and CCS could be considered as a 338 
confidence of “Level 1” according to the Metabolomics Standards Initiative34, as they are two 339 
different analytical techniques. Besides, multidimensional LC-IM-MS increases the separation, 340 
important for metabolites that co-elute, where DIA alone is challenged by fragments common to 341 
co-eluting metabolites. Fig. 4 illustrates the power of multidimensional separations to increase the 342 
selectivity and therefore increase the annotation confidence and quantitation accuracy. The 343 
number of possible LC-IM-MS peaks from MS-DIAL untargeted feature detection results matched 344 
within tolerances (0.01 mass, 0.2 min RT, and 0.8% CCS) was reduced when using all 345 
dimensions. High IM resolving power is essential for small molecules and current IM instruments 346 
are able to separate CCS differences as low as 0.8%. 347 

Metabolomics of A. pseudoterreus and A. niger strains 348 

PeakDecoder was applied for metabolomics profiling of A. pseudoterreus and A. niger strains 349 
engineered to produce 3-hydroxypropanoic acid (3HP) using the β-alanine pathway35. Our three 350 
engineered A. pseudoterreus strains24 with varying levels of 3HP production (low, medium, and 351 
high) and their parent strain (ATCC 32359 Δcad: cis-aconitic acid decarboxylase deletion) were 352 
analyzed. Since the engineered A. pseudoterreus strains produced significant amount of other 353 
organic acids24, we also developed and profiled A. niger strains engineered with the same β-354 
alanine pathway. Five engineered A. niger strains exhibiting different levels of 3HP production 355 
(low, medium, high, higher, and highest) and their parent strain (ATCC 11414) were included. 356 
 357 
Metabolomics profiling of 3HP-producing A. pseudoterreus and A. niger strains revealed species-358 
specific metabolic responses to increasing 3HP production. Specifically, we found that L-359 
aspartate, the precursor to the β-alanine 3HP production pathway, showed very little change in 360 
3HP producing A. pseudoterreus strains, while its level decreased significantly in 3HP producing 361 
A. niger strains (Fig. 5). In the β-alanine 3HP production pathway, L-aspartate is converted to 362 
3HP via β-alanine using multiple aminotransferases. 363 
 364 

L-aspartate -> β-alanine + CO2 365 
β-alanine + pyruvate -> malonate semialdehyde + L-alanine 366 
L-alanine + α-ketoglutarate -> pyruvate + L-glutamate 367 
oxaloacetate + L-glutamate -> L-aspartate + α-ketoglutarate 368 
(net reaction) β-alanine + oxaloacetate -> malonate semialdehyde + L-aspartate 369 
malonate semialdehyde + NADPH + H+ -> 3HP + NADP+ 370 

 371 
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L-aspartate is first converted to β-alanine by aspartate-1-decarboxylase, and the amino group 372 
from β-alanine is transferred to pyruvate yielding malonate semialdehyde and L-alanine by β-373 
alanine/pyruvate aminotransferase. Malonate semialdehyde is converted to the final product 3HP 374 
by 3-hydroxypropionate dehydrogenase, but L-alanine needs be converted back to pyruvate by 375 
alanine transaminase by transferring the amino group to α-ketoglutarate generating L-glutamate. 376 
The aminotransferase cycle can be closed by generating the precursor L-aspartate by transferring 377 
the amino group from L-glutamate to oxaloacetate. Therefore, the amino group acceptor and 378 
donor pairs (pyruvate/L-alanine and α-ketoglutarate/L-glutamate) play an important role in the β-379 
alanine 3HP production pathway. 380 
 381 
PeakDecoder allowed us to investigate the changes in these amino group acceptor and donor 382 
pairs as well as undesired byproducts such as 4-aminobutyric acid and 2,4-aminobutanoic acid. 383 
Similar to the conversion of L-aspartate to 3HP via β-alanine, L-glutamate can be converted to 384 
succinate via 4-aminobutyric acid (GABA). In the GABA degradation pathway, GABA is first 385 
deaminated to succinate semialdehyde by 4-aminobutyrate aminotransferase UGA1 using α-386 
ketoglutarate/L-glutamate pair, which was one of the most significantly upregulated enzymes in 387 
the engineered A. pseudoterreus strains in our previous study24. In this study, we observed 388 
significantly decreased levels of succinate semialdehyde in A. niger strains producing high levels 389 
of 3HP using the developed workflow, confirming that the engineered 3HP pathway is affecting 390 
the GABA degradation pathway in A. niger as well. We also previously hypothesized that the 391 
promiscuous activity of upregulated UGA1 resulted in the accumulation of 2,4-diaminobutyric acid 392 
from L-aspartate via L-aspartate 4-semialdehyde in A. pseudoterreus. Here, we found that the 393 
accumulation of 2,4-diaminobutyric acid was not consistently observed in the engineered A. niger 394 
strains in contrast to the observation in A. pseudoterreus. This is likely due to the significantly 395 
decreased level of the precursor L-aspartate in the engineered A. niger strains. The level of L-396 
aspartate 4-semialdehyde is consistently lower in the engineered A. pseudoterreus strains, but 397 
not in the engineered A. niger strains. 398 

Omics of engineered muconate-catabolizing P. putida strains 399 

P. putida has biochemical properties that make it ideal for hosting biochemical transformations36. 400 
Due to its naturally diverse and flexible catabolism it can metabolize aliphatic, aromatic, and 401 
heterocyclic compounds in addition to glucose37. To use P. putida for industrial bioprocessing, 402 
genetic modifications must be incorporated into the strains requiring the expression of 403 
heterologous genes and pathways. Chaves et al. studied the importance of chromosomal 404 
integration location, which affects heterologous protein expression independent of typical design 405 
parameters such as copy number, promoter, and terminator type37. Wild-type (WT) P. putida 406 
KT2440 cannot grow on cis, cis-muconate as a sole carbon source, despite using this compound 407 
as a key intermediate in aromatic catabolism. To enable muconate catabolism, a transmembrane 408 
transporter for muconate (mucK) was integrated into three different chromosomal sites (PP2224, 409 
PP1642, and PP5042). Samples with the transmembrane transporter were grown in M9 minimal 410 
medium supplemented with 30 mM muconate and analyzed using a targeted proteomics 411 
approach to quantify the amount of mucK present. The previous results showed that the growth 412 
rate with muconate inversely correlated with the expression levels of the transporter.   413 
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 414 
To provide additional insights into the metabolic changes during growth with a new carbon 415 
substrate, we used PeakDecoder to quantify metabolites in P. putida WT grown on glucose and 416 
mucK (PP2224, PP1642 and PP5042) grown on muconate. Compared to WT, muconate-417 
catabolizing P. putida mucK strains showed decreased levels of metabolites in the ED-EMP cycle 418 
(glucose utilization) such as fructose 6-phosphate, fructose 1,6-diphosphate and glyceraldehyde 419 
3-phosphate among others (Fig. 6). Targeted proteomics, performed on the same cell pellets of 420 
mucK strains, showed a corresponding decrease in enzymes that are part of ED-EMP pathway 421 
and in levels of pyruvate dehydrogenase and pyruvate carboxylase, which catalyze the 422 
conversion of pyruvate to acetyl-CoA and to oxaloacetate, respectively. These lower levels match 423 
with the accumulation of pyruvate in mucK strains cultured with muconate. Accumulation of 424 
pyruvate had also been observed in P. putida grown in a glucose:benzoate mixture vs glucose 425 
alone38. In contrast, increased levels of metabolites (α-ketoglutarate, fumarate, malate) and 426 
enzymes from the TCA cycle were observed in the mucK strains. Levels of enzymes at the 427 
entrance point of acetyl-CoA into TCA cycle and those routing succinyl-CoA and succinate into 428 
TCA cycle were upregulated in mucK compared to WT. Muconate is metabolized via the β-429 
ketoadipate pathway before joining the central carbon metabolism via acetyl-CoA and succinate. 430 
Although no metabolites in the beta-ketoadipate pathway were detected, enzymes in this pathway 431 
were significantly upregulated in the mucK strains compared to WT which is expected considering 432 
muconate was used as the carbon source. Changes in metabolite levels in peripheral pathways 433 
were also clear. Gluconate and 2-ketogluconate were lower or not detected in mucK compared 434 
to WT which is in line with the absence of glucose supplementation in the strains with the 435 
transporter. These results suggest a shift in metabolism supported on succinate and acetyl-CoA 436 
fueling the TCA cycle from the β-ketoadipate pathway and less reliance on ED-EMP pathway 437 
when muconate is used as carbon source. Similar results were observed when P. putida was 438 
grown in p-coumarate39. Supplementary Fig. 8 shows the targeted proteomics quantitation results 439 
and changes in metabolic pathways for mucK PP1642 and mucK PP2224 compared to the WT. 440 

Mevalonate pathway in R. toruloides strains 441 

R. toruloides is an important model microorganism for synthetic biology and industrial 442 
biotechnology due to its capacity to bioconvert lignin, the most underutilized component of plant 443 
biomass40. Metabolic engineering of R. toruloides can generate distinct bio-products including 444 
bisabolene, the immediate precursor of bisabolane and an alternative to D2 diesel fuel41.  For 445 
example, the Agile BioFoundry R. toruloides strain, GB2, can produce bisabolene in high 446 
quantities of 2.2 g/L from lignocellulosic hydrolysate in 2-L fermenters42. Another key advantage 447 
of R. toruloides is that it can grow on mixed-carbon sources and tolerate growth inhibitors often 448 
present in lignocellulosic hydrolysates40. However, these hydrolysates present a significant 449 
challenge in biochemical conversion due to feedstock variability43.  450 
 451 
We employed PeakDecoder and global proteomics analyses to characterize R. toruloides GB2 452 
cultured on lignocellulosic hydrolysates derived from corn stover with variable levels of ash (A) 453 
and moisture (M), each parameter cataloged as High (H) or Low (L) and the 4 possible 454 
combinations of them (HAHM, HALM, LAHM, and LALM). Samples were collected at two time 455 
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points of fermentation, during exponential growth (36 hr) and at the end of this growth phase (60 456 
hr). A total of 37 unique metabolites were confidently detected in at least one sample and 457 
quantified across all samples (Supplementary Fig. 9). 458 
 459 
Bisabolene is produced upon the introduction of bisabolene synthase and its precursor, farnesyl 460 
pyrophosphate (FPP), is part of the mevalonate pathway. Fig. 7 details our mevalonate pathway 461 
metabolomic and proteomic results. The levels of HMG-CoA were significantly higher in cells 462 
cultured in high ash low moisture (HALM) conditions at 60 hours. The rate limiting step in the 463 
mevalonate pathway is the conversion of HMG-CoA to mevalonic acid by 3-hydroxy-3-464 
methylglutaryl-coenzyme A reductase (HMGR)44.  R. toruloides, like mammalian systems, has 465 
only one HMGR gene45 and mammalian HMGR and yeast Hmg2p (from Saccharomyces 466 
cerevisiae) are both subject to feedback control by the sterol pathway46.  Previous studies 467 
identified FPP or FPP derivatives as the positive signal for HMGR degradation in yeast44,46. Here 468 
we detected isopentenyl pyrophosphate/dimethylallyl pyrophosphate (IPP/DMAPP) and geranyl 469 
pyrophosphate GPP. IPP and DMAPP are isomeric molecules which could not be separated by 470 
the current drift tube IM resolution or our LC method, and the sodiated adduct ion provided better 471 
quantification on the samples. We observed that the absolute differences in mass and CCS were 472 
larger for IPP/DMAPP and GPP ions compared to the rest of the identified molecules 473 
(respectively, -0.0858 and -0.0449 m/z, and 1.03 and 0.9 CCS). However, after adjusting these 474 
values we could quantify these molecules across all samples and observed a consistent trend. 475 
The levels of IPP/DMAPP, GPP (precursor to FPP) and extracellular FPP-derived bisabolene 476 
(Fig. 7) which were higher in cells grown on HALM hydrolysates at 60 hr compared to all other 477 
conditions, could explain the decreased level of HMGR detected in the proteomic analysis and 478 
the subsequent accumulation of HMG-CoA (i.e., at 60 hr for the comparison of HALM vs HAHM, 479 
log2FC of HMGR: -1.16, log2FC of HMG-CoA: 4.67, respective p-values are 1.82x10-3 and 480 
3.28x10-3; see Supplementary Table 5). Previously, it had been observed that when sterol 481 
pathway flux is high, degradation of HMGR is fast and its levels are low46 and this is what was 482 
revealed for GB 2 growth on HALM hydrolysate after 60 hours by our advanced analytical 483 
workflow.  484 

Discussion  485 

Using synthetic biology applications, we have described and demonstrated an optimized 486 
analytical method, a chromatography method prediction tool, and an alternative metabolomics 487 
algorithm for robust processing of multidimensional data acquired in state-of-the-art LC-IM-MS 488 
instrumentation. The advantages of using LC-IM-MS with DIA and PeakDecoder enable high-489 
throughput analyses with increased metabolite coverage and more confident annotation due to 490 
several aspects: 1) in terms of data acquisition, our 9 min LC method is faster than the GC 491 
methods typically used, 2) the IM dimension further separates more analytes and increases 492 
annotation confidence by combining CCS and RT compared to LC alone, 3) DIA further increases 493 
annotation confidence with fragmentation information and provides better reproducibility and 494 
dynamic range than DDA, and 4) Our PeakDecoder score provides a confident metric for 495 
metabolite annotation. These tools have the potential to enable faster and more accurate testing 496 
of strains generated by high-throughput engineering workflows and therefore accelerate the DBTL 497 
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cycle. Engineered microbes (e.g., bacteria, yeast, fungi) producing bioproducts (e.g., fuels, 498 
chemicals, materials) in a sustainable way are necessary to achieve a strong bioeconomy and 499 
decrease dependence on fossil fuels. Our analytical and computational workflow will provide 500 
capabilities for fast analysis of current and new metabolites of interest and is broadly useful, 501 
beyond the ABF consortium, in a wide range of environmental and biological metabolomics 502 
research.  503 
 504 
Our multidimensional metabolite library built from 64 standards is available as a resource to the 505 
community and we expect it to be expanded, since the combination of RT and CCS with co-elution 506 
and co-mobility profiles from DIA fragmentation patterns significantly increases confidence in 507 
overall compound identification. Besides, DIA spectra are a permanent and comprehensive digital 508 
record of all detectable ions in the sample, which can be re-processed as new libraries or new 509 
tools become available, and without the need of reanalyzing the samples for acquiring new data. 510 
Consequently, new bio-chemical hypothesis could be investigated using the existing microbial 511 
data, and DIA would allow evaluating/investigating side effects such as undesired pathways 512 
activated or undesired products, which would be missed with targeted-MS methods. 513 
 514 
Although more developments could be explored, for example, other decoy generation methods, 515 
training models specific to the number of fragments, engineering of ML features, comparing other 516 
ML methods and evaluating other MS/MS similarity metrics such as the spectral entropy6, our 517 
present results show better performance over existing LC-IM-MS tools for confident metabolite 518 
annotation with PeakDecoder using ML features based on summary statistics and an SVM 519 
classifier. Limitations of the current algorithm include requirements for sufficient high-quality peak-520 
groups for training (i.e., limited performance for samples with very low complexity) and a library 521 
acquired with compatible analytical conditions for inference. 522 
 523 
Since the training strategy in PeakDecoder is to learn how to distinguish good co-elution and co-524 
mobility patterns from the raw data directly and does not rely on fragmentation rules, its application 525 
is not limited to a particular omics. We believe that PeakDecoder represents a step towards 526 
universal software for molecular identification and it will potentially enable error rate calculations 527 
for different analyte types. Future work will be performed to compare PeakDecoder to DDA 528 
analyses and to evaluate it with predicted MS/MS, CCS and RT metabolomics libraries, as well 529 
as applications for proteomics and lipidomics. While PeakDecoder was built on several MS-tools, 530 
we envision a fully automated pipeline which is enhanced by replacing with novel artificial 531 
intelligence (AI)-based methods the traditional tools that heavily require intervention from human 532 
experts. Similarly to other research fields, advanced AI MS-tools may achieve human-level or 533 
super-human AI systems47 and have the potential to exploit the rich multidimensional LC-IM-MS 534 
data to derive new molecular knowledge. 535 
 536 
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Methods 537 

Automated chromatographic method selection software 538 

The Automated chromatographic Method Selection Software (AMSS) used PubChem IDs as input 539 
for information on molecules such as SMILES and physical and chemical properties, and utilized 540 
the previously published BioCompound Machine Learning (BCML) tool48 to calculate additional 541 
physico-chemical properties. PaDEL descriptor49 was used to compute molecular descriptors 542 
which are used as features for further ML applications. As the training data provided for 543 
developing the ML application was limited, the feature selection method Boruta50 was applied to 544 
avoid overfitting the predictive model. The random forest method was applied in sci-kit-learn for 545 
ML predictive model following the feature selection. Datasets from previous HPLC analysis of 546 
different compounds from the IROA Compound Test Set (SIGMA Chemical) were analyzed in ESI 547 
positive and negative modes using four different chromatography methods (HILIC+, HILIC-, PR+, 548 
RP-) and used as training: 467 compounds for pH 9.2 and 508 compounds for pH 2.7. The training 549 
datasets had scores for performances of all analysis methods for different compounds. Using the 550 
strategy mentioned above, four different categorical predictive models were built for each 551 
chromatographic analysis method. The predictive model is used to predict the best 552 
chromatograph analysis method for testing compounds. Additionally, Local Interpretable Model-553 
Agnostic Explanations (LIME)51 was applied for model application explanation. LIME scores were 554 
also used to draw shapes with color codes to highlight the chemical structural/substructure of the 555 
compounds with prediction. This software is used to run all four predictive models on the new test 556 
case. The predictions for all the four different models are reported as predictions. It should be 557 
noted that there can be multiple suitable methods for HPLC analysis for a single compound. 558 

Sample preparation 559 

Standards: 64 commercially available compounds from the central carbon metabolism (common 560 
to all ABF hosts) or metabolites that are part of pathways that had been engineered in the ABF 561 
mutant strains were selected. Standards were prepared individually at a concentration of 25 µM 562 
using 3:2 acetonitrile: water as solvent. Once analyzed individually, standard mixes containing 563 
10-15 metabolites at the same final concentration and solvent composition were prepared and 564 
acquired in the analytical platforms.  565 
 566 
A. pseudoterreus and A. niger strains: The A. pseudoterreus codon optimized β-alanine pathway 567 
was detailed in our previous manuscript24. The β-alanine pathway was randomly integrated into 568 
A. niger ATCC 11414. Three transgenic strains (3HP-10, 5, and 9) producing low, medium, and 569 
high levels of 3HP were selected for metabolite profiling. In addition, two transgene 570 
overexpression constructs were built. A. niger aspartate aminotransferase (aat, Genebank 571 
access: EHA22111.1) cDNA was under the control of A. niger translation elongation factor-1a 572 
(tef1) promoter and its first intron and the transcriptional terminator of A. niger phosphoglycerate 573 
kinase (pgk1), while A. niger pyruvate carboxylase (pyc, Genebank access: AJ009972.1) cDNA 574 
was under the control of A. niger multiprotein-bridging factor-1 promoter and the transcriptional 575 
terminator of pgk1. Both of transgene expression constructs were separately introduced into strain 576 



 15

3HP-9 to generate a series of new transgenic strains: 3HP-9 aat-1 to 12 or 3HP-9 pyc-1 to 12. 577 
Transgenic strains 3HP-9 aat-5 and 3HP-9 pyc-1 producing higher and highest levels of 3HP 578 
were selected for metabolite profiling. The selected strains were grown in 50 ml of the modified 579 
Riscaldati B medium24 in 250 ml PYREX Erlenmeyer flasks. The flasks were incubated at 30 °C 580 
while shaking at 200 rpm. The supernatants and biomass were collected at day 4. For each 581 
culture, 2 ml of supernatant was filtered through a 0.2 μm syringe filter and 1 ml of biomass was 582 
collected via vacuum filtration through 2 layers of EMD Millipore miracloth and washed with 2 ml 583 
of phosphate-buffer saline. The biomass was transferred into 1.5 ml microcentrifuge tubes and 584 
immediately frozen in liquid nitrogen. Both supernatants and biomass pellets were stored at -80 585 
°C prior to extraction of metabolites. 586 
 587 
P. putida strains: Detailed explanation about the integration site selection, plasmid design, 588 
assembly and transformation were presented previously37. Briefly, P. putida KT2440 was used as 589 
the wild-type strain. An mKate fluorescent reporter construct was designed, synthesized, and 590 
introduced into seven different insertion locations on the P. putida KT2440 chromosome by 591 
homologous recombination, always in the same orientation. Growth and fluorescence of these 592 
seven mKate expression strains were measured in M9 minimal medium containing 30 mM 593 
glucose and reported in the cited manuscript. To further test the effect of the integration locus on 594 
function of a heterologous gene, a functional protein (muconate transporter) was integrated into 595 
three of the seven sites and the resulting variation in growth and protein expression was 596 
measured. The selection of the integration sites chosen for additional characterization was based 597 
on their display of different phenotypes with mKate, such as slow growth and low fluorescence 598 
(PP 2224), slow growth and high fluorescence (PP 1642), or WT growth and medium fluorescence 599 
(PP 5042). Overnight cultures of WT P. putida KT2440 and strains carrying a codon-optimized 600 
copy of mucK (the gene coding for the muconate importer) were inoculated into 10 mL LB medium 601 
to give a starting culture density of 0.2 OD600 nm and were incubated at 30°C with shaking until 602 
the culture density reached 1.0 OD600 nm. Cell cultures were centrifuged and washed twice in 603 
M9 salts before resuspending in the same buffer. The washed cells were used to inoculate 50 mL 604 
M9 medium containing 30 mM glucose (for WT KT2440) or 30 mM cis,cis-muconate (for strains 605 
containing mucK insertions). The starting culture density was 0.1 OD600 nm and growth 606 
continued until 0.7 OD600 nm was reached. Cells were collected by centrifugation and were 607 
washed one time with ice-cold PBS. Cell pellets were weighed (~50 mg of wet weight collected), 608 
flash frozen in liquid nitrogen and stored at -80 °C prior to shipment and extraction of metabolites 609 
and proteins. Omics samples were prepared in triplicate. 610 
 611 
R. toruloides strains: The R. toruloides strain used in this study, GB2, was described in detail in 612 
our previous manuscript42. Its parent strain, BIS3, was the highest bisabolene producer of a panel 613 
of PGAPDH-BIS strains that were modified only by insertion of a heterologous α-bisabolene 614 
synthase gene (BIS) from Abies grandies under control of the native R. toruloides GAPDH 615 
(glyceraldehyde 3-phosphate dehydrogenase) promoter into WT R. toruloides and differed in copy 616 
number only40,42. BIS3, was selected for addition of a second expression cassette consisting of 617 
BIS under control of the native R. toruloides ANT (adenine nucleotide translocase) promoter, 618 
which resulted in strain GB2. GB2 contains 6 copies of the PANT-BIS cassette in addition to the 619 
original 10 copies of the PGAPDH- BIS cassette in BIS3. GB2 cells were grown in vessels in an 620 



 16

Ambr® 250 High Throughput system (Sartorius) with a total volume of 150 ml each. The growth 621 
media consisted of four DMR (deacetylation and mechanical refining method) hydrolysates made 622 
from corn stover by the National Renewable Energy Laboratory (Golden, Colorado) from a 2x2 623 
matrix of ash (high/low) and moisture (high/low). The DMR hydrolysates were referred to as HALM 624 
(high ash, low moisture), HAHM (high ash, high moisture), LALM (low ash, low moisture) and 625 
LAHM (low ash, high moisture). The media were only supplemented with ammonium sulfate (5.00 626 
g/L), potassium phosphate monobasic (10.34 g/L) and potassium phosphate dibasic (4.18 g/L), 627 
pH was controlled at 5.0 by addition of ammonium hydroxide. Dissolved oxygen was set as 30%, 628 
air flow 75 standard liter per minute (= 0.5 volume of air sparged in aerobic cultures per unit 629 
volume of growth medium per minute), agitation (cascade) of 500-2000 rpm and growth 630 
temperature of 30°C. A dodecane overlay (20% of total volume) was added to capture the 631 
bisabolene produced. Three bioreactors were prepared for each condition (hydrolysate). For 632 
omics measurements, five mL volume of culture were taken from each Ambr fermentation vessel 633 
at time points 24 and 60 hrs and centrifuged at 4,000xg at 4°C for 5 min. The supernatant and 634 
dodecane overlay were decanted and transferred to another tube for bisabolene analysis, done 635 
by GC-MS as described previously52. The cell pellet was resuspended in 1.5 ml of ice-cold PBS 636 
and transferred to a new tube. Samples were centrifuged for 5 min at 16,000xg, the PBS removed, 637 
and the cell pellet was flash frozen with liquid nitrogen. Pellets were stored at -80C until shipment 638 
and extraction of metabolites and proteins. 639 
 640 
All microbial samples (cell pellets) were extracted using the MPLEx protocol as previously 641 
reported24,37,53. Briefly, a mixture of chloroform, methanol and water was added to the cell pellets, 642 
extraction done in an ice bath and the polar and non-polar phases were combined and dried under 643 
vacuum. Dried extracts were resuspended in 300 µl of 3:2 acetonitrile:water, transferred to an 644 
LC-MS vial and stored at -20°C until analysis. 645 

SRM and LC-IM-MS analyses 646 

Ultrahigh performance liquid chromatography (UHPLC) methods were implemented and 647 
optimized by analyzing standards. Chromatographic separation was performed with an Agilent 648 
UHPLC 1290 Infinity II system. The sample injection volume was 10 µL and the autosampler 649 
temperature was maintained at 4°C. The Agilent UHPLC was equipped with a Water XBridge 650 
BEH Amide XP Column, 2.5 µm (2.1 mm i.d. X 50 mm). A Waters XBridge BEH Amide XP 651 
VanGuard cartridge, 2.5 µm (2.1 mm i.d. X 5 mm) was also installed to remove potential 652 
particulate contamination from the mobile phases. Mobile phases consisted of (A) 10 mM 653 
ammonium acetate, 10 µM InfinityLab deactivator additive, pH 9.2 in 90% water and 10 % 654 
acetonitrile, (B) 10 mM ammonium acetate, pH 9.2 in 90% acetonitrile. The column was kept at 655 
50°C throughout the run. The gradient length was 8.70 min (detailed as following, 0.0:0.350:90, 656 
1.0:0.350:90, 1.1:1.0:85, 4.0:0.750:80, 5.0:0.750:40, 6.5:0.750:40, 6.8:0.750:20, 7.0:0.750:20, 657 
7.5:0.750:90 in terms of min:flow-rate-µL/min:%B) with an equilibration time of 3.0 min. The 658 
UHPLC system was coupled to an Agilent 6490 triple quadrupole (QQQ) for initial method 659 
development. Scan and SRM analyses were performed for precursor fragmentation and transition 660 
identification. The instrument was operated in the negative polarity with the following parameters: 661 
ion spray voltage of 3000 V, capillary inlet temperature of 225°C, gas flow 15 ml/min, nebulizer 662 
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pressure 20 psi, sheath gas temperature 250°C, sheath gas flow 11 ml/min. Data were acquired 663 
in a mass range from 65 to 1400 m/z. SRM analyses were also performed for the calibration 664 
curves of example standards and the evaluation in microbial samples. Data was processed in 665 
Skyline14 (v.64.21.1.0.146) for peak area integration. A total of 11 samples were analyzed by SRM 666 
for the P. putida strains, with 3 biological replicates for all, except mucK PP2224 that had 2). 667 
 668 
The optimized UHPLC system was coupled to an Agilent 6560 Drift Tube Ion Mobility 669 
Spectrometry (DTIMS)-QTOF MS (Agilent Technologies, Santa Clara, CA). The MassHunter data 670 
acquisition software (v.B.09.00 (B9044.0), Agilent Technologies) was used to collect all mass 671 
spectrometry raw data files. The instrument was mass‐calibrated before every batch 672 
measurement using the Agilent ESI Tune solution. Standard mixes and microbial samples were 673 
analyzed in negative mode using a Dual AJS ESI and high-purity nitrogen as drift gas. Parameters 674 
were set to 325 degrees C gas temperature, 5L/min drying gas, 30psi nebulizer, 275 degrees C 675 
sheath gas, 11L/min sheath gas flow, 2500V Vcap, 2000V nozzle voltage and 400V fragmentor. 676 
Data was acquired in All-Ions DIA mode alternating between low (MS1) and high (MS2) collision 677 
energies at the frequency of 2 frames per second. 60 ms of maximum drift time was allowed with 678 
19 transients per frame. Mass range 50-110 m/z. Fixed CE values of 20 or 40 V were used to 679 
cover both labile and compounds with masses > 600 Da. A total of 81 microbial samples were 680 
analyzed by LC-IM-MS: 46 for the A. pseudoterreus and A. niger strains (4 biological replicates 681 
for each condition, except groups Control (Exp 1, A. pseudoterreus cad) and F (Exp. 1. A. niger 682 
3-HP high) that had 3 each; analyzed with 20 V CE only), 11 for the P. putida strains (3 biological 683 
replicates for all, except mucK PP2224 that had 2; analyzed with 20 and 40 V CEs), and 24 for 684 
the R. toruloides strains (4 biological replicates for each group; analyzed with 20 and 40 V CEs). 685 

Data processing for LC-IM-MS 686 

CCS were calculated using the IM-MS Browser (v.10.0, Agilent Technologies) with the single-field 687 
method54 and the Agilent Tune-Mix solution as calibrants. The PNNL-Preprocessor55 688 
(v2020.07.24) was used to apply moving average smoothing (points: 3 in LC and 3 in IM) and 689 
filtering (minimum intensity threshold 20 counts). MS-DIAL11 (v.4.70) was used to perform 690 
untargeted feature finding and MS/MS deconvolution (soft ionization, ion mobility separation, data 691 
independent MS1, MS and MS/MS profile data, negative ion mode, metabolomics, centroid MS1 692 
tolerance 0.01, centroid MS2 tolerance 0.025, smoothing level 1, minimum peak width 3, minimum 693 
peak height 300, peak spotting mass slice width 0.1, deconvolution sigma window 0.5, MS2Dec 694 
amplitude cut off 0, alignment RT tolerance 0.1, alignment MS1 tolerance, 0.015, alignment RT 695 
factor 0.5 and ion mobility accumulated RT range 0.2). Skyline14 (v.64.21.1.0.146) was used to 696 
perform targeted data extraction (acquisition method DIA, isolation scheme All Ions, mass 697 
analyzer TOF, mass resolving power 10000, ion mobility resolving power 40 and small molecule 698 
fragment types “p,f”). Implementation of the PeakDecoder algorithm and evaluation of the results 699 
were performed in R (v.4.1.0, A language and environment for statistical computing, R Foundation 700 
for Statistical Computing, Vienna, Austria, https://www.R-project.org), using packages e1071 701 
(v.1.7-9) and ggplot2 (v.3.3.3). 702 
 703 
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The following approximation was used to calculate the negative mobility offset of the fragments 704 
from their precursors: ((FragmentMz - PrecursorMz)/ PrecursorMz)*0.7 - PrecursorMz*0.0001. 705 
Which overall worked well for both 20V and 40V collision energies and resulted in values mostly 706 
between -0.1 and -0.3 msec, with smaller m/z ions showing larger offsets. This negative drift time 707 
shift is a function of the collision energy used and the mass of the fragment ion and it can be 708 
explained by the fact that under the accelerating electric field smaller ion fragments move faster 709 
through the collision cell and the ion beam compressor region during high‐energy steps than 710 
larger precursor ions33; hence t0, i.e. the time ions spend traveling though the instrument, outside 711 
the drift tube, is different.  712 
 713 
A library with precursor m/z, RT, CCS and fragment m/z values was built from the standards. RT 714 
and transitions were obtained from the SRM results. CCS and additional transitions were 715 
determined post-acquisition from the in the LC-IM-MS data. The list of 64 metabolites with 716 
accurate mass, RT and CCS are in Supplementary Table 1. The list of fragments in csv format 717 
and the full library in the NIST MSP text format library for metabolite identifications are in 718 
Supplementary Data 1. 719 

Metabolite scoring for LC-IM-MS: PeakDecoder algorithm 720 

1) Feature finding and fragment ion deconvolution: data is processed in untargeted mode (MS-721 
DIAL) to extract all precursor ion features (MS1) and their respective deconvoluted fragment ions 722 
(MS2) based on co-elution and co-mobility. The alignment (Peak ID matrix, msp format) and all 723 
peak lists (txt, centroid) are exported. 724 
 725 
2) Target and decoy generation: an R script was implemented to generate a training set. The MS-726 
DIAL alignment results including features and their fragments is used as input. Features with S/N 727 
>= 15 and at least 3 fragments with intensities within 1-130% of their precursor intensity are kept 728 
as targets. The top 16 most intense fragments are kept per target. 729 
To generate the decoys, the set of targets are associated by pairs. For each target, another target 730 
is found from the same representative LC-IM-MS run, which the precursor m/z is within 50 units 731 
difference (to ensure that the paired features are from molecules of similar size), has the largest 732 
RT difference (at least 3 min to avoid pairing a repeated feature from a large tailing peak) and has 733 
the same number of fragments. A pair of decoys is generated for the paired targets by keeping 734 
the same precursor properties and swapping the m/z values of 40-60% of the fragments randomly 735 
chosen from the top-most-intense. Targets for which decoys could not be generated are excluded. 736 
A transition list in Skyline format is generated with this preliminary set of targets and decoys. 737 
 738 
3) Targeted data extraction: the transition list for the training set and the query metabolites in the 739 
library are processed separately. The precursor and fragment ion signals are extracted (Skyline) 740 
from all the LC-IM-MS runs. The two reports (training set and query metabolites) are exported, 741 
which include the required XIC metrics: area, height, mass error, FWHM (LC), RT, expected RT, 742 
expected CCS. 743 
 744 
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4) Machine learning training: an R script was implemented for training. The Skyline report of the 745 
preliminary training set is used as input. The targets are filtered according to multiple thresholds 746 
to ensure a good quality training set. Fragments with unassigned height (i.e., NA or zero) and 747 
precursors with S/N < 20 are removed. Each fragment is evaluated to count the number of low-748 
quality metrics: area <= 0, height < 1% their precursor height, mass error > 15 ppm, RT difference 749 
to their precursor larger than 0.1 min and FWHM difference to their precursor larger than 2x the 750 
precursor FWHM. Targets with at least 2 fragments with high-quality metrics are kept. To simulate 751 
interferences some fragments with low-quality metrics are kept. Fragments with the worst metrics 752 
and ranked higher than 2x the number of fragments with good metrics are removed. For each LC-753 
IM-MS run, only the paired decoys with the same subset of fragments as their targets after filtering 754 
are kept for maintaining the same distribution of targets and decoys by number of fragments and 755 
m/z values. The target fragment height is used as the expected intensity and assigned to the 756 
corresponding decoys to minimize the impact of peak integration differences between MS-DIAL 757 
and Skyline. The filtered targets with at least 3 fragments in total and their corresponding decoys 758 
are used as the final training set. The following descriptors are calculated for the filtered training 759 
set and used as ML features: 760 

• DIA-cosSim: cosine similarity between the integrated area and the expected intensity of 761 
the fragments. 762 

• DIA-RTdiffSd and DIA-RTdiffMean: standard deviation and mean of the differences 763 
between the precursor RT and RT of its fragments. 764 

• DIA-FWHMdiffSd and DIA-FWHMdiffMean: standard deviation and mean of the 765 
differences between the precursor FWHM and FWHM of its fragments. 766 

• DIA-MassErrorSd and DIA-MassErrorMean: standard deviation and mean of the fragment 767 
mass errors. 768 

 769 
An SVM binary classifier (e1071 R package) is trained using a radial kernel, scaling (to zero mean 770 
and unit variance), 10-fold cross validation and probability calculation. The probability is 771 
calculated by fitting a logistic distribution using maximum likelihood to the decision values of all 772 
binary classifiers, and computing the a-posteriori class probabilities for the multi-class problem 773 
using quadratic optimization. The trained model is saved. The target probabilities are calculated 774 
for the full training set and a confusion matrix and FDR are calculated to evaluate performance. 775 
The FDR is calculated as FP/(TP + FP)56. The target probability is used as the PeakDecoder 776 
score. A table with pairs of values (FDR, PeakDecoder score) is automatically generated after 777 
training (file PeakDecoder-FDR-thresholds_[dataset].csv). 778 
 779 
5) Machine learning inference: an R script was implemented for inference. The model previously 780 
trained and saved is loaded. The Skyline report for the query metabolites and the library with the 781 
fragment ion abundances generated from the standards are used as input. The descriptors are 782 
calculated as described above. The precursor RT error (minutes) is calculated as the difference 783 
between the run RT and the expected RT (from the standards). The CCS error is calculated as 784 
the percentage difference between the run CCS (obtained from the corresponding MS-DIAL peak 785 
lists, since Skyline uses the CCS as a filter and does not report the actual CCS from the IM peak 786 
apex in the run) and the expected CCS (from the standards). A query metabolite is considered 787 
identified if, in at least one of the runs, passes all cutoff thresholds: precursor mass error < 18 788 
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ppm, precursor RT error < 0.4 min, CCS error < 0.8 % and PeakDecoder score > 0.8 (or 789 
corresponding to 1% FDR). 790 
 791 

Pathway analyses 792 

Metabolites with at least 1 replicate identified with high confidence were selected and their 793 
Skyline-integrated precursor and fragment ion abundances across all runs were used for 794 
quantitation. Statistical analysis of the metabolite abundance data was performed in R using the 795 
pmartR package57 (v0.9.0). For P. putida and R. toruloides datasets, the mean values of 796 
abundances acquired with 20V and 40V CE were used for the analysis. The abundance values 797 
were log2 transformed, and the test for differential abundance between control and test samples 798 
was performed using the IMD-ANOVA method58. Clustered heatmaps of log2 abundances were 799 
generated using the R package pheatmap (v1.0.12) with Euclidean distance and complete linkage 800 
method. Bar and error bar plots shown on the metabolic pathway maps were generated using the 801 
python package matplotlib (v3.5.1). The metabolic pathway maps for A. pseudoterreus/A. niger 802 
and R. toruloides were drawn based on the genome-scale metabolic models iJB132559 and 803 
Rt_IFO088060 using ChemDraw (v19.0). The metabolomics and proteomics data visualization on 804 
the P. putida metabolic pathway map was performed with the genome-scale metabolic model 805 
iJN146261 using the python packages escher62 (v1.7.3) and cobrapy63 (v0.22.1). 806 

GC-MS analyses 807 

Dried extracts for metabolomics analysis were obtained after MPLEx extraction as explained in 808 
the Sample Preparation section. The stored metabolite extracts were completely dried under 809 
speed-vacuum to remove moisture and chemically derivatized as previously reported64. Briefly, 810 
the extracted metabolites were derivatized by methoxyamination and trimethylsilyation (TMS), 811 
then the samples were analyzed by GC-MS. Samples were run in an Agilent GC 7890A using a 812 
HP-5MS column (30 m × 0.25 mm × 0.25 μm; Agilent Technologies, Santa Clara, CA) coupled 813 
with a single quadrupole MSD 5975C (Agilent Technologies). One microliter of sample was 814 
injected into a splitless port at constant temperature of 250°C. The GC temperature gradient 815 
started at 60 °C and hold for 1 minute after injection, followed by increase to 325 °C at a rate of 816 
10 °C/minute and a 5-minute hold at this temperature. Fatty acid methyl ester standard mix (C8-817 
28) (Sigma-Aldrich) was analyzed in parallel as standard for retention time calibration. GC-MS 818 
raw data files were processed using the Metabolite Detector (v2.5)65. Retention indices (RI) of 819 
detected metabolites were calculated based on the analysis of a FAMEs mixture, followed by their 820 
chromatographic alignment across all analyses after deconvolution. Metabolites were initially 821 
identified by matching experimental spectra to a PNNL augmented version of Agilent GC-MS 822 
metabolomics Library, containing spectra and validated retention indices for over 850 metabolites. 823 
Then, the unknown peaks were additionally matched with the NIST17/Wiley11 GC-MS library. All 824 
metabolite identifications and quantification ions were validated and confirmed to reduce 825 
deconvolution errors during automated data-processing and to eliminate false identifications. A 826 
total of 46 samples of the A. pseudoterreus and A. niger strains were analyzed by GC-MS, with 4 827 
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biological replicates for each condition, except groups Control (Exp 1, A. pseudoterreus cad) and 828 
F (Exp. 1. A. niger 3HP high) that had 3 each. 829 

Targeted proteomics analyses of P. putida strains 830 

Intracellular proteins from samples of P. putida strains, KT2440, with heterologous gene insertion 831 
were extracted and digested as previously described37. Peptides from previously established 832 
assays39 were used for the targeted proteomics analysis of enzymes in various metabolic 833 
pathways. Analysis of the targeted proteomics assay was performed via LC-SRM. To facilitate 834 
protein quantification, crude heavy peptide mixture stock solution was spiked in the 0.20 μg/μL 835 
peptide samples at a nominal concentration of 25 fmol/μL for each peptide. LC-SRM analysis 836 
utilized a nanoACQUITY UPLC® system (Waters Corporation, Milford, MA) coupled online to a 837 
TSQ Altis triple quadrupole mass spectrometer (Thermo Fisher Scientific). The UPLC® system 838 
was equipped with an ACQUITY UPLC BEH 1.7 μm C18 column (100 μm i.d. × 10 cm) and the 839 
mobile phases were (A) 0.1% formic acid in water and (B) 0.1% formic acid in acetonitrile. 2 μL 840 
of sample (i.e., 0.4 μg of peptides) were loaded onto the column and separated using a 110-min 841 
gradient profile as follows (min:flow-rate-μL/min:%B): 0:0.4:1, 6:0.6:1, 7:0.4:1, 9:0.4:6, 40:0.4:13, 842 
70:0.4:22, 80:0.4:40, 85:0.4:95, 91:0.5:95, 92:0.5:95, 93:0.5:50, 94:0.5:95, 95:0.6:1, 98:0.4:1. The 843 
LC column was operated at a temperature of 42 °C. The TSQ Altis triple quadrupole mass 844 
spectrometer was operated with ion spray voltages of 2100 ± 100 V and a capillary inlet 845 
temperature of 350 °C. Tube lens voltages were obtained from automatic tuning and calibration 846 
without further optimization. Both Q1 and Q3 were set at unit resolution of 0.7 FWHM and Q2 gas 847 
pressure was optimized at 1.5 mTorr. The transitions were scanned with a dwell time of 0.78 848 
msec. Targeted proteomics data were imported into Skyline (v64.22.2.1.278)66 and the peak 849 
boundaries were manually inspected to ensure correct peak assignment and peak boundaries. 850 
Peak detection and integration were determined based on two criteria: 1) the same LC retention 851 
time and 2) approximately the same relative peak intensity ratios across multiple transitions 852 
between the light peptides and heavy peptide standards. The total peak area ratios of 853 
endogenous light peptides and their corresponding heavy isotope-labeled internal standards from 854 
Skyline were used for subsequent protein abundance rollup and pathway analysis. 855 

Global proteomics analyses of R. toruloides strains 856 

Intracellular proteins from samples of bisabolene producing R. toruloides strains, GB2.0, were 857 
extracted, digested with trypsin, and analyzed by LC-MS/MS following a previously established 858 
protocol60. A Q-Exactive Plus Orbitrap mass spectrometer (Thermo Fisher Scientific) was used in 859 
this study with the parameters as following: full MS (AGC, 3×106; resolution, 70,000; m/z range, 860 
300–1800; maximum ion time, 20 ms); MS/MS (AGC, 1×105; resolution, 17,500; m/z range, 200–861 
2000; maximum ion time, 50 ms; minimum signal threshold, 5×103; isolation width, 1.5 Da; 862 
dynamic exclusion time setting, 30 s; collision energy, NCE 30; TopN, 12). The MS data were 863 
searched against the R. toruloides strain IFO0880 (v4.0) and heterologous protein sequences 864 
[https://mycocosm.jgi.doe.gov/Rhoto_IFO0880_4]45 using MaxQuant67 (v1.6.2.10) and the 865 
following parameters: 1% peptide-level and protein-level FDR, match-between-runs enabled, 866 
partial tryptic with trypsin/P, maximum missed cleavage of 2, dynamic modification of oxidation 867 
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on methionine and N-terminal acetylation, fixed carbamidomethyl on cysteine, mass tolerances 868 
of 20 ppm for both precursor and fragment ions, minimum peptide length of 7, and a minimum 869 
number of unique peptides for protein quantification as 1. Peptide intensity level data from 870 
MaxQuant were further processed by pmartR (v0.9.0) for quality control, protein rollup, and 871 
statistical comparisons. 872 

Data availability 873 

The microbial LC-IM-MS data (and related Skyline projects) generated in this study have been 874 
deposited in the MassIVE database under accession code MSV000089733 875 
[https://doi.org/doi:10.25345/C52R3P17Z]. The P. putida targeted proteomics data generated in 876 
this study have been deposited in the Panorama database [https://doi.org/10.6069/6j7y-t592]. 877 
The R. toruloides global proteomics data generated in this study have been deposited in the 878 
MassIVE database under accession code MSV000091202 879 
[https://doi.org/doi:10.25345/C50K26N04]. Source data are provided with this paper. 880 

Code availability 881 

The source code of PeakDecoder68, the library built from standards, and all the input files and 882 
results can be found at https://github.com/EMSL-Computing/PeakDecoder. The source code of 883 
the automated chromatographic method selection software can be found at 884 
https://github.com/poorey/AMSS. 885 
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Tables 1119 

Table 1. Summary of PeakDecoder training performance and identification results in 1120 
microbial samples. Number of unique metabolites and number of annotated features refer to the 1121 
identifications obtained by matching against our library of 64 metabolites by accurate mass plus 1122 
either 2 dimensions with RT-CSS (annotations at the MS1 level only, i.e., no detected fragments) 1123 
or 3 dimensions with RT-CCS-DIA (i.e., including fragments). Unique metabolites do not count 1124 
repetitions. Annotated features include sample replicates and different conditions. Data for the A. 1125 
pseudoterreus and A. niger samples were acquired with 20V collision energy (CE) and for P. 1126 
putida and R. toruloides with both 20V and 40V CE. The number of annotations varies per dataset 1127 
due to CEs and their different number of conditions and replicates. 1128 

Dataset 
(number of 
runs) 

Collision 
energy 

# Target 
peak-
groups 
in 
training 

Training 
accuracy 
(average 
10-fold 
cross-
validation) 

# Unique 
metabolites  

# Annotated 
features 

RT-
CCS 

RT-CCS-
DIA 

RT-CCS RT-CCS-
DIA 

A. pseudoterreus 
& A. niger (46) 

20V 234 98.50 12 27 322 909 

P. putida (22) 20V & 40V 5152 98.86 12 25 329 239 
R. toruloides (48) 20V & 40V 1400 97.04 14 22 636 248 

 1129 
 1130 
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Figure legends 1131 

Figure 1. Analytical workflow for multidimensional metabolite profiling by LC-IM-MS and 1132 
data structure. Metabolite extracts are separated by LC, followed by IM, and analyzed by MS 1133 
in the All-Ions DIA mode which alternates between low and high collision energies to capture 1134 
precursor and fragment ion spectra within the same run. Spectra are represented by gray 1135 
dashed lines. Rather than collecting a single spectrum at every LC time point, coeluting ions 1136 
(i.e., with close elution times) in this example at the 2nd order of elution and represented by 1137 
spheres and peaks, in blue, red and orange colors, could be further distinguished by the ion 1138 
mobility separation where multiple spectra are collected into IM frames. Fragments are detected 1139 
within the same elution and mobility time window as their precursors. Figure adapted from 1140 
previous work69, with permission from Elsevier. 1141 
 1142 
Figure 2. Computational workflow for multidimensional metabolite profiling by LC-IM-MS. 1143 
a PeakDecoder algorithm. Step-1: data is processed in untargeted mode (UFD, MS-DIAL) to 1144 
extract all precursor ion features (MS1) and their respective deconvoluted fragment ions (pseudo 1145 
MS2) based on co-elution and co-mobility. Step-2: a preliminary training set is generated by using 1146 
the detected and deconvoluted peak-groups as targets and producing their corresponding 1147 
decoys. Step-3: targeted data extraction is performed (TDX, Skyline) to extract the precursor and 1148 
fragment ion signals for the training set from all the LC-IM-MS runs and export their XIC metrics. 1149 
Step-4: an SVM classifier is trained using multiple scores calculated from the XIC metrics of the 1150 
training set. Before training, filtering for high-quality fragments is applied to keep high-quality 1151 
peak-groups as targets (i.e., based on various thresholds for metrics of precursor and at least 3 1152 
fragments; details in Methods) and their corresponding decoys in the final training set. The model 1153 
learns to distinguish true and false co-elution and co-mobility, independently of the features’ 1154 
metabolite identity. Step-5: TDX is performed to extract the signals of the query set of metabolites 1155 
in the library from all the LC-IM-MS runs and export their XIC metrics. Step-6: the trained model 1156 
is used to determine the PeakDecoder score of the query set of metabolites and estimate an FDR. 1157 
b Example of decoy generation. The detected and deconvoluted peak-groups are associated by 1158 
pairs and used as targets. For each pair of targets, A and B (fragments represented in red and 1159 
blue colors, respectively), a pair of decoys is generated by keeping the same precursor and its 1160 
properties and swapping the m/z values of 40-60% of the fragments (from the 6 most intense in 1161 
this example). XIC metrics for targets correlate well with expected values but deviations and low 1162 
spectral similarity occur for decoys (examples indicated in orange). 1163 
 1164 
Figure 3. Analysis of microbial samples by LC-IM-MS using PeakDecoder. a Comparison of 1165 
scores in training. Targets and decoys are represented by blue and red colors, respectively. 1166 
Distributions of LC-IM-MS peak-groups by each individual score (highlighted in orange) showed 1167 
limited separation of targets and decoys. Individual scores used as machine learning features 1168 
were combined into the composite PeakDecoder score providing an improved separation power 1169 
and resulted in a larger number of true positives for lower FDR thresholds than the cosine 1170 
similarity score, which is the best score individually. b Example of chromatograms and filtered ion 1171 
mobility window. Signals for ‘fructose 1,6-diphosphate (F16DP)’ from the standard (precursor m/z 1172 
338.98877, RT 4.95 min, CCS 155.00 and 6 fragments) and corresponding peaks from a microbial 1173 
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sample (annotated by PeakDecoder). Chromatograms show the same relative abundances in the 1174 
standard and the microbial sample confirming the correct metabolite annotation based on 1175 
fragmentation pattern and RT. The IM frame at the LC apex shows the filtering window 1176 
corresponding to the expected CCS and highlights the precursor with multiple isotopic peaks. c 1177 
Benchmarking of identification performance compared to manual curation. True positives (TP) 1178 
and false positives (FP) are represented by blue and red colors, respectively. PeakDecoder at 1179 
1% estimated FDR increased TP annotations (211) compared to MS-DIAL (TP=70, total score > 1180 
60) and decreased by 4 compared to Skyline (TP=215, cosine similarity > 0.8), while decreasing 1181 
FP annotations (FP: PeakDecoder=4, MS-DIAL=13, Skyline=15). Results from the P. putida 1182 
samples (n=22). Source data are provided as a Source Data file. 1183 
 1184 
Figure 4. Annotation selectivity by different analytical separations in microbial samples. a 1185 
A. pseudoterreus and A. niger (n=46). b P. putida (n=22). c R. toruloides (n=48). Bars represent 1186 
the number of possible LC-IM-MS peaks from untargeted feature detection results matched within 1187 
tolerances. Colors represent the type of match: red=Mass, yellow=Mass-RT, blue=Mass-CCS, 1188 
and purple=Mass-RT-CCS. In all three microbial datasets, using accurate mass alone resulted in 1189 
the highest number of features, notably for the metabolites with smaller masses. Combining 1190 
accurate mass to either RT or CCS reduced the number of matched features. By combining 1191 
accurate mass with both RT and CCS, the number of possible features was reduced to one in 1192 
most cases. These results illustrate the power of multidimensional separations to increase the 1193 
annotation confidence and quantitation accuracy in metabolomics studies by resolving the high 1194 
degree of structural diversity derived from isomers and isobars. Source data are provided as a 1195 
Source Data file. 1196 
 1197 
Figure 5. Metabolomics profiling of 3HP-producing A. pseudoterreus and A. niger strains. 1198 
a Relative and label-free intracellular metabolites levels quantified by PeakDecoder (n=46). Red, 1199 
yellow, and blue colors indicate high, medium, and low log2 intensity values, and gray color 1200 
indicates missing values. b CCS errors of the good-quality features in 24 samples confirmed the 1201 
detection of 3HP (green bar, 113.8 CCS) instead of lactic acid (orange bar, 113.0 CCS), which is 1202 
an isomeric molecule (same formula but with different 3D structure). c Metabolites in the 3HP 1203 
production pathway and their log2 fold changes over the control sample (parent strain). Statistical 1204 
analysis was performed using the IMD-ANOVA method. Stars indicate statistically significant 1205 
changes (*: p-value < 0.05, **: p-value < 0.01 and ***: p-value < 0.001). Y-axis for pyruvic (A. 1206 
pseudoterreus) and 2,4-diaminobutanoic acids represent mean log2 intensity due to no detection 1207 
in the control strain. Source data are provided as a Source Data file. 1208 
 1209 
Figure 6. Metabolomics and proteomics profiling of P. putida wild type and engineered 1210 
muconate-catabolizing strains. a Relative and label-free intracellular metabolites levels 1211 
quantified by PeakDecoder (n=22, with 11 samples and 2 collision energies per sample). Red, 1212 
yellow, and blue colors indicate high, medium, and low log2 intensity values, and gray color 1213 
indicates missing values. b Glucose and muconate catabolism pathways of mucK PP5042 and 1214 
fold changes compared to the wild-type strain. Circles indicate metabolites and arrows indicate 1215 
proteins detected by SRM. Symbols indicate protein detection: * detected in the wild type but not 1216 
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detected in the mucK samples and # detected in the mucK but not in the wild type. Source data 1217 
are provided as a Source Data file. 1218 
 1219 
Figure 7. Metabolite and enzyme levels in the mevalonate pathway of R. toruloides strains. 1220 
a Relative and label-free abundance levels are represented in blue for metabolomics (n=48, with 1221 
24 samples and 2 collision energies per sample) and black for proteomics (n=24 samples). Strains 1222 
were grown in hydrolysates with different contents of ash and moisture and collected at 36 and 1223 
60 hr. b Bisabolene production (extracellular) captured in a dodecane overlay. Data are presented 1224 
as mean values with error bars from standard deviation of 3 biological replicates. Source data are 1225 
provided as a Source Data file. 1226 
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