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Abstract

The communication of musical thoughts and emotions requires
that some musical knowledge is shared by composers, perform-
ers, and listeners. Computational models of musical knowledge
attempt to specify the intermediate representations required to
generate adequate predictions of musical behavior. We describe
a connectiorust model that encodes the rhythmic organization
and pitch contents of simple melodies. As the network learns to
encode melodies, structurally more important events tend to
dominate less important events, as described by reductionist
theories of music (Lerdahl & Jackendoff, 1983; Schenker,
1979). We describe an empirical study in which improvisations
on a tune by a skilled music performer are compared with the
encodings produced by the network. The two are examined in
terms of the relative importance of the musical structure they
posit at intermediate levels of representation.

Introduction

A primary goal of music cognition is to specify mental repre-
sentations for musical knowledge. Computational models of
music composition, performance, and perception often posit
multiple levels of structural description in mental representa-
tions. We refer to these levels of structural description as
intermediate representations, because they mediate between
the perception of a musical surface (the score or acoustic sig-
nal) and the resulting musical behavior (the performance or
memory of a piece). However, the proposed structural
descriptions often fall short of adequately specifying the rel-
ative importance of the musical events. We propose a connec-
tionist model of mental representations for music that
emphasizes the hierarchical nature of musical structure, and
we compare its predictions of relative importance with evi-
dence from skilled music performance.

Theoretical accounts of mental representations for musical
structure often emphasize the importance of hierarchical
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organization. Hierarchical models of rhythmic organization,
for example, describe the way in which musical events are
combined to form larger structural units in a nested fashion
(Cooper & Meyer, 1960). In a particular musical context, cer-
tain pitch events are heard as being dominant in the hierarchy
and others are heard as elaborations of the dominant events
(Lerdahl & Jackendoff, 1983; Schenker, 1979). Some percep-
tual cues to hierarchical organization are present in performed
music, such as expressive variations in timing and dynamics.
However, the models described above posit intermediate lev-
els of mental representation that are based on information not
necessarily present in the musical input. These intermediate
levels of description are thought to reflect statistical regulari-
ties, derived from the input with the aid of general knowledge
about the roles that events play in a particular musical idiom
(Palmer & Krumhansl, 1990; Knopoff & Hutchinson, 1978).

Computational models of music cognition attempt to spec-
ify the intermediate representations required to generate ade-
quate predictions of human behavior. Several researchers
have adopted connectionist models which provide general-
purpose learning algorithms capable of responding to the sta-
tistical regularities of the learning environment. However,
connectionist models have been notoriously weak at repre-
senting hierarchical relationships, such as those found in
music or language (Fodor & Pylyshyn 1988). Recursive
Auto-Associative Memory (RAAM) is a connectionist archi-
tecture which develops distributed representations of hierar-
chical structures, directly attacking this problem of
representational adequacy (Pollack, 1988; Pollack, 1990).

In this paper, we describe a RAAM model that encodes the
rhythmic organization and pitch contents of simple melodies.
As the network learns to encode melodies, structurally more
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important events tend to dominate less important events, as
described by reductionist theories of music (Lerdahl & Jack-
endoff, 1983; Schenker, 1979). We then describe an empirical
study in which improvisations on a tune by a skilled music
performer are compared with the encodings produced by the
RAAM network. The two are examined in terms of the rela-
tive importance of the musical structure they posit at interme-
diate levels of representation,

Time-Span Reductions

One theory emphasizing intermediate levels of representation
attempts to model an experienced listener’s intuitions of
Western tonal music (Lerdahl & Jackendoff, 1983). The
theory describes many types of hierarchical representations,
including metrical structure, grouping structure, and time-
span reduction. Metrical structure describes the way in which
a series of pulses are mentally combined to create nested hier-
archical levels of alternating strong and weak pulses. Group-
ing structure describes nested groups of events forming
motives, phrases, and larger sections of music. The outputs of
metrical and grouping structures combine to segment a piece
into hierarchically nested rhythmic units called time-spans.
At the lowest levels time-spans are determined primarily by
metric structure, and at the highest levels by grouping struc-
ture.

A time-span reduction organizes all musical events in a
piece into a single coherent structure that reflects a strict hier-
archy of relative importance. Within each time-span a single
most important event is identified and all other events are
heard as subordinate to it. In Figure 1, we show a time-span
reduction for the melody “Hush Little Baby”. The top staff
shows the melody, and the brackets show how the piece is
segmented into time-spans. The staves below show the inter-
mediate levels of the reduction. At each level, less important
events are eliminated, leaving a “skeleton” of the melody.

In the next section we propose a connectionist model for
encoding representations of hierarchically nested time-spans.
By examining the representations, we can predict the relative
importance of musical events within each time-span. We then
describe evidence from a skilled music performance that tests
the predictions of relative importance made by the connec-
tionist model. A pianist’s improvisations on a theme are con-
trasted with the model’s predictions of relative importance of
different musical events,

Recursive Auto-Associative Memory

RAAM is a connectionist architecture that develops distrib-
uted representations of variable sized, compositional data
structures. It has been used to model the encoding of hierar-
chical structures such as those found in linguistic syntax and
logical expressions (Pollack, 1990). Conceptually, a RAAM
consists of two machines, a compressor and a reconstructor.
The compressor is trained to recursively encode sets of fixed-
width patterns into single patterns of the same size. The
reconstructor is trained to recursively decode the patterns
produced by the compressor into facsimiles of the original
sets of patterns. These mechanisms are co-evolved by linking
their training sets together using an auto-associative form of
back-propagation. Our current work is based on an imple-
mentation of a RAAM as a 3-layer feed forward neural net-
work where the input-to-hidden layer transformation is the
compressor and hidden-to-output layer transformation is the
reconstructor.

In order to find the intermediate distributed representations
for a set of melodies, we segment the melodies into time-
spans as shown in Figure 1, and use these hierarchies as the
training set to a RAAM. The primitive events in each melody
are represented as binary feature vectors. We have chosen the
encoding strategy shown in Figure 2. One set of units encodes
pitch class, and a second set encodes local implied harmony
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Figure 1: A Partial Time-Span Reduction for “Hush Little Baby.”
A) Original melody; B) Tactus level reduction; C) Measure level reduction.
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Figure 2: The representation of pitch events.

similar to Lerdahl and Jackendoff’s use of local harmony in
creating time-span reductions. An additional unit designates
the beginning of an event. When this unit is turned on, it indi-
cates that the event has its attack at that particular point.
When tumed off, it indicates that event is a continuation of a
previous event

After training, the compressor and reconstructor are
treated as separate networks for the processes of encoding
and decoding intermediate representations. Figure 3 shows a
a short melodic excerpt segmented into time-spans, and
depicts the processes of encoding and decoding it. First, the
compressor encodes a set of the lowest level time-spans, and
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Figure 3: Network encoding and decoding of a time-span
The time-span [[a b] c] is encoded by compressing the primitive
event representations of a and b, producing representation R1. R1 is
then compressed with the next event, ¢, producing R2, which is a
representation of the higher level structure. Next, R2 is decoded by
reconstructing facsimiles R1' and ¢’. R1’ is then reconstructed to

produce facsimiles a’ and b’. Thus a facsimile of the original struc-
ture, [[a’ b’] ¢}, is produced.

414

these encodings are recursively encoded to produce a repre-
sentation for the entire structure. Next, the reconstructor
decodes the compressed representation to retrieve a facsimile
of the original structure. In order to capture the distinctions
between binary and ternary groups found in music, we use a
quaternary RAAM, that is, one with four fields of input units
(11 input units per field) activated as shown in Figure 4.

A) o O
By O o J— O
Figure 4: Encoding both binary and ternary groups in a
quaternary RAAM

When a binary group is encoded (A), the first and third fields are
activated. The second and fourth are set to zero, simulating a binary
RAAM. When a ternary group is encoded (B), the first, second and
fourth fields are activated. The third is set to zero, simulating a ter-
nary RAAM.

The encodings developed by the network reflect the tem-
poral embedding of the time-span hierarchy. The duration of
each encoding produced by the network is considered to be
the sum of the durations of its component events. This allows
us to represent the rhythmic structure of the melody without
pre-specifying a smallest possible time-slice (see Todd,
1989). Instead, we follow Lerdahl and Jackendoff’s descrip-
tion of the tactus as the most salient metrical level (i.e. the
level of foot-tapping tempo). We require that the tactus be
continually represented throughout the piece, but time-spans
derived from smaller metrical levels are represented only
when actually present in the melody.

The compressor and reconstructor networks, taken
together, comprise a well-formedness test for novel struc-
tures. Given a novel structure, the compressor network is
used to create a representation. The reconstructor network is
then applied to the representation Lo retricve its constituents.
If the reconstructed structure matches the input structure,
either exactly or within some tolerance, this novel structure
can be considered to be well-formed. We will use the differ-
ence between the constituents of the input structure and those
of its reconstruction to determine the relative weighting of
each musical event within the representations developed by
the network.

Measures of Relative Importance

RAAM Network

Sixteen nursery tunes (such as “Mary Had a Little Lamb”)
were chosen as a training set because they provide a simple,
natural musical case for study. Each tune was a simple mel-
ody between 4 and 12 measures in length, with a meter of 2/
4,4/4,6/8, or 12/8. The tuncs comprised ten unique melodics;



four of these ten melodies had variations (tunes with similar
pitch or rhythmic properties). Although the event representa-
tions required only 11 bits, we used 23 units, allowing 12
extra “degrees of freedom” for the system to use in arranging
its intermediate representations. These extra dimensions of
representation were set to 0.5 on input, and trained as don’t-
care's (Jordan 1986) on output Thus, for the quaternary
RAAM, our network had 92 input and output units, and 23
hidden units. The network was trained on the time-spans for
the melodies with length less than or equal to the measure
level. The network was not trained until it memorized the
tunes, but instead for 1500 cycles with a leaming rate of 1.0
and momentum of 0.5. The network was therefore not able to
reconstruct every melody in the training set note-for-note.
The network’s output representations are interpreted from the
output values of the pitch-class units produced by the decoder
for each event in the sequence. If all outputs are less than
some threshold value at any given point, the event is inter-
preted as a rest (a null event). Otherwise the pitch class unit
with the greatest activation at any given point is interpreted as
the reconstructed event. With this interpretation the recon-
structor was able to reproduce fairly accurate facsimiles of
input melodies, although some events were *“forgotten” and
others were “remembered” incorrectly (in the reconstruction
but not from the original melody).

To test the network’s ability to encode novel tunes, we
exposed it after training to a melody dissimilar to the original
sét of 14 tunes. Figure SA shows the melody “Hush Little
Baby” after its reconstruction by the network, as described
above. Because this tune was dissimilar to those in the train-
ing set, we used the sensitive threshold activation value of
0.1. The network’s actual activation values for each event in
the sequence are shown below the reconstruction.

Improvised Performances

To compare the network's predictions of relative importance
with those of skilled musicians, we recorded improvisations
on a tune by a skilled pianist. Improvisation in Western tonal
music commonly requires a performer to identify a frame-
work of important melodic and harmonic events, and apply
procedures to create elaborations and variants on them (see
Pressing, 1988 for a review of improvisational models). Thus,
improvisation on a musical tune allows the pianist freedom to
determine which musical events should be retained (those of
primary importance), and which should not (those of less
importance).

A professional pianist from the Columbus, Ohio area was
asked to perform three nursery tunes on a computer-moni-
tored acoustic upright piano. The pianist was experienced in
improvising in a contemporary/popular musical style. The
pianist performed three melodies: one included in the net-
work’s training set, one not in the training set but similar to it
in pitch and timing (a variation on one of the melodies), and
a third melody unrelated to any in the training set. The pianist
first performed each melody as it was notated, to become
familiar with it. He then improvised five simple melodic (sin-
gle-line) variations on each melody. All pitch, intensity, and
timing information in the performances was recorded on
computer, and compared with the original melody. Only per-
formances of the third melody (the most stringent test of the
network’s ability to predict relative importance) will be
described here.

According to our application of the time-span reduction
hypothesis to improvisation, structurally important events
should be less likely than unimportant events to change in
variations of a melody. To test this hypothesis, the number of
musical events identical to the original melody in pitch were
summed across variations. The sums ranged from 5 (the same
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Figure 5: “Hush Little Baby.”
A) Network reconstruction; B) 0.66 threshold criterion reduction;
C) Lerdahl & Jackendoff style tactus level reduction; D) Lerdahl & Jackendoff style measure level reduction.
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Figure 6: “Hush Litde Baby.”
A) Original melody with performance ratings; B) Rating criterion reduction.

pitch in each of the five performances) to 0 (the same in no
performance) for each event location. Figure 6 shows the
original melody, with the ratings for each location.

Comparison of RAAM Network and Improvised
Performances

First, we compare the original tune (Figure 6A) and the net-
work’s reconstruction (Figure SA). The reconstructed tune is
areasonable facsimile, considering that it was not a variation
of any tune from the training set, but a distinctly novel mel-
ody. This indicates the network’s ability to generalize beyond
its input. We then compare the network’s predictions of rela-
tive importance with the pianist’s improvisations by develop-
ing reductions for both the reconstructed melody and the
improvisations. An intermediate representation was devel-
oped for the improvisations by including only events from the
original melody that were retained often across performances
(those scoring 4 or higher). Using this method, we included
only the highest third of the range of values, and we applied
the same criterion to the network output by raising the activa-
tion threshold to 0.66. The reductions obtained from this cri-
terion are¢ shown for the network in Figure 5B and for the
improvisation data in Figure 6B. At this level the reductions
show significant agreement. In general, the network tended 1o
retain more events than the improvisations.

Finally, we can compare more abstract levels of represen-
tation to those predicted by Lerdahl and Jackendoff's theory.
[t is difficult to produce further reductions for the improvisa-
tions because of the resolution of our measurements. How-
ever, we can produce further reductions of the network’s
encodings. Instead of reapplying the threshold criterion, we
chose the event in each time-span with the highest activation,
similar to Lerdahl and Jackendoff’s (1983) method of com-
puting reductions. By comparing Figures 5D and C 1o Figures
1B and C, we see strong agreement at intermediate levels of
reduction. The network’s ability to generalize well enough to
develop a representation for this melody may be related to its
weighting of important events at each representational level.

Conclusions

The similarities seen here between improvisational music
performance and a connectionist model of simple melodies
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may result from similar computational constraints. The skill
of improvising on a theme has been described as a largely
unconscious process of identifying important structural ele-
ments and applying creative procedures to elaborate on those
elements (Johnson-Laird, in press; Steedman, 1982). The
resulting variations are related to each other by transforma-
tional rules that generate the possible improvisations on that
theme. One important consequence of this approach is that it
reduces the memory demands that can accompany the use of
multiple intermediate representations. Instead of retaining
each element at each representational level (thereby increas-
ing the necessary storage capacity), only a reduced set of ele-
ments is stored, from which other representational levels are
generated. The RAAM network produces a compressed rep-
resentation, in which the structurally more important events
dominate, such that they are more likely to be reliably recon-
structed than structurally less important events. These similar
constraints on processing demands may account for the simi-
larities seen here in the improvised variations in music perfor-
mance and in the network reconstructions.

Reductionist theories of music cognition have inspired
other computational models of intermediate representations.
Scarborough et. al. (1989) describe a parallel constraint satis-
faction approach for the perception of metric structure, mod-
elled as the response of independent metronome-like agents
to individual musical events. Based on inter-agent constraints
that enforce Lerdahl & Jackendoff’s rules for metric struc-
ture, a hierarchical representation of the metric structure of a
piece emerges. Rosenthal (1989) has described the perception
of grouping structure as the process of constructing “recog-
nizer agents”. The processes which construct recognizers
operate in accordance with Lerdahl and Jackendoff’s rules for
producing grouping structure analyses. Once constructed,
agents recognize the repetition of rhythmic structures, thus
implementing a restricted form of parallel structure recogni-
tion. The program’s output is a mental representation of the
piece stored as symbolic data structures. However, additional
mechanisms must be posited to determine the similarity of
two elements in the model (Rosenthal, 1989). One of the
advantages of using RAAM is that the intermediate represen-
tations admit simple similarity measures, such as euclidean
distance, capturing the statistics of the input environment.



Other researchers in music cognition have focused on
the importance of expectation. Meyer (1956) argues that
“...the inhibition of the tendency to respond or, on the
conscious level, the frustration of expectation (is) the
basis of the affective and intellectual response to music.”
Bharucha and Todd (1989) have described a compula-
tional model of musical expectatuon using Jordan nets
(Jordan, 1986) and Todd (1989) has described how sim-
ilar networks may be used for music composition. Todd
notes, however, that these networks produce melodies
“..high in local structure, but lacking in overall global
organization”. These computational approaches to
expectation may fail to capture the intermediate repre-
sentations required for hierarchically structured events
such as music.

Another observation we would like to make regards
the adequacy of the RAAM architecture for developing
representations of the hierarchical structure of melodies.
Although we have only reported the model’s results for
the encoding of one tune, this result represents the most
stringent test of the network's ability: to encode novel
sequences in a manner similar to that of skilled musi-
cians. We did not expect that this tune would be correctly
encoded by the network because it was not closely
related to the melodies in the training set. The fact that
the network was able to reconstruct a reasonable facsim-
ile of this melody shows that not only is the network
capable of encoding melodic structure, but it is capable
of generalizing in a robust manner. The final observation
regards the nature of the representations that the network
develops. The fact that the representations weighted
events in a way similar to both the musician’s choices of
events to retain in improvisations and predictions of rel-
ative importance based on Lerdahl and Jackendoff s the-
ory (1983) indicates that the computational model may
capuure the relevant hierarchical properties of humans’
mental representations for musical melodies.
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