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C9ORF72 repeat expansions in cases with
previously identified pathogenic
mutations

ABSTRACT

Objective: To identify potential genetic modifiers contributing to the phenotypic variability that is de-
tected in patients with repeat expansions in chromosome 9 open reading frame 72 (C9ORF72), we
investigated the frequency of these expansions in a cohort of 334 subjects previously found to carry
mutations in genes known to be associated with a spectrum of neurodegenerative diseases.

Methods: A 2-step protocol, with a fluorescent PCR and a repeat-primed PCR, was used to determine
the presence of hexanucleotide expansions inC9ORF72. For one double mutant, we performed South-
ern blots to assess expansion sizes, and immunohistochemistry to characterize neuropathology.

Results: We detected C9ORF72 repeat expansions in 4 of 334 subjects (1.2% [or 1.8% of 217
families]). All these subjects had behavioral phenotypes and also harbored well-known pathogenic mu-
tations in either progranulin (GRN: p.C466LfsX46, p.R493X, p.C31LfsX35) or microtubule-associated
protein tau (MAPT: p.P301L). Southern blotting of one double mutant with a p.C466LfsX46 GRN
mutation demonstrated a long repeat expansion in brain (.3,000 repeats), and immunohistochemistry
showed mixed neuropathology with characteristics of both C9ORF72 expansions and GRNmutations.

Conclusions: Our findings indicate that co-occurrence of 2 evidently pathogenic mutations could con-
tribute to the pleiotropy that is detected in patients with C9ORF72 repeat expansions. These findings
suggest that patients with known mutations should not be excluded from further studies, and that
genetic counselors should be aware of this phenomenon when advising patients and their family
members. Neurology� 2013;81:1332–1341

GLOSSARY
C9ORF725 chromosome 9 open reading frame 72;DIG5 digoxigenin; FTD5 frontotemporal dementia;GRN5 progranulin;
MAPT 5 microtubule-associated protein tau; MND 5 motor neuron disease; TDP-43 5 TAR DNA-binding protein 43.

Hexanucleotide repeat expansions in chromosome 9 open reading frame 72 (C9ORF72) have been
described in patients with phenotypic heterogeneity.1,2 They are the major genetic cause of disease in
patients with motor neuron disease (MND) and frontotemporal dementia (FTD), but they have also
been reported in patients clinically diagnosed with memory disorders, and patients presenting with
parkinsonism or psychosis.3 It is currently unknown which modifiers determine its variable disease
onset, progression, and other manifestations. Recently, however, evidence pointed toward an oligo-
genic pathogenesis of MNDs.4 In addition, more than 20 patients have been reported with both
C9ORF72 expansions and a mutation in another MND- and/or FTD-associated gene.5–7 A large
cohort of cases with known mutations would be ideal to investigate whether an oligogenic disease
model could explain the pleiotropy detected in patients with C9ORF72 expansions. We therefore

Marka van Blitterswijk,
MD, PhD

Matthew C. Baker, BSc
Mariely DeJesus-

Hernandez, BS
Roberta Ghidoni, PhD
Luisa Benussi, PhD
Elizabeth Finger, MD
Ging-Yuek R. Hsiung,

MD
Brendan J. Kelley, MD
Melissa E. Murray, PhD
Nicola J. Rutherford, BSc
Patricia E. Brown, MS
Thomas Ravenscroft
Bianca Mullen, MS
Peter E.A. Ash, PhD
Kevin F. Bieniek, BS
Kimmo J. Hatanpaa, MD,

PhD
Anna Karydas, BA
Elisabeth McCarty Wood,

MS
Giovanni Coppola, MD
Eileen H. Bigio, MD
Carol Lippa, MD
Michael J. Strong, MD
Thomas G. Beach, MD,

PhD
David S. Knopman, MD
Edward D. Huey, MD
Marsel Mesulam, MD
Thomas Bird, MD
Charles L. White III, MD
Andrew Kertesz, MD
Dan H. Geschwind, MD,

PhD
Vivianna M. Van Deerlin,

MD, PhD
Ronald C. Petersen, MD
Giuliano Binetti, MD

Author list continued on next page

From the Departments of Neuroscience (M.v.B., M.C.B., M.D.-H., M.E.M., N.J.R., P.E.B., T.R., B.M., P.E.A.A., K.F.B., L.P., D.W.D., R.R.) and
Neurology (Z.K.W., K.B.B., N.R.G.-R.), Mayo Clinic, Jacksonville, FL; Proteomics Unit and NeuroBioGen Lab-Memory Clinic (R.G., L.B., G.B.), IRCCS
Istituto Centro San Giovanni di Dio-Fatebenefratelli, Brescia, Italy; Department of Clinical Neurological Sciences (E.F., M.J.S.), Schulich School of Medicine
and Dentistry, The University of Western Ontario, London, Canada; Division of Neurology (G.-Y.R.H.), and Department of Pathology and Laboratory
Medicine (I.R.M.), University of British Columbia, Vancouver, Canada; Department of Neurology (B.J.K., D.S.K., R.C.P., B.F.B.), Mayo Clinic, Rochester,
MN; Department of Pathology and Alzheimer’s Disease Center (K.J.H., C.L.W.), University of Texas Southwestern Medical Center, Dallas; Department of
Neurology (A.K., B.L.M.), University of California, San Francisco; Center for Neurodegenerative Disease Research (E.M.W., V.M.V.D.), Department of
Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia; Department of Neurology (G.C., D.H.G.), The David
Geffen School of Medicine at University of California, Los Angeles; Cognitive Neurology & Alzheimer Disease Center (E.H.B., M.M.), Northwestern
University Feinberg School of Medicine, Chicago, IL; Department of Neurology (C.L.), Drexel University College of Medicine, Philadelphia, PA; Molecular
Brain Research Group (M.J.S.), Robarts Research Institute, London, Canada; Banner Sun Health Research Institute (T.G.B.), Sun City, AZ; Cognitive
Neuroscience Section (E.D.H.), National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD; Departments of Psychiatry and Neurology
(E.D.H.), Columbia University, New York; and Department of Neurology (T.B.), University of Washington School of Medicine, Seattle.

Go to Neurology.org for full disclosures. Funding information and disclosures deemed relevant by the authors, if any, are provided at the end of the article.

1332 © 2013 American Academy of Neurology

http://neurology.org/


assessed the frequency of these expansions in a
heterogeneous cohort of 334 subjects previously
found to carry pathogenic mutations in genes
associated with neurodegenerative diseases.

METHODS Subject selection. Two study cohorts were analyzed
for C9ORF72 repeat expansions. Our initial study cohort consisted of

149 probands with mutations in genes known to be associated with a

spectrum of neurodegenerative diseases (table 1). These subjects were

of North American descent and obtained through the Mayo Clinic

(n5 84), University ofWesternOntario (n5 3), University of British

Columbia (n5 12), University of Texas SouthwesternMedical Center

(n5 2), University of California (n5 16), The David Geffen School

of Medicine at University of California (n 5 2), Northwestern Uni-

versity Feinberg School of Medicine (n5 7, E.H.B.), Drexel Univer-

sity College of Medicine (n5 3), Robarts Research Institute (n5 5),

Banner Sun Health Research Institute (n5 4), Coriell Research Insti-

tute (n 5 8), and Harvard Brain Bank (n 5 3).

Based on the identification of C9ORF72 repeat expansions in

progranulin (GRN) and microtubule-associated protein tau (MAPT)
mutation carriers in our initial study cohort, we selected a follow-up

cohort with additional GRN and MAPT mutation carriers. This

follow-up cohort consisted of 102 family members of probands from

our initial study cohort, and 83 subjects from 68 new families of

North American and Italian origin. These latter families were pro-

vided by other collaborators at IRCCS Istituto Centro San Giovanni

di Dio–Fatebenefratelli (n5 68), University of Pennsylvania School

of Medicine (n 5 3), Northwestern University Feinberg School of

Medicine (n 5 2, M.M.), National Institute of Neurological Dis-

orders and Stroke and NIH (n5 3), and University of Washington

School of Medicine (n 5 7).

Standard protocol approvals, registrations, and patient
consents. All subjects agreed to be in the study, and biological sam-

ples were obtained after informed consent with ethical committee

approval from the respective institutions.

Genetic analysis. The GGGGCC repeat in C9ORF72 was assessed
using a 2-step protocol.1 Briefly, genomic DNA was PCR-amplified

with genotyping primers and one fluorescently labeled primer, followed

by fragment length analysis on an ABI3730 DNA analyzer (Applied

Biosystems, Foster City, CA) and visualized using GeneMapper v4.0

software (Applied Biosystems). For individuals who were shown to be

homozygous for C9ORF72 repeats, we performed a repeat-primed

PCR, and PCR products were analyzed with an ABI3730 DNA Ana-

lyzer and GeneMapper software. A characteristic stutter pattern was

considered evidence of a C9ORF72 repeat expansion.

Southern blot. Southern blotting was performed as described by

DeJesus-Hernandez et al.,1 with minor modifications. DNA was

isolated from frozen frontal cortex, temporal cortex, and cerebellum.

A total of 10 mg of genomic DNA was digested with XbaI, and

electrophoresed in an agarose gel. DNA was then transferred to a

positively charged nylon membrane (Roche, Penzberg, Germany.)

and cross-linked by UV irradiation. After prehybridization in digox-

igenin (DIG) EasyHyb solution (Roche), hybridization with a DIG-

labeled probe in hybridization solution was performed. Anti-DIG

antibody (1:10,000; Roche) was used to detect the probe, which

was subsequently visualized with CDP-star substrate (Roche) on

X-ray film after an exposure of 30 to 60 minutes.

Immunohistochemistry. Immunohistochemistry was per-

formed for 3 patients in a blinded fashion, including patient

F with double mutations, and for 2 patients from our initial

study cohort with only GRN mutations (p.Thr382SerfsX30,

c.IVS111G.A). Immunohistochemistry for TAR DNA-binding

protein 43 (TDP-43) (1:2,500, rabbit polyclonal, Mayo Clinic),8

repeat-associated non-ATG translation peptides (C9RANT,

Rb5823, 1:5,000),9 and p62 (1:1,000, lck ligand; BD Bioscience,

Franklin Lakes, NJ) was performed on 5-mm-thick sections from the

frontal cortex, hippocampus, and cerebellum. These sections were cut

from formalin-fixed paraffin-embedded blocks, deparaffinized in

xylene, rehydrated in a graded series of ethanol, and washed in dis-

tilled water. DAKO Autostainer Plus (DAKO, Carpinteria, CA) and

DAKO EnVision1 System–horseradish peroxidase (diaminobenzi-

dine) were used to process stains. To block nonspecific binding,

normal goat serum (1:20 in Tris-buffered saline and Tween 20;

Sigma, St. Louis, MO) was added to slides before the primary

antibody.

RESULTS Within our initial study cohort of 149 sub-
jects with known pathogenic mutations in neurodegen-
erative disease genes, we identified 3 individuals with an
additional C9ORF72 repeat expansion (2.0%). These
expansions were present in 2 subjects with aGRNmuta-
tion (p.C466LfsX46 [c.1395_1396insC], p.C31LfsX35
[c.90_91insCTGC]) and in one subject with a MAPT
mutation (p.P301L [c.902C.T]). In our follow-up
cohort of 185 subjects with GRN or MAPT mutations,
we detected another individual with both a GRN muta-
tion (p.R493X [c.1477C.T]) and a C9ORF72 repeat
expansion (0.5%).

In total, we therefore identified double mutations in 4
of 334 subjects (1.2%) or 4 of 217 families (1.8%) stud-
ied. The C9ORF72 repeat expansions were present in 3
of 204 subjects from ourGRN subgroup (1.5% [or 2.0%
of 152 GRN families]), and in 1 of 94 subjects from our
MAPT subgroup (1.1% [or 3.3% of 30 MAPT fami-
lies]). Importantly, these subjects with double mutations
all showed a behavioral phenotype, and they did not
demonstrate signs of MND. Furthermore, our subjects
with double mutations appeared to be relatively young
when they presented with behavioral impairment (53
years or younger; table 2), as compared with the mean
of our initial and follow-up cohorts (56 and 58 years;
table 1). All subjects with double mutations had a pos-
itive family history for dementia, and interestingly, 2 of 4
of these subjects had family members with MND
(50%). Chromatograms and electropherograms of iden-
tified subjects are displayed in figure 1, and their pedi-
grees are shown in figure e-1 on theNeurology®Web site
at www.neurology.org. DNA of relatives was unavailable;
therefore, cosegregation of the mutations in families
could not be assessed.

Brain autopsy material, however, was available for
one of the identified subjects (F). We obtained DNA
from the frontal cortex, temporal cortex, and cerebel-
lum, and performed a Southern blot (in duplicate).
Patient F clearly demonstrated an expanded repeat (fig-
ure 2), as shown by a smear of high-molecular-weight
bands, suggestive for somatic repeat instability.1 The
longest repeat expansion of this double mutant was
present in the frontal cortex and was estimated to be
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Table 1 Baseline characteristics

Phenotype FTD, n (%) MND, n (%) Other,a n (%) At risk, n (%) Sex, F/M, % Age at onset,b y Age at death,b y Duration,b y Family history, %

Initial 95 (63.76) 25 (16.78) 25 (16.78) 4 (2.68) 52/48 (n 5 145) 55.82 (61.04) (n 5 120) 62.80 (61.28) (n 5 83) 6.22 (60.48) (n 5 90) 78.69 (n 5 122)

Follow-up 84 (45.41) — 59 (31.89) 42 (22.70) 57/43 (n 5 184) 58.14 (60.98) (n 5 118) 63.68 (61.62) (n 5 44) 4.65 (60.45) (n 5 93) 96.63 (n 5 178)

Genotype Total GRN MAPT SOD1 TARDBP FUS PSEN1 LRRK2 TAF15 PRNP VCP SNCA

Initial, n 149 83 30 15 6 5 4 2 1 1 1 1

Follow-up, n 185 121 64 — — — — — — — — —

Total, n 334 204 94 15 6 5 4 2 1 1 1 1

Abbreviations: FTD 5 frontotemporal dementia; FUS 5 fused in sarcoma; GRN 5 progranulin; LRRK2 5 leucine-rich repeat kinase 2; MAPT 5 microtubule-associated protein tau; MND 5 motor neuron disease;
PRNP 5 prion protein; PSEN1 5 presenilin 1; SNCA 5 synuclein, a; SOD1 5 superoxide dismutase 1; TAF15 5 TATA box binding protein–associated factor 2N; TARDBP = TAR DNA-binding protein; VCP 5 valosin-
containing protein.
a In our initial cohort, we included patients diagnosed with FTD/MND (n5 4), FTD with parkinsonism (n5 4), Parkinson disease (n5 2), corticobasal degeneration (n5 2), Alzheimer disease (n5 5), spastic paraparesis
(n 5 1), fluent aphasia (n 5 1), or an unknown diagnosis (n 5 6), and in our follow-up cohort, we included patients with multiple system atrophy (n 5 1), corticobasal degeneration (n 5 8), FTD/MND (n 5 1), Alzheimer
disease (n 5 5), Lewy body disease (n 5 3), FTD with parkinsonism (n 5 27), mild cognitive impairment (n 5 2), dementia not otherwise specified (n 5 1), or an unknown disease (n 5 11).
b For age at onset, age at death, and disease duration, standard errors are shown in parentheses.

Table 2 Clinical characteristics of subjects with 2 mutations

Sample C9ORF72 expansion Normal allelea Gene 2 Mutation 2 FTD Phenotypeb MND signsc Sex Age at onset, y Age at death,d y Family history

F Yes 2 GRN p.C466LfsX46; c.1395_1396insC Yes Behavioral No F 52 56 Yes, FTD

S Yes 2 GRN p.R493X; c.1477C.T Yes Behavioral, language No F 50 .52 Yes, dementia

U Yes 6 GRN p.C31LfsX35; c.90_91insCTGC No Behavioral impairment No F N/A .40 Yes, FTD, MND

K Yes 5 MAPT p.P301L; c.902C.T Yes Behavioral No F 53 .57 Yes, dementia, MND

Abbreviations: C9ORF72 5 chromosome 9 open reading frame 72; FTD 5 frontotemporal dementia; GRN 5 progranulin; MAPT 5 microtubule-associated protein tau; MND 5 motor neuron disease; N/A 5 not
applicable.
aNormal allele refers to the wild-type allele in C9ORF72; it specifies the number of repeat units on the nonexpanded allele.
b Behavioral impairment means that the subject is not asymptomatic but displays signs and symptoms that most likely represent the early stages of FTD.
cPatient F was pathologically diagnosed; the absence of MND signs on physical examination was reported for other subjects (EMG recordings were not available).
dOr age last known to be alive (indicated with “.”).
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approximately 23 kb in size, bearing more than 3,000
hexanucleotide repeats.

Immunohistochemistry was also performed for
patient F and 2 control patients with only GRN muta-
tions (figure 3). Patient F showed type A TDP-43
pathology, including neuronal cytoplasmic inclusions
and neuritic pathology. In addition, p62 and C9RANT
immunohistochemistry showed many neuronal cytoplas-
mic inclusions, consistent with a mutation in C9ORF72.
Blinded investigations of all 3 patients successfully iden-
tified the double mutant; whereas all patients demon-
strated type A neuronal TDP-43 inclusions,10,11 only
patient F showed these inclusions in combination with
C9RANT immunoreactivity, and ubiquitin-positive,
TDP-43–negative, neuronal cytoplasmic inclusions in
the cerebellum, which have been shown to be unique
for C9ORF72 repeat expansion carriers.9,12,13 Patient F,
therefore, demonstrated mixed pathology with character-
istics of bothGRNmutations andC9ORF72 expansions.

DISCUSSION In our present study, we discovered
C9ORF72 repeat expansions in 4 of 217 families with
previously identified mutations in neurodegenerative
disease genes. Since the identification of C9ORF72

expansions,1,2 researchers all over the world have reported
case series with expansion frequencies.5 On average, these
expansions appear to account for 34% of familial MND
cases and 26% of familial FTD cases.5 They have, how-
ever, also been detected in control subjects; for instance,
they were present in 4 of 4,368 control subjects of Amer-
ican and Italian descent.5 Hence, the expansion fre-
quency is significantly higher in our study population
than in control subjects of the same origin (1.8% vs
0.1%: p value 5 0.0003, Fisher exact test). To date,
the sizes of C9ORF72 repeat expansions in brain are
largely unknown. Southern blots have proven to be chal-
lenging, and good-sized well-characterized cohorts have
not been assessed to determine expansion sizes in brain.
A recent study did investigate 57 patients with a range of
neurodegenerative diseases, and demonstrated great var-
iability in repeat sizes and smear morphologies, but this
study focused on blood.14 Thus far, brain tissues of only
a few patients have been investigated, demonstrating
sizes between approximately 600 and 4,000 re-
peats.1,14–20 We were able to perform a Southern blot
for one of our double mutation carriers, patient F, and
detected more than 3,000 hexanucleotide repeats. Our
findings therefore indicate that this double mutation

Figure 1 Chromatograms and electropherograms of identified subjects

(A) Chromatograms of subjects included in this study. Shown are GRN mutations p.C466LfsX46 (c.1395_1396insC),
p.R493X (c.1477C.T), and p.C31LfsX35 (c.90_91insCTGC), and MAPT mutation p.P301L (c.902C.T). (B) C9ORF72
repeat expansions detected in the subjects with GRN and MAPT mutations. PCR products of repeat-primed PCR reactions
separated on an ABI3730 DNA Analyzer and visualized by GeneMapper software, showing 4 double mutation carriers
detected in this study with their characteristic stutter amplification. C9ORF72 5 chromosome 9 open reading frame 72;
GRN 5 progranulin; MAPT 5 microtubule-associated protein tau.

Neurology 81 October 8, 2013 1335



carrier has a long repeat expansion, in the same range as
other patients with C9ORF72 expansions.

The function of C9ORF72 is presently unknown,
although recent reports have suggested that C9ORF72
belongs to a group of DENN (differentially expressed
in normal and neoplasia) proteins, which are GEFs (gua-
nosine diphosphate/guanosine triphosphate exchange
factors) that activate Rab-GTPase switches and regulate
vesicular trafficking processes.21,22 Consequently, repeat
expansions in C9ORF72 could result in a loss of func-
tion and impair these processes. However, an RNA-
mediated gain-of-function mechanism could also con-
tribute to disease due to generation of toxic RNA foci.1

Furthermore, recently it was revealed that transcripts of
patients with C9ORF72 repeat expansions are also prone
to non-ATG translation.9,13 This unconventional method
of translation can cause an accumulation of poly(glycine-
proline), poly(glycine-alanine), or poly(glycine-arginine)
peptides in neurons throughout the CNS, and result in
neuropathology specific to C9ORF72-associated MND
and/or FTD.9 In our present study, we have shown that
one of our subjects with double mutations, patient F,
exhibited C9RANT immunoreactivity, consistent

with these novel reports. Patient F also harbored ubiq-
uitin-positive, TDP-43–negative, neuronal cytoplasmic
inclusions in the cerebellum, which have been shown
to be typical for C9ORF72 repeat expansions.12 In addi-
tion, patient F demonstrated TDP-43 type A pathology,
characteristic for GRN mutations3,10,11,23; thus, this dou-
ble mutation carrier displayed pathology distinctive for
both C9ORF72 expansions and GRN mutations.

Interestingly, 2 patients have already been described
with both C9ORF72 repeat expansions and a GRN var-
iant (p.Y294C),24 or a MAPT variant (p.A239T).6 The
p.Y294C GRN variant is novel, and has not been de-
tected in other patients or in controls; it was present in
a patient with behavioral variant FTD and it is pre-
dicted to be damaging.24 The p.A239T MAPT variant
was also identified in a patient with behavioral variant
FTD.6 She had 2 brothers with C9ORF72 expansions
without theMAPT variant, who demonstrated signs of
MND. The index case showed mixed pathology
with both tauopathy and ubiquitin-positive, TDP-43–
negative, neuronal cytoplasmic inclusions in the cerebel-
lum. Nonetheless, accumulation of tau has also been
reported in patients with only C9ORF72 expansions,

Figure 2 Southern blot of patient F

Southern blot demonstrating 3 brain regions of patient F. DIG-labeled DNA Molecular Weight Marker II (Roche) was
used with fragments of 2,027; 2,322; 4,361; 6,557; 9,416; and 23,130 base pairs. A positive control that harbors
a C9ORF72 expansion, but no additional mutation in GRN orMAPT, is shown in lanes 7, 8, and 9. In lane 10, a negative
control without a C9ORF72 expansion is shown; this patient only displays the 2.3-kb wild-type allele. C9ORF72 5

chromosome 9 open reading frame 72; DIG 5 digoxigenin; GRN 5 progranulin; MAPT 5 microtubule-associated pro-
tein tau.
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and this accumulation could have resulted from dis-
rupted protein degradation that favors accumulation
of multiple different proteins, including tau.25

Although the pathogenicity of the p.Y294C GRN var-
iant and the p.A239T MAPT variant are not entirely
clear, the 4 subjects that we identified with C9ORF72

expansions do harbor well-known pathogenic FTD-
associated mutations. In tables e-1 and e-2, we have
provided a detailed overview of more than 80 families
carrying these relatively commonmutations.Worldwide,
the p.C466LfsX46 mutation accounts for 0.4% of all
families with GRN mutations, the p.R493X mutation

Figure 3 Neuropathology of patient F

Neuropathology of the GRN/C9ORF72 double mutation in a pathologically confirmed frontotemporal lobar degenera-
tion case. (A) Brain MRI revealed dilated lateral ventricles and flattening of the caudate nucleus (arrow) in a T1-weighted
coronal MRI scan acquired 3 years before death. MRI findings were supported (B) at autopsy with marked flattening of
the caudate (arrow) and cerebral atrophy most significant in the frontal cortex (arrowhead). Superficial spongiosis in
layer II of the cortical ribbon (C) is associated with type A TDP-43 pathology, including neuronal cytoplasmic inclusions
(arrow) and neuritic pathology (arrowhead). The inset demonstrates a “lentiform” intranuclear inclusion (arrow) in the
dentate gyrus of the hippocampus. (D) p62 and (E) C9RANT immunohistochemistry of the cerebellar granule cell layer
shows many neuronal cytoplasmic inclusions, consistent with a mutation in C9ORF72. Bar 5 25 mm for C, D, and E, and
10 mm for inset. C9ORF72 5 chromosome 9 open reading frame 72; GRN 5 progranulin; TDP-43 5 TAR DNA-binding
protein 43.

Neurology 81 October 8, 2013 1337



accounts for 18.6%, and the p.C31LfsX35 mutation
accounts for 2.6%; the p.P301L mutation is present in
23.9% of families with MAPT mutations (http://www.
molgen.ua.ac.be/FTDmutations/). Therefore, these 4
mutations are frequently detected, and are responsible
for approximately 22% of patients with GRNmutations
and approximately 24% of patients with MAPT
mutations.

Phenotypes of C9ORF72 repeat expansion carriers,
in general, appear to differ from patients with mutations
in GRN orMAPT.26–30 It was shown that age at onset is
earlier in patients with C9ORF72 expansions compared
to patients withGRNmutations,26–29 but later compared
to patients withMAPTmutations.27–29Moreover,MND
is frequently detected in patients with C9ORF72 expan-
sions, whereas signs of MND are scarce in patients with
GRN or MAPT mutations.26,28–30 Behavioral variant
FTD is the predominant phenotype of all 3 groups;

primary progressive aphasia and corticobasal syndrome
phenotypes are rare in patients with C9ORF72 expan-
sions, and are more frequently detected in patients with
GRN or MAPT mutations.26,29

The co-occurrence ofC9ORF72 expansions andmu-
tations in GRN or MAPT in patients with FTD could
have several explanations. First, it could be argued that
only C9ORF72 expansions are pathogenic, and that the
GRN or MAPT mutations are rare benign variants or
mere risk factors. This explanation, however, is not sup-
ported by ample studies that have revealed a strong asso-
ciation with FTD and indicated that they are definitely
disease-causing mutations (tables e-1 and e-2). Second, it
is possible that C9ORF72 expansions are not sufficient
to develop disease, and that an additional mutation or
environmental exposure is needed. This would provide
an explanation for the increased frequency of C9ORF72
repeat expansions in cases with other genetic mutations.
It is also in accordance with studies that have detected
C9ORF72 expansions in control subjects,5 and with
studies that reported incomplete or age-dependent pen-
etrance; approximately 50% of expansion carriers were
clinically symptomatic by an age of 48 to 58 years, and
almost full penetrance was seen at an age of 75 to 80
years.27,31,32 This variable penetrance could be caused by
differences in repeat sizes: long repeat sizes may represent
clear pathogenic mutations, whereas intermediate sizes
may act as risk factors that require a second factor, either
genetic or environmental, to cause disease. Our current
findings, however, oppose this explanation, while South-
ern blotting of one of our subjects with double muta-
tions, patient F, revealed a relatively long repeat
expansion, comparable to a patient carrying only a
C9ORF72 repeat expansion. An age-dependent pene-
trance has also been reported for GRN, with only 50%
of mutation carriers affected by the age of 60 years, and
90% of carriers affected at 70 years,33 comparable to
C9ORF72. The penetrance is more than 95% for
MAPT.34 It is therefore possible that one of the muta-
tions observed in our double mutation carriers has not
yet reached penetrance, and that the current symptoms
are solely caused by the other mutation. Finally, it could
be hypothesized that both C9ORF72 expansions and
GRN or MAPT mutations are pathogenic, that each of
these mutations independently causes disease, but that
they act as disease modifiers when they co-occur. If we
compare the mean age at which symptoms of behavioral
impairment occurred between our double mutation car-
riers (mean: 48.8 6 3.0, n 5 4) and the remainder of
our study population (mean: 57.0 6 0.73, n 5 235),
then a one-tailed nonparametric Mann-Whitney test
results in a p value of 0.0357. Because of the relatively
small number of double mutation carriers, this difference
is borderline significant, but there is clearly a tendency
toward an earlier age at onset. Apart from this relatively
young age at onset, all of our patients with double

Comment:
Double mutants of frontotemporal dementia genes—Simple
co-occurrence?

In this international collaborative study searching for genetic modifiers in
familial frontotemporal dementia (FTD), van Blitterswijk et al.1 detected
C9ORF72 repeat expansions in 1.8% of 217 North American and Italian families
harboring progranulin (GRN) or microtubule-associated protein tau (MAPT)
gene mutations. Since the GRN/MAPT mutations harbored by the families were
different, it does not seem a mutation-specific effect. All double mutation carriers
had an early disease onset, though the small number of double mutation carriers
did not allow statistical comparisons with the FTD group without double muta-
tions. Double mutation carriers showed a behavioral FTD presentation with no
motor neuron signs, which are frequently seen in FTD families with expansion of
the C9ORF72 gene.2,3

Knowing that expansions in the C9ORF72 gene can be rarely present in
healthy controls (allele frequency 0.0004) and that GRN and MAPT mutations
in aged healthy controls are generally absent, one conservative interpretation is
that the presence of 2 FTD-associated mutations is merely coincidental and one of
the 2mutated genes, possiblyC9ORF72, is not influencing the disease risk because
of its reduced penetrance.

Another more plausible interpretation is that mutations in 2 of these 3 FTD
genes could have some additive influence in disease expressivity. The researchers
could not assess cosegregation of the mutations across the families. Although
the number of double carriers does not allow us to make definite conclusions,
the co-occurrence of 2 evidently pathogenic mutations could contribute to the plei-
otropy observed in patients with C9ORF72 repeat expansions.

These results suggest that the damaging effects of mutated genes causing
monogenic FTD are influenced by additional genetic and environmental factors,
which can modify the genetic penetrance and expressivity. Since more information
about oligogenic effects of FTD genes are needed, these results encourage us to be
very cautious when assessing disease risk and advising family relatives.

1. van Blitterswijk M, Baker MC, DeJesus-Hernandez M, et al. C9ORF72 repeat ex-
pansions in cases with previously identified pathogenic mutations. Neurology 2013;
81:1332–1341.

2. DeJesus-Hernandez M, Mackenzie IR, Boeve BF, et al. Expanded GGGGCC hex-
anucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked
FTD and ALS. Neuron 2011;72:245–256.

3. Renton AE, Majounie E, Waite A, et al. A hexanucleotide repeat expansion in
C9ORF72 is the cause of chromosome 9p21-linked ALS-FTD. Neuron 2011;72:
257–268.

Pau Pastor, MD, PhD

Study funding: No targeted funding reported.
Disclosure: The author reports no disclosures relevant to the manuscript.

1338 Neurology 81 October 8, 2013

http://www.molgen.ua.ac.be/FTDmutations/
http://www.molgen.ua.ac.be/FTDmutations/


mutations developed signs of behavioral impairment
without MND, whereas combinations of C9ORF72
repeat expansions with MND-associated mutations in
TARDBP (TAR DNA-binding protein), FUS/TLS
(fused in sarcoma/translated in liposarcoma), and
SOD1 (superoxide dismutase 1) have previously been
detected in patients with MND without FTD.4 How-
ever, numerous C9ORF72 expansion carriers without a
second mutation in a known dementia gene also devel-
oped a pure behavioral variant FTD phenotype. In the
future, detailed investigations of multiple patients in
families carrying double mutations will be critical to
determine the contribution of each mutation to disease.

While previous studies have provided evidence for
an oligogenic basis of MND,4 our present findings
demonstrate that oligogenicity is not confined to
MNDs, and that double mutations can be present
in patients with FTD as well. Thus, it is important
to realize that patients already diagnosed with muta-
tions in FTD/MND-associated genes could also har-
bor more recently discovered C9ORF72 repeat
expansions, and that they should not be excluded
from further tests, which is also highly relevant for
genetic counseling, both of patients and of their
(unaffected) family members.
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