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Abstract

This paper presents methods to calculate sample size for evaluating mediation by joint testing of 

both links in an indirect pathway from exposure to mediator to outcome. Calculations rely on 

simulations of the underlying data structure, with testing of the two links performed under the 

simplifying assumption that the two test statistics are asymptotically independent. Simulations 

show that the proposed methods are accurate. Continuous and binary exposures and mediators, as 

well as continuous, binary, count, and survival outcomes are accommodated, along with over-

dispersion of count outcomes, design effects, and confounding of the exposure-mediator and 

mediator-outcome relationships. An illustrative example is provided, and a documented R 

program implementing the calculations is available online.
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Scientific interest, especially in the social sciences, has long focused on mediating pathways 

through which an exposure or treatment affects an outcome. Recent developments in causal 

analysis have extended the reach of these analyses, including cases where the exposure and 

mediator interact (MacKinnon et al. 2007; VanderWeele 2009; Pearl 2011; Breen et al. 

2013), deepened our understanding of the assumptions required for valid causal inference 

(Pearl 2001; Cole and Hernán 2002; Petersen et al. 2006; VanderWeele 2009; Imai et al. 

2010; Pearl 2012), and provided new and convenient analytic tools (Hicks and Tingley 

2011; Kohler et al. 2011; Muthén 2011; Valeri and Vander-Weele 2013). While some 

methods are available for sample size and power calculations (Freedman and Schatzkin 

1992; Vittinghoff et al. 2008; Muthén 2011; Wang and Xue 2012; Kenny 2013), convenient 
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tools with broader reach are needed to ensure adequate power at the design stage for 

mediation analyses.

This paper presents sample size calculations for joint testing of both links in an indirect 

pathway from an exposure through a mediator to an outcome. We follow the mediation 

literature (e.g., MacKinnon et al. 2002) in defining the joint test as a simultaneous test of the 

composite null hypothesis that the coefficients for exposure and mediator—in models for the 

mediator and outcome, respectively—are both zero. In earlier work, we focused on testing 

the second link only, under the assumption that the first link was known to exist (Vittinghoff 

et al. 2008). Subsequently, Wang and Xue (2012) showed that this approach could 

substantially underestimate sample size if both links in the indirect pathway must be 

established, especially when the first link in the indirect pathway is more difficult to detect 

than the second. In this work, our earlier methods using Monte Carlo integration are 

extended to joint testing in cases where exposure and mediator are continuous or binary, and 

outcomes are continuous, binary, counts, or survival times. The performance of the new 

methods is investigated using simulations and demonstrated in a detailed illustrative 

example. We first review assumptions and data-generating models, describe power 

estimators for linear, logistic, Poisson, and Cox models, and provide examples for each. We 

then present a simulation study validating the proposed methods. The proposed methods are 

implemented in an R (R Development Core Team 2014) program, available online.

Assumptions and Data-Generating Models

Suppose the exposure X1 is normal with standard deviation (SD) σ1, or binary with 

prevalence f1 and . The mediator X2, with marginal SD σ2, is assumed to 

arise from the generalized linear model (GLM)

(1)

For continuous X2, h1 is the identity link and the errors are assumed normal with mean zero 

and variance depending on γ1, σ1, and σ2; for binary X2, the logit link and a Bernoulli 

distribution with marginal mean E(X2) are assumed. Continuous, binary, and count 

outcomes are also assumed to arise from the GLM

(2)

using identity, logit, and log links, respectively, with normal errors with mean zero and SD 

σe in the first case, and Bernoulli and Poisson distributions with marginal mean E(Y) in the 

second and third. For count outcomes, we allow for over-dispersion by a scale factor ϕ = 

Var(Y)/E(Y), with ϕ = 1 as the default. Finally, for survival outcomes, the proportional 

hazards model

(3)
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is assumed.

In linear structural equation models, β1 captures the direct effect of exposure on the 

outcome, while the indirect effect is γ1β2. However, Sobel’s (Sobel 1982) direct test of γ1β2 

= 0 is complicated by the distribution of the test statistic, which has no clear interpretation 

except in the linear model. In contrast, joint testing of γ1 = 0 and β2 = 0 may be more 

powerful (Wang and Xue 2012; MacKinnon et al. 2002; Mallinckrodt et al. 2006) and is 

consistent with a counterfactual definition of the indirect effect for continuous as well as 

binary and count outcomes (Pearl 2011). Wang and Xue (2012) also show that the type I 

error rate of the joint test is asymptotically bounded by a common nominal rate used for 

each test separately. Under the assumption that γ̂
1 and β̂

2 are asymptotically independent, the 

power of the joint test PJ is approximately Pγ1 Pβ2, the product of the powers of each test 

considered separately.

For any given sample size, estimation of Pγ1 is straight-forward for continuous mediators. 

Moreover, Pβ2 could be estimated using existing methods for linear (Hsieh et al. 1998), 

logistic (Hsieh et al. 1998), Poisson (Vittinghoff et al. 2008), and Cox (Hsieh and Lavori 

2000; Schmoor et al. 2000; Bernardo et al. 2000) models using a correction based on the 

variance inflation factor from linear regression (Hsieh et al. 1998) to account for the 

correlation of X2 with X1 when γ1 ≠ 0, which limits the effect of increasing |γ1| on power, as 

investigated by Fritz et al. (2012). While the adjustment is exact for the linear model, it can 

break down for logistic, Poisson, and Cox models (Vittinghoff et al. 2008). This motivates 

using Monte Carlo integration to approximate the standard error of β̂
2, accounting for 

adjustment for X1, which can then be used to calculate Pβ2.

However, confounding of the mediator-outcome relationship by other factors must also be 

controlled, even when exposure is randomized (Judd and Kenny 1981; Pearl 1998; Cole and 

Hernán 2002). More generally, when exposure is not randomized, confounding of the 

exposure-outcome and exposure-mediator relationships must also be controlled 

(VanderWeele 2009; Pearl 2011). Accordingly, we assume that analysts will carefully 

control confounding in both the mediator and outcome models. However, full specification 

of the joint distribution of exposure, mediator, confounders, and outcome is usually not 

possible. Thus, we use the approximate correction based on the variance inflation factor to 

account for the resulting loss of precision. Similarly, design effects due to clustering are 

accommodated as a second, optional variance inflation factor, with independence assumed 

by default.

Although no explicit solution is available for the sample size ensuring that Pγ1 Pβ2 equals 

the targeted power, a line search can be used to find the solution. This requires specification 

of γ1 and β2 as well as case-specific nuisance parameters including σ1 or f1 and σ2 or f2; σe 

for continuous outcomes; E(Y) for binary and count outcomes; ϕ, the over-dispersion of 

count outcomes; ψ, the proportion of uncensored observations, for failure time outcomes; β1 

for all except the linear model; ρ1 and ρ2, respectively, the multiple correlation of X1 and X2 

with confounders of the exposure-mediator and mediator-outcome relationships; and finally, 

the 2-sided type I error rate α and the target power.
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Estimating Pγ1 and Pβ2

Continuous Outcomes

Pγ1 can be estimated for a continuous mediator using

(4)

In (4), Φ is the standard normal cumulative distribution function, γ1, σ1, and σ2 are defined 

as before, n is the sample size, ( ) is the approximate correction for confounding of the 

exposure-mediator relationship, ρ is the correlation of X1 and X2, calculated using γ1, σ1, and 

σ2, δ is the design effect, defined as the ratio of the actual variance of the outcome in the 

presence of clustering to its variance under independence, and finally, zα/2 is the quantile of 

the standard normal distribution corresponding α/2.

In our previous work (Vittinghoff et al. 2008), Monte Carlo integration slightly 

outperformed approximate adjustment for confounding, provided the joint distribution of 

exposure, mediator, and outcome can be fully specified, for example using (1) and (2) or (3). 

Thus, we use this technique to estimate the standard error of β̂
2, accounting only for 

confounding of X2 by X1. Then, if there are additional confounders of the mediator-outcome 

relationship, we use the approximate method to inflate the result. Specifically, for the linear 

model, . To estimate Pβ2, our implementation simulates ns = 10, 000 

observations under the assumed joint distribution of X1 and X2 and then computes 

. Then, we calculate

(5)

where ( ) is the approximate correction for confounding of the mediator-outcome 

relationship, and  is the diagonal element of  corresponding to β2.

As an example, suppose that both X1 and X2 are continuous with σ1 = σ2 = σe = 1.0, γ1 = 

0.25, β2 = 0.20, ρ1 = 0, as in a randomized trial, but ρ2 = 0.3. The R function call and result 

are

> sampsi(1, 1, 1, g1=.25, b2=.20, rho2=.3)

N = 240 Power g1=0: 97.9 b2=0: 81.9

joint: 80.2

The first three arguments specify continuous exposure, mediator, and outcome, respectively, 

and g1, b2, and rho2 are the arguments specifying γ1, β2, and ρ2; because the default value 

of rho1, used to specify ρ1, is zero, it can be omitted. Thus, in two-sided tests with α = 0.05, 
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a sample size of 240 is estimated to provide 97.9 % power to reject γ1 = 0, 81.9 % power to 

reject β2 = 0, and 80.2 % power to reject both null hypotheses.

Binary Outcomes

For analysis of binary outcomes with marginal prevalence E(Y) using the logistic model, we 

also use Monte Carlo integration to estimate power. For this GLM, Cov(β̂) = (X′VX)−1, 

where V is the diagonal covariance matrix of the outcome, with Vi,i = Var(Yi |Xi) = E(Yi |

Xi )(1 − E(Yi |Xi)) and Xi = (X1i, X2i ). To estimate Pβ2, the implementation simulates ns = 

10, 000 observations under the assumed joint distribution of X1 and X2, calculates Var(Yi |

Xi ) under the assumed logistic model, and finally computes ns(X′VX)−1. This procedure 

requires calculating the value of the intercept parameter β0 consistent with β1, β2, and the 

marginal outcome prevalence, E(Y). Then

(6)

where  is now the diagonal element of ns(X′VX)−1corresponding to β2.

This approach can also be used to estimate Pγ1 when the mediator is binary. In this case, 

only X1 is included in X, E(X2i |X1i ) plays the role of E(Yi |Xi ), and the subroutine used to 

calculate the intercept γ0 is also simplified. Then

(7)

with  defined analogously to  in (6).

As an example, suppose that both X1 and X2 are binary with prevalence 50 and 35 %, 

respectively, γ1 = log(2.1), β1 = log(1.5), β2 = log(1.9), EY = 0.4, ρ1 = 0.25, ρ2 = 0.35, and 

the design effect δ = 1.5. In this example, γ1, β1, and β2 are log odds ratios. The R function 

call and result are

> sampsi(2, 2, 2, f1=.5, f2=.35, g1=log(2.1),

b1=log(1.5), b2=log(1.9), EY=.4, rho1=.25,

rho2=.35, de=1.5)

N = 690 Power g1=0: 94.9 b2=0: 84.3

joint: 80

Here, the first three arguments specify binary exposure, mediator, and outcome, f1, f2, b1, 

and de are the arguments specifying the prevalence of X1 and X2, β1, and the design effect, 

and g1and b2 are defined as before. A sample size of 690 is estimated to provide 94.9 % 
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power to reject γ1 = 0, 84.3 % power to reject β2 = 0, and 80.0 % power to reject both null 

hypotheses.

Count Outcomes

For analysis of count outcomes with marginal mean E(Y) using the Poisson model, the 

implementation again uses Monte Carlo integration to estimate power. In brief, it simulates 

ns = 10, 000 observations under the assumed joint distribution of X1 and X2, calculates 

Var(Yi |Xi ) = E(Yi |Xi ) for each observation under the assumed Poisson model, and finally 

computes ns(X′VX)−1. Then Pβ2 is calculated using (6), with  again defined as the 

diagonal element ns(X′VX)−1 corresponding to β2. To account for over-dispersion with 

respect to the Poisson distribution, we inflate  by the scale factor ϕ.

As an example, suppose that X1 is continuous with σ1 = 1.25, X2 is binary with prevalence 

35 %, γ1 = log(1.4), β1 = log(1.5), β2 = log(1.35), EY = 2.0, ϕ = 1.5, ρ1 = 0.35, and ρ2 = 

0.25. Here, γ1 is a log odds-ratio, and β1 and β2 are log rate ratios. The R function call and 

result are

> sampsi(1, 2, 3, sdx1=1.25, f2=.35,

g1=log(1.4), b1=log(1.5), b2=log(1.35),

EY=2, scale=1.5, rho1=.35, rho2=.25)

N = 351 Power g1=0: 91.6 b2=0: 87.3

joint: 80.2

Here, the first three arguments specify continuous exposure, binary mediator, and count 

outcome, respectively, and scale is the argument corresponding to ϕ. A sample size of 351 is 

estimated to provide 91.6 % power to reject γ1 = 0, 87.3 % power to reject β2 = 0, and 80.2 

% power to reject both null hypotheses.

Survival Outcomes

For analysis of survival outcomes using the Cox model, Monte Carlo integration is also 

used. The implementation simulates ns = 10, 000 exponential failure times under the 

assumed joint distribution of the X1 and X2 and the specified proportional hazards model, 

censors all but the shortest fraction ψ of the failure times, a form of type II independent 

censoring (Kalbfleisch and Prentice 1980), and fits a Cox model to the simulated data. Then, 

Pβ2 is again calculated using (6), with , where  is the variance of β̂
2 

obtained from the Cox model fit to the simulated data. The implementation also allows for 

additional independent censoring before the last failure, but this has minor effects 

(Vittinghoff et al. 2008).

As an example, suppose that X1 is binary with prevalence 20 %, X2 is continuous with σ2 = 

1.2, γ1 = 0.35, β1 = log(1.5), β2 = log(1.4), ψ = 0.3, ρ1 = 0.25, and ρ2 = 0.45. In this example, 

β1 and β2 are log hazard ratios. The R function call and result are
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> sampsi(2, 1, 4, f1=.2, sdx2=1.2, g1=.35,

b1=log(1.5), b2=log(1.4), psi=.3, rho1=.25,

rho2=.45)

N = 610 Power g1=0: 80.2 b2=0: 99.8

joint: 80

Here, the first three arguments specify binary exposure, continuous mediator, and survival 

outcome, respectively, and psi gives the value ψ, the proportion of uncensored failure times. 

A sample size of 610 is estimated to provide 80.2 % power to reject γ1 = 0, 99.8 % power to 

reject β2 = 0, and 80.0 % power to reject both null hypotheses. In this case, where the second 

link in the indirect pathway is much stronger than the first, virtually all type II error is 

expected to come from testing γ1 = 0.

Illustrative Example

In a study of 87 methamphetamine-using men who have sex with men (MSM) seeking drug 

treatment, Carrico et al. (2013) showed that positive emotions were associated with a lower 

frequency of self-reported methamphetamine use in the past 30 days and lower odds of 

testing positive for stimulant drugs in urine samples, adjusting for age, ethnicity, HIV status, 

and negative affect.

A possible next step is to propose an intervention to reduce methamphetamine use by 

increasing positive emotions (R01 DA033854; ClinicalTrials.Gov registration 

#NCT01926184). We used the proposed methods to estimate the number of participants 

needed to detect mediation of the intervention effect by a standardized continuous post-

randomization measure of positive emotions. Here, the intervention exposure is binary, with 

50 % assigned to the active arm. Focusing first on frequency of methamphetamine use, a 

standardized continuous outcome, we set b2 = 0.29, as estimated by Carrico et al. (2013). 

Because the intervention will be randomized, rho1was assumed to be zero, the default value, 

while rho2 was set to .30, following the convention established by Hsieh et al. (1998) to 

account for mediator-outcome confounding. The key unknown parameter is g1, the effect of 

the intervention on the mediator. Following Cohen’s conventions for effect sizes, we 

specified g1 as the square root of R2 = 13 %, a medium standardized effect size. The R 

function call and result are

> sampsi(2, 1, 1, f1=.5, g1=sqrt(.13),

b2=.29, rho2=.30)

N = 241 Power g1=0: 81.1 b2=0: 98.8

joint: 80.1

Under these assumptions, 241 participants would be needed to detect mediation using the 

joint test. Additional calculations show that sample sizes of 621 and 149 would be needed to 

detect mediation with small (R2 = 5 %) and large (R2 = 25 %) effects of the intervention on 

positive emotions, respectively.
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Carrico et al. (2013) also reported positive urine tests among 31 % of participants and an 

odds ratio of 1.29 per SD for the effect of the positive emotions on this binary outcome. We 

also hypothesized an odds ratio of 1.1 for the direct effect of the intervention on the 

outcome, a nuisance parameter in this calculation. Again setting , the R function 

call and result are

> sampsi (2, 1, 2, f1=.5, g1=sqrt(.13),

b1=log(1.1), b2=log(1.29), EY=.31,

+ rho2=.30)

N = 666 Power g1=0: 99.7 b2=0: 80.3

joint: 81.2

Thus, we find that 666 participants would be needed to detect mediation of the intervention 

effect on urine positivity by positive emotions. An additional calculation shows that with a 

direct treatment effect β1 = log(1.5) on urine positivity, the required sample size would 

increase to 691.

Simulation Studies

Simulations were used to assess the performance of the sample size estimators. In the first 

step, we used the R implementation to compute sample sizes supposed to provide 80 % 

power in tests with a two-sided type I error rate of 5 %, using (4), (5), (6), and (7), for a 

range of the relevant parameters. For binary predictors, f1 and f2 = 0.25 or 0.5, while for 

continuous X1 and X2, σ1 = σ2 = 1. For the linear model σe = 1, for the logistic and Poisson 

models, E(Y) = 0.2 or 0.5, and for the Cox model, Φ = 0.2 or 0.5. A common range of values 

for γ1 was used for each configuration of exposure and mediator. Values of β2 were chosen 

so that the resulting sample size or number of events was in the small-to-moderate range. 

We also modeled moderate confounding of both the exposure-mediator and mediator-

outcome relationships (ρ1 = ρ2 = 0.3). To simplify data generation, we assumed Poisson-

distributed count outcomes without over-dispersion (ϕ = 1) and independence (δ = 1). For 

each configuration, 16 or 18 scenarios were examined.

For each model and set of parameters, 1,000 datasets were generated of the size specified by 

the sample size estimation procedures. In each dataset, X1 was generated as standard normal 

or binary with exact prevalence f1, then X2 given X1 was generated using (1). Continuous, 

binary, and count outcomes were generated using (2). Finally, survival times were generated 

using (3), assuming a constant baseline hazard, with the shortest d = nψ treated as events, 

and the rest censored. In a final step, Wald tests of γ1 = 0 and β2 = 0 were conducted, and PJ, 

the power of the joint test, estimated by the proportion of datasets in which both null 

hypotheses were rejected.

Results

Figure 1 plots P̂
J against the calculated sample size or number of events for each type of 

outcome. The two dashed horizontal lines give approximate 95 % point-wise margins of 

simulation error for a true power of 80 %. The figure shows that in all of the scenarios, a 
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calculated power of 80 % corresponded to simulated power of 75–85 %, indicating that the 

formulas may be very useful in practice. Excursions from the expected point-wise 

simulation error with a range of 77.5–82.5 % were observed in 8 % of scenarios, 

respectively, only slightly more than the expected 5 %, and fairly mild. Tabular results 

corresponding to the figure are available online. We also used regression to assess patterns 

in the simulation results. Table 1 shows linear regression effects on the absolute deviations 

from 80 % power in the simulations presented in Fig. 1. We found evidence for small 

increases in average absolute error with stronger exposure-mediator and weaker mediator-

outcome relationships, count outcomes, and scenarios with continuous exposure and binary 

mediator.

Discussion

In this paper, simulation methods have been proposed for estimating sample size and power 

for joint testing of both links in an indirect pathway from exposure to mediator to outcome. 

The new methods, which build on the work of Wang and Xue (2012), ensure adequate 

power when both links in the indirect pathway must be established.

Many approaches have been proposed for computing power and sample size for generalized 

linear models with multiple predictors. In contrast to methods based on score (Self and 

Mauritsen 1988; Lyles et al. 2007) and likelihood-ratio tests (Lyles et al. 2007; Self et al. 

1992; Shieh 2000), our proposed methods, like those of several other authors (Bernardo et 

al. 2000; Whittemore 1981; Wilson and Gordon 1986; Signorini 1991; Shieh 2005; 

Schoenfeld and Borenstein 2005; Demidenko 2007), are based on Wald tests, which are the 

default in regression routines in most statistical packages and commonly used in practice, 

although they may be less reliable in small samples and at alternatives far from the null 

(Hauck and Donner 1977). The proposed methods rely on approximation of the expected 

information matrix. Analytic results for the information matrix have previously been 

obtained for a limited number of cases (Demidenko 2007; Signorini 1991; Whittemore 

1981; Bernardo et al. 2000; Vittinghoff et al. 2008). We also follow others (Schoenfeld and 

Borenstein 2005; Demidenko 2007) in estimating the information matrix only under the 

alternative rather than the null hypothesis (Wilson and Gordon 1986; Shieh 2005). While 

numeric integration has been implemented (Schoenfeld and Borenstein 2005), the simulation 

approach we propose is simpler and flexible, but not without limitations (Lyles et al. 2007; 

Glueck and Muller 2003).

Likewise, several approaches have been used to test for indirect effects. These include tests 

of γ1β2 = 0, sometimes implemented within structural equation models, and tests of the 

difference in coefficients , where  is the coefficient for exposure in a reduced 

model excluding the mediator. In addition, Judd and Kenny (1981) and Baron and Kenny 

(1986) proposed more elaborate, but less powerful, joint testing setups, requiring an 

additional test of  with Judd and Kenny (1981) also requiring that β1 should not be 

statistically different from zero in the full outcome model adjusting for X2. An anonymous 

reviewer helpfully noted that a test for the total effect is not needed to establish mediation, 

nor is demonstration that the direct effect is zero, because partial mediation is common in 

practice. In analyses using logistic and Cox models for the outcome, tests of the difference 
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in coefficients are complicated by so-called collapsibility (Robins and Greenland 1992): that 

is, when β2 ≠ 0, β1 and  may differ systematically even if γ1 = 0, especially when X2 is 

common but not ubiquitous. Moreover, for each testing approach, power and type I error 

rates also differ across many proposed standard error estimators, including bootstrap 

resampling; see MacKinnon et al. (2002) for a review. Joint testing of γ1 = 0 and β2 = 0 

avoids problems with collapsibility in logistic and Cox models, as well as the non-normal 

distribution of the test statistic γ̂
1β̂

2, and provides a good tradeoff of power and type I error 

(MacKinnon et al. 2002).

The proposed methods have several limitations. First, the sample size estimates may be less 

accurate for other methods of testing for an indirect effect. MacKinnon et al. (2002) show 

that power for the alternative tests can differ from the power of the joint test; similarly, Fritz 

and MacKinnon (2007) document substantial variation in sample size estimates across 

testing approaches. Second, the proposed methods do not accommodate cases where 

exposure and mediator interact in the model for the outcome; this will be the focus of future 

work. Third, the approximate method used to account for confounding of the exposure-

mediator and mediator-outcome relationships may sometimes be inaccurate. Our simulation 

results suggest that implementations involving strong exposure-mediator and weak 

mediator-outcome relationships, count outcomes, and scenarios with continuous exposure 

and binary mediator may warrant extra caution.

In addition, while Hsieh et al. (1998) propose 0.3 as a default value for the multiple 

correlation with confounders, this input, as well as the over-dispersion of count outcomes 

and the design effect in clustered studies, may be unknown or hard to estimate. A general 

problem in all sample size planning is identifying reasonable values for the required inputs, 

which are more numerous in the mediation context. As in other contexts, some inputs may 

be chosen by convention (e.g., α = 0.05 and power of 80 %). Others, however, may need to 

be specified based on relevant findings in the literature, pilot study data, or clinically 

meaningful differences. When specific values for input parameters are difficult to identify, a 

range of plausible values may be considered, which our easy-to-use methods facilitate.

Finally, the asymptotic independence of the two Wald statistics for testing γ1 = 0 and β2 = 0 

may not hold exactly with small or moderate sample sizes. In particular, when γ̂
1 is large by 

chance, reflecting greater than expected correlation between X1 and X2, Var(β̂
2) should 

increase, making it more difficult to reject β2 = 0 and thus both null hypotheses (Fritz et al. 

2012). However, the simulations suggest reasonable robustness to such violations for the 

range of inputs examined. While they show slight inaccuracies in some cases, these are 

likely small compared to the effects of uncertainty in prior knowledge about γ1 and β2 as 

well as other required parameters.

In summary, we have proposed easy-to-use methods for calculating sample sizes for joint 

testing of both links in an indirect mediating pathway analyzed using linear, logistic, 

Poisson, and Cox models. These methods can also be used to compute power when 

investigators propose examining mediation using already collected data. The 

implementation requires straightforward inputs, accounts for confounding of the exposure-

mediator and mediator-outcome relationships, over-dispersion of count outcomes, and 

Vittinghoff and Neilands Page 10

Prev Sci. Author manuscript; available in PMC 2016 May 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



design effects due to clustering, and has been validated using simulation. R code and 

documentation are available online.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Estimated power for continuous, binary, count, and survival outcomes, with moderate 

confounding of exposure-outcome and mediator-outcome relationships. Dashed horizontal 

lines give approximate 95 % point-wise margins of simulation error for a true power of 80 

%; in all scenarios, simulated power is consistent or nearly so with this targeted value. Key 

to scenarios: □ continuous exposure and mediator; ○ binary exposure, continuous mediator; 

△ continuous exposure, binary mediator; ◇ binary exposure and mediator
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Table 1

Regression effects on absolute percentage point deviations of simulated power from target of 80 %

Factor Effect P value

Model coefficients

 γ1 0.88 0.07

 β2 −0.83 0.03

Exposure/mediator

 Continuous/continuous Ref –

 Binary/continuous 0.02 0.91

 Continuous/binary 0.41 0.04

 Binary/binary −0.27 0.35

Outcome

 Continuous Ref –

 Binary 0.26 0.13

 Count 0.60 0.0003

 Survival 0.14 0.39

Estimates for γ1 and β2 assume standardized continuous exposures and mediators
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