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Abstract

How does the process of information transmission aftect the
cultural products that emerge from that process? This question
is often studied experimentally and computationally via iter-
ated learning, in which participants learn from previous partic-
ipants in a chain. Much research in this area builds on math-
ematical analyses suggesting that iterated learning chains con-
verge to people’s priors. We present three simulation studies
suggesting that when the population of learners is heteroge-
neous, the behavior of the chain is systematically distorted by
the learners with the most extreme biases. We discuss implica-
tions for the use of iterated learning as a methodological tool
and for the processes that might have shaped cultural products
in the real world.

Keywords: Iterated learning; language evolution; cultural
evolution; inductive biases; Bayesian cognition

Which aspects of our language or culture are shaped by the
inductive biases possessed by people, and which aspects are
shaped by the process of transmission from one learner to the
next? A key framework for thinking about and disentangling
these factors is known as iterated learning, shown schemat-
ically in Figure 1. Iterated learning is a particular kind of
cultural transmission in which behavior arises in one individ-
ual (or generation) by learning from the observations of the
previous person (generation), forming a chain of learners.

An appealing characteristic of iterated learning is that the
behavior of iterated learning chains can be characterized
mathematically: under certain assumptions, iterated learn-
ing chains with Bayesian learners will converge to a distri-
bution that depends on the learners’ priors and the size of the
bottleneck (Griffiths & Kalish, 2007; Rafferty, Griffiths, &
Klein, 2014). These results have allowed researchers to ex-
plore inductive biases in different tasks, including function
learning (Kalish, Griffiths, & Lewandowsky, 2007), visual
working memory (Lew & Vul, 2015), reasoning about every-
day events (Lewandowsky, Griffiths, & Kalish, 2009), and
category learning (Canini, Griffiths, Vanpaemel, & Kalish,
2014). They have been especially useful in studying language
evolution (Kirby, Griffiths, & Smith, 2014).
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Figure 1: Schematic illustration of a typical iterated learning
paradigm, which assumes that learner n learns on the basis of the
data provided by learner n — 1.

Importantly, the theoretical proofs about how iterated
learning chains converge depend critically on the assump-
tions made. For example, if learners select the hypothesis
with the highest posterior probability rather than sample from
their posterior, an iterated learning chain will tend to exag-
gerate the prior (Kirby, Dowman, & Griffiths, 2007). Simi-
larly, we use language to talk about things and events in the
world. If one changes the mathematical assumptions to re-
flect this insight, then the stationary distribution of the chain
more closely resembles the posterior distribution (Perfors &
Navarro, 2014). In this paper we consider the role played
by individual differences. Such differences are robustly ob-
served in many areas of cognition, yet theoretical results typ-
ically assume that all learners share the same biases.

When individual differences exist, what should we expect
to observe? One possibility is that the chain converges to a
distribution that reflects the “average prior belief” in some
sense. For instance, if 10% strongly believe in hypothesis
A and 90% of people strongly believe in hypothesis B, one
might hope that an iterated learning chain reflects 10% A and
90% B hypotheses. Alternatively, perhaps the chain will pro-
duce some other reasonable compromise between A and B
that weights each learner in equal proportion. Our findings
indicate that neither of these situations necessarily occurs: if
people do not share the same priors, iterated learning is not
guaranteed to converge to the prior in any meaningful sense.
Instead, the distribution to which it does converge is dispro-
portionately influenced by the most biased learners. We illus-
trate this using three simulation studies.



Case study 1: Language evolution

Do all learners have equal influence on the process of lan-
guage evolution? Consider the pressures on a language to in-
corporate a particular grammatical rule or not. Some learners
may have STRONG opinions about a particular rule or con-
struction, whereas others might have WEAK opinions. Ex-
actly who has which might might vary with the particular lin-
guistic context and construction involved: for instance, chil-
dren may to have a bias for regularization that adults do not
share (Hudson Kam & Newport, 2005), but adult second-
language learners may have biases based on transfer from
their first language while children do not (Ellis, 2015). We are
fairly agnostic at this point about what such biases might be;
all that matters for the present purposes is that it is plausible
that there are individual differences in at least some language
learning biases. Our question is what effect this might have
on the nature of the evolved language.

To study this, consider the following experimental design.
Participants are presented with sentences in an artificial lan-
guage that may incorporate a construction (e.g., pluralization
rule, morphological marking, etc). After training, participants
are asked to produce new sentences, which are presented as
the input to the next learner in the chain. This is a relatively
typical design, and a simple Bayesian model for this learning
problem can be constructed as follows.

If 0 denotes the probability that the grammatical rule
should be followed, a Bayesian learner specifies a prior distri-
bution P(0). For simplicity we assume a Beta(a,b) distribu-
tion in which P(8) o< *~!(1 —8)*~!. In our simulations we
assume that some learners enter with a STRONG bias about the
grammatical rule, formalized via a Beta(1,10) prior. In con-
trast, a WEAK learner might have the opposite bias, but not a
strong one, which can be formalized with a Beta(2,1) prior.
Regardless of the biases the learner possesses, it is assumed
that belief updating follows Bayes’ rule. After a training ses-
sion in which x of n sentences follow the rule, the posterior
distribution P(0|x) is

P(8]x) o P(x[6)P(8) M

where P(x|0) o< 8*(1 —0)"™* is the probability of observ-
ing x out of n rule-consistent cases if the true probability
is 8. Under these assumptions, the posterior over 0 is a
Beta(a + x,b +n — x) distribution. When asked to generate
a novel sentence, a Bayesian learner might sample a value
of O from their posterior, and their output satisfies the rule
with probability 8. The number of rule-consistent sentences
y generated by the learner is thus sampled from the posterior
predictive distribution P(y|x):

1
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This kind of model is often used to study regularization in
iterated learning designs (Ferdinand, Thompson, Kirby, &
Smith, 2013; Reali & Griffiths, 2009).
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Figure 2: Simulating an iterated learning investigation of language
evolution. When the learners all share the same bias (left and mid-
dle columns) the average proportion of responses converges to the
prior mean (top row), and the distribution of responses converges to
the prior distribution (bottom row). When the chain is a mixture of
STRONG and WEAK learners, the average proportion of responses
does not correspond to the average prior expectation, nor does the
distribution converge to the average prior in the population.

Simulation

We simulate the results of three different kinds of iterated
learning experiments. In all cases, the first person is taught
ten sentences in an artificial language, five consistent with a
grammatical rule; they then generate ten sentences used as in-
put to the next learner. In the first experiment all learners have
a STRONG bias about the rule, and in the second experiment
all of them have a WEAK bias in the opposite direction. In
the third experiment, half of the learners have STRONG biases
and half have WEAK opposing ones. In each case results are
aggregated across 100,000 simulated iterated learning chains.

The results are shown in Figure 2. As predicted by previ-
ous work, in both of the homogeneous cases iterated learning
experiment transparently reveals the learner biases: the chain
converges to the prior. However, when we consider the iter-
ated learning experiment conducted with a mixed population
(right panels of Figure 2) we observe a strikingly different re-
sult. In this situation — where half of the learners are STRONG
and half are WEAK — the average bias in the population is to
expect 38% of sentences to be rule-consistent. Yet, as the
top right panel shows, the iterated learning chain converges
to a smaller number, with only 27% of responses following
the rule. More importantly, as the bottom right panel reveals,
the distribution of responses bears very little resemblance to
the underlying population biases. One might have hoped that,
when learners bring different priors to an iterated learning ex-
periment, the chain would converge to a weighted average of
their priors. In this case, this weighted average would be a
50-50 mixture of the priors of STRONG learners and WEAK
learners (plotted as a histogram). As the figure illustrates, the
iterated learning chain (lines) does not converge to anything
even remotely similar to this mixture distribution.
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Figure 3: Distribution of responses in a mixed chain plotted as a
function of the type of learner generating the response.

Discussion

Why does the iterated learning procedure behave this way
when the population is heterogeneous? The answer can
be found by separating the responses on the last iteration
by learner type, shown in Figure 3. As is clear from in-
spection, the WEAK bias learners (left) are greatly influ-
enced by the STRONG bias learners: their responses are rule-
consistent 36% of the time, rather than 67% as one might
expect given their Beta(2,1) prior, and the distribution of
responses (lines) deviates markedly from their prior (his-
togram). The opposite effect occurs too (right panel), but it is
much smaller: the STRONG bias learners increase the propor-
tion of rule-consistent responses from the 9% rate implied by
the Beta(1,10) prior to 17.5% in the iterated learning chain.
Similarly, their distribution of responses is not markedly dif-
ferent from their prior.

As this example illustrates, when individual differences ex-
ist an iterated learning procedure is not guaranteed to reveal
the inductive biases of the learner. The STRONG learners ap-
ply a strong inductive bias, and these learners require a lot of
evidence before they are willing (or able) to apply the gram-
matical rule in question. As a consequence, data generated
by a WEAK learner will have minimal ability to sway such a
person. The reverse does not hold: the WEAK learners in this
scenario are very responsive to external input. As a result, a
WEAK bias participant makes a much larger adjustment from
the prior than does a STRONG bias one, with the consequence
that the overall behavior of the mixed chain is much more
heavily driven by the group with the strongest bias.

Case study 2: Group decision making

Groups of people often arrive at beliefs that seem to lack any
evidentiary basis, famously described by the “groupthink”
phenomenon (Janis, 1982). How do these false beliefs arise?
Do they necessarily reflect a bias shared by all reasoners, or
can an entire community be misled by a small number of
highly biased learners?

To examine this question, we consider a scenario in which
a jury of 12 people begin their deliberations with a straw poll.
A notepad is passed around the room, with each person writ-
ing down whether they would decide in favor of the plaintiff
before removing their sheet of paper and passing the pad to
the next juror. Unfortunately, each juror can read the inden-
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tations left by the previous one, forming an iterated learning
chain. A Bayesian juror might reason about this by consider-
ing two hypotheses, namely that the evidence favors the plain-
tiff (e = 1) or the defendant (¢ = 0). The trial evidence sets
the juror’s prior belief that P(e = 1) = 0, which is updated
when the vote v of the preceding juror is revealed. The juror
unconsciously assigns a reliability value r to this information,
such that P(v=1|e = 1) = P(v=0|e = 0) = r. If the preced-
ing juror voted for the plaintiff, the juror’s posterior degree of
belief that the verdict should favor the plaintiff becomes

B r0
0+ (1-r)(1-96)

Ple=1|v=1) 3)
and the posteriors are calculated similarly when the earlier
vote favored the defendant. For simplicity, we assume that
jurors generate their vote probabilistically by sampling from
the posterior.

As these equations illustrate, when r = 0.5 the current juror
completely ignores the vote provided by the previous one and
the posterior probability is identical to the prior. This arises
naturally when the current juror is confident that their exist-
ing beliefs incorporate all relevant information about the case,
and as such the opinions of other jurors can have no influence
upon their own beliefs. We refer to such a juror as a GOAT —
someone who forms their own view and is not led to conclu-
sions by the opinions of others. In contrast, suppose the juror
is underconfident or unsure about their beliefs, perhaps sus-
pecting that other jurors have access to different information.
Such a juror will set » > 0.5, because they attribute eviden-
tiary value to the opinions of others. We refer to this kind of a
juror as a SHEEP because they are more likely to adjust their
vote to agree with the votes of others.

Simulations with homogeneous chains

We consider three scenarios. In the first scenario all jurors are
GOATS who set » = 0.5 and have a modest opinion in favor of
the defendant (6 = 0.4). In the second scenario all jurors are
SHEEP who set » = 0.95 and have a modest opinion favoring
the plaintiff (0 = 0.6). Finally we consider a situation where
half of the jurors are SHEEP and the other half are GOATS. To
illustrate what happens in these situations we simulated each
scenario 100,000 times. The results are plotted in Figure 4.
Not surprisingly, because the GOAT jurors ignore the input
and generate responses directly from their own prior beliefs,
the “chain” starts at their prior (on average, 40% of jurors
vote for the plaintiff) and the total number of votes in favor of
the plaintiff follows a binomial distribution.

What should we expect to see if all jurors are SHEEP? One
reading of the literature suggests that, since iterated learning
chains of Bayesian learners converge to the prior, and since
the first SHEEP samples from their own prior, we should see
a result not dissimilar to the one we see for GOATS. That
is — while we might expect to see non-independence among
successive jurors — we should find that on average a SHEEP
juror should vote for the plaintiff 60% of the time, in accor-
dance with their priors. However, as the middle column of
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Figure 4: The jury straw poll. The top row plots the probability that
each juror votes for the plaintiff, as a function of their position in
the chain (the dashed line plots the population average prior), and
the bottom row plots the distribution of votes for the plaintiff. The
left and middle plots show juries composed entirely of GOATS and
SHEEP respectively. The plots on the right depict a scenario when
50% of jurors are SHEEP and 50% are GOATS.

Figure 4 illustrates, this is not what happens. The first ju-
ror votes in accordance with their priors, but by the time the
12th juror is polled, the probability of voting for the plain-
tiff has risen to 67%. Moreover, it is simple to prove that
this reflects the true stationary distribution of the chain. To
see this, let p = P(v; = 1|vi_1 = 0) denote the probability
that the i/ juror in the chain votes for the plaintiff given that
the previous juror voted for the defendant, and similarly let
d = P(v; = 0|v;_; = 1) denote the probability that the i'" ju-
ror switches the other direction. The transition matrix for the
strawpoll is thus

| I=p p
=[] @
A chain with this transition matrix converges to a stationary
distribution T in which the (marginal) probability of voting
for the defendant and plaintiff is proportional to d and p re-
spectively. To verify this, note that

ol 7y

d 1-d
= [d(1—p)+pd,dp+p(1—d)]
= [d,p|<m 5)

For a SHEEP juror, the probability of switching the vote from
the plaintiff to the defendant is d = (.1 x .4)/(.1 x .44 .9 x
.6) = .069, and similarly the probability of switching the vote
towards the plaintiffis p= (.1 x.6)/(.1 x .6+.9x .4) =.142.
In the long run, a chain of SHEEP converges to a 67% prob-
ability of voting for the plaintiff even though each individual
SHEEP only assigns a 60% prior probability to the plaintiff.
On the surface, the SHEEP result seems at odds with the
convergence proof in Kalish et al. (2007) - Bayesian learners
sampling from their posterior do not (in this instance) con-
verge to the prior. To that end, it is useful to note that the

SHEEP chain violates the assumptions of the original proof,
because the SHEEP jurors use the wrong likelihood function
for the learning problem. The SHEEP juror assigns eviden-
tiary value to the opinions of other jurors when they should
not, because all jurors have seen the same facts at trial. This
miscalibration creates the “groupthink” behavior: the SHEEP
jurors “double count” the evidence, and the iterated learning
chain exaggerates their prior bias.

Simulations with mixed chains

Now consider what happens when SHEEP and GOATS are
mixed together in equal proportions (Figure 4, right). The
SHEEP assign prior probability of 0.6 to the plaintiff, whereas
the GOATS assign prior 0.4, so the population average prior is
0.5. Alternatively, if we consider the behavior of the two ho-
mogeneous iterated learning chains, the SHEEP on their own
would be expected to converge to 0.67 and the GOATS would
converge to 0.4, so the average of these two long run proba-
bilities is 0.54. If one did not know the detail of the models,
it would be reasonable to expect a mixed chain to produce
an average probability of voting for the plaintiff somewhere
between 50% and 54%. Unsurprisingly, it does nothing of
the sort. Because GOATS are insensitive to the opinions of
others and SHEEP are highly sensitive, the GOATS dominate
the mixed chain, and the long run behavior converges to a
43% probability of voting for the plaintiff. That is, the SHEEP
“learn” to mimic GOATS but the GOATS make no such accom-
modation.

Discussion

The implications of the jury scenario are twofold. First, the
SHEEP-only chain illustrates that it is possible for an iter-
ated learning chain to exaggerate biases even when Bayesian
learners sample hypotheses from the posterior. The result
complements an earlier result by Perfors and Navarro (2014),
which showed that the convergence of iterated learning chains
is affected when there is an additional input to the chain (i.e.,
the world passes new information to learners). In the SHEEP
chain we find that convergence is even influenced when learn-
ers mistakenly believe there is additional information being
passed into the chain. This miscalibration drives a kind of
groupthink, in which a collection of individually underconfi-
dent learners becomes overconfident as a group.

Second, the behavior of a heterogenous chain is not easily
predicted by considering the behavior of the corresponding
homogeneous chains, or the priors of individual learners. The
mixed chain of SHEEP and GOATS is mostly driven by the
GOATS, even though a homogenous chain of GOATS produces
a much less extreme outcome than the a chain of pure SHEEP.
The reason for this is obvious when we consider the decision
making strategies used by the two learner types, but we rarely
have access to such information in real life.

Case study 3: Categorization

Our third case study considers a categorization problem with
non-Bayesian learners. We consider stimuli that vary along
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Figure 5: Categorization with eight items that vary along one di-
mension (top panel). Items can be organized into categories that are
coherent (left panel) or incoherent (right panel).

a single dimension, with 8 exemplars spaced evenly across
the range (i.e., at x = 1,...,8): an example is shown at the
top of Figure 5. Each stimulus can be assigned to one of two
categories (A or B), and we are interested in the inductive
biases that people bring to this categorization problem.

An iterated learning design can be used to explore these bi-
ases. During category learning, each learner is shown training
items that consist of four exemplars and their category labels,
selected randomly subject to the constraint that there must
be one exemplar of each category in the training set. During
the test phase the learner must classify the remaining four ex-
emplars. An iterated learning chain is constructed by using
a random subset of responses from one learner as the train-
ing data for the next, again subject to the constraint that the
learner must be shown at least one example of each category.

In our simulations we assume each participant applies the
Generalized Context Model (GCM: Nosofsky, 1986). In the
GCM, the probability of assigning a test item located at y to
category A, given training items x = (xj,...,x,) with labels
1= (l,...,1I,) is proportional to the summed similarities be-
tween y and the category A exemplars:

B Yit=aS(xi,y)
Yi=aS(xi,y) + Xij—p S(xi,y)

where similarity decays exponentially with distance, S(x,y) =
exp(—A|x—y]|). This model has one free parameter: the speci-
ficity parameter A that describes how rapidly similarity de-
cays. When A is large, similarity falls away very quickly with
distance, and when A is small it diminishes more slowly.

P(y€Alx,l) (6)

Category coherence bias

Although not framed as a Bayesian model, the GCM imposes
biases on how learners categorize, and these biases depend
on A. For instance, the GCM prefers “coherent” categories
that assign similar items to the same category. A simple mea-
sure of “coherence” counts the number of times that adjacent
items are assigned to the same category: the categories on
the left of Figure 5 have maximal coherence of six, whereas
the incoherent categories on the right have coherence zero.
To investigate GCM biases, we simulated the iterated learn-
ing experiment described above 100,000 times using differ-
ent values of A, assuming that all learners in a chain have the
same A. The results (Figure 6, left) show that the GCM bias
for coherent categories is strongest for large values of A.
Given that individual differences in categorization exist,
we ran a second simulation study (Figure 6, right). This time

851

Category Coherence

Homogeneous Priors

Heterogenous Priors

<
©

Adjacent Items in Same Category
Adjacent Items in Same Category

3.0
3.0

Iterations Iterations

Figure 6: Exploring the “category coherence” bias using iterated
learning. The y axis plots category coherence (defined in main text).
Left panel: Category coherence assuming all participants share the
same prior (A). Here there are three chains each reflecting one of
the three A values. As A grows higher, iterated learning produces
more coherent categories. The grey dashed line reflects the average
of the three chains on iteration 15. Right panel: When there are
individual differences within participants, the learners all become
somewhat more similar to one another but the effect is small.

we mixed learners that varied in their A values (sampling uni-
formly at random from 0.1, 1 and 10) into a single chain
to investigate the effect heterogeneity has on each learner
type. Unlike our previous simulations, the heterogeneity of
the chain did not distort any of the three GCM learner types
to a large extent: the right hand side of Figure 6 is not too dis-
similar to the left. Based on this, one might conclude that the
heterogeneity of the population has done very little to distort
the categorization schemes produced by the various different
learners. Unfortunately, this conclusion is unwarranted.

Category size bias

Categorization is complex, and even this simple problem in-
volves multiple biases. A preference for coherent categories
is one kind of bias that a learner might express, but one might
be just as interested in exploring the extent to which learners
prefer categories to be of similar size. Does the GCM have a
bias to split items evenly or unevenly? Does it depend on A?

To that end, we counted the number of exemplars assigned
to the smaller category in our previous simulations. Figure 7
plots this for the three homogeneous chains (left) and the sin-
gle heterogeneous chain (right). The left panel shows that the
GCM has a bias to prefer unevenly sized categories: this bias
is weak when the learner generalizes narrowly (A = 10), and
strong when the learner generalizes widely (A = 0.1). Unfor-
tunately, almost none of this differentiation is evident when
we look at the heterogeneous chains: the average response is
substantially different from when the three learner types were
taken separately, and there are almost no individual differ-
ences to be found, with all three learner types producing sim-
ilar responses. With respect to the category size bias, mixing
different learners into the iterated learning chain has almost
completely erased their differences.
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Figure 7: Exploring the “category size” bias using iterated learn-
ing. The y axis plots the number of items assigned to the smaller
category. Left panel: Homogenous iterated learning chains when
all learners use the same value of A. The three plots in the figure
are quite dissimilar: when A is small the GCM strongly prefers an
unequal allocation of items to categories, but when A is large the
preference is weak. The grey dashed line reflects the average of the
three chains on iteration 15. Right panel: When the same GCM
learners are mixed into a heterogenous iterated learning chain, most
of this variation is suppressed (the curves are close to each other),
and the average size of the smaller category (grey dashed line) has
substantially decreased.

General discussion

The three case studies all display the same pattern. When
all learners bring the same inductive bias to the problem, it-
erated learning behaves in the way that previous theoretical
proofs suggest it should (Griffiths & Kalish, 2007). In par-
ticular, when learners are Bayesians with identical priors and
correctly specified likelihoods, iterated learning reveals those
priors. For a non-Bayesian learner an analogous inductive
bias is uncovered. However, when learners bring different bi-
ases to the problem there is no guarantee that the responses of
any one participant genuinely reflects their prior biases, nor is
there any guarantee that the average responses reflect the av-
erage bias in the population. To the contrary, our case studies
suggest that those learners with the most extreme biases exert
a disproportionate influence on the chain. We briefly consider
the implications if this pattern holds more generally.

Iterated learning leads a double life within the psychologi-
cal literature. As a theoretical tool, the underlying dynamics
of the chain provide valuable insights into how cultural and
linguistic evolution works. From that perspective, our results
open up new questions: for instance, does language evolution
reflect the cognitive biases of all speakers, or do some sub-
populations (e.g., children) exert stronger influences on the
process? Similarly, learners with the most confidence in their
own beliefs will exert a disproportionate influence on others,
providing a justification for expressing overconfidence: if the
goal is to have cultural influence rather than be correct, strong
biases are better than weak ones. Regardless, the effect of het-
erogeneity in this context need not be a reason for concern so
much as a reason to ask new questions.

On the methodological side, iterated learning has often

been used as a tool for exploring the inductive biases of in-
dividuals. Based on formal results suggesting that the sta-
tionary distribution of an iterated learning chain is the prior,
researchers in cognitive science have sometimes used these
designs as a form of elicitation task, in which the (between-
subject) distribution of responses is taken to be reflective
of some (within-subject) latent mental representation of the
world. In this context, our results suggest that some care is
required. When people bring different priors to a task, there
is no inherent reason to think that the stationary distribution
of an iterated learning chain reveals those priors. The distor-
tions are both systematic and difficult to predict. The latter
point is especially troublesome from a methodological per-
spective. In our third case study, it was not obvious to us that
heterogeneity among category learners would produce a large
distortion of “category size” biases, but almost no distortion
to the bias for “coherent” categories. In this context, we sug-
gest that the interpretation of iterated learning experiments is
difficult when individual differences exist.

References

Canini, K., Griffiths, T., Vanpaemel, W., & Kalish, M. (2014). Re-
vealing human inductive biases for category learning by simulat-
ing cultural transmission. Psychonomic Bulletin & Review.

Ellis, R. (2015). Understanding second language acquisition (2nd).
Oxford University Press.

Ferdinand, V., Thompson, B., Kirby, S., & Smith, K. (2013). Regu-
larization behavior in a non-linguistic domain. In Proceedings of
the 35th Annual Conference of the Cognitive Science Society.

Griffiths, T. & Kalish, M. (2007). Language evolution by iterated
learning with Bayesian agents. Cognitive Science, 31(3), 441—
480.

Hudson Kam, C. & Newport, E. (2005). Regularizing unpredictable
variation: the roles of adult and child learners in language for-
mation and change. Language Learning and Development, 1(2),
151-195.

Janis, 1. L. (1982). Groupthink: psychological studies of policy deci-
sions and fiascoes. Houghton Mifflin Boston.

Kalish, M., Griffiths, T., & Lewandowsky, S. (2007). Iterated learn-
ing: Intergenerational knowledge transmission reveals inductive
biases. Psychonomic Bulletin & Review, 14(2), 288-294.

Kirby, S., Dowman, M., & Griffiths, T. (2007). Innateness and cul-
ture in the evolution of language. Proceedings of the National
Academy of Sciences, 104(12), 5241-5245.

Kirby, S., Griffiths, T., & Smith, K. (2014). Iterated learning and
the evolution of language. Current Opinion in Neurobiology,
28C(108-114).

Lew, T. & Vul, E. (2015). Structured priors in visual working mem-
ory revealed through iterated learning. In Proceedings of the 37th
Annual Conference of the Cognitive Science Society, Austin, TX.
Cognitive Science Society.

Lewandowsky, S., Griffiths, T., & Kalish, M. (2009). The wisdom of
individuals: exploring people’s knowledge about everyday events
using iterated learning. Cognitive Science, 33, 969-998.

Nosofsky, R. M. (1986). Attention, similarity, and the identification-
categorization relationship. Journal of Experimental Psychology:
General, 115(1), 39-57.

Perfors, A. & Navarro, D. J. (2014). Language evolution can be
shaped by the structure of the world. Cognitive Science, 38(4),
775-793.

Rafferty, A., Griffiths, T., & Klein, D. (2014). Analyzing the rate at
which languages lose the influence of a common ancestor. Cog-
nitive Science, 38, 1406-1431.

Reali, F. & Griffiths, T. (2009). The evolution of frequency distribu-
tions: relating regularization to inductive biases through iterated
learning. Cognition, 111, 317-328.

852





