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Abstract

Background—Emerging data suggest that reduced exposure to ultraviolet (UV) radiation is 

associated with increased mortality in the general population. To date, there has not been 

examination of the association between UV exposure and mortality in dialysis patients.

Methods—We examined the association between UV index, a proxy of UV exposure, and all-

cause mortality among 47,286 US dialysis patients (entry period 2001–2006, with follow-up 

through 2009) from a large national dialysis organization using multivariable Cox regression. The 

UV index was ascertained by linkage of individual patients’ residential zip codes to National 

Oceanic and Atmospheric Administration data, and was categorized as low (0–<3), moderate (3–

<5), moderate-high (5–<6), high (6–<7), and very-high (≥7). In secondary analyses, we examined 

the UV index—mortality association within subgroups of age (<65 vs. ≥ 65 years old), sex, and 

race (white vs. non-white).

Results—The study population’s mean±SD age was 60±16 years old and included 46% women 

and 56% diabetics. Compared to patients residing in moderate-high UV index regions, those 

residing in high and very-high UV index regions had lower mortality risk: adjusted HRs 0.84 

(95% CI) 0.81–0.88 and 0.83 (95% CI) 0.75–0.91, respectively. A similar inverse association 

between UV index and mortality was observed across all subgroups, although there was more 

pronounced reduction in mortality among whites vs. non-whites.
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Conclusion—These data suggest that dialysis patients residing in higher UV index regions have 

lower all-cause mortality compared to those living in moderate-high UV regions. Further studies 

are needed to determine mechanisms underlying the UV index—mortality association.

Keywords

Dialysis; environment; mortality; ultraviolet radiation; vitamin D

INTRODUCTION

There has been increasing interest in the impact of environmental exposures such as 

ultraviolet (UV) radiation exposure on human health. UV radiation has been classified as a 

human carcinogen by the U.S. Department of Health and Human Services and the World 

Health Organization given its causal associations with skin cancer.[1] However, emerging 

data from the general population suggest that increased UV exposure is associated with 

decreased risk of certain non-dermatologic malignancies (e.g., prostate, breast, non-

Hodgkin’s lymphoma) as well as reduced cardiovascular and all-cause mortality.[2–4] It has 

been hypothesized that increased endogenous synthesis of vitamin D stimulated by UV 

exposure may be a mechanistic link for this paradoxical association. Indeed, UV irradiance 

is an important determinant of vitamin D biosynthesis and status in the general population.

[5, 6]

Vitamin D deficiency is highly prevalent in chronic kidney disease (CKD) patients including 

those who are dialysis-dependent,[7–9] and it is associated with increased risk of adverse 

cardiovascular surrogates (e.g., coronary artery calcification,[10] atherosclerosis, [11] 

endothelial dysfunction[11]), cardiovascular events,[12] and mortality.[13, 14] Emerging 

data suggest that, despite impaired conversion of inactivated to activated vitamin D in 

dialysis patients, both solar UV exposure[15–18] and artificial UV exposure[19] may be 

important predictors of vitamin D status in this population. Notwithstanding the known 

impact of vitamin D on hard outcomes in dialysis patients, there has not been examination of 

the association between UV exposure and mortality risk in this context.

We hypothesized that dialysis patients residing in areas of high UV exposure have decreased 

mortality risk compared to those living in areas of low UV exposure. To better inform the 

field, we sought to examine the association between UV exposure and all-cause mortality 

within a large, contemporary cohort of US dialysis patients with comprehensive capture of 

sociodemographic, comorbidity, and laboratory data.

MATERIALS AND METHODS

Study Population

We examined administrative data from all end-stage renal disease patients who underwent 

hemodialysis or peritoneal dialysis in one of the DaVita Healthcare Partners Inc. outpatient 

dialysis facilities during an entry period of July 1, 2001 to June 30, 2006, with follow-up 

through June 30, 2009. The creation of this cohort has been previously described.[20] The 

study was approved by the Institutional Review Committees of the Los Angeles Biomedical 
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Research Institute at Harbor-UCLA and DaVita Clinical Research. The requirement for a 

written consent form was waived because of the large sample size, anonymity of the patients 

studied, and the non-intrusive nature of the research.

The first (baseline) study quarter was the calendar quarter in which each patient’s dialysis 

vintage was >45 days during at least half of that quarter. Patients were included provided 

that they were ≥18 years old during the baseline quarter, and had available residential zip 

code and UV exposure data.

Ultraviolet Exposure Ascertainment

We sought to examine the association between forecasted ambient UV radiation, quantified 

by the UV index, and mortality. The UV index was first proposed by Environment Canada 

and subsequently adopted and standardized by the World Health Organization and the 

World Meteorological Organization in 1994. It is used to predict the UV radiation intensity 

reaching the earth’s surface, and has been used as a proxy of UV exposure in prior 

epidemiologic studies.[21–23] The calculation of UV index takes into account stratospheric 

ozone concentration, cloud coverage, altitude, sun’s position, surface albedo, tropospheric 

aerosol loading[24], and it is additionally adjusted for the variations in skin sensitivity to 

different wavelengths of light, based on the McKinlay-Diffey erythema action spectrum.[25] 

The resulting value is scaled by a numerical factor and rounded to the nearest whole 

number, ranging from zero to the mid-teens. A higher UV index corresponds to more intense 

UV radiation incident at the surface of a particular location.[26]

The National Oceanic and Atmospheric Administration (NOAA) National Weather Center 

provides daily UV index forecasts for 58 major US cities. Each US state is represented by at 

least one of these 58 cities, with additional representation in California, Florida, New York, 

Pennsylvania, and Texas. UV data for each city was applied to all zip codes within the 

cities’ county boundaries, for an aggregate of 5,425 zip codes. UV index values were linked 

to each individual DaVita dialysis patient using their residential zip codes, ascertained at 

baseline and updated quarterly. While UV index may be forecasted for any time of the day 

or year, in this study, each patient’s UV index represents the average of the annual noon-

time UV index values estimated over his/her respective follow-up period. In primary 

analyses, UV indices were stratified into five groups, adapted from the Environmental 

Protection Agency’s UV index categories: low (0–<3), moderate (3–<5), moderate-high (5–

<6), high (6–<7), and very-high (≥7).

Outcome Ascertainment

The primary outcome of interest was all-cause mortality which was ascertained from the 

DaVita database and through United States Renal Data System database linkage. Patients 

were followed for the outcome of interest until death, or censoring for kidney transplantation 

or end of the study period (June 30, 2009).

Dialysis Treatment and Laboratory Covariates

Dialysis vintage was defined as the duration of time between the first day of dialysis 

treatment and the first day that the patient entered the cohort. To minimize measurement 
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variability and to address the effect of short-term variation in dietary and fluid intake on 

weight and laboratory measurements, we averaged all repeated measures for each patient 

during any given calendar quarter (i.e., over 13 consecutive weeks or 3 months). Blood 

samples were drawn using uniform techniques in all dialysis clinics and were transported to 

the DaVita Laboratory in Deland, Florida typically within 24 hours, and were measured by 

automated and standardized methods. Most laboratory values were measured monthly, and 

serum ferritin and intact parathyroid hormone (PTH) levels were measured at least quarterly. 

Hemoglobin was measured weekly to bi-weekly in most patients. Most blood samples were 

collected pre-dialysis with the exception of the post-dialysis serum urea nitrogen.

Statistical Methods

Baseline characteristics between UV index categories were compared using non-parametric 

tests for linear trend. The associations between UV index and mortality were evaluated 

using Cox proportional hazards regression models. For each analysis, three models were 

examined with incremental multivariable adjustment for baseline covariates:

a. Model 1 which included the entry calendar quarter;

b. Model 2 which included covariates from Model 1, as well as age, sex, dialysis 

modality, race/ethnicity (African–Americans, non-Hispanic Caucasians, Hispanics, 

Asians, and other), diabetes mellitus, dialysis vintage, primary insurance, marital 

status, and dialysis dose (i.e., single pool kt/v);

c. Model 3 which included covariates from Model 2, as well as body mass index, 

baseline comorbidities (alcohol dependence, active smoking, cardiac failure, 

chronic-obstructive pulmonary disorder, cerebrovascular disease, and peripheral 

vascular disease), and the following laboratory covariates: serum albumin, calcium, 

bicarbonate, creatinine, ferritin, hemoglobin, lymphocyte percentage, normalized 

protein catabolic rate, phosphorus, white blood cell count, alkaline phosphatase, 

and PTH.

UV index-mortality associations were examined within subgroups of age (<65 years vs. ≥65 

years), sex, and race (white vs. non-white). We employed a complete case analysis approach 

in which analyses were restricted to patients with available data for all covariates used in 

each respective model, although missing data was <1% for most laboratory and 

demographic variables. All p-values were 2-tailed (p<0.05). Analyses were conducted using 

Stata version 10.1 (Stata Corporation, College Station, Texas).

RESULTS

Baseline Characteristics

After excluding patients who were <18 years old or who had missing age data; those who 

did not maintain ≥45 days of thrice-weekly dialysis treatment during the baseline calendar 

quarter; and those with missing zip code-linked UV index data, the final source cohort 

consisted of 47,286 dialysis patients. Supplementary Figure 1 shows the distribution of 

dialysis patients according to their respective UV index categories, with the majority of 

patients residing in areas of moderate to high UV regions.
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Baseline demographic, clinical and laboratory data of dialysis patients across the five UV 

index categories were examined (Table 1). Compared to patients residing in the lowest UV 

index category, those residing in the highest category were more likely to be African-

American, Hispanic, divorced, treated with hemodialysis, and of shorter dialysis vintage; 

had a higher prevalence of diabetes, atherosclerotic heart disease, cardiac failure, and 

peripheral vascular disease; and had higher mean residual renal function, ferritin, and PTH 

levels.

Ultraviolet Index and Mortality in Dialysis Patients

The association between residential UV index divided into five categories and all-cause 

mortality was examined in three Cox regression models with incremental levels of 

multivariable adjustment (Figure 1 and Table 2). Compared to patients living in moderate-

high UV index areas, those living in high to very-high UV index areas had decreased 

mortality risk, whereas patients residing in moderate and low UV index areas had decreased 

and similar mortality risk, respectively.

Subgroup Analyses

The UV index—mortality association was examined in patients stratified by age (<65 vs. ≥ 

65 years old), sex, and race (white vs. non-white). A similar inverse association between UV 

index and mortality was observed in all subgroups, although there appeared to be a more 

pronounced reduction in mortality among whites compared to non-whites (Figure 2 and 

Supplementary Table 1).

DISCUSSION

To our knowledge, this is the first study to examine the association between UV exposure 

and mortality in a contemporary cohort of US dialysis patients. In the general population, 

there is evidence that solar UV radiation is causally associated with skin cancer (e.g., 

malignant melanoma, basal and squamous cell cancer) via direct induction of DNA damage 

and indirect effects on immune suppression,[27, 28] and it has been deemed to be a 

carcinogen by the International Agency for Research on Cancer.[29] However, emerging 

data suggest that UV radiation may also have potential health benefits. A number of 

ecologic and cohort studies have suggested that there is an inverse association between UV 

radiation (defined as UV index, solar UV-B radiation, and erythemogenic UV radiation in 

these studies) with cancer incidence and mortality (renal,[4, 30] prostate,[3, 4, 31] breast,[4, 

31, 32] colon,[4, 30–32], and rectal[4, 30]). Furthermore, in a recent prospective cohort 

study of 38,472 Swedish women, participants who reported higher levels of prior natural and 

artificial UV exposure (i.e., prior history of sunburn, sunbathing, and solarium use) had 

decreased all-cause and cardiovascular mortality.[2] In our study, UV index was employed 

as an objective metric of forecasted solar radiation, and we observed that individuals living 

in higher UV exposure regions had decreased mortality risk compared to those living in low 

to moderate UV exposure regions.

Increased biosynthesis of vitamin D has been suggested as a potential mechanistic link 

between higher UV indices and decreased cancer incidence and cardiovascular mortality. In 
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terms of the former outcome, vitamin D has been associated with decreased cancer risk vis-

a-vis improved cell differentiation and apoptosis, anti-angiogenesis, decreased metastases, 

and decreased risk of viral infection-associated malignancies in some[33–35], but not all 

studies[36]. In terms of the latter outcome, multiple observational studies have reported an 

inverse association between vitamin D levels and greater risk of adverse cardiovascular 

surrogates, cardiovascular events and mortality in populations with[12–14] and without[37–

39] chronic kidney disease (CKD). Solar UV-B radiation promotes the conversion of 7-

dehydrocholesterol to pre-vitamin D3 in skin tissue, which then isomerizes to vitamin D3 

(i.e., cholecalciferol). Vitamin D3 is then transported to the liver where it undergoes 

hydroxylation by cytochrome p450 enzymes to become 25-hydroxy-vitamin D (i.e., 

calcidiol), the major circulating form of vitamin D. Inactive 25-hydroxy-vitamin D is then 

converted into active 1,25-dihydroxy-vitamin D (i.e., calcitriol), by the 1-α hydroxylase 

enzyme present in various parts of the nephron.[40] Although 1,25-dihydroxy-vitamin D 

production is downregulated in advanced CKD as a result of hyperphosphatemia,[41] 

uremia,[42, 43] metabolic acidosis,[44] and elevated fibroblast growth factor-23,[45, 46] 

experimental and clinical studies have shown that administration of 25-hydroxy-vitamin D, 

even in anephric individuals,[18] is associated with significant increases in activated vitamin 

D. This may be due to the presence of 1-α hydroxylase in other tissues (e.g., skin, lymph 

nodes, gastrointestinal tract, pancreas, heart, and adrenal glands) as an extra-renal source of 

activated vitamin D.[47, 48]

Cardiovascular disease is the leading cause of death in CKD, and vitamin D deficiency is 

associated with an increased risk of cardiovascular risk factors (e.g., albuminuria[49]), 

adverse cardiovascular surrogates (e.g., coronary artery calcification,[10] atherosclerosis,

[11] endothelial dysfunction[11]) as well as increased risk of cardiovascular events[12] and 

all-cause mortality in this population.[13, 14] Observational studies have suggested that 

treatment with activated vitamin D reduces all-cause and cardiovascular mortality in patients 

with CKD, including those who are non-dialysis dependent and those receiving dialysis.[50–

54] Although several studies suggest 25-hydroxy-vitamin D treatment may have benefits on 

cardiovascular surrogates in CKD patients,[55, 56] there have not been any well-designed 

randomized controlled trials or large observational cohort studies examining hard outcomes 

in this context.

Emerging data suggest that reduced sunlight exposure may be a predictor of vitamin D 

deficiency in dialysis patients,[17] and that artificial UV radiation may be an alternative 

source for vitamin D repletion in this context. In an observational cohort study of 15 dialysis 

patients, narrow-band UV-B treatment over a 3-week period resulted in a significant 

increase in serum 25-hydroxy and 1,25-dihydroxy-vitamin D levels.[19] Although dialysis 

patients may be less likely to participate in outdoor physical activity and hence have reduced 

natural UV exposure,[57, 58] even brief durations of solar or artificial UV exposure have 

been shown to significantly increase vitamin D levels in the general population[59–62]; 

further study is needed to determine if natural UV radiation may be a viable source of 

vitamin D repletion in dialysis patients. Due to data limitations, we were not able to directly 

ascertain patients’ frequency or duration of outdoor activity, other factors that modify UV 

exposure (e.g., photosensitizing medications or photo-protective clothing), or vitamin D 

levels in our study; however, it is plausible that patients residing in higher UV index regions 
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experience greater solar UV radiation exposure and subsequent synthesis of vitamin D. 

Future studies directly measuring solar UV radiation exposure, serum vitamin D levels, and 

cardiovascular outcomes in CKD patients are needed.

When we examined associations between UV index and mortality across subgroups of race, 

higher UV index categories were associated with a more potent survival benefit among 

white patients compared to non-whites in the highest UV index category (≥7). While genetic 

polymorphisms may partially account for variations in total vitamin D level across racial 

groups [63], light-skinned individuals experience greater UV-B absorption and subsequent 

vitamin D synthesis as a result of their reduced melanin skin content, compared to those who 

are non-white.[64, 65]

Strengths of our study include the examination of a large, contemporary US dialysis 

population with extended follow-up; comprehensive availability of clinical data allowing for 

adjustment of multiple confounders; examination of individual patients’ residential UV 

indices; and use of a validated assessment of UV exposure that accounts for potential 

confounders such as altitude. However, several limitations of our study bear mention. First, 

our analyses examined quarterly residential UV index only, and did not account for patients 

who may have migrated over time within that period. Second, we are unable to confirm that 

an individual’s residential UV index, which is a forecast, directly correlates with the 

patient’s actual UV exposure. Third, given that the National Oceanic and Atmospheric 

Administration measures UV index in major US cities only, our study cohort may not be 

representative of dialysis patients living in outlier or rural regions. Fourth, while we 

attempted to adjust for broad markers of nutritional status (e.g., normalized protein catabolic 

rate, serum albumin) in our multivariable models, due to data limitations we were unable to 

account for more granular nutritional variables (e.g., diet, nutritional supplements) that may 

confound the UV index—mortality association. For example, there may be regional 

variation in dietary intake (including foods that are supplemented with vitamin D), or 

utilization of vitamin D supplements that are also associated with mortality.[66] Lastly, as 

with all observational studies, we cannot confirm that there is a causal association between 

UV index and mortality.

Our data suggest that higher UV index is associated with survival benefit, and that these 

associations may be even more pronounced among dialysis patients vs. the US general 

population. Further studies are needed to confirm findings, and to determine the mechanistic 

pathways by which UV index is associated with mortality risk in dialysis patients.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Association between residential ultraviolet (UV) index divided into five categories (low: 
<3; moderate: 3–<5; moderate-high: 5–<6; high: 6–<7; and very-high: ≥7) with all-cause 
mortality in dialysis patients (reference group: UV index 5–<6)
Model 1 included UV index category and entry calendar quarter. Model 2 included 

covariates from Model 1, as well as age, sex, dialysis modality, race/ethnicity, diabetes 

mellitus, dialysis vintage, primary insurance, marital status, and dialysis dose (i.e., single 

pool kt/v). Model 3 included covariates from the Model 2, baseline comorbidities (alcohol 

dependence, active smoking, cardiac failure, chronic-obstructive pulmonary disorder, 

cerebrovascular disease, and peripheral vascular disease), body mass index, serum albumin, 

calcium, bicarbonate, creatinine, ferritin, hemoglobin, lymphocyte percentage, normalized 

protein catabolic rate, phosphorus, white blood cell count, alkaline phosphatase, and 

parathyroid hormone.
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Figure 2. Association between residential ultraviolet (UV) index divided into five categories (low: 
<3; moderate: 3–<5; moderate-high: 5–<6; high: 6–<7; and very-high: ≥7) with all-cause 
mortality in dialysis patients within subgroups of age (<65 years vs. ≥65 years), sex (female vs. 
male), and race (white vs. non-white)
Models included UV index category, entry calendar quarter, age, sex, dialysis modality, 

race/ethnicity, diabetes mellitus, dialysis vintage, primary insurance, marital status, dialysis 

dose (i.e., single pool kt/v), baseline comorbidities (alcohol dependence, active smoking, 

cardiac failure, chronic-obstructive pulmonary disorder, cerebrovascular disease, and 

peripheral vascular disease), body mass index, serum albumin, calcium, bicarbonate, 

creatinine, ferritin, hemoglobin, lymphocyte percentage, normalized protein catabolic rate, 

phosphorus, white blood cell count, alkaline phosphatase, and parathyroid hormone.
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Table 2

All-cause mortality hazard ratios (95% confidence intervals) in dialysis patients across ultraviolet (UV) index 

categories.

UV index n=47,286 Model 1*
HR (95% CI)

Model 2†
HR (95% CI)

Model 3††
HR (95% CI)

<3 595 0.98 (0.87, 1.09) 1.01 (0.90, 1.13) 0.99 (0.88, 1.11)

3–<5 19,941 1.04 (1.01, 1.07) 0.97 (0.94, 0.99) 0.94 (0.91, 0.97)

5–<6 18,630 1.00 1.00 1.00

6–<7 7,206 0.92 (0.88, 0.96) 0.84 (0.81, 0.88) 0.84 (0.80, 0.88)

7+ 914 0.73 (0.66, 0.80) 0.82 (0.75, 0.91) 0.82 (0.74, 0.91)

*
Model 1 included UV index category and entry calendar quarter.

†
Model 2 included covariates from Model 1, as well as age, sex, dialysis modality, race/ethnicity, diabetes mellitus, dialysis vintage, primary 

insurance, marital status, and dialysis dose (i.e., single pool kt/v).

††
Model 3 included covariates from Model 2, baseline comorbidities (alcohol dependence, active smoking, cardiac failure, chronic-obstructive 

pulmonary disorder, cerebrovascular disease, and peripheral vascular disease), body mass index, serum albumin, calcium, bicarbonate, creatinine, 
ferritin, hemoglobin, lymphocyte percentage, normalized protein catabolic rate, phosphorus, white blood cell count, alkaline phosphatase, and 
parathyroid hormone.
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