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Abstract

Topics in Cosmology and Dark Matter

by

Yan Yu

We study the obstacles to constructing metastable de Sitter space in string theory.

We explain that it is very difficult to find stationary points for which both the string

coupling is small and compactification radii are large even allowing the possibility of

arbitrarily large fluxes, and a set of small perturbations of any would-be metastable de

Sitter state, classically, will evolve to uncontrollable singularities. We study the Trans-

planckian Censorship Conjecture and show a conflict between the TCC and conventional

conjectures about the string landscape. We calculate, as a function of the primordial

black holes mass and initial abundance, the combination of dark matter particle masses

and number of effective dark degrees of freedom leading to the right abundance of dark

matter today, whether or not evaporation stops around the Planck scale.
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de Sitter Space in String Theory
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Chapter 1

Introduction

Measurements of mass density ΩM , and cosmological-constant energy density

ΩΛ from supernovae [1], CMB [2], and Large Scale Structure observations [3] showed

observational evidence of accelerating universe with a positive cosmological constant.

Cosmological constant is about

λ = 10−47GeV4

However, natural value might be said to be M4
p because we could estimate the

vacuum energy density by summing the zero-point energies in momentum space with

some mass m up to a cutoff Λ ≈ (8πG)−1/2,

⟨ρ⟩ =
∫ Λ

0

4πk2dk

(2π)3
1

2

√
k2 +m2 ≈ Λ4

16π2
= 2× 1071GeV4 (1.1)

This is about 120 orders of magnitude larger than the observed cosmological

constant. In Weinberg’s paper, he introduced a different approach to cosmological con-

stant which is named anthropic principle [4]. Basically it says the cosmological constant

2



has to be that number in order to let intelligent life arise. The cosmological constant

should not be too large, otherwise the universe would very early enter an eternal expo-

nentially expanding de Sitter phase, which would make the gravitational condensation

weak and prevent the growth of structure, and thus observers would be hard to develop

without the formation of galaxies and stars. Thus the anthropic principle take accounts

the smallness of cosmological constant. We should notice that this idea presupposes a

large possible set of vacuum states of the underlying theory, with some distribution of

properties, which we called the cosmic landscape. Next, we will introduce the landscape

in string theory.

In the modern language of string theory, instead of different theories, we have

different solutions of a master theory. By varying the dynamical moduli, which usually

refers to the size and shape parameters of the compact internal space that 4-dimensional

string theory needs, we are able to move around the solution space of supersymmetric

vacua. In low energy approximation the moduli appear as massless scalar fields, and

the solutions of the theory are characterized by the values of the scalar field moduli.

Changing the value of such scalar involves a change of potential energy, and the local

minima of the potential are the vacua. If the local minimum is an absolute minimum

the vacuum is stable, otherwise it is metastable. The value of the potential energy at the

minimum is the cosmological constant for that vacuum, and for a positive cosmological

constant, the vacuum is de Sitter space.

However, the continuum of solutions in the supersymmetric moduli space are

all with vanishing cosmological constant, and we have to believe that there are other
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separate islands beside the supersymmetric moduli space. The fact that the cosmological

constant is small and positive requires the vacua include states with non–zero vacuum

energy. Also the vacuum energy and the term of λ/8πG must cancel to about 120

decimal places, thus the fine tuning of the cosmological constant makes it hard to find

a vacuum in the observed range unless there are an enormous number of solutions with

almost every possible value of λ, and we call the space of all such string theory vacua

the landscape.

The supersymmetric moduli space of string theory is a special part of the land-

scape where the potential is zero or negative, and these vacua are marginally stable.

Now since evidence of observation indicates positive c.c, corresponding to positive vac-

uum energy and de Sitter solution, the question becomes: does de Sitter Space live in

the landscape of string theory? Some models were provided by Bousso and Polchinski

[5], and subsequently by Kachru, Kallosh, Linde and Trevedi [6], in which they subtly

used ingredients of string theory including fluxes, branes, anti–branes and instantons

to construct a solution with a small positive cosmological constant. But these models

are not reliable, they are not based on any systematic approximation. Unfortunately,

de Sitter space has troubles in string theory. The only objects in string theory which

are rigorously defined are S–Matrix elements, which require the existence of an asymp-

totic boundary in string theory. However, de Sitter space does not allow this kind of

asymptotic description. The space-time asymptotic boundaries of de Sitter space are

problematic, and there are no known observables in de Sitter Space which can substi-

tute for S–matrix elements. The problem of defining S-matrix elements in de Sitter
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space is that the de Sitter vacua of string theory are metastable. According to Dine

and Seiberg[7] there are always runaway solutions in string theory where the effective

potential has a de Sitter vacuum at some Φ = Φ0, but the absolute minimum occurs

at Φ = ∞ with exactly zero vacuum energy, and so it is always possible for de Sitter

vacuum to decay onto the supersymmetric moduli space.

Given the fact that it is difficult to construct a de Sitter vacuum in string

theory in a controlled approximation, Ooguri and Vafa suggests the possibility that

meta-stable de Sitter space does not belong to the landscape [8], instead dS lies in what

they call the swampland of string theory or a set of states which do not exist in string

theory. In their conjecture the cosmological constant in our universe is positive but

the scalar field is not at a minimum, as in quintessence models. Their criterion of the

swampland is in the form of |∆V | ≥ c · V , where c is a positive constant, and this lower

bound of |∆V | forbids the de Sitter vacua. This would bring some possible implications

for inflation, the nature of the currently observed dark energy, and implementing the

anthropic explanation of the c.c. However, We will not address the conjecture in its

full generality, but we will examine back to the starting point. The authors of [8] begin

with the observation that it has proven difficult to construct de Sitter space in string

theory. While there are constructions that appear to achieve a positive cosmological

stationary point in a suitable effective action [9, 10], it is not clear that they are in any

sense generic.

But one should first ask: what would it mean to construct de Sitter space

in string theory? In most constructions, one starts with some classical solution of the
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equations of critical string theory. These solutions invariably have moduli or pseudo-

moduli. Then one adds features, such as fluxes, branes, and orientifold planes which

give rise to a potential for these moduli, and looks for a local minimum with positive

four-dimensional c.c. These attempts to construct de Sitter space generally raise two

questions. First, what is the approximation scheme that might justify any such con-

struction? Second, any would-be de Sitter space found in this way is necessarily, at

best, metastable: inevitably there is a lower energy density in asymptotic regions of

the original moduli space. Quantum mechanically, the purported de Sitter state cannot

be eternal. It has a history; it will decay in the future and must have been created by

some mechanism in the past. The quantum mechanics of this process is challenging to

pin down. In this thesis, we will see that already classically, the notion of an eternal

de Sitter space in string theory is problematic; small perturbations near the de Sitter

stationary point of the effective action evolve to singular cosmologies.

In more detail, there are at least two challenges to any search for metastable

de Sitter space in string theory:

1. One requires a small parameter(s) allowing a controlled approximation to finding

stationary points of an effective action. Here one runs into the problem described

in [7]. Without introducing additional, fixed parameters (i.e., introducing param-

eters not determined by moduli), would-be stationary points in the potential for

the moduli lie at strong coupling. Typically, attacks on this problem (and the

question of de Sitter space) exploit large fluxes. If there is to be a systematic

approximation, it is necessary that the string coupling be small and compactifica-
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tion radii large at any would-be stationary point found in this way. If the strategy

is to obtain inverse couplings and radii scaled by some power of fluxes, it is also

important that these fluxes (and possibly other discrete parameters) can be taken

arbitrarily large, without spoiling the effective action treatment. Even allowing

uncritically for this latter possibility, we will see that it is quite challenging to

realize arbitrarily weak string coupling and large radius, with positive or negative

c.c.1

2. If one finds such a stationary point, one must ask about stability. More precisely,

in string theory, we are used to searching for suitable background geometries

and field configurations by requiring that the evolution of excitations about these

configurations is described by a unitary S matrix. Classically, at least in a flat

background, this is the statement that any initial perturbation of the system has

a sensible evolution to some final perturbation. Again, we will see that this re-

quirement is problematic for any would-be classical de Sitter stationary point in

such a theory; even if all eigenvalues of the mass-squared matrix (small fluctua-

tion operator) are positive, large classes of small perturbations evolve to singular

geometries.

The problem of evolution of small perturbations is connected with the prop-

erties of the moduli of string compactifications, described above. We consider, in par-

ticular, disturbances of the moduli fields in a classical, eternal de Sitter space. We will

1This point has been noted earlier [11–13]. A broad critique, applicable to many non-perturbative
scenarios, has been put forward in [14].
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see in this thesis that some small fluctuations in the far past are amplified, rolling over

the barrier to a contracting universe that culminates in a big crunch singularity. As a

result, already classically, there is no notion of an S matrix (in the sense of describing

the future of any small disturbance of the system), even restricted to very small per-

turbations localized near the metastable minimum of the potential. Within our current

collection of calculational tools, we lack any framework in string theory to study such

singularities. As a result, we will explain, the problem of constructing de Sitter space

in string theory is not, at least at present, accessible to systematic analysis.

Overall, then, we will argue that we lack theoretical methods to address, in any

systematic fashion, the problem of constructing de Sitter space in string theory, much

as we lack the tools to understand big bang or big crunch singularities in any controlled

approximation. The existence of metastable de Sitter states may be plausible or not,

but it is a matter of speculation.2 The failure to find such states in any controlled

analysis appears, at least at present, inevitable.

2Reference [15] gives non-perturbative arguments for the absence of de Sitter vacua in controlled
approximations. Various scenarios for how de Sitter might arise, and how this might be understood,
even lacking a systematic approximation, have been put forward. Among many examples, [16, 17] argue
for a more refined version, based on explicit constructions; [18, 19] consider F-theory compactifications
and associated prospects. [20] proposes another way in which de Sitter might arise. [21] takes a
phenomenological view of the problem. An alternative discussion of de Sitter space in flux vacua
appears in [14], who argues against flux stabilization on rather general grounds. [22] takes an optimistic
view of the prospects for such constructions and [23–25] put forth several scenarios.
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Chapter 2

Review of de Sitter Space

For a long time there’s data from the Cosmic Microwave Radiation Background

showing that the universe is extremely homogenous and isotropic, which implies that

the spacetime of the universe is maximally symmetric. De Sitter space is the max-

imally symmetric spacetime with positive Ricci curvature, corresponding to positive

cosmological constant. Here we will use two approaches to find the metric of de Sitter

spacetime.

2.1 embedding a 4D hyperboloid in 5D Minkowski space

D-dimensional de Sitter spacetime can be viewed as a timelike hyperboloid

embeded in D + 1-dimenional Minkowski spacetime. Consider a hyperboloid:

−Z2
0 + Z2

1 + Z2
2 + Z2

3 + Z2
4 = H−2

Λ (2.1)
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embedded in 5d Minkowski space with metric:

ds25 = dZ2
0 − dZ2

1 − dZ2
2 − dZ2

3 − dZ2
4 (2.2)

This hyperboloid lies outside the light cone and so the induced metric has Lorentzian

signature.

To obtain an closed de Sitter universe, consider coordinates {t, χ, θ, ϕ} on the

hyperboloid with transformation:

Z0 = H−1
Λ sinh(HΛt)

Z1 = H−1
Λ cosh(HΛt)cosχ

Z2 = H−1
Λ cosh(HΛt)sinχcosθ

Z3 = H−1
Λ cosh(HΛt)sinχsinθcosϕ

Z4 = H−1
Λ cosh(HΛt)sinχsinθsinϕ

(2.3)

We immediately get

ds2 = dt2 −H−2
Λ cosh2(HΛt)

[
dχ2 + sin2χ(dθ2 + sin2θdϕ2)

]
(2.4)

Another choice of coordinates reduce the metric in {Zi} coordinates to a form corre-

sponding to an open de Siter universe:

Z0 = H−1
Λ sinh(HΛt)coshχ

Z1 = H−1
Λ cosh(HΛt)

Z2 = H−1
Λ sinh(HΛt)sinhχcosθ

Z3 = H−1
Λ sinh(HΛt)sinhχsinθcosϕ

Z4 = H−1
Λ sinh(HΛt)sinhχsinθsinϕ

(2.5)

10



which leads to:

ds2 = dt2 −H−2
Λ sinh2(HΛt)

[
dχ2 + sinh2χ(dθ2 + sin2θdϕ2)

]
(2.6)

For the flat slicing, we do the transformation:

Z0 = H−1
Λ sinh(HΛt) + r2eHΛtHΛ/2

Z1 = H−1
Λ cosh(HΛt)− r2eHΛtHΛ/2

Z2 = eHΛtsinχcosθ

Z3 = eHΛtsinχsinθcosϕ

Z4 = eHΛtsinχsinθsinϕ

(2.7)

And the metric is:

ds2 = dt2 −H−2
Λ exp(2HΛt)

[
dχ2 + χ2(dθ2 + sin2θdϕ2)

]
(2.8)

Actually, the exponential growth of the scale factor with time is what has been observed

on large scales, studying Type I supernovae and other phenomenon.

2.2 Via analytical continuation

dSD is a Lorentzian signature version of the Euclidean sphere SD by analytic

continuation:

Z0 → iZD+1, t→ iτ (2.9)

11



To see how analytic continuation changes the signature of the metric, consider the line

elements of three surface with constant curvature:

dΩ2
3 = H−2

Λ

dχ
2 +


sinh2χ

χ2

sin2χ

 dΩ2
2

 (2.10)

From top to bottom are metric with negative curvature, zero curvature and positive

curvature.

The line elements for four dimensional case (with positive curvature) is:

dl24d = H−2
Λ

(
dξ2 + sin2ξdΩ2

3

)
(2.11)

Since de Sitter spacetime is of constant positive curvature, for dΩ3 we choose the bottom

expression which is a three sphere (because only three sphere corresponds to positive

curvature). After changing the variable ξ → HΛξ, the metric is recasted as

ds2 = −dl24d = −dξ2 −H−2
Λ sin2(HΛξ)

[
dχ2 + sin2χ(dθ2 + sin2θdϕ2)

]
(2.12)

This is the metric of positive curvature space in Euclidean signature. In order

to obtain a metric of a close de Sitter spacetime in Lorentzian signature, one needs to

apply the analytical continuation ξ → it+ π/2, which turns sin(HΛξ) → cosh(HΛt):

ds2 = dt2 −H−2
Λ cosh2(HΛt)

[
dχ2 + sin2χ(dθ2 + sin2θdϕ2)

]
(2.13)

For an open de Sitter metric, we should analytically continue ξ → it and χ → iχ

simultaneously, which turns sin(HΛξ) → isinh(HΛt) and sinχ→ isinhχ:

ds2 = dt2 −H−2
Λ sinh2(HΛt)

[
dχ2 + sinh2χ(dθ2 + sin2θdϕ2)

]
(2.14)

12



Now we can demonstrate that this geometry solves Einstein’s equations with a positive

cosmological constant. In the vacuum, we have

Rµν −
1

2
gµνR− λgµν = 0 (2.15)

We find that with the de Sitter metric, if we compute the Riemann tensors and Riemann

scalar then we get

λ = 2− cot2χsech2t + tanh2t (2.16)

which is greater than 0, thus the cosmological constant is positive.

13



Chapter 3

Constraints on Classical de Sitter

Solution

3.1 Introduction

Since a small positive cosmological constant seems to be required by recent

data, and also the universe went through a period of exponential expansion at a time

shortly after the big bang, de Sitter space seems likely to play an important role in

any understanding of our present and past universe. However, as we previously argued

de Sitter space has no S Matrix, which is the only rigorously defined object in string

theory. In this chapter we will study the statement of constructing an S matrix for

large occupation numbers in initial and final states, and give an alternative to requiring

the existence of an S matrix in the case of de Sitter space. We then study the challenge

of searching a positive vacuum solution from an effective action within a controlled

14



approximation.

3.2 The S Matrix and Classical Field Evolution

Much of our focus will be on the evolution of classical perturbations in metastable

de Sitter space. We will argue that many of these perturbations evolve towards a big

crunch singularity, and that this is outside of the scope of current methods in string

theory/quantum gravity. In critical string theory, the object of interest is the S matrix.

A classical solution of the string equations corresponds to a space-time for which one

can define a sensible scattering matrix. The connection to classical scattering, in field

theory and string theory, arises from considering the evolution of small disturbances.

These correspond to initial and final isolated, localized states, with large occupation

numbers. These can be considered as coherent states. For a single real scalar field, for

example, one can develop a classical perturbation theory. Start, at lowest order, with a

field configuration of the form

ϕ(x) = ϕp⃗1(x) + ϕp⃗2(x) + ϕ
k⃗1
(x) + ϕ

k⃗2
(x) (3.1)

where each term represents a localized wave packet with mean momentum k⃗i. Mo-

mentum conservation requires p⃗1 + p⃗2 = k⃗1 + k⃗2 within the momentum uncertainty,

and non-trivial scattering requires that the wave packets all overlap at a point in space-

time. Quantum mechanically, the scattering problem we have outlined here corresponds

to some large number of particles of each momentum in both the initial and final states.

15



Making a decomposition into positive and negative frequency components:

ϕ(x) = ϕ+(x) + ϕ−(x) →


ϕ+(x)|Φ⟩ = Φ(x)|Φ⟩

⟨Φ|ϕ−(x) = ⟨Φ|Φ∗(x)

. (3.2)

In momentum space, Φ±(k⃗)eik⃗·x⃗∓iωt corresponds to the positive and negative frequency

components. Reality requires Φ±(k⃗) = Φ±∗(−k⃗). Occupation numbers scale as |Φ±(k⃗)|.

Order by order in the interaction, λϕ4, we can compute corrections to the

classical scattering,

δϕ(x) = δϕp⃗1(x) + δϕp⃗2(x) + δϕ
k⃗1
(x) + δϕ

k⃗2
(x). (3.3)

Evaluated at the interaction point, δϕ defines an S matrix (more precisely a T matrix)

on the space of coherent states. This can be decomposed as an S matrix on states

of definite particle number; the classical approximation is valid when the occupation

numbers are large.

Phrased this way, the statement that one can construct an S matrix for large

occupation numbers in initial and final states is the statement that one has sensible

evolution from any initial classical configuration (described by p⃗1, p⃗2) to any final con-

figuration (k⃗1, k⃗2).

In the case of de Sitter space, the question of the existence of an S matrix

is subtle [26]. We will focus, instead, on what we view as a minimal requirement that

all classical perturbations in a would-be metastable de Sitter vacuum have a sensible

evolution arbitrarily far into the future. We will see that some subset of possible per-

turbations evolve to singular geometries, over which we have no theoretical control. We
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argue that this means that one does not have a controlled construction of such spaces.

The existence, or not, of such metastable de Sitter spaces then becomes a matter of

conjecture.

3.3 Searching for Stationary Points of an Effective Action

We first explore some of the challenges to the construction of stationary points

of the effective action with positive c.c. Typically, these efforts involve the introduction

of branes, orientifold planes, and fluxes [9]. One searches for particular stationary points

of the action with positive cosmological constant, and asks whether the string coupling

is small and the compactification radii large at these points [27, 28]. This, by itself, does

not address the question of whether there is a systematic approximation. The system

with branes and fluxes is not a small perturbation of the system without, and the range

of validity of the expansion in one is not related to that of the other. If there is to be a

systematic approximation of any sort, one requires a sequence of such stationary points

as one increases the flux numbers; the would-be small parameters are the inverse of

some large flux numbers. In our discussion we will assume that it makes sense to take

such numbers arbitrarily large. Then the goal is to find stable, stationary points of the

action where

1. The string coupling is small.

2. All compactification radii are large.

3. The cosmological constant is small and positive.
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As reviewed in [10], satisfying this set of constraints is challenging. We review some of

the issues in this section. Similar analyses, with similar conclusions, have appeared in

[11–13]. Our point of view is that this is not surprising. Searches at weak coupling were

not likely to yield non-supersymmetric metastable vacua, dS or AdS, and provide little

information about the existence or non-existence of such states. For the dS case, it is

hard to see how such states could be understood without a much broader understanding

of their cosmology, as we will discuss subsequently.

We follow [9] in studying type II theories in the presence of an Op plane, and

a background geometry with metric

ds2 = gµνdx
µdxν + ρ g0IJ dy

IdyJ . (3.4)

Here g0IJ represents a background reference metric for the compactified dimensions. gµν

represents the metric of four dimensional space-time, which we hope to be de Sitter.

Reference [9] distinguishes directions parallel and perpendicular to the orientifold plane

with an additional modulus σ; for simplicity, we assume σ ∼ 1; this assumption can be

relaxed without severe difficulty. We ignore other light moduli as well. We also include

NS-NS 3-form and R-R q-form fluxes, H
(n)
IJK , F

(n)
q .

The fluxes will be understood as taking discrete, quantized values. The de-

pendence of terms on the moduli ρ and τ = ρ3/2 e−ϕ is given in [9], and is readily

understood from the following considerations:

1. In the NS-NS sector, there is a factor 1/g2 = e−2ϕ in front of the action. The

four-dimensional Einstein term has a coefficient τ2 = ρ3/g2. This can be brought
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to canonical form by the Weyl rescaling, gµν → gµντ
−2. The moduli τ and ρ will

be our focus.

2. Again in the NS-NS sector, terms involving the three-index tensor, before rescal-

ing, contain a factor τρ−3; after the Weyl rescaling, they acquire an additional

factor of τ−3 in front. Terms involving the six-dimensional curvature similarly

scale as ρ−1τ−3.

3. In the RR sector, the flux terms have, before rescaling, no factors of 1/g. They

have various factors of ρ depending on the rank of the tensor. The Weyl rescaling

introduces a factor of τ−4.

The resulting action is [9]:

V = −τ−2

(
ρ−1R6(σ)−

1

2
ρ−3

∑
n

σ6n−3(p−3)
∣∣∣H(n)

∣∣∣2)− τ−3ρ
p−6
2 σ

(p−3)(p−9)
2

T10
p+ 1

+
1

2

τ−4
4∑
q=0

ρ3−q
∑
n

σ6n−q(p−3)
∣∣∣F (n)
q

∣∣∣2 + 1

2
τ−4ρ−2

∑
n

σ6n−5(p−3)
∣∣∣F (n)

5

∣∣∣2
 .

(3.5)

Compare R6(σ) and T10 term, since R6(σ) ∼ 1 and T10 ∼ 1, then the condition of T10

term dominates is

τ−2ρ−1 ≪ τ−3ρ
p−6
2 (3.6)

With the Weyl rescaling τ ∼ 1
gs
ρ3/2 , we find that when p = 8, T10 term will dominate

R6 term. For p = 3, 4, 5, 6, 7, R6 term will dominate T10 term. Again, we will ignore the

index (n) in what follows and set σ = 1. To illustrate the issues, we will first consider

large F2 and F4 which correspond to Type IIA string theory. These fluxes satisfy, with
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H3 = 0, Bianchi identities, with a source for F4. These equations can be satisfied with

large fluxes through two and four cycles.

For 3 ≤ p ≤ 7 and choosing T10 = 1, R6 ∼ 1, we can drop the T10 term

because the R6 term will dominate. We can attempt to find large τ and ρ by turning

on F2 = n2 and F4 = n4 (other combinations of fluxes give similar results). Then one

has the relevant terms:

−τ−2ρ−1R6 +
1

2
τ−4

(
n22ρ+ n24ρ

−1
)
. (3.7)

Differentiating with respect to ρ and τ , for n4 ≫ n2 ≫ 1, one has then

ρ−2R6 +
1

2
τ−2

(
n22 − n24ρ

−2
)
= 0 (3.8)

and

ρ−1R6 − τ−2
(
n22ρ+ n24ρ

−1
)
= 0. (3.9)

We get a solution of the form:

ρ2 = −1

3

(
n4
n2

)2

; τ2 =
2

3

n24
R6

. (3.10)

Negative ρ2 is not acceptable. But even if somehow ρ2 had been positive, we would

have had:

g2 =
ρ3

τ2
∝ R6

(
n4
n32

)
; (3.11)

so the string coupling would not have been weak. The other terms we have neglected

are suppressed at this point. For example, the term proportional to T10ρ
−3/2τ−3 is

suppressed by (n2/n4)
2.
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For p = 8, which corresponds to the T10 term dominating, turning on, again,

n4 and n2, one finds that ρ2 = −7n24/n
2
2, which is also negative. Parameterically, one

now has g2 ∝ n34/n
7
2, so again, even if one ignored signs, this regime would give large ρ

and τ but also large g.

An interesting case is provided by p = 8 with n0 and n2 non-zero. In this case,

one finds that

ρ2 =
1

5

n22
n20

; τ =
8

5
n22 (3.12)

so one requires n2 ≫ n0. Both quantities are now positive, but the cosmological con-

stant, consistent with expectations of [9], is negative, corresponding to AdS space.

Setting this aside, one has that

g2s ∝
1

n22
(3.13)

so the string coupling is small. But this is not good enough. If one considers higher

derivative terms in the effective action at tree level (α′ expansion) these are not sup-

pressed. Writing the action in ten dimensions, the terms (written schematically)

∫
d4xd6y

√
g4
√
g6

(
FIJF

IJ +
(
FIJF

IJ
)2)

(3.14)

are both of the same order in the large flux, n22, due to the two extra factors of ρ−2

coming from the two extra powers of inverse metric in the second term. For all values

of p, if we just consider the H and Fq terms, ∂V/∂τ = 0 gives negative ρ2.

In other cases, one finds these and other pathologies—AdS rather than dS

stationary points and instabilities. Searches involving broader sets of moduli [27, 28]

seem to allow at best a few isolated regions of parameter space where such solutions
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might exist. Whether these might exhibit a sensible perturbation expansion is currently

an open question, but our results above suggest that the combination is a tall order.

So, even with the large freedom in flux choices we have granted ourselves, metastable

de Sitter stationary points would appear far from generic in regimes where couplings

are small and compactification radii are large.
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Chapter 4

The Challenge of Cosmological Solutions

4.1 Introduction

One severe limitation of string theory is that it is unable to describe cosmologies

resembling our own which appear to emerge from a big bang singularity, and similarly

cosmologies which evolve to a big crunch. Here we will show that given a effective

potential in string theory where there is a de Sitter vacuum at some Φ = Φ0, and the

absolute minimum occurs at Φ = ∞ with exactly zero vacuum energy, if we start the

system with expanding/contracting boundary conditions then the universe will evolve

to a big bang/crunch singularity in the further past/future.
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4.2 Expectations for Evolution of Perturbations in de Sit-

ter Space

String theory has had many dramatic successes in understanding issues in

quantum gravity. But one severe limitation is its inability, to date, to describe cosmolo-

gies resembling our own, which appear to emerge from a big bang singularity or evolve

to a big crunch singularity. This could reflect some fundamental limitation; more likely,

it reflects the inadequacy of our present theoretical tools to deal with situations of high

curvature and strong coupling. For example, consider a pseudomoduli space where the

potential falls to zero for large fields in the positive direction. If one starts the system

in the far past with expanding boundary conditions, then further in the past there is a

big bang singularity; if one starts with contracting boundary conditions, there is a big

crunch in the future [29]. These high curvature/strong coupling regions are inevitable,

despite the system being seemingly weakly coupled through much of this history. It is

possible that in any string cosmology, there need not be an actual curvature singularity,

but the growth of the curvature means that the system enters a regime where any con-

ventional sort of effective action or conventional weak coupling string description breaks

down. It seems hard to avoid the conclusion that there is such a singularity (regime of

high curvature) in the past or future of cosmological solutions on a moduli space. These

problems might be avoided in some more complete treatment of the problem within the

framework of a single cosmology, or perhaps something else, such as eternal inflation

in a multiverse, is needed. In any case, the problem is beyond our present theoretical
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reach.

Our question, in this section, is: are things better for metastable de Sitter space-

times? In particular, in efforts to construct de Sitter space-times in string theory, the

strategy is to search some effective action for a positive c.c. stationary point, separated

by a finite potential barrier from a region in field space where, asymptotically, the

potential tends to zero. If we start the system at the local minimum of the potential,

classically, it will stay there eternally. But how do small fluctuations evolve? Might

there be small disturbances that drive the field to explore the region on the other side

of the barrier, exhibiting the pathologies of the system on pseudomoduli spaces of [29]?

In one presentation of de Sitter space (which covers all of the space):

ds2 = −dτ2 + cosh2(Hτ)
[
dχ2 + sin2 χdΩ2

2

]
. (4.1)

A homogeneous scalar field in this space, ϕ(τ), obeys

ϕ̈+ 3H
sinh(Hτ)

cosh(Hτ)
ϕ̇+ V ′(ϕ) = 0. (4.2)

The equation is slightly more complicated if ϕ depends on r as well.

The metric of equation 4.1 respects an SO(4, 1) symmetry, as well as a Z2 that

reverses the sign of τ . Suppose, first, the potential for ϕ rises in all directions about

a minimum (taken at ϕ = 0 for simplicity). For large positive τ , any perturbation

of ϕ about a local minimum damps; for large negative τ , the motion is amplified as τ

increases (it damps out in the past). Correspondingly, in the far past and the far future,

the field approaches the local minimum (to permit a perturbative discussion, we must

require that the maximum value of the disturbance at all times is small). Starting in the
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far past, we can think in terms of a localized disturbance in space (e.g., due to a source

localized in space time) and study the Fourier transformed field. If the disturbance

has some characteristic momentum k, this momentum will blueshift exponentially as

τ → 0, and the amplitude will grow. For τ > 0, the distribution will damp and redshift

to longer wavelengths.

If the perturbation has scale smaller than H−1 (and in particular if the Hubble

constant is small compared to the curvature of the potential), then the space-time

near the disturbance is approximately flat, and, assuming rotational invariance, the

disturbance breaks SO(3, 1) × translations to SO(3). In terms of the full symmetry

of de Sitter space, the perturbation breaks SO(4, 1) to SO(3). To summarize, any

approximately homogeneous disturbance in eternal de Sitter corresponds to a solution

that grows in the far past and decreases in the future. One can define past and future

relative to the point where the scalar field is a maximum. The location of this point

breaks much of the continuous symmetry of de Sitter space but leaves SO(3) × Z2,

where the Z2 represents time reversal about the point where the amplitude of the

field oscillation is a maximum. The maximum of the field, indeed, provides a natural

definition of the origin of time. At this point, the time derivative of the field vanishes.

Now for a potential that has a local minimum with positive energy density,

and that falls to zero for large |ϕ|, we might expect that if we create a small, localized

perturbation at some (r0, τ0) this perturbation will damp out if τ0 ≫ 0. But if τ0 ≪ 0,

the perturbation will grow, possibly crossing over the barrier while τ ≪ 0. In this case,

the emergent universe on the other side of the barrier is contracting, and we might
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expect the system to run off towards ϕ = ∞, until the universe undergoes gravitational

collapse. If this is the case, then the Z2 symmetry might be said to be spontaneously

broken; one has a pair of classical solutions, one with a singularity in the past, one in

the future, related by the Z2 symmetry.

Before establishing this fact, it is helpful to review some aspects of the Coleman-

De Luccia (CDL) bounce from this perspective [30].

4.2.1 The Coleman-De Luccia bounce as a solution of the field equa-

tions with Minkowski signature

We are interested in disturbances which lead to motion over a barrier, rather

than tunneling. We might expect, however, that once the system passes over the barrier,

its subsequent evolution is not particularly sensitive to whether it passed over the barrier

or tunneled through it. In the case of a thin-wall bubble, before including gravity, at

large times, the bubble wall becomes relativistic, and the bubble radius is of order t, so

one expects that the bubble energy is proportional to t3, dwarfing any difference in the

energy of order the barrier height at the time of bubble formation. The same is true for

a thick-walled bounce connecting two local minima of some potential. In other words,

at large time, at least for very small GN , we might expect the solution to be a small

perturbation of the bounce solution of Coleman [31] and Coleman and De Luccia [30],

which we will review briefly.

27



4.2.2 Tunneling with GN = 0

Consider, first, the bounce solution without gravity. We consider a potential,

V (ϕ), with local minima at ϕtrue, ϕfalse, where V (ϕfalse) > V (ϕtrue). Starting with the

field equations,

□Φ+ V ′(ϕ) = 0, (4.3)

for points that are space-like separated from the origin (the center of the bubble at the

moment of its appearance), we introduce ξ2 = r2 − t2, in terms of which

d2ϕ

dξ2
+

3

ξ

dϕ

dξ
− V ′(ϕ) = 0. (4.4)

This is the Euclidean equation for the bounce.

For points that are time-like separated, calling τ2 = t2 − r2,

d2ϕ

dτ2
+

3

τ

dϕ

dτ
+ V ′(ϕ) = 0. (4.5)

These equations are related by ξ = iτ .

On the light cone, ξ = τ = 0, we have dϕ/dτ = dϕ/dξ = 0, and we have to

match ϕ(0) = ϕ0. In the tunneling problem [31], ϕ0 is determined by the requirement

that ϕ → ϕfalse as ξ → ∞; this can be thought of as a requirement of finite energy

relative to the configuration where ϕ = ϕfalse everywhere.

Independent of the quantum mechanical tunneling problem, the bounce is a

solution of the source-free field equations for all time (positive and negative) and ev-

erywhere in space. In the time-like region, the solution for negative time is identical

to that for positive time. Translation invariance is broken, but SO(3, 1) invariance and

the Z2 invariance are preserved.
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4.2.3 Classical perturbations of the false vacuum with GN = 0

Without gravity, we might consider starting the system in the false vacuum

and giving it a “kick” so that, in a localized region, the system passes over the barrier.

On the other side, the system looks like a bubble, but not of the critical size. We might

expect that the evolution of the bubble, on macroscopic timescales, is not sensitive to

the detailed, microscopic initial conditions. For a thin-walled bubble, for example, we

can think of configurations, as in [31], where at time t = 0, one has a bubble of radius

R0, inside of which one has true vacuum, outside false vacuum, and a transition region

described by the kink solution of the one dimensional field theory problem with nearly

degenerate minima. Take the case of a single real field, ϕ, with potential:

V (ϕ) = −1

2
µ2ϕ2 +

1

4
λϕ4 + ϵϕ+ V0.

For small ϵ, the minima of the potential lie at

ϕ± ≈ ±
√
µ2

λ
. (4.6)

We can define our bubble configuration, with radius R large compared µ−1, as the kink

solution of the one dimensional problem,

ϕB(r;R) =
ϕ+ − ϕ−

2
tanh

(
µ(r −R)√

2

)
+
ϕ+ + ϕ−

2
. (4.7)

For our problem, we want to treat R→ R(t) as a dynamical variable. If R0(t) is slowly

varying in time (compared to µ−1), then we can write an action for R,

S =

∫
dt

∫
r2drdΩ

(
1

2
(∂tϕB(r;R(t)))

2 − (∇⃗ϕB(r,R(t)))2 − V (ϕB(r,R(t)))

)
(4.8)
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≈
∫
dt4πR2

∫ R+δ

R−δ
dr

(
1

2
(∂rϕ)

2

)(
Ṙ2 − 2

)
,

where we have used the thinness of the wall to reduce the three-dimensional integral

to a one-dimensional integral, and the fact that for the kink solution, the kinetic and

potential terms are equal, to write the second term. We will restore the ϵ term in a

moment.

The integral over the bounce solution is straightforward, yielding
√

2/3. So

we have the effective action for R,

S = 4π

∫
dt

(√
2

3
µ3(R2Ṙ2 − 2R2) +

ϵ

3
R3

)
. (4.9)

Correspondingly, the energy of the configuration is:

E(R, Ṙ) = 4π

(√
2

3
(R2Ṙ2 + 2R2 − 1

3
ϵR3)

)
≡ M(R)

2
Ṙ2 + V (R). (4.10)

We can extract several results from this expression. In particular we have:

1. The point where the potential vanishes, R = R1 =
2
√
2µ3

ϵ .

2. The location and value of the potential at the maximum: R = R2 =
4
√
2µ3

3ϵ .

3. We can determine Ṙ as a function of R and the initial value of R (for simplicity

assuming Ṙ(0) = 0).

We have checked, numerically, that starting with a field configuration corre-

sponding to ϕ(x, t = 0) = ϕB(r;R), ϕ̇(x, t = 0) = 0, to the left of the barrier, the

bubble collapses. Starting slightly to the right, the wall quickly becomes relativistic
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and expands. This is consistent with an intuition that the energy of conversion of false

vacuum to true is largely converted into the energy of the wall.

We can make this latter statement more precise. If we write:

ϕ(r, t) = ϕcr(t, r) + χ(t, r), |χ| ≪ ϕcr, (4.11)

where ϕcr is the critical bubble solution, then

(∂2 +m2(r, t))χ = 0. (4.12)

Here m2 is essentially a θ function, transitioning between the mass-squared of χ in the

false and true vacua. Since the bubble wall moves at essentially the speed of light, and

undergoes a length contraction by t ∼ γ, we have that

m2(t, r) ≈ m2(t2 − r2) (4.13)

and the χ equation is solved by

χ =
1

r
χ(t2 − r2). (4.14)

So the amplitude of χ decreases with time, and the energy stored is small compared to

that in the bubble wall.

We expect the same to hold for a thick-walled bounce.

4.2.4 Behavior of the disturbance with small GN

Consider the same system, now with a small GN . Again, our disturbance, after

a short period of time, approaches the critical (GN = 0) bubble. At larger time, it will

then agree with the Coleman-De Luccia solution, including the small effects of gravity.
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As we will see in the next section, for the asymptotically falling potential,

with expanding boundary conditions, the evolution of the configuration is non-singular.

But with contracting boundary conditions, one encounters, as expected, a curvature

singularity.

4.3 Behavior of the Bounce with Asymptotically Falling

Potential

We have argued that, independent of the microscopic details of the initial

conditions, in the case of a disturbance that connects two metastable minima of a scalar

potential, the large time evolution of an initial disturbance that crosses the barrier is

that of the critical bubble, in the limit of small GN . We expect that the same is true for

a potential that falls asymptotically to zero. Once more, the underlying intuition is that

at late times, the energy released from the change of false to true vacuum overwhelms

any slight energy difference in the starting point. So we expect the solution to go over to

ϕ(τ). So in this section, we will focus principally on the behavior of the critical bubble,

ϕ(τ).

4.3.1 Field evolution with small GN

For small but finite GN , there is a long period where GN × T00 × τ2 ≪ 1,

gravitation is negligible, and the picture of the previous section of the flat-space evo-

lution of the bubble (or disturbance) is unaffected. For a vacuum bubble in de Sitter
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space, gravitational effects become important, for fixed r ≪ H−1, for example, only

once t ∼ H−1. Provided the bubble has evolved to a configuration approximately that

of the critical bubble, we can take over the critical bubble results (with gravity).

So we consider the bubble evolution in the region of Minkowski signature.

Writing the metric in the form

ds2 = −dτ2 + ρ(τ)2
(
dσ2 + sinh2(σ)dΩ2

2

)
, (4.15)

the equations for ρ and ϕ are:

ϕ̈+ 3
ρ̇

ρ
ϕ̇+ V ′(ϕ) = 0 (4.16)

and

ρ̇2 = 1 +
κ

3

(
1

2
ϕ̇2 + V (ϕ)

)
ρ2. (4.17)

Note that if the bubble emerges in a region of large ρ (κρ2V ≫ 1) then, for

the asymptotically falling potential, the kinetic term quickly comes to dominate in the

equation for ρ; the system becomes kinetic energy dominated. This is visible in the

numerical results we describe subsequently.

We should pause here to consider the tunneling problem. We will see in the

next section that if we take the positive root in equation 4.17, one obtains an expanding

universe in the future, but there is a singularity in the far past (before the appearance

of the bubble). Alternatively, if we take the negative root, the singularity appears in

the far future. Which root one is to take brings us to questions of the long-time history

of the universe, i.e., how the universe came to be in the metastable false vacuum. The

point of our discussion in this paper is that this issue already arises classically.
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4.3.2 Behavior of the equations for large τ

Before describing our numerical results, it is helpful to consider some crude

approximations which give insight into the behavior of the system. In the region with

ξ = iτ , the equations become those of CDL in the time-like region:

ϕ̈+ 3
ρ̇

ρ
ϕ̇+

dV

dϕ
= 0, (4.18)

ρ̇ = ±

√
1 +

κ

3
ρ2
(
1

2
ϕ̇2 + V (ϕ)

)
. (4.19)

We argued at the end of the previous section that we might expect that the potential is

not particularly relevant in the ϕ equation for large ρ(0). Ignoring the potential, we can

also ask, self consistently, whether the second term in the ρ̇ equation dominates over

the first. If it does, we have an FRW universe with k = 0 and

ρ ∝ (τ − τ0)
1/3, τ > τ0; ρ ∝ (τ0 − τ)1/3, τ < τ0. (4.20)

(These are the results for a universe with p = wρ; w = 1.) We can see this directly

from the equations. We have

ρ̇

ρ
= ±

√
κ

6
ϕ̇. (4.21)

So

d2ϕ

dτ2
±
√

3κ

2
ϕ̇2 = 0. (4.22)

We look for a solution of the form

ϕ̇ = α(τ − τ0)
−1, (4.23)

α =

√
2

3κ
. (4.24)
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Figure 4.1: ϕ potential.
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Figure 4.2: ϕ crosses the barrier.

Plugging this back into the ρ̇ equation gives

ρ̇

ρ
= ±1

3

1

τ − τ0
, (4.25)

which is consistent with the expected (τ − τ0)
1/3 behavior. So we have a singularity in

the past or the future.

For numerical studies, we designed a potential with a local de Sitter minimum
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Figure 4.3: ρ(τ) ∼ (τ0 − τ)1/3; τ0 ≈ 159.5.

that tends to zero for large ϕ

V (ϕ) =
1

2
e−ϕ + ϕ2e−ϕ

2
, (4.26)

This is plotted in Figure 4.1; the local minimum lies near ϕ = 0.2. The

potential blows up for negative ϕ, but this will not concern us. We solve equations 4.18

and 4.19 with ϕ0 taken to be not too far from the local minimum, with small dϕ/dτ

and with the negative sign in the root of the ρ equation: ϕ(τ = 0) = 1/2; ϕ′(τ = 0) =

−10−6; ρ(τ = 0) = 10. One sees (Figure 4.2) the scalar field roll over the barrier after

some number of oscillations. The ratio of potential to kinetic energy quickly tends to

zero after the crossing. As we expect, we find a singularity at a finite time in the future,

and indeed ρ(τ) behaves as (τ0 − τ)1/3 (Figure 4.3).

We have argued that for more general initial conditions, provided gravity is

sufficiently weak, the system evolves quickly to the bounce configuration with GN ≈ 0.

Its evolution will then be as above.
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4.3.3 Implications of the singularity

Our main concern with the singularity is whether it is an obstruction to any

sort of systematic analysis. If we have a weak coupling, small curvature description of

the system, allowing a perturbative analysis, we expect to be able to write an effec-

tive Lagrangian including terms of successively higher dimension—higher numbers of

derivatives—such as:

L =
√
g

(
1

GN
R+R2 +

1

M2
R4 + . . . + (∂µϕ)

2 +
1

M4
(∂µϕ)

4

)
.

If one tries to analyze the resulting classical equations perturbatively, in the presence

of ϕ̇ ∼ 1/(t− t0) and R ∼ 1/(t− t0)
2, at low orders, the terms in the expansion diverge

and the expansion breaks down. This is similar to the phenomena at a big bang or big

crunch singularity.
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Chapter 5

Discussion and Conclusions

We have argued, from two points of view, that one cannot construct de Sitter

space in any controlled approximation in string theory. First, we have seen that even

allowing the possibility of arbitrarily large fluxes, it is very difficult to find stationary

points for which both the string coupling is small and compactification radii are large,

even before asking whether the corresponding cosmological constant is positive or nega-

tive. We have seen that typically when sensible stationary points exist, even if formally

radii are large and couplings small, higher order terms in the expansions are not small.

Related observations have been made in [32], based on conjectures about the behavior

of quantum gravity systems.

But our second obstacle seems even more difficult to surmount: a set of small

perturbations of any would-be metastable de Sitter state, classically, will evolve to

uncontrollable singularities.

This is not an argument that metastable de Sitter states do not exist in quan-
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tum theories of gravity; only that they are not accessible to controlled approximations.

The problem is similar to the existence of big bang and big crunch singularities; we

have empirical evidence that the former exists in the quantum theory that describes our

universe, but we do not currently have the tools to describe these in a quantum theory

of gravity.

Reference [33] has considered the question from the perspective of the KKLT

[6] constructions. These involve vacua with fluxes, but the small parameter is not

provided by taking all fluxes particularly large; rather, it arises from an argument that

there are so many possible choices of fluxes that in some cases, purely at random,

there is a small superpotential. In other words, there is conjectured to be a vast set

of (classically) metastable states of which only a small fraction permit derivation of

an approximate four-dimensional, weak coupling effective action. Reference [33] argues

that such a treatment is self consistent. We are sympathetic to the view that such an

analysis provides evidence that if in some cosmology one lands for some interval in such

a state, the state can persist for a long period. But a complete description of such a

cosmology is beyond our grasp at present.

In considering the cosmic landscape, one of the present authors has argued

that, even allowing for the existence of such states in some sort of semiclassical analysis,

long-lived de Sitter vacua will be very rare, unless protected by some degree of approx-

imate supersymmetry [34]. The breaking of supersymmetry would almost certainly be

non-perturbative in nature; searches for concrete realizations of such states (as opposed

to statistical arguments for the existence of such states, along the lines of KKLT) would
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be challenging.

Ultimately, at a quantum level, reliably establishing the existence of metastable

de Sitter space appears to be a very challenging problem. One needs a cosmic history,

and it would be necessary that this history be under theoretical control, both in the

past and in the future. As a result, the significance of failing to find stationary points of

an effective action describing metastable de Sitter space is not clear. We have seen that

even thought of as classical configurations, there are questions of stability and obstacles

to understanding the system eternally, once small perturbations are considered. We

view the question of the existence of metastable de Sitter space as an open one.
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Part II

Transplanckian Censorship

Conjecture
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Chapter 6

Introduction

Here we will generally assume that the de Sitter Swampland conjecture is

correct, and review and further explore some of its consequences. As discussed in [8], one

of the most immediate is that the observed dark energy must be a form of quintessence.

Quintessence requires equation of state parameter w < −1/3. Observations require w

close to −1. Whether such configurations arise in string theory – with sensible scales

of energy, mass scales for the Higgs, and so on – is an interesting (and extremely

challenging) question, which we will not explore here. We will confine ourselves to a

narrower question. Assuming that one has a landscape in string theory with quintessence

like configurations as well as negative cosmological constant stationary points, then

these states are unstable to decay to AdS spaces (more precisely to states of negative

cosmological constant). Ref. [35] insisted on a criterion for sensible states. They noted

that in these quintessence states, one has superluminal expansion. If the state lives

long enough, Planck scale fluctuations will redshift until they become larger than the
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horizon. The authors of [35] argued that this is not sensible, and that there should be

a limit on the lifetime, Γ, of such states:

Γ < H log(H). (6.1)

While not committing ourselves to a view on this basic question of principle,

we will ask: is this plausible? What are the lifetimes of such quintessence states likely to

be? This will require that we consider some aspects of tunneling, from a state which is

evolving in time towards zero energy, to a lower energy state. We will first consider this

in quantum mechanics, and then in quantum field theory without gravity, and finally in

a generally relativistic theory. In the first two cases, we will see that the lifetimes can be

quite long. In fact, typically, there is a finite probability that the system never makes

a transition to the lower state at all. These systems are not amenable to conventional

WKB/Euclidean path integral approaches, but it is not difficult to make rough estimates

of the tunneling rates working with Minkowski signature.

Including general relativity, and more generally in a would-be quantum theory

of gravity, we are on less certain ground. In string theory, in the absence of supersym-

metry, one might expect that states with potentials which fall to zero for large values

of scalar (“pseudomoduli”) fields are typical. Such potentials would go to zero at least

exponentially rapidly in various regions of field space. We will generally model the tun-

neling problem by considering potentials which, in one direction direction, labeled by

a field ϕ, are pure exponentials, V (ϕ) = Ae−λϕ.1 There is another direction, χ, such

1In terms of fields with canonical kinetic terms, potentials might well be expected to tend to zero
far more rapidly.
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that at some point, there is a local minimum with negative c.c. for both λ and χ. As

we will review, in the first regime, unless the coefficient in the exponential satisfies a

certain bound, the potential quickly becomes negligible and one has a universe with

p = ρ, i.e. w = 1. The TCC does not constrain these systems. For sufficiently small λ,

the system may exhibit quintessence. We will focus our considerations on such states.

We will argue that tunneling is highly suppressed, as in the non-gravitational case.
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Chapter 7

The de Sitter Swampland And Trans

Planckian Censorship Conjectures

The vacuum states we can claim to understand in string theory generally pos-

sess a high degree of supersymmetry. States without supersymmetry, especially de

Sitter space (or flat space) are hard to access by weak coupling methods[7]. Indeed, as

stressed in [36], typical non-supersymmetric states exhibit runaway to singular space-

times and strong coupling, and one cannot claim to understand these in any systematic

way. Such states might be candidates for quintessence. That said, the work of Bousso

and Polchinski[5] and KKLT[6] suggests the possible existence of a landscape of states,

with a discretuum of positive and negative cosmological constants. The existence of

these states can hardly be viewed as rigorously established. Ooguri and Vafa[32] con-

jectured, based on the difficulty of finding dS stationary points of effective potentials

of systems with branes and fluxes[9], that de Sitter vacua, stable or unstable, may not
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exist, and that the presently observed dark energy is a form of quintessence. In [36], it

was demonstrated that there are fundamental obstacles to weak coupling searches, and

argued that these don’t provide an argument, one way or the other, about the existence

of metastable de Sitter space in string theory/quantum gravity. The work of that ref-

erence focused heavily on the fact that such would-be states are metastable, and in the

past or future, the space-time becomes singular at the classical level.

In [35], Bedroya and Vafa set forth an additional conjecture. They argued that

Planck scale fluctuations should not become classical. So for any would-be state, the

lifetime, T , should satisfy

T < H−1
f logHf , (7.1)

where Hf is the Hubble parameter at the moment of decay.

If a landscape picture holds, any quintessence vacuum will be surrounded by

classically stable, negative cosmological constant stationary points. As the quintessence

field roles in its potential, it can decay to one of these stable minima, but we would expect

that the decay amplitude would rapidly get smaller as the field ϕ rolls down its hill. This

is a slightly unconventional tunneling problem, and we will consider it first in a quantum

mechanics system with two degrees of freedom, and then in field theory without general

relativity, before attacking the actual problem of interest. In both of these cases, we will

find significant suppression of the decay amplitude. Turning to the gravitational case

with quintessence, we lack an explicit, controlled string model. Still, it would seem that

if such systems exist, lifetimes, for large values of teh quintessence field/small values of

the energy density are likely to be very long, violating the conjecture. So there would
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seem to be a tension between the TCC and a landscape picture.
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Chapter 8

Quintessence in a Landscape

First, we recall some basic facts about quintessence. The equation of state

p = wρ leads to evolution of the scale factor, according to:

a(t) = a(t0)(
t

t0
)

2
3(1+w) . (8.1)

For w = 1, a free massive field,

a(t) ∝ t1/3.

More generally, this result holds when, in some era, one can neglect the potenital.

w ≤ −1/3 leads to quintessence; a(t) grows faster than t ∼ 1
H .

We will focus on w < −1/3, considering a field ϕ with a canonical kinetic term

and an exponential potential,

V (ϕ) = e−λϕ (8.2)

in units with reduced Planck mass, M̃p = 1. For λ <
√
6

w = −1 +
λ2

3
(8.3)
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with λ <
√
2 necessary for quintessence[37]. One can quickly check this formula for

small λ, noting that in this case the second derivative in the equation for ϕ,

ϕ̈+
3

H
ϕ̇+ V ′(ϕ) (8.4)

can be neglected. So T00 and Tij can be computed simply for the exponential potential.

So now the interesting question is: suppose one has a string model with such a

potential and that this accounts for the observed dark energy. In a landscape context, we

expect that there are states nearby with negative cosmological constant. We can model

this by considering two fields, ϕ and χ, with potential such that χ = 0, ϕ > 0 corresponds

to the quintessence state, and χ = µ, ϕ = 0 corresponds to an AdS minimum. The

TCC raises the question: what is the lifetime of the quintessence state?

8.1 Tunneling from Quintessence-Like states in Quantum

Mechanics

We first consider a quantum mechanical problem, with two degrees of freedom,

χ and ϕ, which exhibits tunneling from a time-dependent configuration of the coordi-

nates. In particular, classically there is a lowest energy configuration for some value of

(χ, ϕ) = (µ, 0) and a higher energy configuration, where χ = 0 and ϕ is not uniquely

fixed, but instead the potential falls to zero for large ϕ and χ = 0:

V (χ, ϕ) = λϕ2(χ)2 + Γ(χ2 − µ2)2 + δ
(χ− µ)2

ϕ2 + µ2
(8.5)
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This has a global minimum at χ = µ, ϕ = 0, V = 0. At χ = 0, it has runaway behavior

for ϕ.

The false “minimum” has χ = 0, ϕ rolling, with

V (ϕ) = δ
µ2

ϕ2 + µ2
(8.6)

(Note we are assuming here that δ < µ4; other parameters have been chosen for sim-

plicity; small changes will not alter the behavior of the potential).

This model suggests focusing on a single degree of freedom, x, with:

V (x) = −V0 x < x0 V (x) =
δ

x2
x >> x0 (8.7)

We are interested in tunneling from a configuration described by a wave packet centered

at x > x0, and evolving with time. If the wave packet is Gaussian, and sufficiently

narrow, there will be a huge suppression of the wave function in the region x < x0. The

question is: what is the natural value for this width, and how does the width grow with

time.

It is worth recalling some facts familiar from elementary quantum mechanics.

1. Wave packet evolution for a free particle: consider a system described at t = 0 by

a Gaussian wave packet with width ∆x,

ψ(x, 0) = eik0xe
− (x−xcl)

2

(∆x)2 . (8.8)

A standard approach to this problem is to Fourier transform, use the known

behavior of plane waves, and Fourier transform back. In this case, one obtains:

ψ(x, t) = eik0x−i
k20
2m

te
− (x−xcl(t))

2

(∆x)2+i t
m xcl(t) = x0 +

k0
m
t (8.9)
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So the width of the wave packet grows with time according to:

(∆x(t))4 = (∆x)4 +
t2

m2
(8.10)

This is what one expects from a simple-minded semiclassical argument. With the

passage of time, the width of the packet grows as (∆v)t = ∆k
m t, giving

(∆x(t))2 = (∆x)2 +
(∆k)2t2

m2
(8.11)

or

(∆x(t)4) = (∆x)4 + 2
t2

m2
+O(t4). (8.12)

From equation 8.10, we have, at large times,

∆x(t) =

√
t

m
, (8.13)

independent of the initial width of the packet. The width grows much more slowly

than the packet moves, i.e.

d∆x(t)

dt
≪ v. (8.14)

2. Wave packet evolution for a harmonic oscillator: here, the standard textbook

result is that the center of the wave packet evolves classically, and the wave packet

does not spread in time. We can see this directly in coordinate space. With

ψ(x, t) = e−i
k20
2m

te
− (x−x(t))2

(∆x)2 x(t) = A cos(ωt). (8.15)

In the Schrodinger equation, we can compare the term − 1
2m

∂2ψ
∂x2

with the Kx2

term. This fixes (∆x)2 = 1
ω2 . The wave packet does not spread.
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3. Our problem is presumably somewhere in between, behaving nearly like a free

particle, with the wave packet spreading, perhaps somewhat more slowly than

that for a free particle, particularly in the region where the potential is growing.

A ∝ e
−x(t)2

∆x2 (8.16)

If this is the case, for large times, we have a huge suppression of the tunneling amplitude,

Rather than a rate of decay per unit time, the rate falls exponentially to zero at large

times; one has simply a finite probability to remain in the rolling condition forever.

8.2 Tunneling from Quintessence-Like states in Field The-

ory (Without Gravity)

For the analogous problem in field theory, we consider two fields, χ and ϕ, with

the potential of equation 8.5

V (χ, ϕ) = λϕ2(χ)2 + Γ(χ2 − µ2)2 + δ
(χ− µ)2

ϕ2 + µ2
(8.17)

Again, we have an isolated vacuum at ϕ = 0, χ = µ, and a quintessence-like configuration

at χ = 0. For ϕ > µ, the χ potential gets steeper and steeper for larger ϕ. Since our

interest is in estimating the decay from the region of large ϕ, it makes sense to model

the system integrating out χ and writing

Vmodel(ϕ) = −V0 ϕ < µ; V (ϕ) =
δ

ϕ2
ϕ > µ. (8.18)

We want to investigate, again, the decay of the quintessence-like state to the isolated

vacuum (we can smooth out Vmodel around ϕ = µ, if desired).
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In terms of the model potential, we can describe the initial bubble correspond-

ing to decay of the system, if we treat ϕ(t) as fixed, and take an even more drastic

simplification of the potential:

Vsimplified(ϕ) = −V0 ϕ < µ; V (ϕ) = 0 ϕ > µ. (8.19)

Now we might expect the critical bubble, on dimensional or simple scaling grounds, to

have radius:

R2 = ϕ(t)2/V0. (8.20)

Specifically, the kinetic energy term would be of order ϕ(t)2R, while the potential energy

term would be of order R3V0; the balance determines R. Since the field, ϕ, is free mostly

everywhere, we might expect it to have a Gaussian wave functional,

Ψ(ϕ) = e−
∫
d3xϕ(x)(∇2)ϕ(x) (8.21)

and correspondingly the amplitude to find such a bubble would behave as

A ∼ e−ϕ
2R2 ∼ e−ϕ

4/V0 . (8.22)

This is, of course, extremely suppressed at large ϕ.

We can obtain the estimate of equation 8.22 by a WKB analysis as in the thin

wall case. If we think of a “standard bubble” with size of order R and variations of ϕ

on scales of order R, and ϕ ≈ ϕ0 inside the bubble, the lagrangian for R is now:

L = ϕ20RṘ
2 + V0R

3 − ϕ20R. (8.23)

The critical point in the potential is then

R2 = V −1
0 ϕ20 (8.24)
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so the WKB estimate yields

B ∼
∫
dRR1/2

√
V0R3 ∼ ϕ40

V0
(8.25)

as above.

8.3 Including Gravity and Checking the TCC Citerion

Without gravity, for large ϕ0, we have seen that the amplitude for bounce

production is enormously suppressed at large ϕ. Here we ask the extent to which

gravity might qualitatively alter these results.

8.3.1 The Size of Gravitational Corrections

It is worth considering, first, the size of such corrections in the famliar case of

thin wall tunneling[30], for small gravitational coupling, GN , and with energy splitting

ϵ and critical bubble radius R. For the case of decay from flat space to de Sitter space,

the energy of the bubble is of order ϵR3, and the gravitational field is of order GN ϵR
2.

So the corrections to the action for R are of order GN ϵ
2R5, consistent with equation

3.19 of ref. [31]. These effects grow as ϵ becomes smaller, for fixed GN , and can be quite

dramatic, as stressed by Coleman and Deluccia. For the field theory systems described

in the last section, this can also be true for very large ϕ(t), but there is a period where

these corrections are under control and small. In this period the tunneling amplitude is

extremely tiny.

It is in the presence of gravity that we can can actually discuss quintessence,
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restricting the term to systems of time-dependent fields with w < −1/3. The model

of the previous section does not satisfy this criterion. Instead, in considering the TCC

and quintessence, we focus on models with exponential potentials yielding suitable w.

For this and other systems which truly exhibit quintessence, precise statements require

understanding of aspects of quantum gravity, but, if anything, tunneling rates are likely

further suppressed.

Indeed, from the work of Coleman and DeLuccia[30], it is known in the thin

wall case that inclusion of gravitation further suppresses tunneling, and that there is

no semiclassical tunneling if the radius of the would-be anti-deSitter universe is smaller

than the would-be bubble size in the absence of gravity. In the absence of gravity, we

argued for the models of the previous section that the bubbles would be quite large, of

order ϕ0/
√
V0, while the tunneling amplitude is of order e−ϕ

4
0/V0 Gravitational effects

may not be within our control, but this estimate is likely to provide some guidance as

to tunneling rate. For quintessence, in particular, the kinetic and potential terms in the

action are of comparable importance, so we might expect that neglect of the potential

term would yield an (O(1) correction to the (large) exponential factor We need to ask:

How large is ϕ0?

8.3.2 How large is ϕ0?

The value of the field, ϕ0, at any given time, will control the tunneling ampli-

tude. It is of interest to ask how large ϕ0 would be if the present universe is described

by quintessence. Again,without good control of the quantum theory, this may be a hard
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question to answer. But the exponential potential is instructive, and strongly suggests

that the tunneling amplitude is extremely suppressed if quintessence describes the ob-

served dark energy. Note that in a landscape picture of quintessence, such states would

have to be quite common, so the sort of estimates we are making here would be fairly

typical.

So consider a field, ϕ, with a nearly canonical kinetic terms and potential

V = Λ4e−λϕ (8.26)

If Λ = TeV, say, then λϕ ∼ log(1059) to describe the current dark energy. We know

that λ can’t be too large for quintessence, probably not larger than 1√
3
so ϕ has to be

something like 200 in Planck units (note that if Λ is larger than TeV scales, as one

might expect, ϕ0 is larger still). So ϕ40/V0 which is the action of the critical bubble

without gravity, is potentially huge. E.g. if V0 ∼ M4
p , then the bubble is huge, as is

the bounce action. The would-be initial bubble itself is two orders of magnitude larger

than the AdS radius, suggestive, following [30] that the tunneling amplitude may vanish

altogether.

We cannot make completely reliable statement for the strongly coupled system

we are considering, but we would be surprised if the gravitational result were wildly

different from the result neglecting general relativity. Indeed, because of the large size

of the critical bubble in the semiclassical treatment, as we have said, we think it likely

that the tunneling amplitude simply vanishes for ϕ0 sufficiently large, and in particular

for ϕ0 as large as required to account for the presently observed dark energy.
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Chapter 9

Discussion and Conclusions

Our results suggest a conflict between the TCC and conventional (albeit highly

speculative) conjectures about the string landscape. If we abandon the de Sitter Swamp-

land Conjecture, than the TCC provides a significant constraint on possible metstable

de Sitter states. While little is known about such would-be states (though there are

plausible conjectures, for example [6], it would seem to rule out, for example, states

with positive cosmological constant and even very approximate supersymmetry[38]. If

we hold to the conjecture, so that the observed dark energy is a form of quintessence,

than these states are extremely long lived once the field has evolved to a region with

very small cosmological constant. This follows if, as one might expect, there are some

modest number of negative cosmological constant states accessible to the system. va-

lidity of the TCC implies this quintessence state must be surrounded by some sort of

dense set of AdS minima, or we have to be extremely lucky that it there is a well placed

such state nearby.
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There is another possible way out. If the parameter Λ in equation 8.26 is

extremely small, one might avoid the necessity for large ϕ. This would imply a tuning

conition comparable to the usual one for the cosmological constant. It is not clear to

us whether this might have a straightforward anthropic explanation. We leave to the

reader the question of how plausible this might seem.

It appears most likely that either the landscape picture does not hold, or that

the TCC is not valid and the theory somehow escapes the puzzles associated with the

growth of subplanckian fluctuations to horizon size.
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Part III

Dark Matter as Remnants of

Evaporation of Primordial Black

Holes
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Chapter 10

Introduction

The nature of non-baryonic dark matter and the origin of the matter-antimatter

asymmetry in the universe are two of the most pressing questions at the junction of parti-

cle physics and cosmology (see e.g. [39, 40]). The direct detection of gravitational waves

[41] has triggered renewed interest in the role black holes might play in connection with

these two outstanding open questions (see e.g. [42–44] and references therein).

The idea that black hole evaporation can lead to the production of particles

in the early universe and possibly to the generation of a baryon asymmetry or of dark

matter has a rather long history. In fact, it dates back to early work by Hawking [45]

and Zel’dovich [46], and to subsequent work by Carr [47], where it was pointed out

that evaporation might produce a baryon asymmetry because of intrinsic CP -violating

effects, or because of accidental statistical excesses. Subsequent work invoked GUT-

scale physics, which generically violates CP and baryon number, as a culprit for the

generation of the matter-antimatter asymmetry, and specifically CP - and B-violating
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decays of GUT-scale particles produced in PBH evaporation. This was first (to our

knowledge) envisioned in Ref. [48], and further elaborated upon in Ref. [49–51].

More recently, studies have considered the possibility that primordial black

holes be responsible for both the generation of a baryon asymmetry and of the dark

matter. Specifically, Ref. [52] considers the concurrent generation of a baryon asym-

metry from GUT boson decays in inflationary and in ekpyrotic/cyclic models, and the

possible presence of dark matter in the form of Planck-scale relics from the evaporation

of light primordial holes. The key assumption in Ref. [52] is that the black holes domi-

nate the universe’s energy budget by the time they decay. More recently, Ref. [53] dealt

with the possibility of a generation of the matter asymmetry from asymmetric sterile

neutrino decays, through leptogenesis, and the co-genesis of dark matter from Hawking

evaporation. Here, the assumption is, again, that the energy density of the universe is

dominated by the primordial black holes before they evaporate. Ref. [53] additionally

allows for a possible entropy injection episode after the evaporation of the primordial

holes. Ref. [54] and [55] recently focused on production of dark matter from black hole

evaporation (the second specifically WIMP dark matter), while Ref. [56] and [57] con-

sidered scenarios technically similar to asymmetric dark matter production from black

hole evaporation that we also entertain below, although the first study in the context

of mirror matter and the second in the context of asymmetric Hawking radiation.

In the present study, we are not concerned with how primordial black holes

were produced following inflation (any pre-existing population would be presumably

inflated away). The conditions under which a cosmologically relevant population of
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primordial black holes are produced have been known for a long time, ever since the

seminal work of Zel’dovich and Novikov from over a half century ago [58]. We will

not review them here. In fact, in what follows we will use the relative abundance of

primordial black holes at formation as a free parameter.

We intend to study here the generic possibility that primordial black hole

evaporation at very early times (much earlier than, say, the epoch when the synthesis

of light elements occurs) plays a key role in the genesis of dark matter and/or the

baryon asymmetry in the universe. We will be agnostic about the fate of black holes

as their mass approaches the Planck scale, and consider both complete evaporation,

and the possibility that evaporation stops around or below that scale, leaving Planck-

scale relics. We consider a variety of scenarios for the genesis of the matter-antimatter

asymmetry, including GUT-scale baryogenesis, leptogenesis, and asymmetric co-genesis

of dark and ordinary matter. Finally, we discuss possible tell-tale signals of this general

framework.

The structure of this manuscript is as follows: in the following section 11 we

outline our framework; sec. 12.1 and 12.2, respectively, discuss the generation of dark

matter and of a baryon asymmetry from primordial black hole evaporation, after a

general discussion of particle production from hole evaporation; sec. 13 presents our

results and a discussion thereof, and the final sec. 14 concludes.
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Chapter 11

Outline of the framework

In this study, we explore the possibility that primordial black hole evaporation

produced both the dark matter and the baryon asymmetry. We entertain the possibility

that the dark matter be a species χ, with mass mχ belonging to a dark sector with a

number of degrees of freedom gχ that ranges, for definiteness, from 1 to 100. We do not

make any assumption on the details of the dark sector spectrum. In principle, these

details affect the temperature dependence of the number of degrees of freedom in the

early universe; however, as we show below, the quantities relevant for us all depend

quite weakly on that. We therefore neglect details of the dark sector spectrum and its

impact on the number of degrees of freedom as a function of temperature, and assume

the dark sector is all degenerate at the same mass scale mχ.

We assume that the χ never attains thermal equilibrium after being produced

(unless we specify otherwise, as is the case when we discuss the case of asymmetric

dark matter), and that no processes exist that can freeze in any significant abundance
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of χ after black hole evaporation [59]. We also entertain both the possibility that

black hole evaporation stops at a black hole mass fMPl, with MPl the reduced Planck

mass, leading to a multi-component dark matter scenario consisting of the species χ

produced by evaporation and of the Planck-scale relics, and the second possibility that

evaporation leads to the complete disappearance of the primordial holes (f = 0) and

thus to a single-dark matter scenario.

As far as the production of the baryon asymmetry, we entertain three distinct

possibilities:

1. That the baryon asymmetry is produced by the B-, L-, and CP -violating decays

of a GUT boson X of mass 1015 ≲ mX/GeV ≲ 1017;

2. That the baryon asymmetry stems from leptogenesis induced by the CP violating

decays of heavy right-handed neutrinos with masses at the scale Mν ;

3. That both the baryon asymmetry and the dark matter are produced by the decay

of heavy right-handed neutrinos (or some other massive species) into both dark

matter/dark sector fields and standard model/visible sector fields, with the dark

matter produced by evaporation annihilating away.

Unlike in previous studies, here we let the initial abundance β of primordial

black holes at the epoch of formation, at a time ti normalized to the radiation density,

β ≡ ρPBH(ti)

ρrad(ti)
, (11.1)

to be a free parameter.

64



As mentioned above, we do consider the possibility that relics of mass fMPl

are left over from PBH evaporation. In this case the approximate constraint is [60]

β(MPBH) ≲ 2.8× 10−28 f−1

(
MPBH

MPl

)3/2

. (11.2)

We assume for simplicity that the mass function of primordial black holes

(PBH) is monochromatic and centered at a mass MPBH (see e.g. [61] for a motivation

to this assumption, and [62] for a recent study of the optimal mass function for dark

matter in the form of PBH). The range of viable black hole masses is constrained from

below by the requirement that the black holes form when the Hubble rate is at or below

the Hubble rate during inflation H∗. The latter is constrained by Planck observations

[63] to be

H∗
MPl

< 2.7× 10−5 (95% C.L.). (11.3)

If, as we assume here, primordial black holes form during the radiation domination

epoch, their initial mass is

MPBH = γ
4π

3
ρH−3, (11.4)

where γ ∼ 0.2 [64], and the Planck limit translates to

MPBH

MPl
>

4πγ

2.7× 10−5
≃ 9.1× 104 (95% C.L.). (11.5)

Notice that the density of PBHs depends on the spectrum of primordial density

perturbations δ ≡ δρ/ρ, which at a given epoch has a certain probability distribution

P (δ), for instance of Gaussian form; the fraction of energy density of the universe that
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Mass (g) TH (GeV) τ (s) Tevap = T (τ) (GeV)

5MP ≃ 10−4 1.7× 1017 10−41 2× 1017

1 1.7× 1013 4× 10−29 2× 1011

103 1.7× 1010 4× 10−20 6× 106

106 1.7× 107 4× 10−11 200
109 1.7× 104 0.04 0.006
1012 17 4× 107 ∼ 1 yr ∼ 1 keV

Table 11.1: Mass, Hawking-Gibbons temperature, lifetime, and temperature corre-
sponding to the evaporation time for a few illustrative black hole masses.

collapses to PBHs is then

β(MPBH) =

∫ ∞

δc

P (δ)dδ,

with δc ∼ γ the critical overdensity; in the case of Gaussian density perturbations with

mass variance σ at horizon crossing, β ∼ exp(δ2c/(2σ
2); since generally δc ≫ σ, only

a small fraction of the energy density of the universe thus collapses to form PBHs,

explaining why β ≪ 1.

The upper limit to the mass of the PBH, in our framework, derives from

the requirement that evaporation happens well before Big Bang Nucleosynthesis. In

principle this is not a hard requirement, but, should it not be satisfied, the resulting

limits on β(MPBH) would rule out any significant production of either dark matter or

the baryon asymmetry from PBH evaporation, defeating the point of our study.

We now quickly summarize PBH evaporation: upon integrating the mass loss

rate of PBH from Hawking-Gibbons evaporation from a black body at temperature

TH ≡M2
Pl/MPBH, and neglecting grey-body factors [65], the lifetime of a PBH of mass

MPBH is

τ =
160

πg

M3
PBH

M4
Pl

, (11.6)
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where g are the number of degrees of freedom of the radiated particles (including the

7/8 factor for fermions), which, here, are all particles with mass smaller than TH . The

radiation bath temperature corresponding to the time τ is calculated in the standard

way for a radiation-dominated cosmology, assuming instantaneous thermalization of the

evaporation products: using Friedmann’s equation [53]

π2

30
g∗T 4

evap = 3M2
PlH

2
evap ≃ 3M2

Plτ
−2 (11.7)

with g∗ the number of effective relativistic degrees of freedom, we get

Tevap
MPl

≃ 0.77
( g∗
100

)−1/4 ( g

100

)1/2( MPl

MPBH

)3/2

, (11.8)

which is of course only valid if evaporation ends during radiation domination, which is

always the case for us.

We list in Table 11.1 masses, Hawking-Gibbons temperatures, lifetimes, and

temperature corresponding to the evaporation time for a few illustrative black hole

masses. The table shows that in order to avoid impacting the synthesis of light elements

(at times of t ∼ O(1 sec), the PBH under consideration here are required to be lighter

than approximately 1,000 t, i.e. 109 grams.
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Chapter 12

Particle production from Primordial

Black Hole Evaporation

We intend to calculate the abundance of right-handed neutrinos or dark matter

(generically, of any massive particle X) produced by the evaporation of PBH in an

adiabatically expanding universe, if the relative density of PBH to radiation at PBH

formation time ti is β(ti) = ρPBH/ρrad. Indicating with NX the number of particles

X produced in the evaporation of one single hole, the number-to-entropy density of

particles X at the present epoch is

nX
s

(tnow) = NX
nPBH

s
(ti) = NXYi. (12.1)

To calculate Yi, we use the definition of β,

β =MPBH
nPBH(ti)

ρrad(ti)
=MPBH

s(ti)

ρrad(ti)
Yi =

4

3

MPBH

Ti
Yi (12.2)
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where in the last equality we have assumed that at very large temperatures g ≃ g∗, the

latter indicating the entropic degrees of freedom. From Eq. (11.4) we then get

Ti
MPl

≃ 0.87

(
MPl

MPBH

)1/2 ( g∗
100

)−1/4
. (12.3)

Now, substituting Eq. (12.3) into Eq. (12.2) and the expression for Yi,

Yi = 0.65 β
( g∗
100

)−1/4
(

MPl

MPBH

)3/2

, (12.4)

into Eq. (12.1), we get

nX
s

(tnow) ≃ 0.65 β NX

( g∗
100

)−1/4
(

MPl

MPBH

)3/2

. (12.5)

The calculation of NX follows Ref. [52]. Assume that MX < TH = M2
Pl/MPBH, and

assume that evaporation does not stop at MPl, i.e. f = 0. In this case,

NX ≃ gX
g

∫ 0

MPBH

−dM
3T

=
gX
g

∫ ∞

TH

M2
Pl

3T 3
dT =

gX
6g

(
MPBH

MPl

)2

. (12.6)

In the first equality, we assumed that the number of radiated particle is given by the

ratio of the radiation energy from PBH evaporation, −dM , divided by the mean energy

of a black-body of temperature T , ⟨E⟩T ≃ 3T (we notice that this is an approximate

result that assumes the particles produced at evaporation to be spin zero, as well as a

trivial, constant absorption cross section; in more realistic setups, there is a complicated

dependence of the factor in front of T on the spectrum and spin of the particles the

PBH evaporates to, see e.g. the classical literature on this point, Ref. [65–67]).

The ratio of the degrees of freedom gX/g, where g = gX + gSM, the latter gSM

indicating the “standard model” degrees of freedom, corresponds to the approximate
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ratio of emitted X particles, neglecting the effects of charge and spin on the evapora-

tion rate, and in the second equality we used the relation between Hawking-Gibbons

temperature and black hole mass. In the case where evaporation stops when the black

hole mass is equal to fMPl, the equation above is modified as follows:

Nf
X ≃ gX

6g

((
MPBH

MPl

)2

− f2

)
, (12.7)

and of course reduces to the result above if MPBH ≫ fMPl; given the constraint in

Eq. (11.5) above, unless f ≳ 104, a range theoretically unmotivated for evaporation to

stop, Eq. (12.6) above is perfectly adequate, and we shall use it from now on.

Notice that in principle massive particles X can be produced by PBH evapo-

ration even if the initial Hawking-Gibbons temperature is lower than mX . In that case,

X production proceeds from the moment when tH =MX , thus

NX ≃ gX
g

∫ ∞

MX

M2
Pl

3T 3
dT =

gX
6g

(
MX

MPl

)−2

. (12.8)

In summary, given a sector with gX degrees of freedom and a stable relic X of mass

MX , the cosmological abundance ΩX = ρX/ρc, with ρc the critical energy density of

the universe, is

ΩX =
MX

ρc

nX
s

(tnow)snow =
MX

ρc
NXYisnow (12.9)

≃ 0.11 β
MXsnow

ρc

( g∗
100

)−1/4
(
gX
g

)(
MPBH

MPl

)1/2

, MX < M2
Pl/MPBH,

≃ 0.11 β
MXsnow

ρc

( g∗
100

)−1/4
(
gX
g

)(
M7

Pl

M3
PBHM

4
X

)1/2

, MX > M2
Pl/MPBH.

Since [68]

ρc = 1.0537× 10−5 h2
GeV

cm3
≃ 4.78× 10−6

(
h

67.37

)2 GeV

cm3
(12.10)
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and [68]

snow = 2, 891.2

(
TCMB

2.7255

)2

cm−3, (12.11)

we can recast the equations above, for g∗ = 106.75 + 1 (which assumes gDM = 1 for

definiteness), as

ΩX ≃ 6.5× 107 β

(
MX

GeV

)(
gX
g

)(
MPBH

MPl

)1/2

, MX < M2
Pl/MPBH, (12.12)

≃ 6.5× 107 β

(
MX

GeV

)(
gX
g

)(
M7

Pl

M3
PBHM

4
X

)1/2

, MX > M2
Pl/MPBH.

Since the radiation energy density redshifts like a−4, with a the scale factor,

while pressure-less matter redshifts as a−3, for sufficiently large β, the universe could be-

come matter-dominated by PBH prior to evaporation. This condition can be expressed

as

βf =
ρPBH(Tevap)

ρrad(Tevap)
> 1. (12.13)

Assuming entropy conservation, we can relate the initial value of β to βf in the equation

above,

βf = β
Ti
Tevap

≃ 1.1
( g

100

)−1/2
(
MPBH

MPl

)
, (12.14)

where we used Eq. (12.3) and (11.8) to express Ti and Tevap as functions of MPBH.

If PBH get to dominate the energy density of the universe prior to evaporation, the

number density of particles produced by evaporation ceases to depend on β, as pointed

out by Ref. [53], as a result of the balance between the dilution of the number density of

particles produced by evaporation and of the additional particles resulting from βf > 1.

In all our results, we highlight the parameter space on the (MPBH, β) plane where βf = 1
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(for gχ = 1 plus Standard Model degrees of freedom) with a thick purple line; for β

values above that line, our results are β-independent.

12.1 Dark Matter from PBH evaporation

We consider three mechanisms for dark matter production from PBH evapo-

ration: direct production from evaporation, Planck-scale relics from evaporation, and

asymmetric dark matter production. We postpone the discussion of the latter to the

next section, and Eq.(12.9) directly gives the abundance of dark matter from PBH

evaporation.

If evaporation stops at a mass scale fMPl, the cosmological abundance of

Planck-scale relics, ΩP = (fMPlnPBH(tnow))/ρc is given by

ΩP =
fMPl

ρc
Yisnow = 0.65 β f

MPlsnow
ρc

( g∗
100

)−1/4
(

MPl

MPBH

)3/2

,

≃ 9.4× 1026 β f

(
MPl

MPBH

)3/2

, (12.15)

again with g∗ = 106.75 + 1 in the second equation.

Requiring that the dark matter in the universe have a density ΩCDM ≃ 0.21

[68] forces a condition across the model parameters gχ, mχ, MPBH, f and β (where we

indicated with χ the dark matter from PBH evaporation) such that

ΩCDM = Ωχ(gχ,mχ,MPBH, β) + ΩP (f,MPBH, β). (12.16)

Also, wherever ΩP ,Ωχ > ΩCDM, the corresponding region of parameter space is excluded

as too much dark matter is produced by either evaporation or Planck-scale leftover relics,
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or both (of course, this assumes no episode of entropy injection that would dilute the

relics’ density, see e.g. [53]). Notice that regions with underabundant dark matter from

either Planck relics or evaporation are not ruled out, since some other dark matter

component might provide the remaining part of the observed cosmological dark matter

density.

An important constraint on dark matter χ produced from PBH evaporation

comes from the requirement that the dark matter be cold enough as to avoid disruption

of small-scale structures via free-streaming. We follow here the discussion in Ref. [53]:

The initial average energy of particles from the evaporation of a hole of mass MPBH

is 6TH = 6M2
Pl/MPBH (see the derivation below in Eq. (12.19)). Because we assume

the dark matter particles are never in kinetic or chemical equilibrium, the particle

momentum today is simply the redshifted value of the momentum at production,

pnow =
aevap
anow

pevap, (12.17)

where anow = 1. The energy of the dark matter particle at evaporation can be calculated

as follows: the average energy of particles radiated by a PBH with a Hawking-Gibbons

radiation temperature TH is 3TH (with the caveats explained above – this is a simplifying

approximation!). The total number of particles emitted by the PBH is approximately

N =

∫ N

0
dn =

∫ ∞

TH

M2
Pl

3T 3
dT =

1

6

(
MPl

TH

)2

. (12.18)

The mean energy of the radiated particles is thus

Ē ≃
∫ N

0
(3T )

dn

N
= 6

(
TH
MPl

)2 ∫ ∞

TH

M2
Pl

T 2
dT = 6

(
TH
MPl

)2(M2
Pl

TH

)
= 6TH . (12.19)
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Notice that this average energy is different from the average energy at the beginning

of evaporation, since it averages over all temperatures from that initial temperature to

infinity. Now, since mχ < TH in order for the dark matter to be produced, Ē ≃ p̄ =

pevap. The last ingredient to calculate the dark matter velocity today is aevap. Fixing

anow = 1, the scale factor at matter-radiation equality aeq = Ωr/Ωm. Then, using

Friedman’s equation, and the fact that ρ ∼ a4 in radiation domination, we have

aevap = aeq

(
ρeq
ρevap

)1/4

= aeq

(
ρc/a

3
eq

3M2
Pl/t

2
evap

)1/4

≃ 7× 10−32

(
MPBH

MPl

)3/2

(12.20)

where we used Eq. (11.7) in the next-to-last equality. The present velocity of dark

matter produced from the evaporation of a PBH of mass MPBH is thus

vχ =
pnow
mχ

≃ 4× 10−31

(
mχ

MPl

)−1(MPBH

MPl

)1/2

. (12.21)

Assuming that only redshift contributes to setting the current dark matter velocity,

using the constraint of Ref. [69] on the velocity of thermal relics today,

vχ ≲ 4.9× 10−7, (12.22)

we have

mχ

1 GeV
≳ 2× 10−6

(
MPBH

MPl

)1/2

. (12.23)

The constraint above, together with the minimal primordial black hole mass

allowed by CMB results, Eq. (11.5), sets the minimal possible dark matter mass, if

produced from evaporation,

mχ ≳ 0.6 MeV. (12.24)
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Notice that the constraint in Eq. (12.24) applies only if a substantial fraction of the

dark matter is produced by evaporation from PBH’s of mass MPBH. Assuming that

such fraction is, say, 10% of the dark matter in the universe, given that the maximal

density of dark matter from evaporation corresponds to the dark matter dominating the

number of degrees of freedom PBH evaporate to, our constraint applies to (for instance

for mχ < M2
Pl/MPBH)

β ≳ 0.1
ρc

mχsnow

( g∗
100

)1/4(gχ
g

)(
MPBH

MPl

)−1/2

. (12.25)

Notice that this is likely a fairly conservative constraint, as the limit in Eq. (12.22)

assumes 100% of the dark matter has the quoted velocity.

12.2 Baryon Asymmetry from PBH evaporation

Here, we consider three classes of models for baryogenesis via PBH evapora-

tion: baryogenesis via non-thermal leptogenesis, baryogenesis via the decay of grand

unification gauge bosons (GUT baryogenesis) and, finally, we entertain the possibility

that the dark matter is produced in conjunction with an asymmetry in the baryon

sector.

In all cases, we determine whether PBH evaporation can lead to the observed

baryon asymmetry, with a baryon-number-to-entropy density of [68]

nB/s ≈ 8.8× 10−11.
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12.2.0.1 Baryogenesis via leptogenesis

In the case of baryogenesis via leptogenesis,

nB
s

= Nν ε κ Yi ≃ 0.65Nν ε κ β
( g∗
100

)−1/4
(

MPl

MPBH

)3/2

, (12.26)

with

Nν ≃ gν
g

∫ 0

MPBH

−dM
3T

=
gν
g

∫ ∞

T0

M2
Pl

3T 3
dT =

gν
6g

(
MPBH

MPl

)2

, Mν < TH =M2
Pl/MPBH

(12.27)

Nν ≃ gν
g

∫ ∞

Mν

M2
Pl

3T 3
dT =

gν
6g

(
Mν

MPl

)−2

, Mν > TH , (12.28)

and where Mν is the right-handed neutrino mass scale (for simplicity we assume all

right-handed neutrinos to be close-to-degenerate in mass), with ε the CP asymmetry

factor of the right-handed neutrino decays, and with κ ≈ 0.35 the conversion ratio of

leptons to baryons [49]. An important constraint for the baryogenesis-via-leptogenesis

scenario is that the inverse-decay of right handed neutrinos be out of equilibrium. This

is guaranteed if the temperature of the universe at PBH evaporation is smaller than

Mν , i.e. if

Mν > Tevap ≃ 1.9× 1018 GeV

(
MPl

MPBH

)3/2

, (12.29)

where we assumed g∗ ≃ g ≃ 100. In the baryogenesis-via-leptogenesis scenario we also

require that the evaporation temperature be larger than the electroweak scale, under

which sphaleron rates are highly suppressed, thus enforcing

Tevap ≳ 100 GeV ⇒MPBH ≲ 7.1× 1010 MPl ≃ 1.4× 106 grams. (12.30)
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In a model-independent way, the parameter ε is a priori unconstrained and

of O(1). However, in specific model realizations, ε can be bounded from above. For

instance, for type I seesaw models, barring tuned right-handed neutrino Yukawa textures

[70, 71], one has [72]

ε <
3Mνmmax

16πv2
≃ 240

(
Mν

MPl

)( mmax

0.05 eV

)
, (12.31)

with v the electroweak vacuum expectation value, and mmax the mass of the heaviest

left-handed neutrino. In light of that and of cosmological constraints on mmax [68], and

in this specific model context, only for Mν ≃ 1014 GeV could ε ∼ O(1), but not for

smaller right-handed neutrino masses. However, larger phases are generically possible,

see e.g. fig. 4 of Ref. [71]. In what follows we consider a model independent scenario, and

in order to show the maximal possible range of viable parameters, we set here ε = 0.5.

Requiring a baryon asymmetry yield matching observations, and assuming

Mν > TH and gν = 6, we get the following relation between the right-handed neutrino

mass scale, the PBH mass and β

β ≃ 2.3× 10−9

ε κ

(
M7

Pl

M4
νM

3
PBH

)−1/2

. (12.32)

12.2.0.2 GUT baryogenesis

In the scenario where baryogenesis originates from the CP and B-number

violating decays of a GUT boson X, carrying gX degrees of freedom, the produced

baryon asymmetry depends on the CP violating parameter [52]

γ ≡
∑
i

Bi
Γ(X → fi)− Γ(X̄ → f̄i)

ΓX
, (12.33)
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where Bi is the baryon number of the particular final state fi, and ΓX the X decay

width. The expression for the resulting baryon asymmetry is then simply

nB
s

= NX γ Yi ≃ 0.65NX γβ
( g∗
100

)−1/4
(

MPl

MPBH

)3/2

, (12.34)

with, just as above,

NX ≃ gX
6g

(
MPBH

MPl

)2

, MX < TH =M2
Pl/MPBH (12.35)

≃ gX
6g

(
MX

MPl

)−2

, MX > TH , (12.36)

We consider a fairly generous range for the mass scale MX of the GUT gauge bosons

X whose decay is responsible for the generation of the baryon asymmetry,

1015 ≲MX/GeV ≲ 1017; (12.37)

a variety of mechanisms can shift the precise energy scale of gauge coupling unficiation,

and even when that scale is fixed, MX is not exactly determined (see e.g. Ref. [73] and

references therein). In the plots, we use gX = 25 and γ = 0.1.

Notice that GUT baryogenesis requires a source of B −L violation to prevent

sphaleron washout of the produced baryon asymmetry for models where evaporation

happens before the electroweak phase transition, here for masses MPBH ≲ 106 g. We

postulate in this case the mechanism outlined in Ref. [74], which posits the existence of

heavy right-handed neutrinos interacting with the Standard Model Higgs doublet via an

effective dimension five operator; as long as the induced lepton-number violating reac-

tion is fast compared to the sphaleron rate (which is generically the case at high enough

78



temperatures) then the ∆L component of the generated lepton-baryon asymmetry is

erased, leaving a net ∆B which is unaffected by sphaleron washout.

12.2.1 Asymmetric Dark Matter

Finally, we consider a simple incarnation of asymmetric dark matter, inspired

by the scenario detailed in Ref. [75]. Schematically, the Standard Model is augmented

with a dark-sector scalar field ϕ and a Dirac fermion χ coupled to right-handed neutrinos

Ni, with Lagrangian density

−L = −LSM +
1

2
MiN

2
i + YiαNiLαH + λiNiχϕ+ h.c. (12.38)

plus mass terms for the ϕ and χ. χ has lepton number +1, and χ and ϕ are charged

under a discrete Z2 symmetry that ensures the stability of the lightest dark sector state;

we assume mχ < mϕ, so χ is the stable species1. We also need to assume fast, lepton-

conserving interactions that thermalize leptons l, the Higgs, and the dark sector fields,

annihilating away the symmetric components l + l̄ and χ + χ̄ (including, here, those

non-thermally produced by PBH evaporation). Since the symmetric component of the

dark matter must annihilate away by hypothesis in this scenario, the dark matter will

generically reach kinetic equilibrium , thus reducing its velocity. As a result, the limit

in Eq. (12.23) does not apply here.

The Ni decays are CP-violating, and the resulting decay asymmetries are de-

1Note that lepton number conservation forces χ to be a Dirac fermion, and to get mass from another
fermion χ̃ with opposite lepton number.
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fined summing upon Standard Model generations α = 1...3, ϵL =
∑

α ϵLα , where

ϵχ =
∑
i

Γ(Ni → χϕ)− Γ(Ni → χ̄ϕ†)
ΓNi

, ϵL =
∑
i

Γ(Ni → lh)− Γ(Ni → l̄h†)
ΓNi

. (12.39)

The final asymmetry in each sector does not only depend on the decay asymmetries

above, but also by on the details of the models and on washout and transfer effects,

which, following Ref. [75], we parameterize with the quantities ηL and ηχ in the two

sectors, respectively. Finally, the asymptotic asymmetries must satisfy [76]

Y∞
∆L = ϵLηLNνYi =

(nB
s

) 37

12
≃ 2.7× 10−10 (12.40)

Y∞
∆χ = ϵχηχNνYi ≃ 4.4× 10−10

(
1 GeV

mχ

)
, (12.41)

where Yi is the same as what given in Eq. (12.4), Nν is as given in Eq. (12.27) and,

again as above, we assume the Ni to be out of equilibrium and produced from PBH

evaporation (thus with a mass satisfying the constraints of Eq. (12.29)).

In the case, for instance, where Mν < TH , and thus Nν is independent of Mν ,

we find that

NνYi ≃ 0.04β

(
MPBH

MPl

)1/2

(12.42)

and thus, given a value for ϵLηL, there is one value of β that satisfies Eq. (12.40), namely

β ≃ 6.8× 10−9

ϵLηL

(
MPBH

MPl

)−1/2

. (12.43)

In turn, given NνYi as in Eq. (12.42), there is a one-to-one correspondence between ϵχηχ

and mχ via Eq. (12.41). Specifically,

ϵLηL
ϵχηχ

≡ rLχ ≃ 0.61
( mχ

1 GeV

)
. (12.44)
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Chapter 13

Results

We discuss in this section all of our numerical results for the framework de-

scribed above. Sec. 13.1 assumes complete PBH evaporation and no Planck-scale relics

(thus, f = 0, where f indicates the mass of PBH relics from evaporation in units of

the reduced Planck mass); we show results for both the baryogenesis via leptogenesis

(see sec. 12.2.0.1) and for the GUT baryogenesis (sec. 12.2.0.2) scenarios, for a variety

of dark matter masses; the following sec. 13.2 assumes f ̸= 0, and thus the existence

of Planck-scale relics contributing to the global cosmological dark matter density, again

for both baryogenesis scenarios, and again for a variety of dark matter masses; finally,

in sec. 13.2.1 we show results for asymmetric dark matter, for two different values of

the right-handed neutrino mass scale.
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13.1 Baryogenesis and Dark Matter from (complete) PBH

evaporation

As outlined above, we assume exclusive non-thermal dark matter production

from PBH evaporation, and we also assume that the dark matter never thermalizes. We

intend to address two questions:

(1) What is the range of viable dark matter masses?

(2) Can dark matter and baryogenesis both be accounted for from PBH evap-

oration? If so, for which PBH masses?

We outlined above general constraints on the dark matter mass: the lower

limits stems from Eq. (12.24), while the upper limit corresponds to the maximal mass

that can be produced from the evaporation of a PBH of massMPBH; the upper limit lies

in the regime where MX > TH = M2
Pl/MPBH (for MX < TH , MX < MPl/(9.1 × 104),

because of Eq. (11.4)), and is given by the requirement that NX > 1; The maximal

possible NX corresponds to gX , g → ∞ and thus to MX < MPl/
√
6 ≃ 1018 GeV.

We present our results in Fig. 13.1. All plots in our study utilize the same

parameter space: the (MPBH, β) plane (as a reminder, β is the relative energy density

of primordial black holes at the time of their genesis). In the plots, we shade in yellow

the region at low PBH masses ruled out by the CMB limit of Eq. (11.4) from the

lowest possible Hubble rate during inflation; we shade in blue the region excluded by
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Figure 13.1: Regions of successful production of the observed baryon asymmetry and dark matter
on the (MPBH, β) plane. The region shaded in yellow on the left is ruled out by the CMB constraint
of Eq. (11.5). The blue-shaded region is ruled out by the constraint on the velocity of the dark matter
at late times; finally, the grey region violates the constraint of Eq. (12.30), relevant for the leptogenesis
scenario. The thick purple line corresponds to βf = 1 for gχ = 1 plus Standard Model degrees of
freedom, i.e. for β above that line, PBH eventually dominate the energy density of the universe prior
to evaporation. The colored lines correspond to the dark matter mass indicated on top of each panel
and varying number of dark-sector degrees of freedom, as indicated in the legend. The dot-dashed lines
indicate regions of successful baryogenesis via GUT bosons decay. Finally, the dotted lines indicate
regions of successful baryogenesis via leptogenesis, corresponding to different right-handed neutrino
mass scales, as indicated, and to a large CP violation parameter ε = 0.5 (smaller CP parameters would
shift the curves to proportionally larger values of β ∼ 1/ε).
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the current dark matter velocity limit, Eq. (12.24); finally, we shade in grey the region

where PBH evaporation ends below the electroweak scale, and thus baryogenesis via

leptogenesis is not effective because of suppressed sphaleron rates, Eq. (12.30).

We indicate with a thick purple line the region where βf = 1 for gχ = 1 plus

Standard Model degrees of freedom, i.e. for β above that line, PBH eventually dominate

the energy density of the universe prior to evaporation, and particle production becomes

β-independent (hence the lines corresponding to successful baryogenesis and dark matter

production become vertical).

In the plots, the colorful solid lines correspond to different numbers of dark-

sector degrees of freedom: the upper blue line corresponds to gχ = 1, the orange line

to 10 and the green to 100. The dot-dashed line shows the parameter space compatible

with GUT baryogenesis for MX = 1015 GeV. Finally, the dotted lines correspond to

baryogenesis via leptogenesis with right-handed neutrino mass scales Mν = 1014 GeV

(upper line), Mν = 1011 GeV (middle line) and Mν = 106 GeV (lower line). We

truncate the dotted lines in this plot and in the following plots at PBH masses such that

the corresponding non-thermally produced neutrinos would thermalize, thus violating

Eq. (12.29). Notice that for intermediate values of Mν , the envelope giving the lowest

possible β for successful leptogenesis is uninterrupted, and that values ofMν < 106 GeV

are also possible. Once again, viable leptogenesis occurs in the region encompassed by

the dotted lines.

We start with a dark matter mass of 1 MeV in the upper left panel of the

top-four plots in figure 13.1. This mass is only slightly above the limit in Eq. (12.24)
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(incidentally, we note that slightly lower masses, between 0.6 and 1 MeV, are possible,

but correspond to very narrow viable parameter space inMPBH). For such light masses,

the constraint on the present dark matter velocity, from Eq. (12.22), is quite stringent,

and pushes against the constraint on MPBH in Eq. (11.4). Notice that despite the fact

that lighter black holes have a larger temperature, the earlier evaporation time means

the produced dark matter has more time to cool by redshifting.

Light dark matter particles means, via Eq. (12.9), that larger values of β are

needed at a given MPBH. In turn, this makes it easier to combine the generation of

dark matter from evaporation and of the observed baryon asymmetry. Fig. 13.1 shows

that for dark matter masses at around 1 MeV, both leptogenesis and GUT baryogenesis

work, with the former suitable for a large number of degrees of freedom, and the latter

for a low number of degrees of freedom. PBH dominance of the universe’s energy density

forces gχ > 1 in this case. The PBH mass needs to be right around 1 gram for a dark

matter of 1 MeV. For sub-MeV dark matter masses we find that the only viable scenario

is GUT baryogenesis, for PBH mass slightly below 1 gram, and again gχ ∼ 10.

The upper right plot shows mDM ∼ 10 MeV. GUT baryogenesis is now no

longer possible, while there is substantial overlap with leptogenesis across a fairly ex-

tended range of PBH masses from 0.5 to around 100 grams. The same applies to 100

MeV dark matter masses, although here the viable PBH mass range is extended to

larger values, up to the limit from the current dark matter velocity, which, for a dark

matter mass of 100 MeV, is around a few tens of kg. Finally, for DM masses at the GeV

(lower right panel) or more, the parameter space keeps enlarging as the constraint on
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the dark matter velocity weakens (for 1 GeV up to ton-scale PBH); leptogenesis remains

viable as long as the right-handed neutrino mass is sufficiently low.

In the lower four panels, we show a different regime, where the dark matter

mass is very heavy (1013 to 1018 GeV), and is produced by PBH whose initial temper-

ature is lower than the dark matter mass. In this regime, the dependence with MPBH

is no longer Ωχ ∼ M
1/2
PBH but is instead Ωχ ∼ M

−3/2
PBH (see Eq.(12.12)). The top two

panels illustrate that the dark matter mass must be at least a few ×1013 to be viable,

with generally very low right-handed neutrino masses. Notice that the constraint on

the PBH mass from evaporation ending prior to the EW phase transition, forces the

lowest dark matter mass to be heavier than a few times 1012 GeV. Also, notice that

GUT baryogenesis is never an option for very heavy dark matter masses.

13.2 Baryogenesis and Dark Matter from PBH evapora-

tion and PBH relics

Here we discuss the possibility that evaporation stops at a mass fMPl, leaving

the dark matter produced by the PBH evaporation together with a second population

of stable Planck-scale relics of mass Mrelic = f ×MPl; we explore this two-component

dark matter scenario on the same parameter space as before, taking into consideration

the over-closure constraint from the PBH relics (the corresponding excluded region of

parameter space is shaded in dark red, and is at the top left of the plots).

In the top four panels of fig. 13.2 we show the case where f = 10−7. This is,
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admittedly, a very low mass scale for PBH evaporation relics, but given ignorance about

how evaporation might stop due to quantum gravity effects, it cannot be a priori ruled

out. For such light PBH relics, we find that successful baryogenesis (via leptogenesis)

plus two-component dark matter is possible for masses between roughly 10 MeV and

a few GeV in the regime where mχ < TH , and is possible again for very heavy dark

matter mχ > 1013 GeV (in the figure, we show mχ = 1014 GeV), but in this case the

contribution of Planck relics is very sub-dominant. The right-handed neutrino mass

needs to be between 107 and 1012 GeV, and the PBH mass between 1 g and around

a ton for this scenario to be successful in the low-dark matter mass regime; the heavy

dark matter, as before, demand low right-handed neutrino masses, around 106 GeV or

so. For dark matter larger than or around 10 GeV but lighter than around 1013 GeV,

dark matter and the baryon asymmetry cannot be jointly produced; also, we find that

GUT baryogenesis never works if Planck relics are around (the corresponding region of

parameter space is ruled out by overclosure from the density of Planck relics, unless

f → 0).

The lower four panels show the case where evaporation stops at the Planck

scale, i.e. f = 1. In this case the two-component dark matter is viable for a broad

range of masses; demanding successful baryogenesis via leptogenesis forces the dark

matter mass to be at the GeV scale (top left panel) and right handed neutrinos to be

around 10 TeV; lighter dark matter particles in the MeV range are ruled out for f ∼ 1,

as are heavier masses (see top left panel showing mχ = 100 GeV). The bottom, left

panel, with mχ = 1013 GeV, shows (at around MPBH ∼ 1 g) the turnover of the regime
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when mχ ∼ TH ; we do not find, however, regions of successful baryogenesis and dark

matter; slightly heavier dark matter masses again make it possible to have successful

leptogenesis, for sufficiently low right-handed neutrino masses (see bottom right panel,

with mχ = 1016 GeV).

13.2.1 Asymmetric Baryogenesis and Dark Matter from PBH evapo-

ration

In the asymmetric dark matter scenario, in addition to the plots’ parameter

space, i.e. the (MPBH, β) plane, the framework we consider has four additional pa-

rameters: the CP -asymmetry-washout-factor products ϵχηχ and ϵLηL, the dark matter

mass mχ, and the right-handed neutrino mass Mν . We consider two representative

right-handed neutrino mass scales, Mν = 1011 GeV in fig. 13.3 and Mν = 1013 GeV in

fig. 13.4. In each of the top-four panels of each figure we fix the dark matter mass mχ

and show, on the (MPBH, β) plane the necessary values for ϵχηχ to reproduce the uni-

verse’s observed dark matter abundance, superimposed with regions where the baryon

asymmetry can be produced for a given range of ϵLηL. Specifically, for definiteness we

shade in light green the region corresponding to

10−8 < ϵLηL < 10−2. (13.1)

(Notice that a broader range is theoretically possible). For a given dark matter mass, we

find that there is ample parameter space to produce the observed dark matter density via

PBH evaporation and subsequent asymmetric right-handed neutrino decay. Of course,
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from Eq. (12.41) it follows that the lower the dark matter mass, the larger the needed

ϵχηχ.

In fig. 13.3, the right-handed neutrino mass scale is low enough that for the

relevant PBH mass range both TH > Mν and TH < Mν are possible (the latter at

masses larger than around 100 grams, the former for lighter masses), hence the shape

of the green-shaded regions. The figure illustrates that a broad range of dark matter

masses are possible, depending on model details fixing the ϵχηχ and ϵLηL products.

In the bottom four panels, we fix the product ϵχηχ to several different values,

namely 10−6, 10−5, 10−4, 10−3, and show lines corresponding to values of the dark

matter mass that, in turn, would produce the observed dark matter density. Again, a

wide range of values for the dark matter mass is possible, depending on the value of the

parameter ϵχηχ. The lower ϵχηχ, the heavier the possible range of masses where the

asymmetric dark matter and baryon asymmetry generation is possible.

We note that the limits on the current dark matter velocity are here different

than before. First, the dark matter originates from right-handed neutrino decays rather

than directly from evaporation. The right-handed neutrino lifetime is always much

shorter than the PBH evaporation time scale; hence, effectively, the right-handed neu-

trino has no time to redshift, and the dark matter is produced by immediate subsequent

decay. Assuming for simplicity isotropic decays in the rest frame of the neutrino, as we

show in the Appendix the average dark matter velocity in this case is a factor 2 smaller

than in the case of direct production from evaporation. As a result, the constraints on

the dark matter mass are generically a factor 2 weaker (see Appendix ??).
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However, since in the asymmetric dark matter production scenario we posit

that processes exist that deplete the symmetric χ̄χ component produced by evaporation,

the dark matter velocity might, and will, be affected by such processes. For instance,

should the depletion of the symmetric component proceed via annihilation with the

visible sector, i.e. χ̄χ → SM, then the dark matter would be presumably brought in

kinetic equilibrium and thus cool to the visible sector temperature, weakening the limit

discussed above; if, on the other hand, the depletion occurs via 2n → 2 “cannibal”

processes, with n > 1, such as χ̄χχ̄χ→ χ̄χ, then effectively the dark matter would heat

itself up, strengthening the limits discussed above.

For reference, in the figures we leave a vertical thick blue line in the top-left

panel, corresponding to the heating from sterile neutrino decay, with the understanding

that such limits are model-dependent and could be stronger or weaker than what the

lines indicates. In practice, however, these constraints are largely outside the region of

parameter space of interest.

Notice that a similar discussion to what we treat in the Appendix would be in

order if the dark sector particles contained particles with masses largely different from

the dark matter mass they eventually decay into. As mentioned above, here we make

the simplifying assumption that the dark sector spectrum is trivially degenerate at a

mass scale close to mχ.
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Figure 13.2: Top: Mixed-dark matter case, with Planck-scale relic of mass M = fMPl,
and f = 10−7. The shaded region in the upper left indicates an excessive density of
Planck-scale relics, all other lines are the same as in fig. 13.1. Bottom: same, for f = 1
(notice the different y axis).
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Figure 13.3: The Asymmetric Dark matter scenario, with Mν = 1011 GeV. The
green shaded region allows for successful asymmetric baryogenesis-via-leptogenesis, for
10−8 < ϵLηL < 10−2. Each panel in the top four plots assumes a different dark
matter, mass, mχ = 1 GeV, 10 GeV, 100 GeV and 1 TeV. The black lines in those
plots show the required values of ϵχηχ to produce the observed density of (asymmetric)
dark matter. In the lower four panels, we instead fix ϵχηχ to several different values,
10−6, 10−5, 10−4, 10−3, and show lines corresponding to values of the dark matter
mass that, in turn, would produce the observed dark matter density. As before, the
purple line indicates βf = 1. The vertical dark blue line shows the limit from the dark
matter velocity.
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Figure 13.4: As in fig. 13.3, but with Mν = 1013 GeV
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Chapter 14

Discussion and Conclusions

We studied the joint production of the observed matter-antimatter asymmetry

and of the cosmological dark matter from the evaporation of light primordial black holes

(PBH) in the very early universe, at times tevap ≪ 1 sec. The parameters of the model

we considered include a universal mass for the primordial black holes, and their relative

abundance at generation. We assumed that the dark matter belongs to a “dark sector”

with a certain number of dark degrees of freedom. We also considered a “mixed dark

matter scenario”, where the dark matter is both produced by PBH evaporation and

consists of PBH relics from the end of evaporation at around, or below, the Planck

scale. Finally, we considered three scenarios for the generation of the matter-antimatter

asymmetry: (i) CP - and B-violating decays of GUT gauge bosons, (ii) baryogenesis

through (non-thermal) leptogenesis via out-of-equilibrium CP - and L- violating decays

of heavy right-handed neutrinos, and (iii) asymmetric dark matter and baryogenesis,

again via decays of heavy right handed neutrinos.
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The parameter space under consideration is constrained by a variety of con-

siderations, from limits on the dark matter velocity inherited from the large Hawking-

Gibbons temperature scales at which the dark matter was produced, to limits on the

PBH mass from the Hubble rate during inflation, to an excessive density of relic PBH

from the end of evaporation at the Planck scale.

Unlike in previous studies that focused on scenarios where PBH dominate the

energy density of the universe at production (see e.g. Ref. [52, 53]), here PBH can be a

subdominant component to the early universe’s energy density, with generally different

conclusions (although our results correspond to those of Ref. [53] for values of β such

that prior to evaporation PBH dominate the energy density of the universe).

If evaporation does not stop, and PBH vanish completely, both GUT baryo-

genesis and leptogenesis can be successful in conjunction with dark matter production

from evaporation. GUT baryogenesis only works if the dark matter is between 1 and

10 MeV, while leptogenesis works either for dark matter masses between 1 MeV and a

few GeV, or for super-heavy masses from 1013 to 1018 GeV, the maximal possible dark

matter in this scenario. The needed PBH masses range from a few grams (for light dark

matter particle masses), to around a ton for super-heavy dark matter.

If PBH evaporation does stop at some scale fMPl, GUT baryogenesis is ruled

out entirely, and leptogenesis works only for masses up to a few GeV or, again, for very

heavy dark matter masses. In the former case, right handed neutrino masses must be

large (1011 GeV or so), in the latter, they must be much lighter (106 GeV or less).

Asymmetric dark matter and baryogenesis is successful, in this framework, for
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a broad range of effective CP times washout factors ϵη for the visible and dark sector.

The larger the dark sector value of the product ϵχηχ, the lighter the viable range of

dark matter masses. The dark matter, in this scenario, must have a mass between a

fraction of a GeV and 10 TeV or so.

If the scenario discussed here is indeed the backdrop for the generation of

visible and dark matter, the detection outlook is relatively daunting. Searches for

relic Planck-scale objects are possible, and in some cases might set some limits on

this scenario, especially if the relic PBH are a substantial fraction of the dark matter,

and/or if the relic are charged [77]. Directly or indirectly detecting the dark matter

produced in PBH evaporation in the present scenario is problematic: since we assume

no thermal equilibrium at any temperature, the indirect detection rates generically are

highly suppressed, and so are the direct detection rates.

One possible route to test this scenario (and in fact any scenario involving

light PBH) is to look for gravitational wave emission from evaporation [78]: while all

evaporation products quickly thermalize in our scenario, gravitons do not, leaving an

imprint that is in principle detectable. There is a one-to-one correspondence between

the frequency ν of gravity waves at the present time and the corresponding frequency

at emission ν∗, emission which assume here to happen at the PBH evaporation time:

ν ≃ 0.34 ν∗
T0
T∗

(
100

g∗(Tevap)

)1/3

, (14.1)

where the temperature of the PBH evaporation Tevap is given in Eq. (11.8) and T0
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corresponds to the CMB frequency, around 160.4 GHz. As a result, we have

ν ≃ 7.1× 1010 Hz

(
ν∗
MPl

)(
100

g∗(Tevap)

)1/12 ( g

100

)−1/2
(
MPBH

MPl

)3/2

. (14.2)

The maximal value for ν∗ is around a few times the Hawking-Gibbons temperature,

TH =M2
Pl/MPBH. Using Eq. (14.1), we get that the maximal frequency of gravity waves

today is around 1016 Hz. Generally, the spectrum peaks at ν∗ ∼ 2.8TH [78], therefore

producing a signal at frequencies much higher than current gravity wave detectors. As

we explain below, detection is however possible through the inverse Gertsenshtein effect

[79, 80].

We estimate here the strain corresponding to the predicted gravity wave signal

from PBH evaporation. Ref. [78] calculates that the energy density of gravity waves

from PBH evaporation integrated over frequencies, and accounting for our assumption

that PBH do not dominate the energy density of the universe, but rather constitute a

fraction β of it at production, is approximately

ΩGW(tevap) ≃ 0.006
( gG
100

)2
β, (14.3)

with gG = 2 the number of graviton degrees of freedom. The equation above also

assumes graviton production to happen instantaneously at the evaporation time (see

also Ref. [53]). The red-shifted gravitational wave density today is

ΩGWh
2(tnow) ≃ 1.67× 10−5

(
100

g∗(Tevap)

)1/3

ΩGW(tevap) ≃ 10−11
( gG
10−2

)2
β. (14.4)

The corresponding strain is then

h ∼ 10−36β1/2. (14.5)
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The frequencies for the gravity wave emitted from PBH evaporation are well beyond

currently operating or future interferometers; however they could be detectable via the

so-called inverse Gertsenshtein effect [81]: The passage of gravity waves in a static

magnetic field sources electromagnetic waves. As long as the induced signal “beats”

thermal noise, a signal can be detected [79, 80].

In conclusion, early evaporation of light primordial black holes can lead to co-

genesis of a baryon asymmetry and of the dark matter. We demonstrated that several

possible baryogenesis scenarios are viable (GUT baryogenesis, leptogenesis, asymmetric

dark matter), for a broad range of dark matter masses and of primordial black hole

masses. The dark matter itself can originate entirely from evaporation, or from decay of

particles produced by PBH evaporation, or it can be a mix of particles from evaporation,

and Planck-scale relics of the evaporation process. Detection prospects for the dark

matter are discouraging, but this scenario would leave an imprint of very high-frequency

gravitational waves, of calculable spectrum and intensity, possibly detectable via the

inverse Gertsenshtein effect.
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