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Abstract

Predicting the poses of small-molecule ligands in protein binding sites is often done by virtual 

screening algorithms like DOCK. In principle, Molecular Dynamics (MD) using atomistic force 

fields could give better free-energy-based pose selection, but MD is computationally expensive. 

Here, we ask if MELD-accelerated MD (MELD × MD) can pick out the best DOCK poses taken 

as input. We study 30 different ligand-protein pairs. MELD × MD finds native poses, based on 

best free energies, in 23 out of the 30 cases, twenty of which were previously known DOCK 

failures. We conclude that MELD × MD can add value for predicting accurate poses of small-

molecules bound to proteins.

Introduction

To assist in drug discovery, it can be useful to compute the native poses of small-molecule 

ligands bound to proteins.1,2 A widely used algorithm for this is DOCK3 and variants of it.
4–7 Docking methods have become workhorses of virtual screening because they are fast to 

compute.2,8,9 But speed comes at the cost of accuracy: (i) DOCK scoring functions use 

simplified physics, usually the non-bonded terms of molecular mechanics force field3 (ii) 

DOCK treats proteins as rigid, yet flexibility is important.10,11 Various methods incorporate 

receptor flexibility,12,13 but more improvement is needed.14

Alternatively, ligand poses in protein sites can be found by Molecular Dynamics (MD) 

simulations using atomistic force fields.15,16 Such atomistic modeling can capture more of 
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the physics, treat water explicitly, and sample the degrees of freedom more extensively. An 

important virtue of MD methods is that they give relative populations, and thus free 

energies, of different states, for example of binding. Using conventional MD even on 

special-purpose computers17,18 is too computationally demanding to sample the vast 

conformational spaces of binding/unbinding and obtaining good statistics. Enhanced 

sampling approaches have been developed to accelerate small-molecule binding, either using 

general ensemble approaches like Replica Exchange (REMD)19 or using collective variables 

with biasing potentials.20–25 For a recent review, see Limongelli et al.26

Here, we apply an accelerator of MD, called MELD (Modeling Employing Limited Data), to 

improve upon DOCK models of ligands bound to proteins.27,28 MELD × MD accelerates 

MD simulations when some target goal can be specified, even vaguely or incompletely. 

Using MELD × MD, we ask: (1) Can we rescue DOCK scoring failures (i.e incorrect 

rankings of dock poses) using a current atomistic force field and explicit solvent? (2) Can we 

speed up the atomistic MD modeling using the MELD accelerator, guided by contacts 

(extracted from DOCK poses) to give the MD method some starting points for sampling? 

We’re asking here if MELD × MD is su ciently fast and accurate, in the limited tests here, to 

improve upon DOCK poses using free energy criteria. We tested 30 different ligand-protein 

complexes from the DOCK SB2012 dataset,29 including some cases where DOCK is already 

successful. For each complex, we take the 30 best poses according to the DOCK scoring 

function, extract binding pose information as input, model ligand binding from completely 

unbounded state with MELD × MD in the TIP3P30 explicit-solvent model. We compute the 

populations of sampled binding poses, to see if the atomistic modeling correctly identifies 

the native poses. We find that MELD × MD commonly (but not always) rescues the scoring 

failures of DOCK, and that it is much faster than brute-force MD.

Methods

MELD is an accelerator of MD when some guiding directives are available

MELD (Modeling Employing Limited Data) is a computational method that accelerates MD 

simulations by ‘melding’ in external directive information of some kind.27,28,31 MELD is 

useful in many different situations: (i) in determining protein structures from experimental 

data that is limited in some way or noisy,32 (ii) in computing protein 3D native structures 

from amino acid sequences when given vague directives (such as: “make a hydrophobic 

core” or “make good secondary structures”),33 (iii) in computing protein-peptide34 or 

protein-protein35 binding structures, (iv) in computing relative binding affinity between two 

peptide binders to a protein.36 The power of MELD is its ability to use vague or 

combinatoric information or to choose options among choices; it does this through a 

Bayesian ‘sub-haystacking’ procedure.

Here is how we employ the MELD accelerator in the present work. DOCK serves as a front-

end to provide sets of contacts in the form of ligand binding poses. Those poses are 

identified as the top 30 ones based on DOCK6 socring function. We accept that DOCK may 

not correctly rank order those poses. We do require, however, that the true native pose be 

within the vicinity of DOCK best-scored N poses that is our input. Then, starting from the 

ligand unbound state, MELD × MD samples the ligand in the vicinity of subsets of the N 
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poses, and seeks the best pose based on the atomistic potential function. The ligand unbound 

state is prepared by only a translational move from the crystal pose along the vector defined 

by the protein and the ligand center-of-mass, until it is 25Å away from protein. The original 

orientation is rapidly lost as the ligand diffuses through the water box during binding 

simulations.

Chosing appropriate ligand-protein systems

Among the 1024 ligand-protein complexes in the SB2012 dataset,29 we applied the 

following criteria for selecting ligand-protein pairs to test: A) The receptor must be smaller 

than 250 amino acids, to be within our current computational capabilities. B) It contains no 

co-factors or ions (to avoid possible force field deficiencies). Filtered in this way, the dataset 

contains 371 complexes. C) To further eliminate complexes that are incompatible with the 

physics model, we performed a stability test (see Simulation Protocols) starting from the 

native pose. We further eliminated those protein-ligand pairs having an average LRMSD 

value larger than 3Å. The final dataset contains 268 ligand-protein complexes. From those, 

20 DOCK failures and 10 DOCK successes were selected as our MELD × MD test set.

Simulation Protocols

For all our simulations here, we used the AMBER ff14SB force field37 to describe the 

protein, and the GAFF force field38 for the ligand molecule. The atomic partial charges of 

the ligand are assigned using the AM1-BCC method.39 We used a TIP3P30 equilibrated 

water box with 10Å buffer size for each system. Equilibration of the solvated complex is 

following this protocol.40 We did MD production runs to test stabilities, using the 

AMBER16 software41 with Cartesian restraints using a force constant of 100.0kJ mol−1nm
−2 applied to the protein heavy atoms. MELD × MD simulations were run using MELD, a 

plugin for the OpenMM MD software.42 Two types of information are input into MELD as 

restraints. (1) The protein receptor was not allowed to completely unfold during the 

simulations, but was allowed to rearrange upon ligand binding. To this end backbone atoms 

are restrained using flat-bottomed Cartesian restraints. No force is applied to backbone 

atoms inside a 3.5Å radius around their initial crystal position, and a harmonic potential with 

a 250.0kJ mol−1nm−2 force constant is applied to atoms that move outside this radius. This 

force constant gives ~ kBT of energy when the atom deviates 1.0Å from the flat-bottom 

region. The strength of these restraints is kept constant across the replica ladder. (2) We use 

contacts extracted by DOCK prediction to drive the docking of the ligand onto the protein 

(see SI for details). DOCK poses are clustered according to the protocol described in SI. 

MELD restraints driving the system to different pose clusters are slowly turned on while the 

system descends the replica ladder using a MELD nonlinear scaler (α=1, force 

constant=0.0kJ mol−1nm−2, α=0, force constant=100.0kJ mol−1nm−2).

To accelerate the conformational sampling in the explicit solvent, we use Replica Exchange 

with Solute Tempering (REST2).43 The effective temperature of each replica, which 

correlates with the strength of the non-solvent nonbonded and torsion interactions, varies 

geometrically from 300K at α=0.0 to 500K at α=1.0.27 To further accelerate ligand transi-

tioning among different poses, step-wise pushing restraints are turned on as the ligand 

moves up the replica ladder (see SI). The pushing restraints coupled with temperature 
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scaling accelerate the ligand unbinding as the system moves up the replica ladder. The H, T-

REMD simulations are run using 30 replicas. Exchanges of configurations between replicas 

are attempted every 50ps. The total simulation time of a single replica is at least 500ns for 

each system. Initially parallel-simulations are evenly spaced along the replica ladder. Their 

position in replica index space are being optimized by MELD on-the-fly to maximize the 

exchange probability. The initial conformation of all the 30 replicas is the ligand-unbound 

state.

Criteria to evaluate MELD × MD success or failure

In rigid docking studies, the quality of a docking prediction compared to the reference 

crystal pose can be effectively described using ligand root-mean-square deviation (LRMSD). 

LRMSD measures the deviation of ligand heavy atoms position between two poses after 

aligning the protein main chains. In most docking studies the protein main chain is rigid. In 

these cases, LRMSD values reflect only discrepancies in ligand positions. When protein 

structures are flexible, like in our MELD × MD approach, LRMSD reflects both 

discrepancies in the position of the ligand and uncertainties in the alignment of the protein 

structures. This has two implications: (i) we need to use a different LRMSD cut-off as a 

measure of success between rigid and flexible docking studies, and (ii) we need to identify 

other measures, less affected by protein conformations, to help describing the quality of 

predicted pose in flexible systems.

To identify a LRMSD cut-off value that accounts for protein flexibility, we need an 

estimation of the contribution of receptor flexibility to the standard LRMSD measurement. 

Thus, we performed MD simulations in AMBER, in which we applied Cartesian restraints to 

the positions of heavy atoms of the protein residues within 5 Å of any ligand heavy atoms 

and to all ligand heavy atoms. The restraint strength was 100 kcal mol−1 Å−2. After 

minimization and equilibration, each system was run for 100 ns. The LRMSD of each frame 

in the trajectory was computed by aligning receptor Cα atoms against the native crystal 

structure. The value corresponds to two standard deviation of the LRMSD distribution was 

the receptor flexibility contribution to the standard LRMSD measurement. Finally, this value 

(1Å, see Fig. S1) plus the standard cut-off value used by DOCK community (2Å) was the 

cut-off to evaluate MELD × MD prediction.

To describe the quality of the structures from MELD × MD predictions, we also evaluate the 

fraction of native contacts between the ligand and the receptor. Contacts are computed 

following the protocol described in SI. As a rule of thumb, we consider our prediction to be 

successful when it captures 60% of the native contacts. In general this means that we 

identify important contacts between the ligand and the protein (e.g. hydrogen bond or π 
stacking interactions), these are important contacts that are typically maintained in the lead 

optimization stages of drug discovery. Nonetheless, not all contacts are created equal. For 

example identifying an hydrogen bond between specific ligand and protein atoms is 

arguably more informative than a “promiscuous” hydrophobic contacts. Therefore, while 

satisfying the 60% cut-off is good enough to denote success, there are cases when these 

criteria are not met that warrant special consideration.
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Results and discussion

Figure 1 compares the MELD × MD-refined ligand conformations to the experimental native 

structures.

Here is a summary of our results: (i) Reference tests. The left two columns show that MELD 

× MD succeeds in 6 of the 10 cases where DOCK itself already successfully predicted a 

native-like pose and ranked it first. This was just a reference check that MD could give good 

predictions when the DOCK input was already good. (ii) Rescuing DOCK scoring failures. 

The right four columns show that out of the 20 DOCK failures, MELD rescues 17 of them. 

This test was the main point of the present work.

One virtue of MELD × MD is the ability to drive the ligand to different poses from 

completely unbound state and unbiasedly sample them based on free energy. By enforcing 

“fuzzy” intermolecular ligand-protein contacts compatible with multiple microstates, MELD 

can identify and refine the best DOCK pose, and sometimes go beyond input DOCK poses 

and find novel ones (Fig. S3). Meantime, leveraging the sampling power of MELD × MD 

and flat-bottom MELD distance restraints, those poses can be sampled unbiasedly and more 

extensively, which leads to more accurate evaluation of the relative free energy of different 

poses, results to the better ranking of native poses (Fig. S5) and more successes at the TOP1 

level (Fig. S4).

Assessing MELD × MD prediction failures and successes

We discuss the quality of our TOP1 predictions in terms of LRMSD and fraction of native 

contact of our predictions against the reference crystal structure. According to the cut-off 

presented in section “Criteria to evaluate MELD × MD success or failure”, we partition 

MELD × MD predictions into the four sectors highlighted in the graph of Figure 2. The 

green top-left region identifies accurate predictions with low value of LRMSD and high 

fraction of true contacts. The bottom-right red region identifies failed predictions with high 

values of LRMSD and low fraction of true contacts. Predictions falling in the two other 

areas need an accurate system-by-system discussion. The bottom-left blue region represents 

predictions with a relatively low fraction of true contacts but with a low value of LRMSD. In 

the 1TNK system the ligand establishes only 2 contacts with the protein -according to our 

definition of contacts. Assessing the quality of this prediction according to the fraction of 

native contacts is therefore not particularly meaningful. Considering the low value of 

LRMSD of the MELD TOP1 prediction (2.0Å), we define this prediction a success. In the 

1D3D system, significant sidechain rearrangements prevent key contacts to be formed. 

Rearrangement of the TRP220 sidechain prevents the benzothiophene group of the ligand to 

sit in its crystal position and therefore to form hydrogen bonds between the hydroxyl oxygen 

and protein residue ASP192 and ALA193 (Fig. S6). Similarly the rearrangement of the 

TRP50 sidechain hinders the tertiary amine of the ligand from forming pi-cation interactions 

with the indole sidechain of tryptophan. A well-known property of the DBSCAN for 

discovering arbitrary shaped cluster44 means that any cluster member is in principle as 

representative as the centroid. Our choice of centroid was just meant to be systematic, but in 

no way the best. We observed that there are better structures in the MELD TOP1 ensemble 

(an example is shown in Fig. S7). Moreover, one advantage of a physics based method like 
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MELD × MD is that there is a whole ensemble of structures associated with out TOP1 

prediction -i.e. all the structures that belong to the same cluster. Analyzing this ensemble all 

native contacts can be identified (Fig. S8). Considering the low value of LRMSD of our 

prediction and the existence of high quality structures in the TOP1 ensemble of structures 

that allow to identify all native contacts, we consider this prediction successful. Finally the 

top-right orange region captures predictions with high value of LRMSD, but that also satisfy 

a high fraction of of native contacts. Our 1LZE prediction captures 6 out of 8 native 

contacts, that include 4 out of 6 native hydrogen bonds. Figure S9 shows the captured 

contacts and the overall good binding pose. The LRMSD value of 3.6Å is due to the 

displacement of the flexible loop backbone region between residues ASP101 and ASN103 

that “pushes” one side of ligand away from the crystal pose (Fig. S10). Further investigation 

shows that structures with significantly lower value of LRMSD can be found inside the 

TOP1 ensemble (Fig. S11). Considering that we capture most of the hydrogen bond 

interactions, and the presence of good structures in the ensemble, we can consider 1LZE a 

successful prediction. The other two systems in this orange region, 1MRK and 1BYG, are 

two failures due to the overall different binding modes compared to native (Fig. 1). For these 

two systems, our simplified contact representation lead to a significant fraction of false 

positive contacts.

MELD simulations converge relatively quickly to the native pose

When MELD simulation converged to the native pose, how long does it take and what is the 

indicator? Figure 3 shows results of clustering trajectory over different time intervals. The 

ratio of the most populated native one (P(c0)) and most populated non-native cluster’s 

population (P(c1) indicates the reliability of our prediction. When this ratio keeps above 1, it 

indicates that our MELD prediction converged to the native pose.

Figure 3 shows convergence to native, on average, after about 300ns for 1LMO. Similar 

results are shown below for all 23 MELD × MD successes. For most MELD × MD 

successes (18/23, ~80%), the MELD × MD simulation converged to native in ~300ns. 

Simulating a protein of less than 250 amino acids with a ligand in explicit TIP3P water can 

be done within a day on modern GPUs (Table. S2). So, it may be useful for practical 

structure-based drug design.

But, some simulations converged slowly. For 1 out of 5 slowly converging complexes, our 

clustering protocol fails to separate populations (Fig. S12). For the rest, we did not find any 

clustering issues. Slow convergence might due to the existence of multiple native binding 

modes or alternative non-native poses with similar binding free energies as the native ones in 

the simulated protein-ligand complexes.45

MELD × MD failures are from force field flaws or protocol limitations

Here, we looked at the sources of error when our modeling failed. In some cases, the active 

site has floppy loops. In those cases, the flexibility allowed by MELD × MD makes it harder 

for the method to find the binding mode. So, we experimented with reducing the flexibility 

by narrowing the flat-bottom region from 3.5Å to 1.8Å. That gave improved predictions for 

four systems (1GHZ, 1BJU, 1MUE, 1MRK, see Table. S3). It did not help, however, for 
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1BYG. 1BYG has a deep cavity, so reducing the flexibility makes it harder for the ligand to 

diffuse into the cavity (see Fig. S15). We regard both types as a sampling failure of the 

MELD protocol: too much sampling distorts the cavity and restricts binding; and too little 

sampling doesn’t sufficiently populate the native state. If we know such information about 

the cavity in advance, it may allow for improvements in our modeling. In the failure of 

1BB7, the input contacts were not sufficiently directive to native (Fig. S16), probably 

causing slow convergence. For 1LZY, the native state is sampled, but not preferred; this is a 

forcefield error (Fig. S14).

MELD × MD adds values to rigid and flexible docking

To assess whether the more expensive explicit solvent MELD × MD simulations add value 

and how other docking software performs on the same testing systems, we did some rigid/

flexible docking simulations using AutoDockFR.46 We used default “vanilla” parameters as 

outlined in the SI. Figure. 5 shows the results. All three of the docking algorithms gave 

about the similar results, and MELD × MD free energies add considerable value in picking 

out the single most native-like ligand pose. The simulation cost of each method is given in 

Table. S2.

Conclusions

We addressed two questions here. (1) Can DOCK scoring failures be rescued by Molecular 

Dynamics simulations, which presumably have two advantages that: (i) they represent the 

atomic interaction physics and solvation more accurately, and (ii) they sample the protein 

degrees of freedom more fully. And (2) Can MELD give sufficient acceleration to MD, 

when fed DOCK poses as input, to be a practical tool for finding ligand poses bound to 

proteins? MELD × MD was largely successful on both counts. We tested 30 protein-ligand 

complexes. Our protocol predicts the correct native ligand binding pose for 23/30 complexes 

and rescues 17/20 DOCK scoring failures. In general, where extra computational expense is 

warranted, MELD × MD can add value to DOCKing.
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Figure 1: Docking by MELD × MD successfully predicts bound structures in 23/30 cases.
White panels show successful TOP1 predictions. Dark blue ones are not successes at the 

TOP1 level. (Green) Native ligand pose, superimposed on receptor Cα atom. (Red) MELD × 

MD predicted ligand poses. (Left 10 panels): DOCK by itself produces a native-like pose 

and rank it as TOP1, even without MELD × MD. (Right 20 panels): DOCK by itself fails to 

rank a native-like pose as TOP1.
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Figure 2: Assessing MELD × MD predictions for all 30 complexes.
MELD × MD TOP1 predictions for all 30 complexes are partitioned into 4 different groups 

based the fraction of true contact and ligand root-mean-square distance(LRMSD). The 

average binding pocket flexibility across all complexes in each groups are accessed using 

interface root-mean-square distance (IRMSD) and the corresponding bar plot is shown on 

top.
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Figure 3: 
(A) Convergence of cluster populations for 1LMO. The bold line represents the native 

cluster, c0. (B) Emergence of the dominant cluster population for 1LMO, c0 relative to 

the second best, c1.
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Figure 4: ROC curve of simulation time needed to converge to native.
The percentage of MELD×MD successes that converged to native poses after simulation 

times given on the x-axis.
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Figure 5: Comparing predictions among 4 different methods
Predicted TOP1 poses for all 30 complexes using AutoDock rigid(AutoDock_Rigid) and 

flexible receptor (AutoDock_Flex), DOCK and MELD×MD are compared. The success and 

failure are colored as green and purple respectively. The left-most 10 cases are DOCK 

successes while the right-most 20 ones are DOCK failures.
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