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Abstract
Efficient irrigation is critical for managing scarce water resources where precipitation is minimal. Field-scale irrigation is 
largely unaccounted for in landscape evapotranspiration models, primarily due to the unavailability of data and the lack of 
water balance components in energy balance-based evapotranspiration models. To overcome these challenges, we imple-
mented a remote sensing-based energy and water balance model BAITSSS (Backward-Averaged Iterative Two-Source 
Surface temperature Solution) to calculate evapotranspiration (ET) and irrigation requirements of winter lettuce in the arid 
environment of the Lower Colorado River Basin. Predicted evapotranspiration and irrigation were compared against data 
from twelve eddy covariance (EC) sites for wide range of soil hydraulic properties operating between 2016 and 2020 and the 
applied irrigation, respectively. BAITSSS estimated evapotranspiration and irrigation based on vegetative formation, weather 
demand, soil hydraulic characteristics, and predefined management allowed depletion (MAD) (0.4–0.6). Ground-based 
weather data, Sentinel-2-based vegetation indices, and SSURGO (NRCS soil survey database) soil moisture characteristics 
were model inputs. The results showed mean seasonal ET from BAITSSS and EC were comparable, differing on average 
by about 7% based on a constant rooting depth (500 mm) and MAD of 0.5 for entire crop growth stages. Variations in daily 
and seasonal ET were mainly due to differences in applied and model-simulated irrigation. Seasonal values of applied and 
simulated irrigation closely agreed (~ 6%) in most sites, though some sites applied irrigation more effectively than others. 
Overall, this study provided insight into consumptive water use and field-scale irrigation practices, as well as the capabilities 
and limitations of model-simulated ET and irrigation.

Introduction

Remote sensing-based energy balance models are frequently 
utilized to quantify crop water use (evapotranspiration) 
for water management (Allen et al. 2005; Anderson et al. 
2012). To manage agricultural water, water managers com-
pare evapotranspiration (ET) to applied water (groundwater 
pumping and irrigation diversions) (Allen et al. 2005). Field-
scale irrigation practices (applied water) depend on multiple 
factors including farmers' experience, behavior, adaptability, 
investment in infrastructure, availability of water resources, 
and many others (Leng et al. 2017; de Vito et al. 2017; 
Foster et al. 2019). Landscape irrigation mapping needs 
information regarding land management (where and when 
humans have provided water or supplemented rain-fed crops) 
(Ozdogan et al. 2010). Accounting for field-scale irrigation 
in remote sensing-based landscape evapotranspiration (ET) 
maps is challenging due to inadequate spatial and temporal 
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resolution (Ha et al. 2013). Irrigation alters soil moisture, 
and high spatial and temporal-resolution soil moisture maps 
can capture this critical piece of information related to the 
applied irrigation timing and amount. However, currently 
available soil moisture maps are mostly coarser resolution 
(> 25 km) (Brocca et al. 2017; Peng et al. 2021) and often 
provide information only about the upper soil moisture layer, 
for instance, microwave (~ 50 mm) (Kerr 2007; Collow et al. 
2012; Ye et al. 2015; Akbar et al. 2018; Massari et al. 2021; 
Peng et al. 2021). Thus, these maps are generally useless 
where higher spatial resolution information is needed (Fang 
et al. 2019).

Thermal-based ET models often do not utilize irrigation 
directly in their surface energy balance algorithm, whereas 
the soil water balance-based ET models need informa-
tion regarding irrigation and precipitation. However, the 
BAITSSS (Backward-Averaged Iterative Two-Source Sur-
face temperature and energy balance Solution) (Dhungel 
et  al. 2016, 2019) model accommodates water balance 
components in the energy balance algorithm and is used in 
operational settings (Dhungel et al. 2020). As field-scale irri-
gation information is not generally available, auto-irrigation 
in BAITSSS is based on weather demand, canopy formation 
(vegetation indices and physical properties), soil moisture 
characteristics, and predefined manageable allowed deple-
tion (MAD). The estimated ET from BAITSSS represents 
the crop water requirements based on the irrigation man-
agement practice that should generally correspond to the 
applied irrigation in the field. However, discrepancies may 
arise due to the limitations in capturing the farmer’s irriga-
tion practices. Thus, a robust sensitivity analysis is needed 
to implement this model for regional irrigation scheduling 
and analysis effectively.

Previously, detailed evaluations of ET estimated with 
BAITSSS were conducted using eddy covariance (EC) 
data from 12 lettuce fields in the Lower Colorado River 
Basin (Dhungel et al. 2022), and using lysimeter ET data 
for corn and sorghum fields in Bushland, Texas (Dhungel 
et al. 2021). Both studies used the applied irrigation data 
as a model input, and the predicted ET closely agreed with 
both lysimeter and EC. In addition, the results showed the 
increased accuracy in ET estimation was due to the avail-
ability of applied irrigation in the field that was critical to 
capturing ET spikes right after the irrigation and tracking the 
continued decrease of ET after irrigation, especially during 
the partial cover period.

We extended the previous work focusing on lettuce in 
the Lower Colorado River Basin at the same sites and years 
(2016–2020). However, in this work, model calculations are 
made assuming the applied irrigation amounts, and timings 
are unknown. Irrigation scheduling in this region is com-
monly done based on the farmers’/producers’ experience, 
rather than tracking soil moisture using field-based sensors 

or using specific computer-based irrigation simulation mod-
els. Farmers tend to well water and not stress crops due to 
the severe yield consequences of depleting short-season veg-
etable crops with shallow root zones (Kuslu et al. 2008; Xu 
and Leskovar 2014). To avoid water-related stress in most 
crop models, a management allowable depletion (MAD) of 
0.5 is generally adopted (Clark 2000; Callison 2012; Malik 
and Dechmi 2019). However, this rough guideline is largely 
based on major grain/cereal crops; the sensitivity of veg-
etable crops is less known and may have lower permissible 
MAD (Hartz 1996; Thompson et al. 2007). General char-
acteristics of ET simulation in winter vegetables including 
lettuce are shallow root depth compared to grain crops, short 
growing seasons, and longer partial cover period (Thorup-
Kristensen 2001; Escarabajal-Henarejos et al. 2015; Roux 
et al. 2016; Fisher et al. 2017).

The overall objective of this study was to compare 
ET from eddy covariance (EC) with ET estimated from 
BAITSSS using auto-irrigation based on multiple prede-
fined MAD’s (0.4–0.6) (Allen et al. 1998; Bartlett et al. 
2015). Irrigation and subsequent ET were estimated from the 
widely recommended MAD procedure suggested by univer-
sity extension (Aguilar et al. 2015; Peters et al. 2013) which 
had not been fully investigated in landscape-scale remote 
sensing energy balance algorithm previously because of the 
aforementioned limitations.

Methodology

Study area

The study area comprised about 600 km2 in commercially 
managed lettuce fields around Yuma, Arizona in the Lower 
Colorado River Basin. The Colorado River serves as the 
primary water source as precipitation is minimal (~ 80 mm/
year) (Arguez et al. 2012). Sprinkler and furrow irrigation 
were used within the same season, with sprinkler irrigation 
used to help establish a crop and furrow irrigation used for 
the remainder of the season. Evapotranspiration estimated 
from BAITSSS was compared to twelve EC sites between 
2016 and 2020. These sites were NGIDD 19–20a, YID 18b, 
YCWUA 18a, YID 17a, YID 19–20a, YCWUA 19–20a, 
YID 17d, YID 17b, YID 17c, YCWUA 17–18b, YCWUA 
17–18a, and YID 16. NGIDDD represents North Gila Val-
ley Irrigation and Drainage District, YID represents Yuma 
Irrigation District, and YCWUA represents Yuma County 
Water Users’ Association. These lettuce fields were mostly 
rectangular shapes with a minimum and maximum area of 
29,630 m2 (YID19–20a) and 136,290 m2 (YCWUA19–20a), 
respectively with an average of 105,699 m2. Planting dates 
varied between September and November.
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System components included three-dimensional sonic 
anemometers (CSAT3 and CSAT3A, Campbell Scientific, 
Logan, UT), open path infrared gas analyzers (IRGASON-
Campbell Scientific and Licor 7500—Licor Inc., Lincoln, 
NE), net radiometers (NR-Lite and CNR 4, Kipp and Zonen, 
Delft, Netherlands), soil heat flux plates (Hukseflux, Delft, 
Netherlands), and air temperature and humidity probes 
(Vaisala, Helsinki, Finland). Loggers and covariance sen-
sors were calibrated by the manufacturer in 2016 and 2017. 
Zero and span of infrared gas analyzers (IRGA) were done 
in July 2017 and again in July 2018.

Micrometeorological observations (~ 108 variables per 
30 min. time step), configured under Campbell Scientific’s 
EasyFlux DL™ (Logan, UT) program,1 were collected to 
allow continuous data measurements during the cropping 
cycle. High-frequency three-dimensional wind, sonic tem-
perature, and CO2 and H2O raw observations were collected 
at 20 Hz. A 30-min block-averaged fluxes, including the 
Webb–Pearman–Leuning (Webb et al. 1980) corrections 
were simultaneously stored and raw data were processed 
with EddyPro software in Express Mode (Fratini and Mauder 
2014). We computed the changes in energy storage within 
the soil mass above the two heat flux plates. We removed the 
data spike followed the outlined methodology described by 
Vickers and Mahrt (1997). The online gap-filling tool (http://​
www.​bgc-​jena.​mpg.​de/​~MDIwo​rk/​eddyp​roc/​method.​php); 
employing techniques as described in Falge et al. (2001) and 
Reichstein et al. (2005) were used to fill time gaps including 
those when the friction velocity (U*) was less than 0.15 m/s. 
We conducted energy balance closure at daily time steps by 
regressing turbulent energy (latent heat and sensible heat) 
against radiative energy (net radiation minus ground heat 
flux) and correcting for net energy storage via photosynthe-
sis (Anderson and Wang 2014). We enforced energy balance 
closure at 30-min time steps by assigning residuals to latent 
heat (LE) fluxes (Rosa and Tanny 2015). We conducted 
two-dimensional flux footprint analyses using an R script 
provided by Kljun et al. (2015). Eighty percent of the flux 
footprints lay within plot boundaries with minor exceptions 
where daily fluxes were computed by summing the 30-min 
LE flux values. Further details of EC data and processing 
can be found in French et al. (in. prep) and Dhungel et al. 
(2022).

BAITSSS model

The detailed model description (BAITSSS configuration as 
shown in Fig. 1) and complete set of the equations utilized 
in the BAITSSS model can be found in Dhungel et al. (2016, 
2019, 2020). This section summarizes the model and pre-
sents some primary equations. Flux gradient equations were 
used to compute latent heat flux (LE) and sensible heat flux 
(H), whereas Jarvis-type canopy resistance (rsc) was used 
for estimating transpiration. BAITSSS estimates ET based 
on weather, soil moisture conditions, and canopy develop-
ment (vegetation indices and physical properties), where 
the surface temperature required for the energy balance is 
computed iteratively for each time step. Irrigation (Irr) in 
BAITSSS is triggered when root zone soil moisture (θroot) 
falls below the threshold moisture content (θt),

RAW is computed based on the management allowable 
depletion (MAD) and total available water (TAW),

where TAW = θfc − θwp and θwp is the wilting point soil 
moisture content and θfc is field capacity. In this study, a 
constant MAD (0.4–0.6) for entire crop growth stages was 
used. The threshold θt is computed from readily available 
water (RAW) and θfc (Eq. 3),

A reduction in MAD causes a corresponding reduction in 
RAW and consequently increases θt. When MAD is equal 
to 1, θt becomes θwp, i.e., the model delays irrigating until 
θroot becomes θwp. When MAD = 0 (θt = θfc), the model does 
not let the soil moisture go below θfc. Each irrigation event 
restores soil moisture to θfc for both the soil surface layer 
(dsur) and the root zone layer (droot) (as assumed sprinkler 
irrigation). Two concurrent accountings of soil moisture are 
made, one for the soil surface and one for the full root zone. 
Water content at the soil surface (θsur) (Eq. 4) is computed as

where θsur(i−1) is the volumetric water content (VWC) of the 
surface layer at the previous time step (m3 m−3), Ess is soil 
surface evaporation (mm), P is precipitation (mm), Srun is 
surface runoff (mm), Irr is irrigation, dsur (= 150 mm) is soil 
surface depth, DPe is deep percolated water from the upper 
soil layer to the root zone (m3 m−3), CRe is capillary rise 

(1)Irr =

{

(θfc − θroot )droot if θroot < θt
0 if θroot ≥ θt

(2)RAW = MAD
(

θfc − θwp
)

= MAD ⋅ TAW

(3)θt = θfc − RAW

(4)

θsur = θsur(i−1) +

(

P + Irr − Srun
)

− E
ss
− Te

dsur
+ CRe − DPe

1  Mention of trade names or commercial products in this publication 
is solely for the purpose of providing specific information and does 
not imply recommendation or endorsement by the U.S. Department 
of Agriculture.

http://www.bgc-jena.mpg.de/~MDIwork/eddyproc/method.php
http://www.bgc-jena.mpg.de/~MDIwork/eddyproc/method.php
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from the root zone into the first soil surface layer (m3 m−3), 
and Te is transpiration from the soil surface layer (mm).

The water content of the root zone (θroot) is similarly 
evaluated as Eq. (5), where root zone control volume con-
sists of the soil surface layer.

where θroot(i−1) is VWC of the root zone from previous time 
steps, T is transpiration from vegetation, droot (= 500 mm) is 
rooting depth for entire growth stages, DP is deep percola-
tion below the root zone, and CR is capillary rise from the 
third layer to the root zone. CRe, CR, and Te were neglected 
in the present analysis to simplify the soil water balance. 
Currently, the model permits soil to be dry at the surface 

(5)

θroot = θroot(i−1) +

(

P + Irr − Srun
)

− Ess − T

droot
+ CR − DP

(dsur) to an air-dry condition (Campbell and Norman 2000). 
The θsur can elevate to saturated soil moisture (θsat), while 
θroot is limited to θfc.

A Jarvis-type equation was used to compute canopy 
resistance (rsc) with weighting functions representing plant 
response to solar radiation (F1), air temperature (F2), vapor 
pressure deficit (F3), and soil moisture (F4) (Alfieri et al. 
2008; Kumar et al. 2011),

where LAI is leaf area index and fc is fraction of canopy 
cover. The fraction of canopy cover (fc) is calculated based 
on NDVI as suggested by Gutman and Ignatov (1998), 
Dhungel et al. (2016).

(6)rsc =
Rc_min

LAI

fc
F1F2F3F4

Fig. 1   BAITSSS configuration with inputs (weather, vegetation indices, and soil data), intermediate, and output
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The minimum value of canopy resistance (Rc_min) is set at 
40 sm−1 as per Kumar et al. (2011), Dhungel et al. (2019) for 
irrigated agricultural landscapes. When F1 = F2 = F3 = F4 ~ 1, 
rsc becomes the minimum.

A logistic growth-type equation (W) is used to calculate 
the effects of the available water fraction (AWF) for F4 in 
Eq. (6) (Anderson et al. 2007).

Wo, Wf, and μ are logistic growth equation coefficients, 
where Wo = 1, Wf = 800, and μ = 12.

BAITSSS adjusted energy and water balance components 
using fc to partition soil and canopy components.

Weather, soil, and vegetation data

The primary inputs of BAITSSS are weather, vegetation 
indices, and soil data (Fig. 1). Soil hydraulic characteristics 
data (θfc and θwp) were acquired from the area and depth-
averaged NRCS soil survey database SSURGO as described 
by Wieczorek (2014) and were added in Table 1. AZMET 
(Arizona Meteorological Network) and the EC sites pro-
vided the hourly weather data. Normalized difference veg-
etation index (NDVI) was derived from linearly interpolated 
Sentinel-2 and leaf area index (LAI) was estimated from the 
empirical relationship relating NDVI to LAI. Relatively dry 
initial surface (θ = 0.05 m3 m−3) and root zone (θ = θwp) soil 
moisture contents were considered for all sites since minimal 
precipitation occurred 15 days before planting (i.e., start of 
the simulation).

Results

Weather and vegetation indices

The average flux (diurnal cycle; 24 h) of solar radiation 
decreased from ~ 250 to ~ 150 W m−2 and air temperature 
decreased from ~ 30 to ~ 10 °C toward the winter solstice. 
During this period, vegetation indices were mostly increas-
ing creating phase differences between solar radiation and 
air temperature (Fig.  2). To reduce daily scatter, Poly-
fit and polyval functions of the polynomial module were 
used within the Python-based library NumPy to smooth the 

(7)AWF =
θroot − θwp

θfc − θwp

(8)F4 =
ln(W)

ln(Wf )

(9)W =
W0Wf

W0 + (Wf −W0)exp(−μAWF)
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NDVI and LAI values. NDVI period (< 0.3 and ≥ 0.3) were 
separated for differentiating bare soil and the non-vegetated 
period from the vegetative period (based on color code). The 
maximum duration when NDVI < 0.3 was 58 days for the 
site YID 19–20a (Fig. 2e) while the minimum was 29 days 
for the site YID 17a (Fig. 2d) with an average value of 
38 days. Lettuce harvesting is done at peak or close to peak 
vegetative cover. Most of the sites showed cut-off in NDVI 
and LAI at the peak with some exceptions. The vegetation 
indices showed some variability among the sites, with the 
maximum values of NDVI and LAI being ~ 0.9 and ~ 5.5 
m2 m−2, respectively. The site YID 17c had the smallest 
vegetation index values (Fig. 2i, maximum NDVI ~ 0.4 and 
LAI ~ 1 m2  m−2) followed by YCWUA 17–18a (Fig. 2l, 
maximum NDVI ~ 0.6 and LAI ~ 2 m2 m−2).

Irrigation frequency and depth

Figure 3 shows applied irrigation, precipitation, and the pro-
gression of simulated irrigation based on multiple MADs 
on a daily time scale. Field data showed that irrigation was 
generally applied on the first day of planting. Due to the 

assumed low initial moisture content (= θwp) of the root 
zone, BAITSSS auto-irrigation also simulated on the first 
day (θwp < θt at the start of simulation) for all considered 
MADs. The irrigation depth (mm) from BAITSSS for the 
first application was the largest of the simulation because 
the model did not let the moisture go below the θt thereafter 
(Fig. 3). For all sites, the second simulated irrigation was 
triggered earliest when MAD = 0.4, followed by MAD = 0.5 
and MAD = 0.6. Applied irrigation in the field showed a 
higher frequency of small irrigation events (< 20 mm) right 
after planting in all sites, which were mostly on daily basis 
or some days apart after the first irrigation. The frequent 
water applications were due to sprinkler irrigation being 
used during crop establishment to create a cool microcli-
mate (Sanchez et al. 2009). However, the average differ-
ence between the first and second simulated irrigation events 
among all sites was 13, 18, and 24 days for MAD of 0.4, 0.5, 
and 0.6, respectively. The shortest difference was 5 days for 
YCWUA 18a (Fig. 3c) for MAD of 0.4 while the longest 
difference was 69 days for YID 19–20a (Fig. 3e) for MAD of 
0.6, which was pushed back by multiple precipitation events. 
It was evident that precipitation delayed both applied and 

Fig. 2   Daily values of vegetation indices (LAI and NDVI) from Sentinel-2 for various sites for multiple years around Yuma, AZ
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simulated irrigation (e.g., NGIDD 19–20a, Fig. 3a, YID 
19–20a, Fig. 3e). The frequency and the application depth 
of simulated irrigation differed from applied irrigation later 
in the season as well. As indicated earlier, irrigation in 
BAITSSS (timing and depth) was triggered based on veg-
etative and weather demand with predefined management 
scenarios. Farmers normally rely on visual inspection of the 
crop, historical experience based on previous seasons, their 
knowledge about soil water retention, and energy cost. The 
applied irrigation depth varied from < 20 to > 80 mm.

Evapotranspiration time series

Visual inspection of daily ET data (Fig. 4) showed that 
BAITSSS simulated ET closely followed EC measured 
values. However, differences were evident during the par-
tial cover period mainly due to soil evaporation (YID 17a, 
Fig. 4d; YCWUA 19–20a, Fig. 4f; YID 17b, Fig. 4h). The 

ET spikes from BAITSSS followed the simulated irriga-
tion based on the respective MADs. The mismatch between 
EC and BAITSSS daily ET spikes was generally smaller 
during the full cover period, though it was not completely 
eliminated (YID 17d, Fig. 4g; YCWUA 17–18a, Fig. 4k). 
Obviously, the simulated ET when using applied irrigation 
[ET (App.Irr)] data as inputs was in closer agreement with 
EC measurements compared to simulated irrigation (Fig. 4). 
Eddy covariance measured evapotranspiration [ET (EC)] 
generally stayed higher right after planting because of the 
multiple small irrigation events, whereas ET predicted from 
BAITSSS showed a decline after the first irrigation event 
due to larger gaps in simulated irrigation events (NGIDD 
19–20a, Fig. 4a; YID 17a, Fig. 4d). The maximum daily 
ET value was ~ 8 mm from both EC and BAITSSS (YID 
17b, Fig. 4h); however, ET was generally less than 6 mm 
most of the time. Evapotranspiration from EC for YCWUA 
17–18a (Fig. 4k) was unrealistically stable (~ 3 mm) and 

Fig. 3   Daily applied irrigation and precipitation, and progression of simulated irrigation from BAITSSS based on various management allow-
able depletions (MADs) around Yuma, AZ
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less responsive to irrigation events after the new year than 
BAITSSS ET.

Soil moisture at root and F4

Figure 5 shows the relationship between F4 and θroot based 
on the logistic equation (Eqs. 7–9). The gradual change 
in shape and the transition points of these curves provide 
the basis for triggering irrigation. The upper value of soil 
moisture on the horizontal axis of each plot is field capac-
ity, whereas the lower value was threshold moisture con-
tent (Fig. 5). NGIDD 19–20a (Fig. 5a) and YID 19–20a 
(Fig. 5e) had the lowest field capacity (θfc) of 0.19 m3 m−3, 
while YCWUA 18a (Fig. 5c), YCWUA 19–20a (Fig. 5f), 
and YCWUA 17–18a (Fig. 5k) had the highest θfc of 0.42 
m3  m−3. As per the irrigation rules, the model does not 

permit the soil moisture to go below θt to avoid moisture-
related stress and each irrigation event brings moisture back 
to θfc (Fig. 3). The F4-θroot curves for individual MADs over-
lap each other for individual sites because of the identical 
shape of AWF (θwp, θfc). The F4 reached the upper limit 
i.e., ~ 1 when θroot = θfc for all MADs. The lowest value of 
F4 was ~ 0.9, ~ 0.85 ~ 0.7 for MADs of 0.4, 0.5, and 0.6, 
respectively. As a reminder, higher values of the weighing 
functions F1, F2, F3, and F4 create lower rsc and ultimately 
smaller resistance to transpiration.

The simulated root zone soil moisture (θroot) is shown 
in Fig. 6. The soil moisture time course corresponded to 
the progression of MAD-based irrigation shown in Fig. 3 
and ET spikes shown in Fig. 4. The first irrigation event at 
the start of the simulation restored θroot to θfc in all sites. 
The subsequent, i.e., second irrigation (excluding the start 

Fig. 4   Daily evapotranspiration (ET) for irrigated lettuce at vari-
ous sites around Yuma, AZ. ETEC is ET measured with eddy covari-
ance, ETBAITSSS is ET simulated with BAITSSS using irrigation data 

as input, and the remaining curves are ET simulated with BAITSSS 
using various levels of management allowable depletion (MAD) to 
trigger simulated irrigation
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of simulation) was trigged first for MAD = 0.4 and last for 
MAD = 0.6. The θsur followed a similar trend of θroot i.e., 
continuously decreased until the next irrigation or precipita-
tion occurred (not shown).

Seasonal cumulative evapotranspiration

A comparison of seasonal ET between EC and BAITSSS 
showed mixed results (Fig. 7). For instance, some sites 
showed good agreement (within ± 10%) (YID 18b, Fig. 7b; 

YID 17a, Fig. 7d; YID 17b, Fig. 7h; YID 17c, Fig. 7i; YID 
16, Fig. 7l); some had positive bias (YCWUA 18a, Fig. 7c; 
YCWUA 19–20a, Fig.  7f; YID 17d, Fig.  7g; YCWUA 
17–18b, Fig. 7j; YCWUA 17–18a, Fig. 7k), while others 
had negative bias as well (NGIDDD 19–20a, Fig. 7a; YID 
19–20a, Fig. 7e). The % values in the legend of each plot 
indicate the difference between simulated and measured 
cumulative ET from EC when BAITSSS was run with a 
MAD of 0.5 (Table 1). The largest positive bias was 69% 
for YCWUA 17–18a (Fig. 7k) while the largest negative 

Fig. 5   Hourly weighting func-
tions relating plant response 
(F4) to root zone soil moisture 
θroot for various sites around 
Yuma, AZ. The straight line 
connecting the endpoints was 
added to help distinguish three 
curves in each plot
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bias was −27% for NGIDD 19–20a (Fig. 7a). For YCWUA 
17–18a, unrealistically stable ET from EC, (i.e., less respon-
sive to irrigation events during the latter part of the simu-
lation after the start of the new year) led to the large dif-
ferences. For BAITSSS simulations with MAD = 0.5, the 
average difference between BAITSSS and EC cumulative 
ET was 7% over all sites and years. The average difference 
dropped to 2% when NGIDD 19–20a was excluded from 
the analysis. The MAD producing the best cumulative ET 
agreement varied by site. As expected, seasonal ET from 
BAITSSS was largest from MAD = 0.4 and smallest from 
MAD = 0.6 in all sites due to fewer irrigation events and 
less soil evaporation as MAD increases. The largest differ-
ence between the seasonal ET values between MAD of 0.4 
and 0.6 was 19% for YID 16 (Fig. 7l), while the lowest dif-
ference was 2% for NGIDD 19–20a with average of ~ 10% 
among the sites.

We further assessed cumulative ET by separating the 
period when the soil evaporation was dominant (NDVI < 0.3) 
and afterward (Fig. 8). It was interesting to see that some 
sites showed better agreement during the period NDVI < 0.3 
(YID 18b, YCWUA 18a, YID 17d, YCWUA 17–18b) while 
other showed during NDVI > 0.3 (NGIDD 19–20a, YID 17a, 
YID 19–20a, YID 17c, YID 16). The largest negative bias 
between EC and BAITSSS seasonal ET (−49%) occurred 
when NDVI < 0.3 at the sites with the largest underestima-
tion of seasonal ET (Figs. 7a, e and 8a, e, respectively). 
These sites had nominal differences in cumulative ET (−6% 
to −1%, respectively) during the period when NDVI > 0.3. 
Conversely, the largest positive bias during the period when 
NDVI < 0.3 was 54%, and 79% during the period when 
NDVI > 0.3 for YCWUA 17–18a. This site was the largest 
contributor to the seasonal ET difference between EC and 
BAITSSS (Fig. 7k).

Fig. 6   Estimated daily root zone soil moisture from BAITSSS for various sites around Yuma, AZ
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Seasonal cumulative irrigation

Applied and simulated cumulative seasonal irrigation 
agreed well at some sites (NGIDD 19–20a, Fig. 9a; YID 
18b, Fig. 9b; YCWUA 19–20a, Fig. 9f; YCWUA 17–18b, 
Fig. 9j; YID 16, Fig. 9l) and less well at others (Table 1). 
As an interesting fact, differences between simulated 

and measured seasonal ET at sites NGIDDD 19–20a 
(Fig. 7a) and YID 19–20a (Fig. 7e) were of similar mag-
nitude (both around − 25%) with MAD = 0.5 (Fig. 9). In 
contrast, the corresponding differences in seasonal irri-
gation differed significantly around − 11% for NGIDDD 
19–20a (Fig.  9a) and around −47% for YID 19–20a 
(Fig. 9e) although both showed negative bias. Seasonal 

Fig. 7   Cumulative seasonal ET from EC and BAITSSS of lettuce for various sites Yuma, AZ. Percent difference (Diff.) is based on MAD of 0.5
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precipitation was similar at both sites (32 mm for NGIDD 
19–20a and 58 mm for YID 19–20a). The variability of 
seasonal irrigation among the MADs was also small for 
both of these sites (NGIDDD 19–20a and YID 19–20a) 
and both had identical soil moisture characteristics with 
the lowest θfc among all sites, 0.19 m3 m−3. Applied irri-
gation similar to or smaller than simulated (i.e., a positive 
bias) generally indicates efficient water application (YID 
18b, YID 17a, YID 17d, YID 17b, YID 17c, YCWUA 
17–18b). The maximum positive bias (42%) in cumulative 

irrigation was for YID 17d (Fig. 7g; Table 1). The mean 
seasonal differences between simulated and applied irri-
gation among the sites and years were 6%, which was 
close to seasonal cumulative ET (7%). Like cumulative 
ET, simulated cumulative irrigation was largest for MAD 
of 0.4. The largest difference between the seasonal irriga-
tion values among the sites between MAD of 0.4 and 0.6 
was 20% for YCWUA 17–18b (Fig. 9j), while the lowest 
difference was −7% for YID 19–20a (Fig. 9e) with aver-
age of ~ 10%.

Fig. 8   Cumulative seasonal ET from EC and BAITSSS for lettuce at various sites around Yuma, AZ. The two periods in each plot are the period 
when soil evaporation was dominant (NDVI < 0.3) and afterward. Percent difference (Diff.) is based on MAD of 0.5
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Accuracy assessment

Figure 10 presents scatterplots between EC and BAITSSS 
simulated daily ET where points lie on both sides of the 1:1 
line. However, larger differences were observed during the 
partial cover period in some sites (NDVI < 0.3 indicated by 
a smaller brown color circle symbol and afterward a larger 

green symbol). As observed in Fig. 4, the BAITSSS ET 
showed a continuous decline after the first irrigation event, 
i.e., right after planting and during the crop establishment 
period, whereas EC ET mostly stayed high due to frequent, 
small irrigation events. These different irrigation patterns 
were a primary cause of differences in ET during that 
period. The higher agreement (points close to 1:1) during 

Fig. 9   Cumulative seasonal irrigation of lettuce for various sites around Yuma, AZ. Percent difference (Diff.) is based on MAD of 0.5
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the latter part (mostly during the full cover period) was 
perhaps because evaporation was less influential, and also 
because ET may have attained near reference conditions. 
BAITSSS didn’t compute reference ET (ETo) based on the 
FAO-56 method (Allen et al. 1998), instead, the minimum 
canopy resistance (rsc) of 40 sm−1 limits the maximum value 
of transpiration.

Discussion

A major advantage of remote sensing-based energy bal-
ance ET models is that there is no direct need for ground-
based moisture conditions and does not require irrigation. 
Limited studies have been done utilizing remote sensing-
based energy balance to simulate irrigation and compare 
it to applied irrigation applications. For instance, Droogers 

et al. (2010) estimated applied irrigation application with 
reasonable accuracy (95%) by remotely sensed evapotran-
spiration observations (Landsat) provided that data are 
available at an interval of 15 days or shorter and the accu-
racy of the signal is 90% or higher. METRIC (Allen et al. 
2007), a widely used remote sensing-based energy balance 
model, incorporates precipitation-based soil water balance 
to evaluate the upper soil moisture condition of hot pixel 
(Allen et al. 2013; Tasumi 2019). However, neither applied 
nor simulated irrigation is accounted for in these water bal-
ance as this information is not readily available. Chen et al. 
(2018) and Taghvaeian et al. (2020) documented hydrologi-
cal and crop growth models that had the capability of irri-
gation simulation (manual and auto-irrigation) which were 
Soil and Water Assessment Tool (SWAT; watershed scale 
model) (Arnold et al. 1998), the Agricultural Policy/Envi-
ronmental eXtender (APEX; small watershed/field-scale 

Fig. 10   Scatterplot of daily 
evapotranspiration (ET) derived 
from eddy covariance (ETEC) 
versus ET computed with 
BAITSSS (ETBAITSSS). The 
BAITSSS model was run using 
a management allowable deple-
tion (MAD) of 0.5. The results 
are for various lettuce fields 
around Yuma, AZ
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model) (Williams 1995), the Decision Support System for 
Agrotechnology Transfer (DSSAT; crop model) (Jones et al. 
2003), Root Zone Water Quality Model (RZWQM; field-
scale model) (Ahuja et al. 2000), MODFLOW (groundwa-
ter model) (McDonald and Harbaugh 1988), and AquaCrop 
(Raes et al. 2009).

SWAT and APEX models had auto-irrigation which is 
either based on a water stress identifier of either plant water 
demand or soil water content. Chen et al. (2018) further 
developed auto-irrigation algorithms for the SWAT model 
based on uniform, single-season MAD as well as growth 
stage-specific MAD with options for seasonal growth stage 
partitioning based on the scheduled date and accumulated 
heat units. They indicated improved model performance for 
simulations of irrigation amount and frequency and actual 
evapotranspiration compared with observed data from an 
irrigated lysimeter field. Some other studies also indicated 
promising results for detection irrigation applications using 
microwave in some regions, however, because of spatial mis-
match between model and satellite data, effects of topogra-
phy, vegetation, frozen soils, and Radio-frequency Interfer-
ence (RFI) led to substantial uncertainties in others (Kumar 
et al. 2015; Massari et al. 2021).

The irrigation depth in BAITSSS depends on the rooting 
depth, MAD, and soil moisture characteristics, along with 
vegetation cover and weather demand. A constant rooting 
depth of 500 mm (relatively shorter than for grain crops) 
and a constant MAD were adopted for the entire simula-
tion period. Excluding the first irrigation event (at the start 
of the simulation), the rest of the irrigation depths from 
BAITSSS was nearly identical (because of identical θt) for 
a given MAD. During crop establishment and early growing 
periods, rooting depths are shallower than those at matu-
rity, i.e., full canopy cover. In addition, applied irrigation 
showed that MAD right after planting can be significantly 
smaller compared to the later period. Implementing dynamic 
rooting depth (a gradual increase of rooting depth mimick-
ing root growth) as implemented by Song et al. (2013), El 
Masri et al. (2015), Liu et al. (2020) in land surface models 
and growth stage-specific MAD may help to increase the 
frequency of irrigation right after planting, though it may 
increase computational challenges when using high spatial 
and temporal resolution data at the landscape scale.

Additionally, the planting dates and rooting depth may 
also vary based on crop types which may not be available. 
Because of these limitations, it is preferred to have a general-
ized solution from BAITSSS that can accommodate multi-
ple crop types with fewer field data requirements. In future, 
with the help of high-resolution remote sensing products 
like Planet (Planet 2017) (daily scale, 3–5 m), soil maps 
like Polaris (30 m) (Chaney et al. 2016), shortwave-infrared-
based water index (Yue et al. 2019), ingesting thermal band 
and microwave as well as combining multiple bands (for 

instance near-infrared and blue bands) may assist in improv-
ing/identifying these field-scale moisture conditions and irri-
gation. In this study, we didn’t intend to revise simulated 
irrigation to match the applied irrigation as one of the objec-
tives of this study was to understand the irrigation practices 
and behavior of farmers and growers as well as MAD-based 
irrigation.

Earlier study discussed that one of the primary controls 
on ET was solar radiation and air temperature where ET 
decreased toward the winter solstice and increased afterward 
into the new calendar year (Dhungel et al. 2022). During that 
period, vegetation indices were generally increasing creating 
phase differences with solar and air temperature. We also 
found similar behavior in this study (Fig. 4). We did not 
observe a significant underestimation of ET based on these 
implemented MADs from moisture-related stress. A higher 
value of MAD delays the irrigation, thus pushing θt near to 
θwp (θt = θwp when MAD = 1). Even though ET estimated 
from BAITSSS appeared to be similar among the MADs 
during the full cover, delaying irrigation during germination 
and crop establishment cover period would not be realistic 
for healthy crop growth. Evaluating applied irrigation during 
the crop establishment period where a cooler micro-climate 
was created by frequent irrigation for the crop's physiologi-
cal demand, the irrigation from BAITSSS may need to be 
adjusted if intended to match field conditions.

Conclusion

We evaluated ET and auto-irrigation from BAITSSS for 
multiple sites and years for lettuce in an arid environment. 
The results showed the model was competent for estimat-
ing ET utilizing MAD based on auto-irrigation. A constant 
rooting depth of 500 mm and constant MAD (0.4–0.6) for 
all crop growth stages were evaluated. The model-simu-
lated auto-irrigation and ET based on predefined irrigation 
rules (MADs), soil moisture characteristics, weather, and 
vegetation indices. It produced mixed results where obvi-
ous differences in ET spikes were observed in some sites 
during the partial cover period due to variations in irriga-
tion patterns and frequencies. The differences in ET were 
generally reduced during the full cover period, which may 
be due to the reduced effect of soil evaporation. The agree-
ment between applied and simulated irrigation showed the 
model’s capability as well as effective irrigation application 
in the field. However, fields with significantly larger applied 
irrigation compared to simulated may guide farmers/pro-
ducers for effective irrigation application. The behavior of 
applied irrigation, i.e., timing and depth widely varied for 
the same season (< 20 to > 80 mm) when compared simu-
lated MAD-based irrigation. One of the common behav-
iors of applied irrigation in all sites was a larger irrigation 
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frequency of small irrigation events (< 20 mm) during the 
initial growing period for creating a cooler microclimate. 
However, due to constant rooting depth, constant MAD for 
entire growth stages, and a longer partial cover period (aver-
age of 38 days when NDVI < 0.3) the model was unable to 
mimic this behavior in some sites. Overall, there was not an 
obvious MAD value to be chosen to model the fields absent 
grower provided irrigation times and depths. However, shal-
lower rooting depth or smaller MAD value, or a combination 
of both can help to increase the frequency of irrigation right 
after planting. The average difference between both seasonal 
ET and irrigation was ~ 10% between MAD of 0.4 and 0.6. 
The study highlighted the capabilities and limitations of 
model-simulated auto-irrigation and ET.
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